
Analysis of Memory-Contention in1

Heterogeneous COTS MPSoCs2

Mohamed Hassan3

McMaster University, Canada4

mohamed.hassan@mcmaster.ca5

Rodolfo Pellizzoni6

University of Waterloo, Canada7

rpellizz@uwaterloo.ca8

Abstract9

Multiple-Processors Systems-on-Chip (MPSoCs) provide an appealing platform to execute Mixed Criticality10

Systems (MCS) with both time-sensitive critical tasks and performance-oriented non-critical tasks. Their11

heterogeneity with a variety of processing elements can address the conflicting requirements of those tasks.12

Nonetheless, the complex (and hence hard-to-analyze) architecture of Commercial-Off-The-Shelf (COTS)13

MPSoCs presents a challenge encumbering their adoption for MCS. In this paper, we propose a framework to14

analyze the memory contention in COTS MPSoCs and provide safe and tight bounds to the delays suffered15

by any critical task due to this contention. Unlike existing analyses, our solution is based on two main novel16

approaches. 1) It conducts a hybrid analysis that blends both request-level and task-level analyses into the17

same framework. 2) It leverages available knowledge about the types of memory requests of the task under18

analysis as well as contending tasks; specifically, we consider information that is already obtainable by applying19

existing static analysis tools to each task in isolation. Thanks to these novel techniques, our comparisons with20

the state-of-the art approaches show that the proposed analysis provides the tightest bounds across all evaluated21

access scenarios.22

2012 ACM Subject Classification Computer systems organization→Real-time systems; Computer systems23

organization→ Embedded and cyber-physical systems; Computer systems organization→ Architectures24

Keywords and phrases DRAM, Memory, COTS, Multi-core, Real-Time, Embedded Systems, Analysis25

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.1726

1 Introduction27

Unlike traditional embedded systems, Mixed Criticality Systems (MCS) such as those deployed in28

automotive and avionics embrace both safety-critical as well as high-performance tasks. Accordingly,29

low-end microcontrollers often used for traditional real-time embedded systems no longer meet the30

requirements of MCS. To address this challenge, researchers have explored the deployment of multi-31

core architectures (e.g. [8, 22, 27]). Among those architecture, Multiple-Processors Systems-on-Chip32

(MPSoCs) standout as a viable option to meet the various demands of MCS [12]. Their heterogeneity33

provides an opportunity to leverage different Processing Elements (PEs) to meet different tasks’34

requirements. For instance, real-time cores such as the ARM R5 in the Xilinx’s Zynq Ultrascale+ [4]35

adopt a simpler architecture and hence are easier to analyze. Therefore, they can be used for time-36

sensitive safety-critical tasks. On the other hand, performance-oriented PEs such as GPUs and the37

ARM A-series cores can be utilized by high-performance tasks. That said, MPSoCs have their own38

challenges when deployed in MCS. Shared memory components such as on-chip caches and off-chip39

Dynamic Random Access Memories (DRAMs) create interference among PEs as they contend to40

access this shared memory. Memory interference can lead to a 300% increase in the total Worst-Case41

Execution Time (WCET) of a task in an 8-core system if a task spends only 10% of its execution42

time in memory accesses [28]. Similar trends were reported for the multi-core Freescale’s P408043

platform [25]. In this paper, we focus on the analysis of memory contention delays in heterogeneous44

commercial-off-the-shelf (COTS) MPSoC platforms, where our goal is to derive a safe bound on45

© Mohamed Hassan and Rodolfo Pellizzoni;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 17; pp. 17:1–17:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohamed.hassan@mcmaster.ca
mailto:rpellizz@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECRTS.2020.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

these delays suffered by any critical task in a MCS executing on these platforms upon accessing the46

off-chip DRAM.47

1.1 Related Work and Motivation48

There exist several works whose goal is to manage interference due to contention while accessing the49

off-chip DRAM. Some of these works address this interference by entirely redesigning the memory50

controller to make DRAM accesses more predictable [7, 13, 17, 23, 34], which we refer the reader to51

the survey in [9] for their evaluation and comparison. Others propose operating system level solutions52

to alleviate the interference by partitioning DRAM banks among PEs [21, 26, 36], while controlling53

the maximum number of accesses issued by each PE [1, 2, 39].54

Since this work focuses on analyzing DRAM interference in COTS architectures to provide safe55

memory delay bounds, the closest related efforts are [14, 20, 37]. The first two [20, 37] provide both56

job- and request-driven bounds, while the third [14] provides request-driven bounds only. Job-driven57

analysis utilizes information about total number of requests from competing cores to calculate the58

total Worst-Case Memory Delay (WCD) suffered by a core. Request-driven analysis, in contrast,59

derives a bound on the per-request WCD suffered by any single memory request. This bound is then60

multiplied by the total number of requests issued by the core to compute the total memory delay. Four61

observations about these efforts motivate our work. 1) Both [20] and [37] assume a specific platform62

with a particular architecture and OS configuration, and thus, the derived bounds are only limited63

to COTS platforms that follow these assumptions. 2) Although [14] addresses this limitation by64

exploring a wide set of COTS platforms, it only provides request-driven bounds. 3) Comparing both65

request- and job-driven analyses, we find that whichever one provides tighter bounds is dependent66

on the characteristics of running applications. In particular, it depends on the relative ratio between67

the number of requests of the core under analysis and the total number of interfering requests from68

competing cores. If the former is much smaller, then request-driven analysis will provide the tighter69

bound. On the other hand, if the latter is much smaller, then job-driven analysis will provide the70

tighter bound. Considering the minimum of both bounds as proposed in [20, 37] is certainly a viable71

approach. However, instead of conducting each analysis separately and then considering the smallest72

result, a hybrid approach that blends both analyses at a per-core basis can further tighten the bound.73

4) All aforementioned works do not differentiate between different types of requests issued by cores74

such as reads vs writes, and DRAM row hits vs DRAM row conflict requests. Leveraging such75

information, as we show in this work, can significantly reduce the WCD and provide tighter bounds.76

Motivated by these observations, this paper makes the following contributions.77

1. It proposes an approach that blends both request- and job-driven analyses in the same framework.78

Both analyses are combined to form a single optimization problem. The solution to this problem79

provides a tighter, yet safe, bound on the cumulative memory delay suffered by requests of the80

core under analysis. We open-source the problem formulation that implements the analysis for the81

community to use and extend 1.82

2. Unlike existing solutions, this framework leverages information, if available, about the requests83

issued by the core under analysis as well as interfering cores. Specifically, we consider the number84

of read and write requests, and the number of DRAM row hits and row conflicts issued by each85

task. This information can be obtained by analyzing all tasks in the system in isolation either86

statically using static analysis tools or experimentally. That said, we make no assumption about87

the times at which those requests are issued or their sequence patterns since this information is88

1 https://gitlab.com/FanusLab/memory-contention-analysis



M. Hassan and R. Pellizzoni 17:3

run-time dependent and is affected by the behavior of competing tasks, and hence, not possible to89

obtain by simply analyzing the tasks in isolation.90

3. Contrary to existing job-analysis [20, 37], we cover a wide set of commodity COTS platforms.91

Namely, we consider the same 144 platform instances covered by [14].92

4. Unlike [14], which provides bounds for only 81 out of those 144 platform instances and declares93

the remaining 63 instances unbounded, the proposed framework is able to safely bound all 14494

instances thanks to its hybrid approach using both request- and job-driven analyses.95

5. We conduct a comprehensive evaluation to compare with both job-driven analyses in [20, 37]96

as well as request-driven analyses in [14, 20, 37] using a variety of interference scenarios. This97

comparison shows that the proposed approach achieves tighter bounds under all scenarios. The98

proposed approach provides 24%–42% tighter bounds compared to [37], 23%–21× tighter bound99

compared to [20], and a minimum of 4% tighter bound compared to [14], while it is able to100

provide bounds for scenarios that are deemed unbounded by [14] as aforementioned.101

2 Background102

2.1 Background on DRAM103

DRAM consists of cells that are grouped in banks. Each bank resembles an array of columns and104

rows, and has a row buffer that holds the most recently accessed row in that bank. An on-chip Memory105

Controller (MC) manages accesses to the DRAM by issuing DRAM commands on the command106

bus. Namely, we have three main commands: ACT, CAS, and PRE. 1) If the requested row is already107

available in the row buffer, the request consists of only a CAS command that executes the actual read108

(R) or write (W) operation. We call the request in this case an open request. 2) If the requested bank109

is idle (i.e., does not have an activated row in the buffer), the MC issues an ACT command first to110

activate the row, followed by a CAS command. 3) If the requested row is different from the activated111

row in the row buffer (a bank conflict), the MC issues all three commands: PRE to precharge the old112

row, ACT to activate the requested row, and CAS to read/write. We call the request that suffers a bank113

conflict, a close request. The MC is able to issue only one command at any single cycle to the DRAM.114

Therefore, if there are more than one command that are ready to be sent to the DRAM at the same115

cycle, we say that there is a command bus conflict. Only one of them will be issued by the MC, while116

the others are delayed to subsequent cycles.117

The JEDEC DRAM standard [18] defines a set of timing constraints on the three commands that118

must be satisfied by all MC designs; the value of each constraint depends on the specific DRAM119

device type and speed. Table 1 exemplifies with constraints from a single-rank DDR3 device; it120

also shows the value of the constraints for the particular device speed we use in the evaluation. It is121

important to note that the proposed analysis is not specific to this particular device and can be applied122

to any DRAM. For DDR4 devices, the bank-group timing constraints need to be also considered in123

addition to the ones in Table 1; however, a similar analysis can be applied. Each constraint represents124

the minimum number of clock cycles that must elapse between the transmission of a command or125

data and a successive command or data; with the exception of tFAW , which represents the minimum126

distance every four, rather than two, successive ACT commands. We distinguish between two types127

of constraints: intra-bank constraints are applied between data/commands issued to the same bank,128

while inter-bank ACT/CAS constraints are applied between data/commands of the same type (ACT or129

CAS) issued to any bank. Correspondingly, we shall say that a request causes intra-bank delay on130

another one if it triggers intra-bank constraints; or ACT/CAS delay if it triggers inter-bank ACT/CAS131

constraints. Note that there are no inter-bank constraints for PRE commands; however, due to the132

effect of command bus conflicts, a PRE command can still cause PRE delay on another PRE command.133

For ease of exposition, Figure 1 depicts an example of intra-bank constraints (Figure 1a) as well as134

ECRTS 2020



17:4 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

(a) Intra-bank (conflict) constraints
Parameters Description cycles
tRCD ACT to CAS delay 9
tRL RD to Data Start 9
tRP PRE to ACT Delay 9
tW L WR to Data Start 8
tRAS ACT to PRE Delay 24
tRC ACT to ACT (same bank) 33
tW R Data End of WR to PRE 10
tRT P Read to PRE Delay 5

(b) Inter-bank constraints
Parameters Description cycles

Inter-bank CAS constraints
tCCD CAS to CAS delay 4
tRT W RD to WR Delay 6
tW T R WR to RD Delay 5

Inter-bank ACT constraints
tRRD ACT to ACT (diff bank in same rank) 4
tF AW Four bank activation window 20

Table 1 JEDEC timing constraints for DDR3-1333H [18].

A W
DATA

P A
tRCD tWL

tB
tWR tRP

tRAS

(a) Intra-bank constraints.

W
DATAtWL
tB RtWTRW

tCCD
tRTW

DATA
W

tRL

(b) Inter-bank constraints.

Figure 1 DRAM timing constraints example. tB is the data transfer time (4 cycles for a burst length of 8).

inter-bank constraints (Figure 1b). Note that when considering two consecutive requests, intra-bank135

constraints can affect the latency of the second request only in the case of a bank conflict: if the two136

requests access the same bank without conflict, then the second request must be open and only the137

inter-bank CAS constraints apply. Hence, we also refer to intra-bank constraints and delay as conflict138

constraints/delay. A command (or request) is denoted as intra- or (inter-)ready when it meets all its139

intra- (or inter-)bank constraints. A command cannot be issued before it is both intra- and inter-ready.140

DRAM cells have to be periodically refreshed to prevent data leakage through issuing REF (refresh)141

commands. Refresh delays can be often neglected compared to other delays [20]. It can also be added142

as an extra delay term to the execution time of a task using existing methods [3, 35]. Accordingly and143

similar to previous works [14, 20, 37], we do not account for the refresh delay.144

Arbitration. Requests are first queued into per-bank queues. Then two-level arbitration is145

deployed as follows: 1) Intra-bank arbitration is implemented between requests of the same bank.146

This usually uses a First Ready-First Come First Serve (FR-FCFS) scheduling mechansim [20,24,31].147

FR-FCFS prioritizes open requests, which target data already available in the row buffer over close148

requests. 2) Inter-bank arbitration: the MC deploys a Round Robin (RR) mechanism to arbitrate149

among intra-ready commands at the head of the bank queues [6, 14, 16, 32, 33, 36]. In case of a150

command bus conflict, we assume the following priority order is enforced: CAS, ACT, and then PRE151

such that CAS have the highest priority upon bus conflicts, while PRE commands have the least. This152

is known as column-first scheduling and it targets to reduce latency [24, 31].153

2.2 System Model and Platform Instances154

We consider a system with P PEs, where some of these PEs are critical (Pcr) and others are non-155

critical (Pncr) such that P = Pcr + Pncr. PEs share write-back write-allocate Last-Level Cache156

(LLC); hence, writes to DRAM occurs only because of cache eviction of dirty cache blocks. We find157

this to be the common policy deployed in COTS architectures and it is also adopted by previous related158

works [14, 37]. Requests that miss in the LLC are sent to the DRAM. We consider a single-channel159

single-rank DRAM subsystem with NB banks. Similar to related work [14, 20, 37], we do not make160

any assumption about the computation and memory access patterns of the PE under analysis, or any of161

the interfering PEs. Nonetheless, as we detail in Section 3, our goal is to improve upon existing DRAM162

analyses, and in particular the framework in [14], by incorporating knowledge about the number of163

requests produced by all PEs in the system. The overall behavior of the memory subsystem depends164

on both the MC configuration, as well as on the characteristics of PEs that generate memory requests.165



M. Hassan and R. Pellizzoni 17:5

Symbol Description Instances Symbol Description Instances
P Number of PEs all NBcr Number of banks assigned to critical PEs part = PartAll

Pcr Number of critical PEs all NBncr Number of banks assigned to non-critical PEs part = PartAll

Pncr Number of non-critical PEs all Nthr Intra-bank reorder threshold thr = 1
NB Number of DRAM banks all Wbtch Write batch length wb = 1
NBp Number of DRAM banks assigned to the p-th PE all PR Number of outstanding requests pipe 6= IO

Table 2 System model symbols.

To this end, the work in [14] defined a set of fundamental platform features that affect the delay166

analysis; the combination of the features, specified as a tuple 〈wb, thr, pr, breorder, pipe, part〉,167

characterizes one of 144 possible platform instances. Since we reuse the same features in our analysis,168

here we summarize their values and corresponding behavior.169

Read-Write Arbitration: wb ∈ {0, 1}. If wb = 0, the MC assigns the same priority for both reads170

and writes. If wb = 1, the MC employs write batching, where it prioritizes reads while queuing171

writes in a dedicated write buffer. We consider the same watermarking implementation discussed172

in related work [14, 30, 37]: the MC services a batch of Wbtch writes when the number of buffered173

writes exceeds a given threshold.174

First-Ready Threshold: thr ∈ {0, 1}. FR-FCFS arbitration reorders intra-ready requests over non175

intra-ready ones targeting the same bank. If thr = 1, the MC deploys a thresholding mechanism [15,176

20] to avoid starvation, where at most Nthr intra-ready requests can be re-ordered ahead of any other177

request targeting the same bank. If thr = 0, then no reordering threshold is implemented.178

PE Prioritization: pr ∈ {0, 1}. If pr = 1, the MC prioritizes requests of critical PEs over non-179

critical ones [15, 30]. If pr = 0, all PEs are treated equally.180

Inter-bank Reordering: breorder ∈ {0, 1}. As discussed, the MC employs a RR arbiter which181

selects among banks with intra-ready commands. If the command of the highest priority bank is not182

inter-ready, then the MC can reorder ahead of it the command of the next highest priority bank (based183

on the RR order) with a ready command. If breorder = 1, then the reordered commands can be of184

the same type; in particular, a W command can be reordered ahead of a R command of vice-versa.185

As shown in [14], this can lead to a situation where an unbounded number of CAS commands is186

reordered ahead of another CAS command. To avoid starvation, we also consider breorder = 0,187

where inter-bank reordering is allowed only for commands of different type.188

PE pipeline architecture: pipe ∈ {IO, IOCr, OOO}. If pipe = IO, all PEs are in order and can189

generate only one pending memory request at a time. If pipe = OOO, all PEs are out-of-order, and190

we let PR to denote the maximum number of outstanding requests in the MC queue for each PE. If191

pipe = IOCr, then critical PEs are in order, while non-critical ones are out-of-order [4].192

Bank Partitioning: part ∈ {PartAll, PartCr, NoPart}. Several previous works (e.g. [7,193

10, 17, 35]) have proposed DRAM bank partitioning, where banks are partitioned among PEs, to194

reduce bank conflicts between PEs. Partitioning is typically implemented by manipulating the195

page table in the OS [21, 26, 36]. If part = PartAll, then partitioning is applied to all PEs. If196

part = PartCr, then partitioning is applied only to critical PEs, while non-critical PEs can use all197

banks. If part = NoPart, no partitioning is used.198

Table 2 further summarizes the parameters associated with each platform instance. In Table 2,199

NBp
depends on the applies bank partitioning scheme. For instance, if we have NB = 8 and200

Pcr = Pncr = 2, under NoPart: NBp
= NB = 8 for all PEs, for PartAll: NBp

= 8/4 = 2, while201

for PartCr: NBp
= 8/2 = 4 for critical PEs and NBp

= 8 for non-critical PEs. NBcr
and NBncr

202

apply only under PartAll since it is the only partitioning scheme, where critical and non-critical PEs203

do not share banks; hence, each bank can be indicated as either critical or non-critical.204

ECRTS 2020



17:6 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

3 Preliminaries205

We are interested in computing a bound on the cumulative delay ∆(t) suffered by requests generated206

by one or more tasks running on a critical PE under analysis PEi in an interval of time t. Specifically,207

we bound the processing delay of requests of PEi, that is, the extra delay suffered after the request208

arrives at the head of the request queue for PEi. For an out-of-order architecture, we do not consider209

queueing delay due to a request being queued after other requests of PEi itself; such delay depends210

on the exact time at which requests are issued and should be handled while statically analyzing PEi.211

Let e be the WCET of the task(s) in isolation, that is, while the other PEs in the system are inactive212

and do not cause any delay. Further assume that delay is composable, that is, e + ∆(t) is an upper213

bound to the execution time of the task(s) when suffering a cumulative delay ∆(t) (note that even214

if the PE is not timing compositional, the delay can still be composed by computing an appropriate215

upper-bound to e as described in [11]). Then the execution time ē of the task(s) can be bounded by216

the recurrence: ē = e + ∆(ē).217

We assume that either through static analysis or measurements, it is possible to formulate bounds218

on the number of requests that the task(s) produces in isolation (the original schedule of memory219

requests). The number and type of such constraints depends on the capability of the analysis or220

measurement framework. A coarse method might be only capable of deriving the maximum number221

of requests H(i), while an improved method might be able to bound the maximum number HR(i)222

and HW (i) of read and write requests, respectively. There also exist analyses [5] that are able to223

differentiate between open and close requests, hence deriving bounds HRo(i), HRc(i) on the number224

of open and close read requests, and similarly HW o(i), HW c(i) for write requests. Note that in this225

case it might hold HRo(i) + HRc(i) > HR(i), as the analysis might not be able to classify as open226

or close some of the requests. Hence, to provide a general analysis, we will consider all presented227

terms, with the assumption that coarse estimation methods might result in a value of +∞ for some of228

the terms (i.e., they cannot provide a useful bound).229

We are now interested in determining the number of requests of each type produced by the230

task(s) when running together with the other P − 1 interfering PEs (the interfered schedule). For231

simplicity, we will assume that the behavior of PEi, in terms of produced memory requests, is not232

affected by interference; note that if the PE uses a cache, this implies that the cache must be private or233

partitioned. Hence, the bounds on the number of reads and write requests still hold. However, the234

type of each request (open or close) depends on the state of the device, which can be affected by other235

PEs. Therefore, with no loss of generality, let Ro(i), Rc(i), W o(i), W c(i) to denote the number of236

open/close read and write requests for PEi in the interfered schedule. We then have:237

if wb = 0 : Ro(i) ≤ HRo(i), W o(i) ≤ HW o(i) (1)238

if PartAll and wb = 0 : Rc(i) ≤ HRc(i) (2)239

if PartAll and wb = 0 : W c(i) ≤ HW c(i) (3)240

if PartAll and wb = 0 : Rc(i) + W c(i) ≤ HRc(i) + HW c(i) (4)241

Rc(i) + Ro(i) ≤ HR(i) (5)242

W c(i) + W o(i) ≤ HW (i) (6)243

Rc(i) + Ro(i) + W c(i) + W o(i) ≤ H(i) (7)244245

Equations 5-7 bound the number of reads, writes and all requests, respectively; based on our246

assumptions, they are always valid. Equations 1-4 bound the number of open and close requests,247

and instead depend on the platform features. If the platform employs write batching, then we make248

no assumption on the number of open or close requests: write requests produced by other PEs249

can change the time and order in which batches are issued, which in turn can change the type of250

any request. If part = PartCr or NoPart, then PEi shares banks with some other PE. In this251



M. Hassan and R. Pellizzoni 17:7

case, bank conflicts can turn requests that were open in isolation into close requests. Hence, in this252

case we cannot consider the bounds on close requests (Equations 2-4), while the bound on open253

requests (Equation 1) still holds. Finally, we discuss how to bound the number of requests for an254

interfering PEp with p 6= i. If PEp is a core executing a known task set, then the same approach255

in Equation 1-7 can be employed, where H(p) and related terms express the maximum number of256

requests produced by the task set in any interval of length t. In particular, related work [20] shows257

how to compute H(p) assuming a partitioned, fixed priority scheduling scheme. Other work assumes258

memory regulation [38], where PEp is assigned a memory budget Qp, and cannot issue more than259

Qp requests in a regulation interval of length P . In this case, assuming that the window of time t260

starts synchronously with the regulation interval, we simply compute the value in Equation 8. Note261

that for an out-of-order PE, term PR is added to account for requests that might be queued at the262

memory controller before the beginning of the first regulation period.263

H(p) = dt/P e ·Qp +
{

0 if IO or (p is cr and IOCr)

PR otherwise
(8)264

4 Memory Delay Analysis265

In this section, we show how to compute a cumulative WCD bound ∆ for the requests of critical core266

under analysis PEi. In details, we consider the delay due to additional timing constraints, as well as267

bus conflicts, caused by either interfering requests of other PEs, or previous requests of PEi itself.268

For wb = 0, the WCD bound includes the delay suffered by both reads and writes requests of PEi,269

which we call the critical requests. For wb = 1, we only consider delay suffered by read requests,270

as under write batching write requests of PEi itself are queued so that they do not delay program271

execution; however, in this case we consider the delay caused by writes of PEi on the critical read272

requests of PEi. To facilitate accounting for the various timing constraints, we will obtain ∆ by273

determining which delay is caused by each request (either conflict, PRE, ACT or CAS), and then274

adding together three corresponding delay terms: LConf represents the cumulative delay due to275

conflict constraints; while LACT and LCAS represent the cumulative ACT and CAS delays. Note276

that we do not define a delay term for PRE because, as we prove in Section 4.4, in the worst-case277

interference pattern such delay is zero. We first categorize the effect of the interfering requests of278

other PEi in Section 4.1, and then discuss the effect of self-interference caused by previous requests279

of PEi in Section 4.2. Finally, Sections 4.3 and Sections 4.4 detail how to compute the delay terms.280

4.1 Interfering Requests281

We start with a set of observations, based on the timing constraints in Section 2.1, to help classifying282

interfering requests based on which type of delay they cause.283

B Observation 1. Consider two requests targeting different bank. If both requests are close, then284

the first one can cause PRE, ACT and CAS delay to the second one; otherwise, it can only cause CAS285

delay.286

Note that Observation 1 holds because in order to suffer PRE or ACT delay, both the delaying and the287

delayed request must issue a PRE/ACT command.288

B Observation 2. Consider two requests targeting the same bank. If the second request is close,289

then the first one can cause conflict delay to it; otherwise, it can only cause CAS delay. The conflict290

delay is larger than the CAS delay.291

ECRTS 2020



17:8 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

B Observation 3. Conflict constraints are larger than PRE, ACT and CAS constraints. Hence,292

when two consecutive requests can target either the same or different banks, the delay suffered by the293

second request is larger or equal if they target the same bank compared to different banks (specifically,294

equal if the request is open, and larger if close).295

We next discuss how to determine the number of interfering requests for each delay term. Based296

on Observation 3, we can maximize ∆ by assuming that all interfering requests that can target the297

same bank as a request of PEi do so. Therefore, when counting interfering requests, we classify298

them between intra-bank requests, which can delay each other and critical requests of PEi on the299

same bank based on Observation 2, and inter-bank requests, which can delay intra-bank requests300

based on Observation 1; specifically, we next discuss how to systematically divide the interfering301

requests into several interference components.302

(1) Intra-bank conflict requests: RConf,c, W Conf,c are the number of read and write interfering303

requests targeting the same bank as any one request of PEi, and which are serviced ahead of that304

request because they arrived before it. As noted in Section 3, in this case we can make no assumption305

on the type of the requests. Hence, we assume the worst case where all such requests, as well as the306

request of PEi, are close 2.307

(2) Intra-bank reorder requests: RReorder,o, W Reorder,o are the numbers of interfering requests308

of other PEs targeting the same bank as any one request of PEi, and which arrived after that request309

but are reordered ahead of it due to first-ready arbitration. Since the interfering requests are ready,310

they must be open requests, while the request of PEi must be close.311

(3) Inter-bank-close requests: RInterB,c
c , RInterB,o

c , W InterB,c
c , W InterB,o

c are interfering re-312

quests (read/write and open/close, based on the superscript) that target a different bank than any313

one request of PEi, and delay close requests targeting the same bank as PEi: the Rc(i) + W c(i)314

close requests of PEi itself, and the RConf,c/W Conf,c conflict requests. By Observation 1, the open315

requests RInterB,o
c and W InterB,o

c contribute CAS delay, while the close requests RInterB,c
c and316

W InterB,c
c contribute to PRE, ACT and CAS delay.317

(4) Inter-bank-open requests: RInterB
o , W InterB

o are interfering requests (R and W) that target a318

different bank than any one request of PEi, and delay open requests targeting the same bank as PEi:319

the Ro(i) + W o(i) open requests of PEi itself, and the RReorder,o, W Reorder,o reorder requests. By320

Observation 1, these RInterB
o + W InterB

o requests can only contribute CAS delay.321

Note that for instances with wb = 1, the intra- and inter-bank components only include read322

requests, while write requests are considered in the write batching component. Hence we impose:323

if wb : W Conf,c = W Reorder,o = W InterB,c
c = W InterB,o

c = W InterB
o = 0 (9)324325

(5) Write batching requests: For instances with wb = 1, W W B represents the total number of write326

requests; contrarily to the previous components, W W B includes both interfering write requests, as327

well as write requests of PEi itself, since write requests of all PEs are reordered and issued in write328

batches. As again noted in Section 3, when wb = 1 we can make no assumption on the type (open or329

close) of write requests executed in write batches, hence we consider a worst case situation where all330

requests are close and target the same bank, thus contributing to LConf .331

The described interference components depend on the total number of requests produced by332

each interfering PE, as well as on the platform instance. We detail how to bound the interference333

components in Section 5; while in the rest of this section we focus on computing the latency terms334

assuming that the values of the interference components are known. Finally, Section 5.6 shows that335

2 Note that if P Ei shares a bank with another interfering PE, then Equations 2, 3 do not apply; hence the optim-
ization problem can set Ro(i) = W o(i) = 0 and maximize the number of close request Rc(i), W c(i) based on
Equations 5, 6.



M. Hassan and R. Pellizzoni 17:9

Symbol Interfering
Direction

Interfering Re-
quest Type

Interfered Request
Type (or P E ID)

Description Delay

Ro(i) (W o(i)) R (W ) Open P Ei Total number of open reads from P Ei

Rc(i) (W c(i)) R (W ) Close P Ei Total number of close reads from P Ei

Self Interference Component
ROtC(i) (W OtC(i)) R (W ) - P Ei Requests that were open and became close due to interference.

LSelf

RCAS(i) (W CAS(i)) R (W ) - P Ei Requests that cause self CAS delay
RConf (i) (W Conf (i)) R (W ) - P Ei Requests that cause extra self conflict delay.
NNone(i) R or W - P Ei Requests that cause no extra self conflict delay.
NACT (i) R or W - P Ei Close requests targeting different banks.
NACT,a(i) R or W - P Ei Requests from NACT (i) that were originally close.
NACT,b(i) R or W - P Ei Requests from NACT (i) that were originally open.

Intra-Bank Conflict Requests
RConf,c[(p)] (W Conf,c[(p)]) R (W ) Close Close Requests causing conflict interference.

LConf

xConf R or W Close Close Total number of triggered conflict delays.

Intra-Bank Reorder Requests
RReorder,o[(p)] (W Reorder,o[(p)]) R (W ) Open Close Number of requests causing intra-bank reorder interference.

LCAS

xCAS R or W Open or Close Open or Close Total number of triggered CAS delays.

Inter-Bank-Close Requests
Nreqs,c R or W – Close Number of interfered requests for inter-bank-close component.

LACT ,

LCAS

RInterB,c
c [(p)] (W InterB,c

c [(p)]) R (W ) Close Close Number of requests that cause inter-bank interference on P Ei’s close
requests or any of the Nreqs,c requests. They interfere either on

ACT (NInterB
ACT ), CAS read (RInterB

CAS,c ), or CAS write (W InterB
CAS,c ) commands.

RInterB,o
c [(p)] (W InterB,o

c [(p)]) R (W ) Open Close
NInterB,c

ACT,c
R or W Close Close

RInterB
CAS,c (W InterB

CAS,c ) R (W ) Close or Open Close

Inter-Bank-Open Requests
Nreqs,o R or W – Open Number of interfered requests for inter-bank-open component.

LCAS

RInterB
o [(p)] (W InterB

o [(p)] ) R (W ) Close or Open Open
Number of interfering requests that cause inter-bank interference on
P Ei’s open requests or any of the Nreqs,o requests .

Auxiliary CAS Delay Variables
RInterB

CAS (W InterB
CAS ) R (W ) Open or Close Open or Close Requests from other PEs targeting other banks and causing inter-bank CAS delays.

LCAS

xCAS,RW (xCAS,W R) R (W ) Open or Close Open or Close Total number of requests causing a R-to-W (W-to-R) CAS delays.

Write Batching Requests
W btch[(p)] W Close or Open – Number of interfering write requests that arrive while no critical request is active.

LW B
W before[(p)] W Close or Open – Number of interfering write requests that arrive while a critical request is active,
W after[(p)] W Close or Open – and are executed before (after) the critical request

Table 3 Optimization problem variables. We use L to denote a delay term; N to denote number of requests;
R/W to denote number of read/write requests; and x to denote number of constraints. If a variable has the (p)
index, then it refers to a specific P Ep. Otherwise, the variable indicates values over all PEs. For superscripts,
c/o denotes the type (open or close) of the requests; for inter-bank requests, the subscript c/o denotes the type
of the following intra-bank request.

we can compute a bound on ∆ by solving a Linear Programming (LP) problem. To facilitate the336

reader, Table 3 summarizes all variables used in the optimization problem 3.337

It remains to summarize the impact of the intra- and inter-bank interfering requests on the delay338

terms. For intra-bank interfering requests, based on Observation 2 let xConf to denote the number339

of conflict delays triggered by the interfering requests, and xCAS to denote the number of triggered340

CAS delays. We can then bound the total number of delays xConf + xCAS based on the total number341

of intra-bank interfering requests, and we can bound xConf based on the number of close requests342

targeting a same bank as PEi: the conflict requests, and the close critical requests of PEi:343

xConf + xCAS ≤ RConf,c + W Conf,c + RReorder,o + W Reorder,o (10)344

xConf ≤ RConf,c + W Conf,c + Rc(i) + (1− wb) ·W c(i). (11)345346

Note that we multiply the write requests of PEi by (1− wb) since they are not critical if wb = 1.347

Instead, in the wb = 1 case, the conflict delays caused by the W W B requests in write batches will be348

directly accounted for in the LConf term in Section 4.3.349

For inter-bank interfering requests, RInterB,o
c , W InterB,o

c , RInterB
o and W InterB

o only induce350

CAS delays, as previously explained. To bound the cumulative delay induced by the RInterB,c
c and351

W InterB,c
c requests, we employ the following pipeline theorem from [37]:352

I Theorem 1 (Theorem 1 in [37]). The delay caused by an interfering request to a request under353

analysis, where the two requests target different banks, is upper bounded by the delay caused by one354

interfering command on the same command of the request under analysis, i.e., either the PRE delay,355

or the ACT delay, or the CAS delay.356

3 Note that H(i), HR(i), HW (i), HRc(i), HRo(i), HW c(i), HRo(i) for all cores, as introduced in Section 3, do
not appear in the table because they are inputs to the analysis, hence constants in the LP problem.

ECRTS 2020



17:10 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

R R
tCCD

Original schedule

R R
tRTW

Interference schedule

W
DATAtWL
tB

tWTR

Figure 2 Self interference example.

Note that in Section 4.4 we will prove that the PRE delay is always less than the ACT delay.357

Hence, to maximize the bound on ∆, it suffices to assume that based on Theorem 1, each re-358

quest in RInterB,c
c and W InterB,c

c can cause either ACT or CAS delay. We thus introduce terms359

N InterB,c
ACT,c , RInterB,c

CAS,c , W InterB,c
CAS,c to denote the number of requests (possibly distinguishing between360

R and W direction) that cause ACT and CAS delay, respectively, obtaining the following constraints:361

N InterB,c
ACT,c + RInterB,c

CAS,c + W InterB,c
CAS,c ≤ RInterB,c

c + W InterB,c
c , (12)362

N InterB,c
ACT,c + RInterB,c

CAS,c ≤ RInterB,c
c , (13)363

N InterB,c
ACT,c + W InterB,c

CAS,c ≤W InterB,c
c . (14)364

365

Finally, we use RInterB
CAS (W InterB

CAS ) to denote the total number of reads (writes) from other PEs366

targeting other banks and causing inter-bank CAS delays. Hence, we get:367

RInterB
CAS = RInterB,c

CAS,c + RInterB
o + RInterB,o

c , (15)368

W InterB
CAS = W InterB,c

CAS,c + W InterB
o + W InterB,o

c . (16)369
370

4.2 Self-Interference371

Section 4.1 summarized the delay caused by interfering requests in terms of the timing constraints372

and bus conflicts induced by such requests. However, when two critical requests of PEi are executed373

back-to-back in the original schedule, the first request of PEi can induce further delays on any374

request that interferes with the second request of PEi itself; ignoring such self-interference effects375

leads to an unsafe bound. Consider the example in Figure 2. Originally, PEi issued two consecutive376

open R requests to the same bank; the minimum distance between the two requests, based on their377

CAS commands, is equal to the CAS-to-CAS constraint tCCD. In the interfered schedule, one378

W request of another core is interleaved between the two requests of PEi; as a consequence, the379

distance between the two requests becomes equal to tRTW + tWL + tB + tWTR. Hence, the380

added delay is tRTW + tWL + tB + tWTR− tCCD, which is larger than the maximum delay381

tWL + tB + tWTR of a single CAS.382

To produce a safe delay bound, we thus proceed as follows: we carefully analyze each scenario383

(Cases (1a)-(3) below) involving two consecutive critical requests of PEi, and whenever we found384

that the effect of self-interference is non-zero, we handle it by adding an additional delay term to the385

analysis (in the case of the example in Figure 2, to LCAS), and subtracting the minimum distance386

between the requests in the original schedule (tCCD in the example). When analyzing the scenarios,387

it is important to keep in mind, as discussed in Section 3, that requests of PEi that were open in the388

original schedule can become close in the interfered schedule if write batching is enabled or PEi389

shares banks with some other PE. Let ROtC(i) and W OtC(i) be upper bounds on the number of390

such R and W open-to-close requests; since HRo(i), HW o(i) represent open requests in the original391

schedule, and Ro(i), W o(i) in the interfered schedule, it must hold:392

ROtC(i) ≤ HRo(i)−Ro(i), (17)393

W OtC(i) ≤ HW o(i)−W o(i), (18)394

if P artAll and wb = 0 : ROtC(i) = W OtC(i) = 0. (19)395396



M. Hassan and R. Pellizzoni 17:11

Case (1a) and (1b): the two requests of PEi target the same bank, and the second one is close in397

the interfered schedule. In this case, the second request could be delayed by other close conflict398

requests in the interfered schedule, which could be in turn delayed by a conflict delay due to399

the first request of PEi. However, if the second request of PEi was also close in the original400

schedule (Case (1a)), then the minimum distance between the two requests in the original schedule401

is equal to the same conflict delay; hence, in this case self-interference does not add any extra402

delay. If instead the second request was open in the original schedule (Case (1b), meaning it is an403

open-to-close request), then the minimum distance in the original schedule could be tCCD; hence,404

to produce a safe bound, in this case we add one conflict delay to Lconf , and subtract tCCD from405

the WCD ∆. We let RConf (i), W Conf (i) to denote the number of R and W requests for Case406

(1b), and NNone(i) to denote requests that do not add any extra delay as per Case (1a).407

Case (2a) and (2b): assume that Case (1a), (1b) do not apply (that is, the requests target different408

banks and/or the second request is open in the interfered schedule). Then, it can still be possible409

for the first request of PEi to cause either PRE, CAS or ACT delay on one or more interfering410

requests, which in turn cause the same type of delay to the second request of PEi. Case (3), which411

we represented in Figure 2, covers the CAS delay; Case (2a) and (2b) cover the PRE and ACT412

delay. Since only close requests can cause or suffer PRE/ACT delay, it follows that for Case (2a),413

(2b) the two requests of PEi must be close in the interfered schedule. Therefore, by assumption414

they must target different banks. The minimum distance between them is either the ACT-to-ACT415

constraint tRRD if both were close in the original schedule (Case (2a)), or tCCD if at least one416

was open (Case (2b), the request is open-to-close). As Section 4.1 mentions and Section 4.4 proves,417

the ACT delay is larger than the PRE delay; hence, for these cases we add an ACT term to LACT
418

and subtract either tRRD (2a) or tCCD (2b). We use NACT,a(i) and NACT,b(i) for the number419

of requests added to LACT in Case (2a) and (2b), respectively, and NACT (i) for their sum.420

We can then bound the self-interference terms for Cases (1a), (1b), (2a), (2b) based on the number421

and type of requests of PEi as follows:422

RConf (i) + W Conf (i) ≤ ROtC(i) + (1− wb) ·W OtC(i) (20)423

ifNBi = 1 : NNone(i) = Rc(i)−ROtC(i) + (1− wb) · (W c(i)−W OtC(i)) (21)424

NACT (i) = NACT,a(i) + NACT,b(i) (22)425

NACT,b(i) ≤ ROtC(i) + (1− wb) ·W OtC(i) (23)426

NACT,a(i) + NACT,b(i) ≤ Rc(i) + (1− wb) ·W c(i) (24)427

ifNBi = 1 : NACT (i) = 0 (25)428429

Note that again we multiply write requests of PEi by (1−wb) since if wb = 1 such requests are not430

critical, and thus do not contribute to self-interference. If NBi = 1, all requests of PEi target the431

same bank; hence, Case (2a) and (2b) cannot hold (Equation 25), and instead all critical requests that432

were close in the original schedule (Rc(i) − ROtC(i) for reads and W c(i) −W OtC(i) for writes)433

must be included in Case (1a) (Equation 21).434

Case (3): finally, we cover the CAS delay case. For each of the RCAS(i), W CAS(i) R and W435

requests of PEi that add extra CAS delay, we add a CAS term to LCAS and substract tCCD436

from the WCD bound ∆. Next, consider again the example in Figure 2. Note that to cause extra437

delay, the interfering request must have the opposite direction compared to the first request of PEi:438

otherwise, the delay would be equal to the minimum CAS separation of tCCD, and no extra delay439

would be added. Hence, we can bound RCAS(i), W CAS(i) based on the total number of W and440

R interfering requests that can cause CAS delay, respectively:441

RCAS(i) ≤W Conf,c + W Reorder,o + W InterB
CAS (26)442

W CAS(i) ≤ RConf,c + RReorder,o + RInterB
CAS (27)443444

ECRTS 2020



17:12 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

The cumulative number of self-interfering requests (either R only, W only, or either R or W) can445

then be bounded based on the number of critical requests of PEi:446

RConf (i) + W Conf (i) + NACT (i) + RCAS(i) + W CAS(i) + NNone(i)447

≤ Rc(i) + Ro(i) + (1− wb) · (W c(i) + W o(i))− 1 (28)448

RConf (i) + RCAS(i) ≤ Rc(i) + Ro(i) (29)449

W Conf (i) + W CAS(i) ≤ (1− wb) ·W c(i) + (1− wb) ·W o(i) (30)450451

Note that we subtract 1 in Equation 28 because the last request of PEi cannot cause self-interference452

to another request of PEi.453

Finally, we shall use Lself to denote the sum of the self-delay in the original schedule that must454

be subtracted from the WCD ∆. We obtain:455

Lself = (RConf (i) + W Conf (i) + NACT,b(i) + RCAS(i) + W CAS(i)) · tCCD + NACT,a(i) · tRRD.
(31)

456

457

4.3 Conflict delay LConf
458

Based on Sections 4.1, 4.2, the total number of requests causing conflict delay is bounded by xConf
459

intra-bank requests; plus RConf (i) + W Conf (i) self-interference requests; plus NW B write requests460

if wb = 1. Based on Figure 1a, the conflict delay for a pair of successive requests can either be the461

larger tRCD + tWL + tB + tWR + tRP or the smaller tRAS + tRP . Hence, we use variable462

xConf,W to denote the number of conflicts of the first type, which require the first request in the pair463

to be a (open or close) write. We can then bound xConf,W based on both the number of conflict464

delays xConf + RConf (i) + W Conf (i) + wb · NW B; and the number of write requests that can465

trigger a conflict delay, which includes all write intra-bank requests W Conf,c + W Reorder,o, the466

write self-interference requests W Conf (i), and the write batching requests NW B . This yields the467

following expressions:468

LConf ≤ xConf,W · (tRCD + tW L + tB + tW R + tRP )469

+ (xConf + RConf (i) + W Conf (i) + wb ·NW B − xConf,W ) · (tRAS + tRP ) (32)470471
472

xConf,W ≤xConf + RConf (i) + W Conf (i) + wb ·NW B (33)473

xConf,W ≤W Conf,c + W Reorder,o + W Conf (i) + wb ·NW B (34)474475

476

4.4 LACT and LCAS delays477

To compute the maximum PRE and ACT delays, we make use of the following observation:478

B Observation 4. Since for modern memory devices (e.g. DDR3/4), the value of inter-bank479

constraints tRRD and tCCD is at least 4, no more than one ACT and one CAS command can be480

issued every 4 cycles. Since furthermore the command priority is CAS > ACT > PRE, it follows that481

every PRE command can suffer at most 2 cycles of command bus conflict, and every ACT command482

at most 1 cycle. CAS commands do not suffer bus conflicts.483

Based on Observation 4, a PRE command can delay another PRE command by at most 3 cycles:484

one for the PRE command itself, and two more due to bus conflicts. For the case of ACT delay, we485

need to consider the tRRD and tFAW inter-bank ACT constraints. Note that tRRD > 3; hence,486

ACT delay is always greater than PRE delay as previously noticed. Since the tFAW constraints is487

applied every 4 consecutive ACT, a valid upper bound to LACT can be constructed by multiplying the488



M. Hassan and R. Pellizzoni 17:13

number of ACT delay terms, with is equal to N InterB,c
ACT,c + NACT (i), by the maximum of tRRD and489

tFAW/4, then adding 1 to account for bus conflicts:490

LACT ≤ (NInterB,c
ACT,c + NACT (i)) ·

(
max(tRRD, tF AW/4) + 1

)
(35)491

492

Next, we discuss the CAS delay LCAS . Based on Sections 4.1, 4.2, the total number of requests493

that cause CAS delay is xCAS + RCAS(i) + W CAS(i) + RInterB
CAS + W InterB

CAS . The inter-bank CAS494

constraint between a pair of requests depends on the direction of the requests themselves: for a W495

followed by a R, tWL + tB + tWTR; for a R followed by a W, tRTW ; and for two requests of the496

same direction, tCCD. Therefore, let variables xCAS,W R and xCAS,RW to indicate the number of497

W-to-R and R-to-W pairs. We then have:498

LCAS ≤ xCAS,W R · (tW L + tB + tW T R) + xCAS,RW · tRT W499

+ (xCAS + RCAS(i) + W CAS(i) + RInterB
CAS + W InterB

CAS − xCAS,W R − xCAS,RW ) · tCCD (36)500501

To bound xCAS,W R and xCAS,RW , we determine the maximum number of R and W requests for502

the first and second request in each pair. We note that interfering requests can be either; interfered503

critical requests of PEi can only be the latter; and self-interfering requests of PEi can only be the504

former. This yields:505

RCAS,first = RCAS(i) + RConf,c + RReorder,o + RInterB
CAS (37)506

RCAS,second = Rc(i) + Ro(i) + RConf,c + RReorder,o + RInterB
CAS (38)507

W CAS,first = W CAS(i) + W Conf,c + W Reorder,o + W InterB
CAS (39)508

W CAS,second = (1− wb) · (W c(i) + W o(i)) + W Conf,c + W Reorder,o + W InterB
CAS (40)509

xCAS,W R ≤W CAS,first ∧ xCAS,W R ≤ RCAS,second (41)510

xCAS,RW ≤ RCAS,first ∧ xCAS,RW ≤W CAS,second (42)511

xCAS,W R + xCAS,RW ≤ xCAS + RCAS(i) + W CAS(i) + RInterB
CAS + W InterB

CAS (43)512513

Total Cumulative Delay Bound. Finally, ∆ is simply computed based on the sum of all terms514

computed so far:515

∆ = LConf + LACT + LCAS − Lself (44)516517

5 Interference Computation518

Based on Equation 44, in Section 4 we have determined a bound ∆ on the cumulative WCD suffered519

by requests of PEi, assuming that the total number of requests per interfering component is known.520

We now seek to determine how many requests of each interfering PE contribute to each component.521

To this end, as shown in Table 3, for each interfering component we define a new set of variables522

with index (p) to represent the number of requests for that component that belong to PEp. The523

total number of requests for each intra- and inter-component is then equal to the sum over all524

cores: V =
∑

∀p 6=i V(p), where V is either RConf,c, W Conf,c, RReorder,o, W Reorder,o, RInterB,c
c ,525

RInterB,o
c , W InterB,c

c , W InterB,o
c , RInterB

o , or W InterB
o .526

We now proceed as follows. In Section 5.1, we first bound the number of per-PE interfering527

requests based on the total number of requests generated by each PEp (job-driven bound). In528

Sections 5.2–5.5, we then bound the per-PE interfering requests based on the platform instance529

(request-driven bound). Note that for the write batching component, in Section 5.5 we will need530

to distinguish among three sets of requests for each PE, based on when the requests are generated:531

W btch(p), W before(p) and W after(p). Furthermore, the write batching component includes requests532

of PEi itself. Hence, the write batching component is bounded as follows:533

W W B =
∑
∀p

(
W btch(p) + W before(p) + W after(p)

)
(45)534

535

Finally, we show how to compute the WCD bound by solving a LP problem in Section 5.6.536

ECRTS 2020



17:14 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

5.1 Job-Driven Bounds537

Recall from Section 3 that Ro(p), Rc(p), W o(p), W c(p) denote the total number of R/W open/close538

requests for PEp. We thus have:539

RConf,c(p) + RInterB,c
c (p) ≤ Rc(p) (46)540

W Conf,c(p) + W InterB,c
c (p) ≤W c(p) (47)541

RInterB,o
c (p) + RReorder,o(p) ≤ Ro(p) (48)542

W InterB,o
c (p) + W Reorder,o(p) ≤W o(p) (49)543

RConf,c(p) + RInterB,c
c (p) + RInterB,o

c (p) + RReorder,o(p) + RInterB
o (p) ≤ Rc(p) + Ro(p) (50)544

W Conf,c(p) + W InterB,c
c (p) + W InterB,o

c (p) + W Reorder,o(p) + W InterB
o (p) ≤W c(p) + W o(p) (51)545

W btch(p) + W before(p) + W after(p) ≤W c(p) (52)546547

Equations 46-49 bound the number of requests of each type (open/close) and direction (R/W).548

Equations 50 bounds the number of read requests over all components; note that read inter-bank-open549

requests RInterB
o can be either open or close. Similarly, Equation 51 bounds the write requests550

used in delay components when wb = 0; while Equation 52 bounds the write requests used in the551

write-batching delay for wb = 1.552

5.2 Request-Driven Bounds: Conflict Requests553

We introduce a constant nConf
p to denote the maximum number of conflict requests of PEp that can554

interfere with one critical request of PEi. Since conflict requests target the same bank as the critical555

request, nConf
p is zero if PEp does not share any bank with PEi. Otherwise, since conflict requests556

arrive before a critical request, we can set nConf
p equal to the maximum number of outstanding557

requests of PEp, which is 1 if PEp is in-order, and PR if out-of-order. Hence:558

nConf
p =


if cr:

{0 if P artAll or P artCr

1 if NoP art and (IOCr or IO)
P R if NoP art and OOO

if ncr:

{0 if P artAll

1 if pr or ((NoP art or P artCr) and IO)
P R if (NoP art or P artCr) and (OOO or IOCr)

(53)559

Since conflict interfered requests must be close, the number of requests from core under analysis is560

bounded by Rc(i) + (1− wb) ·W c(i), which yields the following constraint:561

∀p 6= i : RConf,c(p) + W Conf,c(p) ≤ nconf
p · (Rc(i) + (1− wb) ·W c(i)) (54)562

Finally, if pr = 1, at most one outstanding request of non-critical PEs can interfere with a critical563

request; hence we also obtain:564

if pr:
∑

∀p 6=i,p ncr

(
RConf,c(p) + W Conf,c(p)

)
≤ (Rc(i) + (1− wb) ·W c(i)) (55)565

5.3 Request-Driven Bounds: Reorder Requests566

Reorder requests target the same bank as requests of PEi. Hence, if PEp and PEi do not share any567

bank, the number of reorder requests of PEp is zero. Similarly, if pr = 1, requests of non-critical568

PEs cannot be reordered ahead of critical requests, since PEp has higher priority. Accordingly:569

if P artAll or P artCr,∀p 6= i, p cr : RReorder,o(p) = W Reorder,o(p) = 0 (56)570

571

if P artAll or pr,∀p 6= i, p ncr : RReorder,o(p) = W Reorder,o(p) = 0 (57)572573



M. Hassan and R. Pellizzoni 17:15

Furthermore, if thr = 1, by definition no more than Nthr requests can be reordered ahead of each574

close request of PEi. Hence it also holds:575

if thr : RReorder,o + W Reorder,o ≤ Nthr ·
(
Rc(i) + (1− wb) ·W c(i)

)
(58)576

5.4 Request-driven bounds: inter-bank requests577

Let Nreqs,c, Nreqs,o be the number of requests that can be delayed by inter-bank-close and inter-578

bank-open requests, as introduced in Section 4.1:579

Nreqs,c = Rc(i) + (1− wb) ·W c(i) + RConf,c + W Conf,c (59)580

Nreqs,o = Ro(i) + (1− wb) ·W o(i) + RReorder,o + W Reorder,o (60)581
582

We first bound the number of requests generated by PEp that can interfere on each of the Nreqs,c583

close requests. Due to the assumption of RR arbitration among banks, the number of interfering584

inter-bank requests is limited by the number of banks in case where inter-bank reordering is not585

allowed (breorder = 0) or write batching is deployed (wb = 1), since it cancels the effects of586

inter-bank reordering [14]. Since PEp can only access NBp banks by definition, it must hold:587

if (wb = 1 or breorder = 0):588

∀p 6= i : RInterB,o
c (p) + RInterB,c

c (p) + W InterB,o
c (p) + W InterB,c

c (p) ≤ NBp ·Nreqs,c (61)589590

Similarly, we can bound the interference caused by all critical (other than PEi) and non-critical PEs591

based on the total number of banks they can access. Note that by definition, inter-bank interfering592

requests target a different bank than the request they interfere upon. Hence, inter-bank requests of593

critical PEs can target Ncr − 1 banks, while inter-bank requests of any PEs can target NB − 1 banks:594

if (wb = 1 or breorder = 0):595 ∑
∀p6=i,p cr

(
RInterB,o

c (p) + RInterB,c
c (p) + W InterB,o

c (p) + W InterB,c
c (p)

)
≤ (Ncr − 1) ·Nreqs,c (62)596

597
598

if (wb = 1 or breorder = 0):
(

RInterB,o
c + RInterB,c

c + W InterB,o
c + W InterB,c

c

)
≤ (NB − 1) ·Nreqs,c

(63)

599

600

Finally, similarly to the constraint for conflict requests in Equation 55, if the MC uses a priority601

scheme, then the number of interfering requests from all non-critical PEs is in worst-case one for602

each of the Nreqs interfered requests:603

if pr and (wb = 1 or breorder = 0):604 ∑
∀p6=i,p ncr

(
RInterB,o

c (p) + RInterB,c
c (p) + W InterB,o

c (p) + W InterB,c
c (p)

)
≤ Nreqs,c (64)605

606

We now consider inter-bank-open requests. All derived constraints depend on the RR arbitration and607

bank assignment; hence, Equations 61-64 also apply to the number of interfering inter-bank-open608

requests RInterB
o (p) + W InterB

o (p), except that we consider Nreqs,o in place of Nreqs,c.609

5.5 Request-driven bounds: write-batching requests610

If wb = 1, the Ro(i) + Rc(i) critical read requests of PEi can suffer interference from write batches611

created by writes of either PEi or other PEs. Since the MC gives priority to read requests over write612

batches, in the worst case a critical R request can be delayed by a single batch of Wbtch write requests613

started before the R arrives. Hence, if we let W btch(p) to denote the number of interfering write614

requests of PEp that arrive while no critical request is active (arrived but not completed), we have:615 ∑
∀p

W btch(p) ≤Wbtch · (Ro(i) + Rc(i)) (65)616

ECRTS 2020



17:16 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

However, after a critical request arrives but before it completes, further writes that arrive in the system617

may fill the write buffer, forcing additional batches to be processed. Therefore, we next consider618

the number of interfering write requests that arrive while a critical request is active. Recall that the619

system has a write-back write-allocate last-level cache. Accordingly, a write request can only be620

generated in conjunction with a read request; hence, we will reason about the maximum number of621

read requests that can be generated while a critical request is active. In particular, we use W after to622

denote the number of write requests corresponding to reads that arrive while a critical request is active,623

and are executed after the critical request (but their corresponding writes can be executed before that624

critical request due to the batching scheme); and W before to denote the number of write requests625

corresponding to read requests that arrive while a critical request is active, and are executed before626

it. We start by bounding W after. Similar to the conflict interference in Section 5.2, we introduce a627

constant nafter
p to denote the maximum number of requests that can arrive while the critical request628

is active and are executed after it. Hence, it can be computed by Equation 66, and W after(p) can be629

accordingly computed by Equation 67.630

nafter
p =

{
1 if IO or (IOCr and p cr)
P R if OOO or (IOCr and p ncr)

(66)631

632

∀p 6= i : W after(p) ≤ nafter
p · (Ro(i) + Rc(i)) (67)633

We now consider the W before requests. First, if pr = 1, each critical request can suffer interfer-634

ence from a maximum of one W before request from all the non-critical PEs, therefore:635

if pr:
∑

∀p,p ncr

W before(p) ≤ Ro(i) + Rc(i) (68)636

Second, if interfering PEp does not share banks with PEi, then W before(p) can be only due to the637

inter-bank RR arbitration among banks. Recall that PEp is assigned NBp banks, the total number of638

banks assigned to critical cores other than the bank targeted by the request under analysis is Ncr − 1,639

and the total number of banks assigned to all cores other than the bank targeted by the request under640

analysis is NB − 1. As a result, the following three conditions hold from the RR arbitration:641

∀p 6= i : if (P artAll) or (P artCr and p is cr): W before(p) ≤ NBp · (Ro(i) + Rc(i)) (69)642

if P artAll or P artCr:
∑

∀p 6=i∧p cr

W before(p) ≤ (Ncr − 1) · (Ro(i) + Rc(i)) (70)643

if P artAll:
∑
∀p 6=i

W before(p) ≤ (NB − 1) · (Ro(i) + Rc(i)) (71)644

645

Finally, if no partitioning is deployed, we also have the FR-FCFS reordering. Thus, each request646

from the core under analysis can be interfered by Nthr (if threshold is deployed) due to intra-bank647

FR-FCFS reordering, while each of these requests can also be delayed by NB − 1 requests from RR648

inter-bank arbitration. Additional NB− 1 requests can interfere with the request under analysis itself.649

This gives a total of (Nthr + 1) · (NB − 1):650

if thr = 1:
∑
∀p6=i

W before(p) ≤ (Nthr + 1) · (NB − 1) · (Ro(i) + Rc(i)) (72)651

652

5.6 Optimization Problem653

Consider the variables in Table 3; by definition, numbers of requests and constraints are positive654

integers, and the same holds for delay terms since we measure them in clock cycles. Furthermore,655



M. Hassan and R. Pellizzoni 17:17

(a) Benchmarks.
High Low

BM #Reads #Writes total BM #Reads #Writes total
matrix 280000 38428 318428 rspeed 2000 482 2479
a2time 166000 21751 187751 pntrch 2000 479 2478
aifftr 101000 77234 178234 basefp 2000 478 2478

(b) Configuration parameters.
P 4 Pcr 2 Pncr 2

Nthr 8 Wbtch 16 PR 4
NB 8
NBp 8 (noPart), 2 (PartAll), or 4/8 (PartCr and p is cr/ncr)
NBcr 8 (noPart or PartCr), 4 (PartAll)
NBncr 8 (noPart or PartCr), 4 (PartAll)

Table 4 Evaluation Setup.

all constraints introduced in Sections 3-5 are linear in such variables. Hence, we could compute an656

upper bound on ∆ by solving an integer LP problem, with the optimization objective of maximizing657

Equation 44. In practice, we consider a linear relaxation of the same problem, where all variables658

are treated as reals; by construction, the resulting LP problem still yields a valid bound on ∆. The659

number of variables and constraints is proportional to P ; hence the complexity of solving the linear660

programming problem is polynomial in the number of PEs.661

6 Evaluation662

Simulation Environment. We use MacSim [19], a heterogeneous multi-processor simulator integ-663

rated with DRAMSim2 [32]. MacSim models x86 architecture and supports IO and OOO PEs. It664

also allows the configuration of the maximum number of pending requests through managing the665

number of entries in MSHR registers. MacSim has a frontend that includes the virtual-to-physical666

mapping. This enables us to implement partitioning without running a complete OS. We implement667

the three partitioning schemes discussed in Section 3. DRAMSim2 [28] is a cycle-accurate DRAM668

simulator, which we extend to also support priority assignment amongst PEs as well as write batching.669

We implement the optimization framework in Matlab and it finishes within few seconds for all670

experiments using a machine with a quad-core i7 processor and 8GB DRAM and is running Linux.671

Benchmarks. We use benchmarks from the EEMBC-auto suite [29], which include representative672

applications from the embedded automotive domain. Recall from Section 5 that the maximum number673

of interfering requests, and thus the memory delay incurred by the PE under analysis, depend both on674

the number of memory requests initiated by this PE as well as the number of requests issued by the675

competing PEs. Therefore, we construct experiments that capture different scenarios. Towards doing676

so, we classify the used benchmarks into two categories: High and Low as shown in Table 5a. The677

High (Low) benchmarks are those that issue a large (a small) number of memory requests.678

Experiments Setup. We compare the proposed analysis with five state-of-the-art approaches; two679

of them are job-driven analyses: CMU-JobDr [20] and YUN-JobDr [37]; and three are request-driven680

analyses: CMU-ReqDr [20], YUN-ReqDr [37], and Hassan-ReqDr [14]. We also compare against681

the experimental WCD observed from the simulator, denoted as Experimental. We use a system682

composed of four cores: two in-order critical and the other are OOO non-critical ones. Table 5b683

lists all values of used parameters. Since both CMU and YUN do not support mixed criticalities, for684

their analysis all tasks are considered to have the same criticality. In addition, since they also cover685

only certain system configurations, we compare against these solutions under all configurations they686

support. To evaluate each analysis under different interference scenarios, we run different experiments687

using different mix of the benchmarks in Table 5a. Namely, we evaluate with four different scenarios:688

Low-Low, Low-High, High-Low, and High-High, where the first term refers to the task under analysis689

and the second term refers to interfering tasks. For instance, in a Low-High scenario, the interfered690

task is chosen to be the rspeed benchmark, which is in the Low category in Table 5a, while the691

interfering tasks are matrix, a2time, and aifftr from the High category.692

1) System Configurations Supported By CMU. Both job- and request-driven CMU’s ana-693

lyses [20] can be applied to platform instances with in-order pipelines, all cores have same priority,694

and the memory controller deploys a FR-FCFS threshold but does not deploy write batching. However,695

ECRTS 2020



17:18 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

LOW LOW

0.0
0.2
0.4
0.6

noPart partCr partAll

0.6
3.1
5.6

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Experimental Proposed CMU-JobDr Hassan-ReqDr CMU-ReqDr

(a) Low-Low.

LOW HIGH

0.0

0.3

0.6

noPart partCr partAll

0.6
3.6
6.6
6.6

21.6
36.6

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Experimental Proposed CMU-JobDr Hassan-ReqDr CMU-ReqDr

(b) Low-High.
HIGH LOW

0.0

0.2

0.3

noPart partCr partAll

0.3
6.3

12.3
12.3

512.3
1012.3

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Experimental Proposed CMU-JobDr Hassan-ReqDr CMU-ReqDr

(c) High-Low.

HIGH HIGH

0
10
20
30
40

noPart partCr partAll
Experimental Proposed CMU-JobDr Hassan-ReqDr CMU-ReqDr

40
440
840

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

(d) High-High.

Figure 3 Results for configurations that are considered by CMU [20].
LOW LOW

0.00
0.05
0.10
0.15
0.20

IO IOCr OOO

0.20
2.20
4.20

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Experimental Proposed YUN-JobDr YUN-ReqDrHassan-ReqDr

(a) Low-Low.

LOW HIGH

0.00
0.01
0.02
0.03
0.04
0.05

IO IOCr OOO

0.05

5.05

10.05

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Experimental Proposed YUN-JobDr YUN-ReqDrHassan-ReqDr

(b) Low-High.
HIGH LOW

0

5

10

IO IOCr OOO

10
210
410
610

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Experimental Proposed YUN-JobDr YUN-ReqDrHassan-ReqDr

(c) High-Low.

HIGH HIGH

0
5

10
15
20

IO IOCr OOO

Experimental Proposed YUN-JobDr YUN-ReqDr

20
220
420
620

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Hassan-ReqDr

(d) High-High.

Figure 4 Results for configurations that are considered by YUN [37].

the analysis can cover different bank partitioning scenarios. Accordingly, these are the instances696

we used in our experiments when comparing against those approaches. Figure 3 delineates the total697

memory delay suffered for different considered approaches under different interference scenarios.698

We make the following observations. 1) As aforestated, the request- and job-driven approaches are699

incomparable: neither approach is better than the other under all scenarios. Although CMU-JobDr700

provides tighter delay bounds than request-driven ones (both CMU-ReqDr and Hassan-ReqDr) in701

Figures 3a, 3c, and 3d, the request driven approaches have better bounds for the Low-High scenario702

in Figure 3b. Since request-driven analysis considers only the number of requests from the core under703

analysis, when this number is relatively small compared to the total number of competing requests,704

this analysis provides tighter bounds. This is the case for the Low-High scenario. For other scenarios,705

the number of requests of the core under analysis is relatively large and leads to the larger delay706

bounds of the request-driven analyses. 2) The proposed analysis provides the tightest bounds across707

all scenarios. For the Low-High scenario, Proposed provides up to a 34% tighter bound than the708

second best approach, which is Hassan-ReqDr (PartAll in Figure 3b). For all other scenarios,709

Proposed provides at least 24% (noPart in Figure 3a) and up to 22.6× (PartAll in Figure 3c)710

tighter bound than CMU-JobDr, which is the second best approach in all these scenarios.711

2) System Configurations Supported By YUN. The platform instances covered in [37] (for712

both YUN-JobDr and YUN-ReqDr) are partitioning banks across cores (PartAll), all cores have713

same priority, and the memory controller deploys both FR-FCFS threshold and write batching.714

Although [37] only evaluates OOO cores, we find that the analysis is extensible to any core pipeline715

(by managing maximum number of pending requests from each core). Therefore, we experiment716



M. Hassan and R. Pellizzoni 17:19
LOW HIGH

0
1
2

IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O

noPr pr noPr pr noPr pr noPr pr noPr pr noPr pr

noPart partCr partAll noPart partCr partAll

noWB WB

2
6

10
14

Ex
ec

ut
io

n 
Ti

m
e 

[C
yc

 in
 m

ill
io

ns
]

experimental Proposed Hassan-ReqDr

(a) Low-High.
HIGH LOW

0
20
40
60

IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O

noPr pr noPr pr noPr pr noPr pr noPr pr noPr pr

noPart partCr partAll noPart partCr partAll

noWB WBexperimental Proposed

60
1060
2060

Ex
ec

ut
io

n 
Ti

m
e 

[C
yc

 in
 m

ill
io

ns
]

Hassan-ReqDr

(b) High-Low.

Figure 5 Comparison of the total response time with Hassan-ReqDr [14] for all configurations.

with different pipelining configurations and show the results in Figure 4. 1) YUN-JobDr provides717

tighter bounds than request driven analyses (YUN-ReqDr and Hassan-ReqDr) for all interference718

scenarios except for Low-High. 2) The Proposed approach still provides the tightest bounds across719

all scenarios. Proposed provides at least 25% (IO in Figure 4d) and up to 42% (OOO in Figure 4c)720

better bounds compared to YUN-JobDr (next best approach) in the Low-Low, High-Low, and High-721

High scenarios. In the Low-High scenario in Figure 4b, it provides up to 15% better bounds than the722

second best option of Hassan-ReqDr.723

3) System Configurations Supported By Hassan-ReqDr. We now compare the proposed ana-724

lysis with the Hassan-ReqDr analysis for all the supported platform instances discussed in Section 3.725

We compared both approaches for all interference scenarios; however, for space considerations, in726

Figure 5, we only show results for the Low-High and High-Low scenarios, which best illustrate727

the main lessons we want to highlight. 1) Proposed provides tighter bound than Hassan-ReqDr728

for all platform instances. 2) For the Low-High scenario (Figure 5a), bounds of both solutions are729

very close. This is because for his scenario, the number of requests from the core under analysis730

is relatively small compared to the total number of competing requests. Therefore, request-driven731

analysis (Sections 5.2–5.5) provides tighter bounds than job-driven analysis (Section 5.1). However,732

Proposed still outperforms Hassan-ReqDr thanks to the leveraged knowledge about the running733

tasks. As a result, in Figure 5a, it provides up to 98% (instance WB-noPart-pr-IO) and 24% on734

average tighter bounds across all platform instances. 3) For the High-Low scenario (Figure 5b), we735

observe a large gap between Proposed and Hassan-ReqDr. In Figure 5b, Proposed provides up to736

71× and 18× on average tighter bound across all configurations. Two main reasons are behind such737

significant gap: no partitioning (noPart), and write batching (WB). Both features, if considered,738

forces Hassan-ReqDr to consider a pathological worst-case scenario that is overly pessimistic. For739

noPart, Hassan-ReqDr considers every request of the core under analysis to have the worst-case740

intra-bank (conflict and reorder) interference from competing cores. Similarly for WB, Hassan-741

ReqDr assumes that every read request will suffer a worst-case write batching delay even if there are742

not enough number of competing requests to cause this much interference for every single request743

ECRTS 2020



17:20 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

Partitioning noWB WB Partitioning noWB WB Partitioning noWB WB
PartAll 15706330 24540906 PartCr 24560480 24540906 noPart 24560480 24540906

Table 6 Proposed’s WCD (in cycles) for the 63 platform instances that are declared unbounded under
Hassan-ReqDr (satisfying condition in Equation 73). We found WCD to depend only on WB and paritioning
values. Values are for the Low-High interference scenario.

0
5

10
15
20
25
30
35

0 1 2 3

M
em

or
y 

De
la

y 
[c

yc
 in

 M
ill

io
ns

]

Number of Competing PEs with High Memory Demand

Proposed

ReqDriven

CMU-JDr

(a) A comparison for a configuration with no WB, no parti-
tioning, IO pipeline, and no priority.

0

2

4

6

8

10

0 1 2 3

M
em

or
y 

D
el

ay
 

[c
yc

 in
 M

ill
io

ns
]

Number of Competing PEs with High Memory Demand

Proposed

ReqDriven

YUN-JDr

(b) A comparison for a configuration with WB, P artAll,
OOO pipeline, and no priority.

Figure 6 Varying number of "High" competing cores.

from the core under analysis. On the other hand, by leveraging the job-driven analysis and considering744

the number of competing requests, Proposed provides tighter bounds.745

4) Configurations Unbounded by Hassan-ReqDr. In [14], the authors considered 144 platform746

instances. The Hassan-ReqDr analysis bounded 81 of them, while 63 instances were proven to be747

unbounded under this analysis. We identify those 63 instances by the following condition:748 (
breorder=1 and wb=0

)
or

(
thr=0 and

(
part=noP art or (part=P artCr and pr=0)

))
(73)749

750

Leveraging the job-driven analysis, the Proposed approach is able to bound all these cases using751

information about memory requests of competing tasks (Section 5.1). Table 6 shows the obtained752

bounds for the Low-High scenario.753

5) Hybrid Analysis under different Interference Severity. To further show the benefit of754

the proposed hybrid analysis compared to the state-of-the-art request- and job-driven analyses, we755

investigate with different number of competing tasks with high memory demand (High from Table 5a).756

In this set of experiments, we use rspeed (Low) benchmark as the one under analysis and vary the757

number of high competing cores. The total number of cores in the experiment is four. For instance, 2758

in the x-axis of Figure 6 indicates that in addition to the core under analysis, two cores are running759

benchmarks from the High category, while one core is running a benchmark from the Low category.760

From Figure 6, it is clear that the effectiveness of the request- vs job-driven analysis is dependent761

on the relative ratio between the number of requests of the core under analysis and the number of762

requests from competing cores. On the other hand, the proposed hybrid analysis is able to achieve763

better bound compared to both approaches for all cases.764

7 Conclusions765

We propose a novel approach to bound interference delays due to contention upon accessing off-chip766

DRAMs in heterogeneous COTS MPSoCs. The proposed hybrid framework blends both request-767

and job-driven analyses to provide tighter bounds than those determined by each analysis separately768

and then taking the minimum of both. The framework also leverages information about the memory769

behavior of running task such as number of read and write requests, which are usually available from770

statically analyzing each task in isolation. We evaluate the proposed approach across a wide set of771

COTS platform instances, where it outperforms existing state-of-the-art analyses (both request- and772

job-driven).773



M. Hassan and R. Pellizzoni 17:21

References774

1 Ankit Agrawal, Gerhard Fohler, Johannes Freitag, Jan Nowotsch, Sascha Uhrig, and Michael Paulitsch.775

Contention-aware dynamic memory bandwidth isolation with predictability in COTS multicores: An776

avionics case study. In Euromicro Conference on Real-Time Systems (ECRTS), 2017.777

2 Ankit Agrawal, Renato Mancuso, Rodolfo Pellizzoni, and Gerhard Fohler. Analysis of dynamic memory778

bandwidth regulation in multi-core real-time systems. In IEEE Real-Time Systems Symposium (RTSS),779

2018.780

3 Balasubramanya Bhat and Frank Mueller. Making DRAM refresh predictable. In Euromicro Conference781

on Real-Time Systems (ECRTS), 2010.782

4 Vamsi Boppana, Sagheer Ahmad, Ilya Ganusov, Vinod Kathail, Vidya Rajagopalan, and Ralph Wittig.783

UltraScale+ MPSoC and FPGA families. In IEEE Hot Chips Symposium (HCS), 2015.784

5 Roman Bourgade, Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. Accurate785

analysis of memory latencies for WCET estimation. In International Conference on Real-Time and786

Network Systems (RTNS), 2008.787

6 Mauricio Calle and Ravi Ramaswami. Multi-bank scheduling to improve performance on tree accesses in788

a DRAM based random access memory subsystem, January 4 2005. US Patent 6,839,797.789

7 Leonardo Ecco, Sebastian Tobuschat, Selma Saidi, and Rolf Ernst. A Mixed Critical Memory Controller790

Using Bank Privatization and Fixed Priority Scheduling. In Embedded and Real-Time Computing Systems791

and Applications (RTCSA), 2014.792

8 Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar Thiele. Scheduling of mixed-793

criticality applications on resource-sharing multicore systems. In ACM International Conference on794

Embedded Software (EMSOFT), 2013.795

9 Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A Comparative Study of Predictable796

DRAM Controllers. ACM Transaction on Embedded Computer Systems (TECS), 2018.797

10 Danlu Guo and Rodolfo Pellizzoni. A request bundling dram controller for mixed-criticality systems. In798

IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2017.799

11 Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling compositionality for multicore timing800

analysis. In International conference on real-time networks and systems (RTNS), 2016.801

12 Mohamed Hassan. Heterogeneous MPSoCs for Mixed Criticality Systems: Challenges and Opportunities.802

IEEE Design & Test, 2017.803

13 Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. A Framework for Scheduling DRAM Memory804

Accesses for Multi-Core Mixed-time Critical Systems. In Real-Time and Embedded Technology and805

Applications Symposium (RTAS), 2015.806

14 Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM interference in COTS heterogeneous807

MPSoCs for mixed criticality systems. IEEE Transactions on Computer-Aided Design of Integrated808

Circuits and Systems (TCAD), 2018.809

15 Intel. External memory interface handbook volume 2: Design guidelines, 2017.810

16 Bruce Jacob, Spencer Ng, and David Wang. Memory systems: cache, DRAM, disk. Morgan Kaufmann,811

2010.812

17 Javier Jalle, Eduardo Quinones, Jaume Abella, Luca Fossati, Marco Zulianello, and Francisco J Cazorla.813

A dual-criticality memory controller (DCmc): Proposal and evaluation of a space case study. In IEEE814

Real-Time Systems Symposium (RTSS), 2014.815

18 DDR3 SDRAM JEDEC. JEDEC jesd79-3b, 2008.816

19 H Kim, J Lee, N Lakshminarayana, J Lim, and T Pho. Macsim: Simulator for heterogeneous architecture,817

2012.818

20 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan Raj819

Rajkumar. Bounding memory interference delay in COTS-based multi-core systems. In IEEE Real-Time820

and Embedded Technology and Applications Symposium (RTAS), 2014.821

21 N. Kim, B. Ward, M. Chisholm, J. Anderson, and F.D. Smith. Attacking the one-out-of-m multicore822

problem by combining hardware management with mixed-criticality provisioning. Real-Time Systems,823

2017.824

22 Haohan Li and Sanjoy Baruah. Global mixed-criticality scheduling on multiprocessors. In Euromicro825

Conference on Real-Time Systems (ECRTS), 2012.826

ECRTS 2020



17:22 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

23 Yonghui Li, Benny Akesson, and Kees Goossens. Dynamic Command Scheduling for Real-Time Memory827

Controllers. In Euromicro Conference on Real-Time Systems (ECRTS), 2014.828

24 Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access scheduling for chip multiprocessors.829

In 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), pages 146–160.830

IEEE, 2007.831

25 Jan Nowotsch, Michael Paulitsch, Daniel Bühler, Henrik Theiling, Simon Wegener, and Michael Schmidt.832

Multi-core interference-sensitive WCET analysis leveraging runtime resource capacity enforcement. In833

Euromicro Conference on Real-Time Systems (ECRTS), 2014.834

26 Xing Pan, Yasaswini Gownivaripalli, and Frank Mueller. Tintmalloc: Reducing memory access divergence835

via controller-aware coloring. In International Parallel and Distributed Processing Symposium (IPDPS),836

2016.837

27 Risat Mahmud Pathan. Schedulability analysis of mixed-criticality systems on multiprocessors. In838

Euromicro Conference on Real-Time Systems (ECRTS), 2012.839

28 Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar Thiele. Worst840

case delay analysis for memory interference in multicore systems. In IEEE Design, Automation & Test in841

Europe Conference & Exhibition (DATE), 2010.842

29 Jason Poovey. Characterization of the EEMBC benchmark suite. North Carolina State University, 2007.843

30 Qualcomm. Qualcomm snapdragon 600e processor apq8064e recommended memory controller and844

device settings application note, 2016.845

31 Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson, and John D Owens. Memory access846

scheduling. In ACM SIGARCH Computer Architecture News, volume 28, pages 128–138. ACM, 2000.847

32 Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A cycle accurate memory system848

simulator. IEEE Computer Architecture Letters (CAL), 2011.849

33 Jeffrey Stuecheli, Dimitris Kaseridis, Hillery C Hunter, and Lizy K John. Elastic refresh: Techniques to850

mitigate refresh penalties in high density memory. In IEEE/ACM International Symposium on Microarchi-851

tecture (MICRO), 2010.852

34 Prathap Kumar Valsan and Heechul Yun. MEDUSA: a predictable and high-performance DRAM controller853

for multicore based embedded systems. In IEEE International Conference on Cyber-Physical Systems,854

Networks, and Applications (CPSNA), 2015.855

35 Zheng Pei Wu, Rodolfo Pellizzoni, and Danlu Guo. A Composable Worst Case Latency Analysis for856

Multi-Rank DRAM Devices under Open Row Policy. Real-Time Systems, 2016.857

36 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PALLOC: DRAM bank-aware858

memory allocator for performance isolation on multicore platforms. In IEEE Real-Time and Embedded859

Technology and Applications Symposium (RTAS), 2014.860

37 Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan. Parallelism-aware memory interference861

delay analysis for COTS multicore systems. In Euromicro Conference on Real-Time Systems (ECRTS),862

2015.863

38 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard: Memory864

bandwidth reservation system for efficient performance isolation in multi-core platforms. In IEEE865

Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013.866

39 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memory bandwidth867

management for efficient performance isolation in multicore platforms. IEEE Transactions on Computers868

(TC), 2016.869


	Introduction
	Related Work and Motivation

	Background
	Background on DRAM
	System Model and Platform Instances

	Preliminaries
	Memory Delay Analysis
	Interfering Requests
	Self-Interference
	Conflict delay LConf
	LACT and LCAS delays

	Interference Computation
	Job-Driven Bounds
	Request-Driven Bounds: Conflict Requests
	Request-Driven Bounds: Reorder Requests
	Request-driven bounds: inter-bank requests
	Request-driven bounds: write-batching requests
	Optimization Problem

	Evaluation
	Conclusions

