
Analysis of Memory-Contention in
Heterogeneous COTS MPSoCs

Mohamed Hassan and Rodolfo Pellizzoni

https://gitlab.com/FanusLab/memory-contention-analysis

https://gitlab.com/FanusLab/memory-contention-analysis

Outline

0301 0402 05MotivationDRAMs Big
Picture

Proposed Results

1

DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE (A) command:
• Bring data row from cells into sense amplifiers

• Read/Write (R/W) commands:
• To read/write from specific columns in

the sense amplifiers
• PRECHARGE (P) command:

• to write back a previous row in the sense
amplifiers before bringing the new one

Background

Row Conflict: P+ A + R/W

Row Idle/Close: A + R/W

Row Hit: R/W

3

Request Types

1

Big Picture

FR-FCFS Intra-Bank Scheduler

FR-FCFS Intra-Bank Scheduler

FR-FCFS Intra-Bank Scheduler R
R

 In
te

r-
B

an
k

Sc
h

ed
u

le
r

To
 D

R
A

M

rua C C

Intra-bank interfering requests:

1. Intra-bank conflict requests

Request Types

1

Big Picture

FR-FCFS Intra-Bank Scheduler

FR-FCFS Intra-Bank Scheduler

FR-FCFS Intra-Bank Scheduler R
R

 In
te

r-
B

an
k

Sc
h

ed
u

le
r

To
 D

R
A

M

rua C COO

Intra-bank interfering requests:

1. Intra-bank conflict requests

2. Intra-bank reorder requests

Request Types

1

Big Picture

FR-FCFS Intra-Bank Scheduler

FR-FCFS Intra-Bank Scheduler

FR-FCFS Intra-Bank Scheduler R
R

 In
te

r-
B

an
k

Sc
h

ed
u

le
r

To
 D

R
A

M

rua C COO

Intra-bank interfering requests:

1. Intra-bank conflict requests

2. Intra-bank reorder requests

Inter-bank interfering requests:

3. Inter-bank close requests

4. Inter-bank open requests CO

Request Types

1

Big Picture

FR-FCFS Intra-Bank Scheduler

FR-FCFS Intra-Bank Scheduler

FR-FCFS Intra-Bank Scheduler R
R

 In
te

r-
B

an
k

Sc
h

ed
u

le
r

To DRAM

rua C COO

Intra-bank interfering requests:

1. Intra-bank conflict requests

2. Intra-bank reorder requests

Inter-bank interfering requests:

3. Inter-bank close requests

4. Inter-bank open requests
CO

Write batching

5. Write batching requests

W
ri

te
 Q

u
eu

e
R

ea
d

 Q
u

eu
es

R
/W

 S
ch

ed
u

lin
g

Po
lic

y

To
 B

ac
ke

n
d

(c
o

m
m

an
d

 q
u

eu
es

)

Latency Buckets (Components)

1

Big Picture

Conflict LatencyCAS LatencyACT Latency

Latency Buckets (Components)

1

Big Picture

Conflict LatencyCAS LatencyACT Latency

Intra-bank interfering requests:

1. Intra-bank conflict requests

2. Intra-bank reorder requests

Inter-bank interfering requests:

3. Inter-bank close requests

4. Inter-bank open requests

Write batching

5. Write batching requests

Intra-bank
conflict

requests

Intra-bank
reorder
requests

Inter-bank
close requests

Inter-bank
close requests

Inter-bank
open requests

Write batching
requests

Request-Driven vs Job-Driven Analysis Motivation

Conflict Latency

CAS Latency

ACT Latency

Intra-bank
conflict

requests

Intra-bank
reorder
requests

Inter-bank
close requests

Inter-bank
close requests

Inter-bank
open requests

Write batching
requests

Request-Dr Analysis
• What is the worst-case of

each of these components
can be suffered by a single
request? → WCLper-req

• Assuming nothing at all about
interfering tasks
• (i.e., infinite number of

interfering requests)
• Then obtain total memory

latency assuming we know
the total number of
interfered requests
→ WCLtot =#Reqs ×WCLper-req

Request-Driven vs Job-Driven Analysis Motivation

Conflict Latency

CAS Latency

ACT Latency

Intra-bank
conflict

requests

Intra-bank
reorder
requests

Inter-bank
close requests

Inter-bank
close requests

Inter-bank
open requests

Write batching
requests

Request-Dr Analysis
• What is the worst-case of

each of these components
can be suffered by a single
request? → WCLper-req

• Assuming nothing at all about
interfering tasks
• (i.e., infinite number of

interfering requests)
• Then obtain total memory

latency assuming we know
the total number of
interfered requests
→ WCLtot =#Reqs ×WCLper-req

Job-Dr Analysis
• What is the worst-case of

each of these components
can be suffered by the total
task assuming we know the
number of interfering
requests?

• Assuming nothing at all about
interfered requests
• (i.e., infinite number of

interfered requests)

Request-Driven vs Job-Driven Analysis Motivation

Request-Driven vs Job-Driven Analysis Motivation

Relatively small
number of interfered
requests
→ Req-Dr wins

Request-Driven vs Job-Driven Analysis Motivation

Relatively small
number of interfered
requests
→ Req-Dr wins

Relatively small
number of interfering
requests
→ Job-Dr wins

State-of-the-art Motivation

• [CMU Req- and Job-Dr] Hyoseung Kim et al. Bounding memory interference delay in COTS-based multi-core
systems. RTAS, 2014.
• Both request- and job-driven analysis
• A specific COTS platform

• [Yun Req- and Job-Dr] Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan. Parallelism-aware memory
interference delay analysis for COTS multicore systems. ECRTS, 2015.
• Both request- and job-driven analysis
• A specific COTS platform

• [Hassan Req-Dr] Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM interference in COTS heterogeneous
MPSoCs for mixed criticality systems, EMSOFT, 2018
• Explores a wide variety of COTS possible configurations (144 platform instances)
• Only request-driven analysis

This work Proposed

Conflict Latency

CAS Latency

ACT Latency

Intra-bank
conflict

requests

Intra-bank
reorder
requests

Inter-bank
close requests

Inter-bank
close requests

Inter-bank
open requests

Write batching
requests

What do we do?
• A task-aware

• COTS-aware
• Hybrid analysis

Task-Aware Analysis Proposed

Conflict Latency

CAS Latency

ACT Latency

Intra-bank
conflict

requests

Intra-bank
reorder
requests

Inter-bank
close requests

Inter-bank
close requests

Inter-bank
open requests

Write batching
requests

What do we do?
• A task-aware COTS-aware Hybrid analysis
• Task-aware:

• Account for deferent level of knowledge we have about
running tasks:
• Total number of requests
• Total number of reads + writes
• Total number of open (row hits) + close (row misses)

requests

COTS-Aware Analysis Proposed

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS

Applications Memory Behavior
Depends on?:

• Priority:
• PEs can be given priorities
• COTS platforms support different priority

levels
• Existing analysis does not account for this

• Intra-bank scheduling
• FR-FCFS
• COTS also supports a threshold on

reordering to prevent starvation

• Inter-bank scheduling
• RR across banks
• Two flavors:

• Always schedule ready commands of any
type (high performance)

• Reorder only commands of different type
(prevent starvation)

• Read/Write arbitration, two flavors:
• Reads and writes have same priority
• Serve in batches, where reads have higher

priority

OS Configuration

PE Architecture

MC Policies

COTS-Aware Analysis Proposed

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write batching

FR-FCFS Threshold
• 1: FR-FCFS is capped
• 0: no cap on FR-FCFS

Priority
• 1: Critical PEs are higher priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all commands

• 0: Reorder commands of diff types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-order
• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical apps
• Part-All: Partition among all apps

COTS-Aware Analysis Proposed

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write batching

FR-FCFS Threshold
• 1: FR-FCFS is capped
• 0: no cap on FR-FCFS

Priority
• 1: Critical PEs are higher priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all commands

• 0: Reorder commands of diff types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-order
• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical apps
• Part-All: Partition among all apps144 different platform

instances!

Hybrid Analysis Proposed

What do we do?
• A task-aware COTS-aware Hybrid analysis
• Hybrid:

• State-of-the-art: only running request- or job-Dr analysis or
run both and take the min

• This work: construct an optimization framework that blends
both request-level and task-level per-core constraints to
obtain tighter bounds

Conflict Req Proposed

Conflict LatencyCAS LatencyACT Latency

Intra-bank interfering requests:

1. Intra-bank conflict requests

2. Intra-bank reorder requests

Inter-bank interfering requests:

3. Inter-bank close requests

4. Inter-bank open requests

Write batching

5. Write batching requests

Intra-bank
conflict

requests

Intra-bank
reorder
requests

Inter-bank
close requests

Inter-bank
close requests

Inter-bank
open requests

Write batching
requests

Conflict Req

1

Proposed

Conflict LatencyCAS LatencyACT Latency

Intra-bank interfering requests:

1. Intra-bank conflict requests

2. Intra-bank reorder requests

Inter-bank interfering requests:

3. Inter-bank close requests

4. Inter-bank open requests

Write batching

5. Write batching requests

Intra-bank
conflict

requests

Intra-bank
reorder
requests

Inter-bank
close requests

Inter-bank
close requests

Inter-bank
open requests

Write batching
requests

Optimization problem:
1. Write Latency components as functions on

those requests

Conflict Req

1

Proposed

Conflict LatencyCAS LatencyACT Latency

Intra-bank interfering requests:

1. Intra-bank conflict requests

2. Intra-bank reorder requests

Inter-bank interfering requests:

3. Inter-bank close requests

4. Inter-bank open requests

Write batching

5. Write batching requests

Intra-bank
conflict

requests

Intra-bank
reorder
requests

Inter-bank
close requests

Inter-bank
close requests

Inter-bank
open requests

Write batching
requests

Optimization problem:
1. Write Latency components as functions on

those requests
2. Define constraints on the number of requests

based on request-driven and job driven
analysis

Conflict Req

1

Proposed

Conflict LatencyCAS LatencyACT Latency

Intra-bank interfering requests:

1. Intra-bank conflict requests

2. Intra-bank reorder requests

Inter-bank interfering requests:

3. Inter-bank close requests

4. Inter-bank open requests

Write batching

5. Write batching requests

Intra-bank
conflict

requests

Intra-bank
reorder
requests

Inter-bank
close requests

Inter-bank
close requests

Inter-bank
open requests

Write batching
requests

Optimization problem:
1. Write Latency components as functions on

those requests
2. Define constraints on the number of requests

based on request-driven and job driven
analysis

3. Maximize total latency (summation of all
components)

Job-Driven Constraints

1

Proposed

Intra-bank conflict
Read (Write)

requests from p

Inter-bank close Read
(Write) requests from p

interfering with close rua
≤

close Read
(Write) requests

from p

Intra-bank reorder
Read (Write)

requests from p

Inter-bank open Read
(Write) requests from p

interfering with close rua
≤

open Read
(Write) requests

from p

Intra-bank conflict
Read (Write)

requests from p

Intra-bank reorder
Read (Write)

requests from p

Inter-bank close Read
(Write) requests from p

interfering with close rua

Inter-bank open Read
(Write) requests from p

interfering with close rua

Inter-bank Read (Write)
requests from p

interfering with open rua
≤ Total Reads

(writes) from p

Write batching
requests

close Write
requests from p≤

1Interfering Reqs
from Cr Core

Interfering Reqs
from nCr Core

Part-All
Priority

FR-FCFS thr

None
None

No thr

No-Priority
FR-FCFS thr

No thr

Part-Cr
Priority

FR-FCFS thr
No thr

No-Priority
FR-FCFS thr *

No thr unbounded

No-Part
Priority

FR-FCFS thr *
None

No thr Unbounded

No-Priority
FR-FCFS thr * *

No thr Unbounded Unbounded

Proposed

• * Constraint:
• If FR-FCFS is with threshold: no more than 𝑁𝑡ℎ𝑟can cause reorder-

interference with request under analysis →
Total # reorder interfering requests from all cores ≤ 𝑁𝑡ℎ𝑟 ×# Interfered
Requests

Intra-bank reorder
Read (Write)

requests from p

Request-Dr Constraints
Example: Reorder Requests

Overall Approach Proposed

Job-Dr
Constraints

Req-Dr
Constraints

Optimization Problem
to maximize Total Delay

Information about Requests
of Running tasks

Total Delay Value
Values of all request variables

System Configuration

1

RESULTS

P 4 Pcr 2 Pncr 2

Nthr 8 Wbtch 16 PR 4

NB 8

NBp • noPart
• PartAll
• PartCr and p is Cr
• PartCr and p is nCr

8

2

4

8

NBcr • noPart of PartCr
• PartAll

8

4

NBncr • noPart of PartCr
• PartAll

8

4

Benchmarks

1

RESULTS

High Low

BM #Reads #writes Total BM #Reads #writes Total

matrix 280000 38428 318428 rspeed 2000 482 2482

a2time 166000 21751 187751 pntrch 2000 479 2479

aifftr 101000 77234 178234 basefp 2000 478 2478

RESULTSComparison with [CMU] across its supported
platforms

RESULTS

CMU-JobDr is achieving better
performance than Req-Dr in these 3
scenarios

Comparison with [CMU] across its supported
platforms

RESULTS

CMU-JobDr is achieving better
performance than Req-Dr in these 3
scenarios

However, Proposed approach
achieves the tightest bound:
24% and up to 22.6× than Job-Dr

Comparison with [CMU] across its supported
platforms

RESULTS

Req-Dr achieves tighter
bound than Job-Dr in this
scenario

Comparison with [CMU] across its supported
platforms

RESULTS

Req-Dr achieves tighter
bound than Job-Dr in this
scenario

However, Proposed approach
achieves the tightest bound (34%
tighter than Hassan-ReqDr)

Comparison with [CMU] across its supported
platforms

RESULTSComparison with [YUN] across its supported
platforms

RESULTS

YUN-JobDr is achieving better
performance than Req-Dr in these 3
scenarios

Comparison with [YUN] across its supported
platforms

RESULTS

YUN-JobDr is achieving better
performance than Req-Dr in these 3
scenarios

However, Proposed approach
achieves the tightest bound:
25% and up to 42% than Job-Dr

Comparison with [YUN] across its supported
platforms

RESULTS

Req-Dr achieves tighter
bound than Job-Dr in this
scenario

Comparison with [YUN] across its supported
platforms

RESULTS

Req-Dr achieves tighter
bound than Job-Dr in this
scenario

However, Proposed approach
achieves the tightest bound (15%
tighter than Hassan-ReqDr)

Comparison with [YUN] across its supported
platforms

RESULTS

Proposed provides up to 98% and 24% on
average tighter bounds across all platform
instances

Comparison with Req-Dr across platforms
Low-High case

Comparison with Req-Dr across platforms
High-Low case RESULTS

RESULTS

Proposed provides up to 71× and 18× on average
tighter bound across all configurations!

Two main reasons are behind such significant
gap: no partitioning (noPart) and write
batching (WB). Both features, if considered,
forces ReqDr to consider a pathological overly
pessimistic scenario

Comparison with Req-Dr across platforms
High-Low case

RESULTS

Previous Comparison with Req-Dr is for cases that are bounded by Req-Dr.
Out of the 144 platform instance → 63 were proven to be unbounded

Proposed Analysis is able to bound those leveraging the Job-Dr constraints in the
optimization framework

Comparison with Req-Dr across platforms
Unbounded cases by Req-Dr

Back to these two figures
How does the proposed hybrid analysis perform? RESULTS

Summary

Summary

Optimization problem:
1. Write Latency components as functions on those requests
2. Define constraints on the number of requests based on

request-driven and job driven analysis
3. Maximize total latency (summation of all components)

https://gitlab.com/FanusLab/memory-contention-analysis

https://gitlab.com/FanusLab/memory-contention-analysis

Optimization problem:
1. Write Latency components as functions on those requests
2. Define constraints on the number of requests based on

request-driven and job driven analysis
3. Maximize total latency (summation of all components)

https://gitlab.com/FanusLab/memory-contention-analysis

https://gitlab.com/FanusLab/memory-contention-analysis

Summary

Optimization problem:
1. Write Latency components as functions on those requests
2. Define constraints on the number of requests based on

request-driven and job driven analysis
3. Maximize total latency (summation of all components)

mohamed.hassan@mcmaster.ca

mailto:mohamed.hassan@mcmaster.ca

