
MOHAMED HASSAN
TOWARDS PREDICTABLE, SECURE, AND VERIFIED CYBER-PHYSICAL SYSTEMS-ON-CHIP

(CPSoCs)

Feb 18th, 2020

A disclaimer: Work presented in this talk has been done while affiliated to one of these fantastic places:

FANUS

1

Embedded Systems, The Future MOTIVATION

FANUS

2

Embedded Systems, The Future MOTIVATION

1998

Embedded processors
shipped units already
surpassed PCs

3

Embedded Systems, The Future MOTIVATION

1998

Embedded processors
shipped units already
surpassed PCs

Now?

All PCs in the world are
less than 1% of the
market!

PCs

4

Embedded Systems, The Future MOTIVATION

1998

Embedded processors
shipped units already
surpassed PCs

2030?

• IoT are forecasted to have
billions of units by 2030!

• Autonomous cars have
100s of embedded
processors

Now?

All PCs in the world are
less than 1% of the
market!

PCs

5

Colossus

Smart Phones AutomotiveIBM’s Acorn

NEC’s UltaLite Wearables

1943

2000s Now-Near1981

1989 2010s

IoT/Smart Homes

Towards CPSoCs

FANUS

6

Colossus

Smart Phones AutomotiveIBM’s Acorn

NEC’s UltaLite Wearables

1943

2000s Now-Near1981

1989 2010s

IoT/Smart Homes

Towards CPS

The IoT Case

FANUS

7

Colossus

Smart Phones AutomotiveIBM’s Acorn

NEC’s UltaLite Wearables

1943

2000s Now-Near1981

1989 2010s

IoT/Smart Homes

Towards CPS

The Automotive Case

FANUS

8

Embedded Systems Cyber-Physical Systems MOTIVATION

FANUS

9

Cyber-Physical Systems

communicatecommunicatecommunicatesensesensesense computecomputecompute actuateactuateactuate

Embedded Systems Cyber-Physical Systems MOTIVATION

FANUS

10

ACU

AIRBAG CONTROL UNIT

periodic activation

deadline

Predictable Cyber-Physical Systems MOTIVATION

Why do we need Predictable, Secure,
and Verified CPS?

11

ACU

AIRBAG CONTROL UNIT

periodic activation

deadline

Predictable Cyber-Physical Systems MOTIVATION
12

Colossus

Smart Phones AutomotiveIBM’s Acorn

NEC’s UltaLite Wearables

1943

2000s Now-Near1981

1989 2010s

IoT/Smart Homes

FANUS

13

Colossus

Smart Phones AutomotiveIBM’s Acorn

NEC’s UltaLite Wearables

1943

2000s Now-Near1981

1989 2010s

IoT/Smart Homes

14

Lock It and Still Lose It —on
the (In)Security of Automotive
Remote Keyless Entry Systems

Secure Cyber-Physical Systems MOTIVATION
15

• In 2007, 12 F-22s were going from
Hawaii to Japan.

• After crossing the IDL, all 12
experienced multiple crashes.
No navigation
No fuel subsystems
Limited communications
Rebooting didn’t help

• Mercedes Class A failed the
moose test in 1997.

• Sensors on roof detect
overturn and automatically
open door.

• What happens if a thief jumps
on the car roof?

Verified Cyber-Physical Systems MOTIVATION
16

• Unlike traditional real-time embedded
systems:
• Advanced CPS require significant

computational power

Challenge 1: Computation and Data intensive CPS MOTIVATION

2017

NO STANDARD

No certification standard, no
consolidated technology.

~ 1.7 million lines of code
in a F-22 Fighter Jet

~ 6.5 million lines of code
in a Boeing 787

~ 20 million lines of code
in S Class Mercedes-Benz

Why do we need CPSoCs?

17

• Unlike traditional real-time embedded
systems:
• Advanced CPS require significant

computational power

Challenge 1: Computation and Data intensive CPS MOTIVATION

2017

NO STANDARD

No certification standard, no
consolidated technology.

~ 1.7 million lines of code
in a F-22 Fighter Jet

~ 6.5 million lines of code
in a Boeing 787

~ 20 million lines of code
in S Class Mercedes-Benz

18

• Unlike traditional real-time embedded
systems:
• Advanced CPS require significant

computational power

Challenge 1: Computation and Data intensive CPS MOTIVATION

2017

NO STANDARD

No certification standard, no
consolidated technology.

~ 1.7 million lines of code
in a F-22 Fighter Jet

~ 6.5 million lines of code
in a Boeing 787

~ 20 million lines of code
in S Class Mercedes-Benz

19

• Unlike traditional real-time embedded
systems:
• Advanced CPS require significant

computational power

• Autonomous vehicles deploy complex sensor
processing and sensor fusion capabilities
which are both computation and data
intensive

Challenge 1: Computation and Data intensive CPS MOTIVATION

2017

NO STANDARD

No certification standard, no
consolidated technology.

~ 1.7 million lines of code
in a F-22 Fighter Jet

~ 6.5 million lines of code
in a Boeing 787

~ 20 million lines of code
in S Class Mercedes-Benz

20

• No longer solely hosting isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet requirements

Challenge 2:Mixed-Criticality Nature of CPS MOTIVATION

• High-criticality tasks
• Airbag Control Unit (ACU)
• Anti-lock Braking System

(ABS)
• Engine Control Unit (ECU)

21

• No longer solely hosting isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet requirements

MOTIVATION

• Medium-criticality tasks
• Navigation System
• Instrument Cluster
• Cruise Control

Challenge 2:Mixed-Criticality Nature of CPS
22

• No longer solely hosting isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet requirements

• Low-criticality tasks
• Air Conditioning Unit
• Connectivity Box
• Infotainment Unit

MOTIVATIONChallenge 2:Mixed-Criticality Nature of CPS
23

Mixed Criticality Systems MOTIVATION

FANUS

24

Mixed Criticality Systems MOTIVATION
25

MPSoCs MOTIVATION

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Why MPSoCs?
• Low cost
• High performance
• Energy Efficiency
• Low time-to-market (3rd party IPs)

Solution to these challenges:
Multiple Processor Systems-on-Chip

(MPSoCs)

26

MPSoCs MOTIVATION

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Why MPSoCs?
• Low cost
• High performance
• Energy Efficiency
• Low time-to-market (3rd party IPs)

27

MPSoCs MOTIVATION

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Hennessy & Patterson, Turing Lecture,
A New Golden Age for Computer Architecture

FANUS

28

Heterogenous MPSoCs MOTIVATION

MPSoCs

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO Heterogenous MPSoCs

GPU

DSP

ASIC2

CPU

FPG
A

ASIC1

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Why Heterogenous
MPSoCs?
• Variety of processing capabilities
Best-suits MCS conflicting

requirements

FANUS

29

30

What about IoT?

FANUS

31

Heterogenous MPSoCs with Real-time
Processors MOTIVATION

FANUS

32

Heterogenous MPSoCs with Real-time
Processors MOTIVATION

FANUS

33

MPSoC Challenges MOTIVATION

How can existing code-bases be
reused when adopting multi-cores?

PORTING / INTEGRATION

Multi-cores are significantly
more complex machines. Can
sufficient understanding be
achieved for a safe use?

UNDERSTANDING

How to certify multi-core platforms? And
how much will that cost?

CERTIFICATION

Off-Chip RT Network (e.g. CAN, SAFEbus)Off-Chip RT Network (e.g. CAN, SAFEbus)
How to achieve a level of

predictability that is
equivalent to single-cores

without excessive pessimism?

Sharing HardwareSharing Hardware
computation is performed in parallel, but

I/O and
memory

shared

Node 1 Node 2 Node 3 Node 4

From multiple single-core systems

To a single multi-core system

Memory
I/O

devices

Core 1 Core 2

Core 3 Core 4

ECU

ECU

FANUS

34

Predictable CPSoC PREDICTABILITY

Interconnect

DRAM

...

Shared
Cache

Memory Controller

Shared on-chip cache hierarchy

Shared on-chip memory controller

Shared off-chip DRAM memory

Private
Cache

Private
Cache

PEnPE0

Shared on-chip interconnect

Towards Predictable, Secure, and Verified CPSoCs

35

Predictable CPSoC PREDICTABILITY

Interconnect

DRAM

...

Shared
Cache

Memory Controller

Shared on-chip cache hierarchy

Shared on-chip memory controller

Shared off-chip DRAM memory

Private
Cache

Private
Cache

PEnPE0

Shared on-chip interconnect

36

Predictable CPSoC PREDICTABILITY

CArb [RTAS’16]

DRAM

...

Shared
Cache

Memory Controller

Predictable and MC-aware Bus

Shared on-chip cache hierarchy

Shared on-chip memory controller

Shared off-chip DRAM memory

Private
Cache

Private
Cache

PEnPE0

37

Predictable CPSoC PREDICTABILITY

PMSI [RTAS’17], PENDULUM [RTSS’19]
HourGlass [ArXiv’18], Ongoing….

CArb [RTAS’16]

DRAM

...

Shared
Cache

Memory Controller

Predictable and MC-aware Bus

Shared on-chip memory controller

Shared off-chip DRAM memory

Private
Cache

Private
Cache

PEnPE0

38

Predictable CPSoC PREDICTABILITY

CArb [RTAS’16]

...

Shared
Cache

Predictable and MC-aware Bus

Private
Cache

Private
Cache

PEnPE0

DRAM

Memory Controller
PMC [RTAS’15, TECS’16]

MCSim [TECS’17]
MCS-MPSoCs [EMSOFT’18, TCAD’18]

RLDRAM [RTSS’18]
DRAMbulism [RTAS’20]

PMSI [RTAS’17], PENDULUM [RTSS’19]
HourGlass [ArXiv’18], Ongoing….

39

Predictable CPSoC PREDICTABILITY

CArb [RTAS’16]

...

Shared
Cache

Predictable and MC-aware Bus

Private
Cache

Private
Cache

PEnPE0

DRAM

Memory Controller PMC [RTAS’15, TECS’16]
MCSim [TECS’17]

MCS-MPSoCs [EMSOFT’18, TCAD’18]
RLDRAM [RTSS’18]

DRAMbulism [RTAS’20]

PMSI [RTAS’17], PENDULUM [RTSS’19]
HourGlass [ArXiv’18], Ongoing….

PREMIUM
Predictable

Memory
Hierarchy

40

Predictable CPSoC PREDICTABILITY

PREMIUM
Predictable

Memory
Hierarchy

 Supports MCS

 Supports Shared
Data

 Guaranteed service

FANUS

41

Predictable CPSoC PREDICTABILITY

CArb [RTAS’16]

...

Shared
Cache

Predictable and MC-aware Bus

Private
Cache

Private
Cache

PEnPE0

DRAM

Memory Controller
PMC [RTAS’15, TECS’16]

MCSim [TECS’17]
MCS-MPSoCs [EMSOFT’18, TCAD’18]

RLDRAM [RTSS’18]
DRAMbulism [RTAS’20]

PMSI [RTAS’17], PENDULUM [RTSS’19]
HourGlass [ArXiv’18], Ongoing….

PREMIUM
Predictable

Memory
Hierarchy

42

Predictable CPSoC PREDICTABILITY

CArb [RTAS’16]

...

Shared
Cache

Predictable and MC-aware Bus

Private
Cache

Private
Cache

PEnPE0

DRAM

Memory Controller
PMC [RTAS’15, TECS’16]

MCSim [TECS’17]
MCS-MPSoCs [EMSOFT’18, TCAD’18]

RLDRAM [RTSS’18]
DRAMbulism [RTAS’20]

PMSI [RTAS’17], PENDULUM [RTSS’19]
HourGlass [ArXiv’18], Ongoing….

PREMIUM
Predictable

Memory
Hierarchy

43

DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM

Background

FANUS

44

DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

Background

FANUS

45

DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

• RD/WR commands:
• To read/write from specific columns in

the sense amplifiers

Background

FANUS

46

DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

• RD/WR commands:
• To read/write from specific columns in

the sense amplifiers
• PRECHARGE command:

• to write back a previous row in the sense
amplifiers before bringing the new one

Background

FANUS

47

Background DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

• RD/WR commands:
• To read/write from specific columns in

the sense amplifiers
• PRECHARGE command:

• to write back a previous row in the sense
amplifiers before bringing the new one

• All commands have associated timing constraints that have
to be satisfied by the controller

48

System Overview MODEL

• P processing elements
 Pcr critical + Pncr non-critical

• LLC is write-back write-allocate
• Writes to DRAM are only

cache evictions
• Single-channel single-rank DRAM

subsystem
• NB DRAM banks

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

49

System Overview MODEL

• P processing elements
 Pcr critical + Pncr non-critical

• LLC is write-back write-allocate
• Writes to DRAM are only

cache evictions
• Single-channel single-rank DRAM

subsystem
• NB DRAM banks

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Goal:
Derive an upper bound on the
delay incurred by any memory
request of a critical PE

50

Challenge: operations of one PE affect the
temporal behavior of other PEs, which
complicates the timing analysis of the system.

Most of the MCS scheduling techniques do not
incorporate these interferences in their
scheduling or analysis

Approaches focusing on shared resources
mostly assume SMPs

MODELWhy We Bother?

FANUS

51

Challenge: operations of one PE affect the
temporal behavior of other PEs, which
complicates the timing analysis of the system.

Most of the MCS scheduling techniques do not
incorporate these interferences in their
scheduling or analysis

Approaches focusing on shared resources
mostly assume SMPs

7.4.2.7 Where the software is to implement both
safety and non-safety functions, then all of the
software shall be treated as safety-related, unless
adequate independence between the functions can
be demonstrated in the design.
[IEC61508-3]

MODELWhy We Bother?

FANUS

52

Big Picture PREDICTABILITY
[EMSOFT’18] Mohamed Hassan, Rodolfo Pellizzoni, "Bounding DRAM Interference in COTS Heterogeneous
MPSoCs for Mixed Criticality Systems”, BEST PAPER AWARD

State-Space exploration of
the COTS MPSoCs

Study their DRAM Behavior

UnpredictablePredictable

cannot be used
for CPSConduct

timing analysis

Provide delay
bounds

• Highlight features that
lead to unpredictability

• Highlight features that
provide tighter latency
bounds and better
bandwidth

FANUS

53

System Details MODEL

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

54

System Details MODEL

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications Memory Behavior

Depends on?:

• Priority:
• PEs can be given priorities
• COTS platforms support different priority

levels
• Existing analysis does not account for this

• Intra-bank scheduling
• FR-FCFS
• COTS also supports a threshold on

reordering to prevent starvation
• Inter-bank scheduling

• RR across banks
• Two flavors:

• Always schedule ready commands of any
type (high performance)

• Reorder only commands of different type
(prevent starvation)

• Read/Write arbitration, two flavors:
• Reads and writes have same priority
• Serve in batches, where reads have higher

priority

OS Configuration

PE Architecture

MC Policies

55

Platform Instances MODEL

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write batching

FR-FCFS Threshold
• 1: FR-FCFS is capped
• 0: no cap on FR-FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all commands

• 0: Reorder commands of diff types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all apps

56

Platform Instances MODEL

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write batching

FR-FCFS Threshold
• 1: FR-FCFS is capped
• 0: no cap on FR-FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all commands

• 0: Reorder commands of diff types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all apps
144 different platform

instances!

57

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0
0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

144 Platform
Instances144

PREDICTABILITY

FANUS

58

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0
0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

Observation 1:
Unboundedness of inter-bank RR with reordering

If RR reorders across all commands (breorder=1) and no
write batching is deployed (wb=0)  unbounded WCD144

PREDICTABILITY

FANUS

59

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

108

PREDICTABILITY

FANUS

60

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

Observation 2:
Write batching effect

Write batching cancels the effect of RR breorder:
If wb=1  breorder=x

108

PREDICTABILITY

FANUS

61

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0

UNBOUNDED Same as
wb=1,breorder=0

0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

72

PREDICTABILITY

FANUS

62

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

72

PREDICTABILITY

FANUS

63

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

Observation 3:
Unboundedness of FR-FCFS without threshold
If thr=0 & ((No-Part) || ((Part-Cr) & pr=0) Unbounded WCD72

PREDICTABILITY

FANUS

64

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1
1 0
1 1

54

PREDICTABILITY

FANUS

65

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1
1 0
1 1

Observation 4:
Part-All effect
If Part-All  rua does not suffer Intra-bank reordering or conflict interferences:
• thr=x
• If wb=0  pipe=x

54

PREDICTABILITY

FANUS

66

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1
1 0
1 1

38

PREDICTABILITY

FANUS

67

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1
1 0
1 1

Observation 5:
Part-Cr effect when wb=0
If Part-Cr & wb=0  rua does not suffer Intra-bank reordering nor
conflict interferences from critical PEs:
• IO-Cr and OOO-All have same effect on WCD

38

PREDICTABILITY

FANUS

68

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 confg8
1 0 confg9
1 1 confg10

35

PREDICTABILITY

FANUS

69

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 confg8
1 0 confg9
1 1 confg10

Observation 6:
Priority effect when wb=0
If pr=1 & wb=0  pipeline architecture of non-critical PEs has no effect
on WCD:
• IO-Cr and IO-All have same effect on WCD

35

PREDICTABILITY

FANUS

70

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1 Confg7

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 confg8
1 0 confg9
1 1 confg10

34

PREDICTABILITY

FANUS

71

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1 Confg7

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 confg8
1 0 confg9
1 1 confg10

Observation 7:
Priority with Part-Cr effect
• thr=x
• If wb=0  pipe=x

Same as Part-All effect!!
34

PREDICTABILITY

FANUS

72

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1 Confg7

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 confg8 confg23 confg24 confg25
1 0 confg9
1 1 confg8 confg23 confg24 confg25

28

PREDICTABILITY

FANUS

73

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0 confg3 confg4 Confg5 confg17 confg18 confg19
1 1 Confg6 Confg7 confg20 confg21 confg22

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 Confg8 confg23 confg24 confg25
1 0 confg9 confg10 confg26 confg27 confg28
1 1 confg8 confg23 confg24 confg25

144 Instances  28 Configurations

28

PREDICTABILITY

FANUS

74

Methodology

P
E
2

P
E
P

P
E
4

P
E
1

P
E
…

P
E
3

Shared
cache(s)Memor

y
Controll

erOff-chip
Memory/ies

Shared IO

OS
Applications

OS
Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

PREDICTABILITY

FANUS

75

Methodology

MPSoC
Platform
Instance

s

R/W Reorder
• 1: write

batching
• 0: no write

batching

FR-FCFS
Threshold
• 1: FR-FCFS is

capped
• 0: no cap on

FR-FCFS
Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-

order
• IO-Cr: Critical PEs are

in-order
• OOO-All: All PEs are

OOO
Partitioning

• No-Part: No Partitioning
• Part-Cr: Partition among

critical apps
• Part-All: Partition among all

apps

76

144 different platform
instances!

P
E
2

P
E
P

P
E
4

P
E
1

P
E
…

P
E
3

Shared
cache(s)Memor

y
Controll

erOff-chip
Memory/ies

Shared IO

OS
Applications

OS
Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

PREDICTABILITY
76

Methodology

MPSoC
Platform
Instance

s

R/W Reorder
• 1: write

batching
• 0: no write

batching

FR-FCFS
Threshold
• 1: FR-FCFS is

capped
• 0: no cap on

FR-FCFS
Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-

order
• IO-Cr: Critical PEs are

in-order
• OOO-All: All PEs are

OOO
Partitioning

• No-Part: No Partitioning
• Part-Cr: Partition among

critical apps
• Part-All: Partition among all

apps

77

144 different platform
instances!

P
E
2

P
E
P

P
E
4

P
E
1

P
E
…

P
E
3

Shared
cache(s)Memor

y
Controll

erOff-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS
Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

PREDICTABILITY
77

Methodology

MPSoC
Platform
Instance

s

R/W Reorder
• 1: write

batching
• 0: no write

batching

FR-FCFS
Threshold
• 1: FR-FCFS is

capped
• 0: no cap on

FR-FCFS
Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-

order
• IO-Cr: Critical PEs are

in-order
• OOO-All: All PEs are

OOO
Partitioning

• No-Part: No Partitioning
• Part-Cr: Partition among

critical apps
• Part-All: Partition among all

apps

78

144 different platform
instances!

28
configurations

General
Observations

P
E
2

P
E
P

P
E
4

P
E
1

P
E
…

P
E
3

Shared
cache(s)Memor

y
Controll

erOff-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS
Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

PREDICTABILITY
78

Methodology

MPSoC
Platform
Instance

s

R/W Reorder
• 1: write

batching
• 0: no write

batching

FR-FCFS
Threshold
• 1: FR-FCFS is

capped
• 0: no cap on

FR-FCFS
Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-

order
• IO-Cr: Critical PEs are

in-order
• OOO-All: All PEs are

OOO
Partitioning

• No-Part: No Partitioning
• Part-Cr: Partition among

critical apps
• Part-All: Partition among all

apps

79

144 different platform
instances!

28
configurations

Compute the number
of interfering requests

General
Observations

P
E
2

P
E
P

P
E
4

P
E
1

P
E
…

P
E
3

Shared
cache(s)Memor

y
Controll

erOff-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS
Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

PREDICTABILITY
79

Methodology

MPSoC
Platform
Instance

s

R/W Reorder
• 1: write

batching
• 0: no write

batching

FR-FCFS
Threshold
• 1: FR-FCFS is

capped
• 0: no cap on

FR-FCFS
Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-

order
• IO-Cr: Critical PEs are

in-order
• OOO-All: All PEs are

OOO
Partitioning

• No-Part: No Partitioning
• Part-Cr: Partition among

critical apps
• Part-All: Partition among all

apps

80

144 different platform
instances!

28
configurations

General
Observations

P
E
2

P
E
P

P
E
4

P
E
1

P
E
…

P
E
3

Shared
cache(s)Memor

y
Controll

erOff-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS
Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

Compute the number
of interfering requests

Inter-bank

Requests targeting different
banks and are serviced before
the one under analysis because
of the RR policy

Row Conflict

Requests arrived before the one
under analysis and are targeting
different rows

Intra-bank Reorder

Requests serviced before the
one under analysis because they
are ready, i.e. targeting the open
row in the bank

Write Batching

• Delay incurred by a read waiting
for a write batch to finish

• Applies only for configurations
with write batching

Delay Basic
Building Blocks

NWB NReorder

NInterBNConf

PREDICTABILITY
80

Methodology

MPSoC
Platform
Instance

s

R/W Reorder
• 1: write

batching
• 0: no write

batching

FR-FCFS
Threshold
• 1: FR-FCFS is

capped
• 0: no cap on

FR-FCFS
Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-

order
• IO-Cr: Critical PEs are

in-order
• OOO-All: All PEs are

OOO
Partitioning

• No-Part: No Partitioning
• Part-Cr: Partition among

critical apps
• Part-All: Partition among all

apps

81

144 different platform
instances!

28
configurations

General
Observations

P
E
2

P
E
P

P
E
4

P
E
1

P
E
…

P
E
3

Shared
cache(s)Memor

y
Controll

erOff-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS
Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

Compute the number
of interfering requests

Inter-bank

Requests targeting different
banks and are serviced before
the one under analysis because
of the RR policy

Row Conflict

Requests arrived before the one
under analysis and are targeting
different rows

Intra-bank Reorder

Requests serviced before the
one under analysis because they
are ready, i.e. targeting the open
row in the bank

Write Batching

• Delay incurred by a read waiting
for a write batch to finish

• Applies only for configurations
with write batching

Delay Basic
Building Blocks

NWB NReorder

NInterBNConf
Worst Case

Delay (WCD)

PREDICTABILITY
81

Evaluation

PEs

• A private 16KB L1 and a shared 1MB L2 cache
• An in-order PE has a maximum of one pending request to the DRAM
• An OOO PE has a maximum of 4 pending requests to the DRAM (PR = 4)
• Four-processor system unless otherwise specified

OS Mapping • Through the virtual-to-physical address mapping component at MacSim’s frontend
• Based on the configuration, we enable the corresponding partitioning (Part-All, Part-Cr, or No-Part)

DRAM DDR3-1333H with single channel, single rank, and 8 banks

MC

• Based on the configuration,
• Per-bank queues with RR among banks and FR-FCFS arbitration within each bank
• Based on the configuration:

• critical PEs can be assigned higher priority than non-critical PEs
• enable or disable the threshold for FR-FCFS
• For enabled threshold:𝑁௧௛௥ = 8, unless otherwise specified
• enable or disable write batching

Benchmarks EEMBC Automotive • The two critical PEs execute a2time and rspeed
• The two non-critical PEs execute matrix and aifftr

Synthetic • Each of the critical PEs execute one instance of the latency benchmark Each of
the non-critical PEs execute one instance of the Bandwidth benchmark

PREDICTABILITY
82

Evaluation

Compared to Confg 6
(No-Part):
• Confg 2 (Part-All):

 96% less WCD
 60% BW

degradation

0
500

1000
1500
2000
2500
3000

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr noPr pr noPr pr

noThr thr thr thr

partAll noPart partCr

M
B/

s

PE0 PE1

confg2

confg6

confg8

PREDICTABILITY

0
40
80

120
160
200

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr

noThr thr

W
CD

 [c
yc

]

EEMBC Synth Analytical

confg2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

IO-All IO-Cr OOO-All IO-All IO-Cr OOO-All

noPr pr

W
CD

 [c
yc

]

EEMBC Synth Analytical

confg6

0

100

200

300

400

500

IO-All IO-Cr OOO-All

W
CD

 [c
yc

]

EEMBC Synth Analytical

confg8

FANUS

83

Evaluation

Compared to Confg 6
(No-Part):
• Confg 2 (Part-All):

 96% less WCD
 60% BW

degradation

0
500

1000
1500
2000
2500
3000

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr noPr pr noPr pr

noThr thr thr thr

partAll noPart partCr

M
B/

s

PE0 PE1

confg2

confg6

confg8

PREDICTABILITY

0
40
80

120
160
200

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr

noThr thr

W
CD

 [c
yc

]

EEMBC Synth Analytical

confg2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

IO-All IO-Cr OOO-All IO-All IO-Cr OOO-All

noPr pr

W
CD

 [c
yc

]

EEMBC Synth Analytical

confg6

0

100

200

300

400

500

IO-All IO-Cr OOO-All

W
CD

 [c
yc

]

EEMBC Synth Analytical

confg8

FANUS

84

Evaluation

Compared to Confg 6
(No-Part):
• Confg 2 (Part-All):

 96% less WCD
 60% BW

degradation

• Confg 8 (Part-Cr +
FP):
 89% less WCD
 0.85% BW

degradation

0
500

1000
1500
2000
2500
3000

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr noPr pr noPr pr

noThr thr thr thr

partAll noPart partCr

M
B/

s

PE0 PE1

confg2

confg6

confg8

PREDICTABILITY

0
40
80

120
160
200

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr

W
CD

 [c
yc

]

EEMBC Synth
confg2

0

1000

2000

3000

4000

IO-All IO-Cr OOO-All IO-All IO-Cr OOO-All

noPr pr
W

CD
 [c

yc
]

EEMBC Synth Analytical

confg6

0

100

200

300

400

500

IO-All IO-Cr OOO-All

W
CD

 [c
yc

]

EEMBC Synth Analytical

confg8

FANUS

85

Predictable CPSoC PREDICTABILITY

CArb [RTAS’16]

...

Shared
Cache

Predictable and MC-aware Bus

Private
Cache

Private
Cache

PEnPE0

DRAM

Memory Controller
PMC [RTAS’15, TECS’16]

MCSim [TECS’17]
MCS-MPSoCs [EMSOFT’18, TCAD’18]

RLDRAM [RTSS’18]
DRAMbulism [RTAS’20]

PMSI [RTAS’17], PENDULUM [RTSS’19]
HourGlass [ArXiv’18]

PREMIUM
Predictable

Memory
Hierarchy

86

Common Approach Data Sharing

• Adopts an independent-task model  No communication
amongst tasksIgnore

• Enforcing complete isolation between tasks.
• At the shared cache: strict cache partitioning and coloring
• At the DRAM: bank privatization Prevent

FANUS

87

Common Approach Data Sharing

• May result in a poor memory or cache
utilization
• e.g.: a task has conflict misses, while

other partitions may remain
underutilized

• Does not scale with increasing number of
cores
• e.g.: number of PEs number of

DRAM banks
• Not viable in emerging systems due to

increased functionality and massive data

FANUS

88

Solution:
No caching of shared data
[Hardy et al., RTSS’09]
[Lesage et al., RTNS’10]
[Bansal et al., arXiv’19]
[Chisholm et al., RTSS’16]

89

24

Solution:
No caching of shared data
[Hardy et al., RTSS’09]
[Lesage et al., RTNS’10]
[Bansal et al., arXiv’19]
[Chisholm et al., RTSS’16]

Another Solution:
Task scheduling on shared data

1. Scheduling tasks with shared data such that they never run
in parallel [Becker et al. , ECRTS’16]

2. Assigning tasks with shared data to the same core
[Chisholm et al, RTSS’16]

3. Incorporating run-time performance metrics collected
through hardware counters to make data-wise scheduling
decisions [Gracioli et al., SIGOPS’15]

91

24

A D

CB

0 60 90 105 120
Deadline=120

Example: B shares data with A and C

A C

D B

0 45 60 90 120 150
Deadline=120

A D B

C

0 30 60 105 120 195
Deadline=120

Prevent them from running in parallel

Another Solution:
Task scheduling on shared data
1. Scheduling tasks with shared data such that they never run in parallel [Becker et al. , ECRTS’16]

2. Assigning tasks with shared data to the same core [Chisholm et al, RTSS’16]

3. Incorporating run-time performance metrics collected through hardware counters to make data-wise scheduling decisions [Gracioli et al., SIGOPS’15]

Map them to same core

Coherence is the norm in COTS platforms Data Sharing

The mainstream solution is to provide
shared memory and prevent incoherence
through a hardware cache coherence
protocol, making caches functionally
invisible to software.

FANUS

93

Coherence is the Industry’s Choice Data Sharing

FANUS

94

Coherence is the Industry’s Choice Data Sharing

FANUS

95

Coherence is the Industry’s Choice Data Sharing

FANUS

96

Unpredictability in Sharing Data
Data Sharing

I

M SOwnUPG

OtherGETS

OwnGETM

OwnGETS or
OtherGETS

𝜏ଵ𝜏ଶ 𝜏ଷ

+

Unpredictable

[RTAS’17] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, “Predictable Cache Coherence
for Multi-Core Real-Time Systems"

FANUS

97

Unpredictability in Sharing Data Data Sharing

I

M SOwnUPG

OtherGETS

OwnGETM

OwnGETS or
OtherGETS

𝜏ଵ𝜏ଶ 𝜏ଷ

+

Unpredictable

 Inter-core coherence interference
on same cache line

 Inter-core coherence interference
on different cache lines

 Inter-core coherence interference
due to write hits

 Intra-core coherence interference

FANUS

98

PMSI: Predictable Cache Coherence Data Sharing

Sh
ar

ed

ca
ch

e

Predictable Arbiter

L1L1

L1L1

PEPE

PEPE

Addr CID Msg State Tag Data

PR LUT

Shared Memory

Private Cache

Pred. Arb

PR
FIFO

PWB
FIFO

State Tag Data

FANUS

99

Benefit of Coherence: Up to 3x performance Data Sharing

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

LU FFT Radix Ocean FMM Cholesky Radiosity Raytrace Geomean

Ex
ec

ut
io

n
Ti

m
e

PMSI ByPass

FANUS

100

Problem of PMSI: Coherence effect on WC Data Sharing

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8

Pe
r R

eq
ue

st
 W

CL
 [c

yc
]

Number of Cores

PMSI ByPass

FANUS

101

Problem of PMSI: Coherence effect on WC Data Sharing

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8

Pe
r R

eq
ue

st
 W

CL
 [c

yc
]

Number of Cores

PMSI ByPass

How do we improve over that?
Do all cores have to suffer this high WCL?  Differentiated-Service

FANUS

102

PENDULUM: Cache Coherence for MCS
Data Sharing

• Time-based Cache Coherence
• Configurable timers for critical/non-critical

cores
• Fixed Priority Arbitration

• If both critical and non-critical requesting
same cache line  critical gets it

• Allows for simultaneous data sharing
• Both intra- and inter-criticality

• improves WCL for critical cores while
improving the BW of non-critical cores

[RTSS’19] Nivedita Sritharan, Anirudh M. Kaushik, Mohamed Hassan, Hiren Patel,
“Predictable Cache Coherence for Multi-Core Real-Time Systems" 103

PENDULUM: Cache Coherence for MCS Data Sharing

0
500

1000
1500
2000
2500

W
CL

 [C
yc

le
s]

FANUS

104

PENDULUM: Cache Coherence for MCS Data Sharing

0
500

1000
1500
2000
2500

W
CL

 [C
yc

le
s]Close the WCL gap

for critical cores

FANUS

105

PENDULUM: Cache Coherence for MCS Data Sharing

0
500

1000
1500
2000
2500

W
CL

 [C
yc

le
s]

Close the WCL gap
for critical cores

Maintains overall
performance benefits
of coherence

FANUS

106

Security

Security is a nightmare challenge on
its own for all computing systems

It is even more scary for CPS

Three specific challenges for
CPSoCs

Towards Predictable, Secure, and Verified CPSoCs

FANUS

107

Security

Security is a nightmare challenge on
its own for all computing systems

It is even more scary for CPS

Three specific challenges for
CPSoCs

FANUS

108

Security

FANUS

109

Security

FANUS

110

Security
MCReverse

[RTAS’15] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, "Reverse Engineering Embedded Memory Controllers through Latency-based Analysis",

[TECS’18] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, " Exposing Implementation Details of Embedded Memory Controllers through Latency-based
Analysis"

Denial-of-Service (DoS) Attacks [Moscibroda and Mutlu, USENIX’07]

Error Injection Attacks [Kim et al., ISCA’14]

Covert Channel Attacks [Wang et al., HPCA’14]

Side Channel Attacks [Wang et al., HPCA’14]

FANUS

111

SecurityMCReverse

Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Hammered Row

Repeatedly opening and closing a row enough times within a refresh interval induces
disturbance errors in adjacent rows in most real DRAM chips you can buy today

OpenedClosed

Error Injection Attacks
(rowhammer)

D
RA

M

Targeting different pages in same bank

112

SecurityMCReverse

Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Hammered Row

Repeatedly opening and closing a row enough times within a refresh interval induces
disturbance errors in adjacent rows in most real DRAM chips you can buy today

OpenedClosed

Error Injection Attacks
(rowhammer)

D
RA

M

Targeting different pages in same bank

Ability to target consecutive accesses to conflicting DRAM pages on
same bank

 Knowledge of the DRAM address mapping and page policy

Error Injection Attacks
(rowhammer)

113

SecurityMCReverse
114

SecurityMCReverse

Best & Worst-
case Latencies
for All Cases

Latency-
Based

Analysis

Test
Algorithms MC and

DRAM

Observed
Latencies

Inference
Rules

MC Details

Test
Algorithms

Inference
Rules

115

SecurityMCReverse

Best & Worst-
case Latencies
for All Cases

Latency-
Based

Analysis

Test
Algorithms MC

Observed
Latencies

Inference
Rules

MC Details

Test
Algorithms

Inference
Rules

Ex: Two read accesses to different banks same rank

116

SecurityMCReverse

Best & Worst-
case Latencies
for All Cases

Latency-
Based

Analysis

Test
Algorithms MC

Observed
Latencies

Inference
Rules

MC Details

Test
Algorithms

Inference
Rules

CP: same bank

OP: diff rwOP: diff cl
diff rk

diff
bk

𝑏ଵ 𝑏ଶ 𝑏ଷ 𝑏ସ 𝑏ହ 𝑏଺

∃𝑖 ∈ 0, 𝑃𝑊 − 1 : 𝑏ଵ ≤ 𝑙ଶ
௜ < 𝑏ଶ ⟹ open-page

policy
∃𝑖 ∈ 0, 𝑃𝑊 − 1 : 𝑏ସ < 𝑙ଶ

௜ < 𝑏ହ ⟹ close-page
policy

117

SecurityMCReverse

Best & Worst-
case Latencies
for All Cases

Latency-
Based

Analysis

Test
Algorithms MC and

DRAM

Observed
Latencies

Inference
Rules

MC Details

Test
Algorithms

Inference
Rules

118

Security
MCReverse

Best & Worst-
case Latencies
for All Cases

Latency-
Based

Analysis

Test
Algorithms MC and

DRAM

Observed
Latencies

Inference
Rules

MC Details

Test
Algorithms

Inference
Rules

Qualcomm Dragon 410c IoT board

119

SecurityMCReverse

Best & Worst-
case Latencies
for All Cases

Latency-
Based

Analysis

Test
Algorithms MC and

DRAM

Observed
Latencies

Inference
Rules

MC Details

Test
Algorithms

Inference
Rules

120

SecurityMCReverse

Best & Worst-
case Latencies
for All Cases

Latency-
Based

Analysis

Test
Algorithms MC and

DRAM

Observed
Latencies

Inference
Rules

MC Details

Test
Algorithms

Inference
Rules

121

SECURITYA Step-by-Step Process

FANUS

122

SECURITYA Step-by-Step Process

Step 1: Page policy
 Close-page
 Open-page
 Hybrid-page

123

SECURITYA Step-by-Step Process

Step 2: Address Mapping
 All possible combinations
 Advanced XOR mapping

Step 1: Page policy
 Close-page
 Open-page
 Hybrid-page

124

SECURITYA Step-by-Step Process

Step 2: Address Mapping
 All possible combinations
 Advanced XOR mapping

Step 1: Page policy
 Close-page
 Open-page
 Hybrid-page

Step 3: Arbitration Schemes
 FCFS
 RR

 FR-FCFS
 Reorder threshold
 Write buffer policy

125

VERIFICATIONDRAM Systems are Complex

Complex optimizations
Multiple reordering levels
Various arbitration decisions

[DATE’16] Mohamed Hassan, Hiren Patel, "MCXplore: An Automated Framework for Validating Memory Controller Designs"
[TCAD’17] Mohamed Hassan, Hiren Patel, " MCXplore: Automating the Validation Process of DRAM Memory Controller Designs”

Towards Predictable, Secure, and Verified CPSoCs

FANUS

126

VERIFICATIONDRAM Systems are Complex

Complex optimizations
Multiple reordering levels
Various arbitration decisions

[DATE’16] Mohamed Hassan, Hiren Patel, "MCXplore: An Automated Framework for Validating Memory Controller Designs"
[TCAD’17] Mohamed Hassan, Hiren Patel, " MCXplore: Automating the Validation Process of DRAM Memory Controller Designs”

FANUS

127

VERIFICATIONDRAM Systems are Complex

Complex optimizations
Multiple reordering levels
Various arbitration decisions

[DATE’16] Mohamed Hassan, Hiren Patel, "MCXplore: An Automated Framework for Validating Memory Controller Designs"
[TCAD’17] Mohamed Hassan, Hiren Patel, " MCXplore: Automating the Validation Process of DRAM Memory Controller Designs”

FANUS

128

VERIFICATIONExisting Solutions

Benchmarks

 Time and effort conserving
 May not be memory intensive
 Lack easy-to-analyse memory

patterns
 Do not explore the state space

of the memory subsystem
properties

Exhaustive
Tests

 Guaranteed coverage
 Very time and resource consuming

(may not be possible)

Manual
Tests

 Allows for directed testing to
cover specific properties

 Time Consuming
 Prone to human errors

Random
Tests

 Moderate Time and effort
 Questionable test coverage

Industrial
Solutions

 Guaranteed Coverage
 Requires access to RTL
 Requires special hardware tools
 Cost

FANUS

129

VERIFICATIONMCXplore: Big Picture

Test
Plan

New
?

CMD
Model

Test
Suites

Model
CheckerST

AR
T

New
SPECs

Predef.
SPECs

REQ
Model

Counter-
example?

Test
Template

Parser

Tests

Addr.
Map

Syntax

MC Compare

Golden
Metric

Same
?

Report
Correctness

Report
Bug

EN
D

Phase 1: Test Template Generation

Phase 2:
Test Suite
Generatio

n
Phase 3: Diagnosis

and Report

130

VERIFICATIONPhase 1: Test Template Generation

Tes
t

Pla
n

Ne
w?

CMD
Model

Test
Suites

Model
CheckerST

AR T

New
SPECs

Predef.
SPECs

REQ
Model

Counter-
example?

Test
Template

Parser

Tests

Addr.
Map

Synta
x

MC Compar
e

Golden
Metric

Sam
e?

Report
Correctness

Report
Bug

EN
D

Phase 1: Test Template Generation

CMD
Model

REQ
Model

Captures the interrelation amongst
memory requests

FANUS

131

VERIFICATIONPhase 1: Test Template Generation

Tes
t

Pla
n

Ne
w?

CMD
Model

Test
Suites

Model
CheckerST

AR T

New
SPECs

Predef.
SPECs

REQ
Model

Counter-
example?

Test
Template

Parser

Tests

Addr.
Map

Synta
x

MC Compar
e

Golden
Metric

Sam
e?

Report
Correctness

Report
Bug

EN
D

Phase 1: Test Template Generation

CMD
Model

REQ
Model

Captures the interrelation amongst
memory requests

Interactions between memory
commands and their timing

constraints

FANUS

132

VERIFICATION

Tes
t

Pla
n

Ne
w?

CMD
Model

Test
Suites

Model
CheckerST

AR T

New
SPECs

Predef.
SPECs

REQ
Model

Counter-
example?

Test
Template

Parser

Tests

Addr.
Map

Synta
x

MC Compar
e

Golden
Metric

Sam
e?

Report
Correctness

Report
Bug

EN
D

Phase 1: Test Template Generation

Captures the interrelation amongst
memory requests

Test
Plan

Ne
w?

CMD
Model

Model
CheckerST

AR
T

New
SPECs

Predef.
SPECs

REQ
Model

 Test Plan: precisely specify test properties in TL
 Separate test template from actual tests
 Optimal Tests: with minimum number of

requests (BMC)

Phase 1: Test Template Generation
133

VERIFICATIONPhase 2: Test Suite Generation

Tes
t

Pla
n

Ne
w?

CMD
Model

Test
Suites

Model
CheckerST

AR T

New
SPECs

Predef.
SPECs

REQ
Model

Counter-
example?

Test
Template

Parser

Tests

Addr.
Map

Synta
x

MC Compar
e

Golden
Metric

Sam
e?

Report
Correctness

Report
Bug

EN
D

Phase 1: Test Template Generation

Test
Suites

Parser

Tests

Addr.
Map

Synta
x

MC

 Automated test generation
 Vital sequence patterns and test plans

for state-of the-art MCs
 Test suites for commodity MC policies

FANUS

134

VERIFICATIONPhase 3: Diagnosis and Report

Tes
t

Pla
n

Ne
w?

CMD
Model

Test
Suites

Model
CheckerST

AR T

New
SPECs

Predef.
SPECs

REQ
Model

Counter-
example?

Test
Template

Parser

Tests

Addr.
Map

Synta
x

MC Compar
e

Golden
Metric

Sam
e?

Report
Correctness

Report
Bug

EN
D

Phase 1: Test Template Generation

Compare

Golden
Metric

Same
?

Report
Correctness

Report
Bug

EN
D

 High-level statistics such as bandwidth

 do not require internal debugging
capabilities (black box technique)

𝑈௖

=
𝑡ℎ𝑟 × 𝑡𝐵𝑈𝑆

𝑡𝑅𝐶𝐷 + 𝑡ℎ𝑟 − 1 𝑡𝐶𝐶𝐷 + 𝑅𝑡𝑜𝑃 + 𝑡𝑅𝑃

≅ 73%

135

Future DirectionsBack to the Big Picture

CPSoCs
Opportunities

for MCS

1. MPSoCs create switching alternatives
• Different modes of operation at different

cluster of PEs?

FANUS

136

Future DirectionsBack to the Big Picture

CPSoCs
Opportunities

for MCS

1. MPSoCs create switching alternatives
• Different modes of operation at different

cluster of PEs?

FANUS

137

Future DirectionsBack to the Big Picture

CPSoCs
Opportunities

for MCS

1. MPSoCs create switching alternatives
• Different modes of operation at different cluster of PEs?
• Migrate instead of switching?

• Dynamic Reconfiguration (IEC61508-7)
C.3.13 Dynamic reconfiguration
The logical architecture of the system has to be such that it can be mapped onto
a subset of the available resources of the system. The architecture needs to be
capable of detecting a failure in a physical resource and then remapping the
logical architecture back onto the restricted resources left functioning. Although
the concept is more traditionally restricted to recovery from failed hardware
units, it is also applicable to failed software units if there is sufficient ‘run-time
redundancy’ to allow a software re-try or if there is sufficient redundant data to
make the individual and isolated failure be of little importance. This technique
must be considered at the first system design stage.

FANUS

138

Future DirectionsBack to the Big Picture

CPSoCs
Opportunities

for MCS

. MPSoCs create switching alternatives
• Different modes of operation at different cluster of PEs?
• Migrate instead of switching?

2. MPSoCs open the door for customized solutions
• Using specialized PEs is a norm in MPSoCs
• Dedicating a PE for the runtime monitoring

• faster detection of exceptional events  react in a timely
manner

• PE can be further tailored to optimize the behavior of the
monitoring techniques

FANUS

139

CPSoCs Challenges in MCS
1. Common assumption:

“uncertainty in WCET does not come from the
system itself; rather, it comes from our inability to
measure (or compute) it with complete confidence”

• Well, this may not be completely true for MPSoCs
In SMPs, which core (or cores) executing a task

does not affect its measured execution time.
In MPSoCs, this decision directly affects the level

of certainty in its WCET:
Real-time vs High-performance PEs?
Use scratchpads vs caches?

140

CPSoCs Challenges in MCS
2. Scalability challenges associated with these
scheduling and monitoring techniques.

3. Mode switching in MPSoCs may incur task
migrations or reassignment of heterogeneous cores to
tasks
 the effects of these decisions on the switching overhead

need to be quantified.

141

Future DirectionsBack to the Big Picture

CPSoCs
Opportunities

for
Predictability

1. Which memory levels should be shared amongst which cores

• Does the GPU share the LLC with the CPU?

2. How to distribute the cache architecture?

• Would implementing a NUCA be adequate for MCS (e.g., helping in achieving
different levels of isolation)?

3. Different types of on-chip memories

• Both caches and SPMs
• Most of the currently available approaches focus on a single type

4. Different types of available off-chip memories
• DDR, GDDR, RLDRAM, LPDDR, QDR.
• Investigating the cooperation of these types is also worth investigating

All about
Flexibility

FANUS

142

CPSoCs Challenges for Predictability
1. The interference exaggerates with the increase in

the number of PEs
2. Understanding the architectural details of shared

resources is inevitable to derive realistic bounds.
• [MCS-MPSoCs, EMSOFT’ 18]

3. Each type of PEs has its own memory access
behavior, which complicates the analysis, leading
to more pessimism
• Data-intensive PEs (e.g. multimedia/DSP processors) can

saturate system queues
• A requirement- and criticality-aware:

• Interconnect [CArb, RTAS’16]
• DRAM MC [PMC, RTAS’15&TECS’16]

143

CPSoCs Challenges in Security

CYBER-PHYSICAL
NATURE

HETEROGENEITY OF
CPSOCS

SHARED COMPONENTS
(AGAIN!)

144

Cyber-physical Nature

• CPS manage sensitive tasks in critical
domains: power grids, cars, factories, nuclear
plants

• Any security breach could lead to
catastrophic consequences

• Hackers gained access to locked cars by only
eavesdropping a single signal from the
original remote keyless entry unit of the car

145

Heterogeneity of CPSoCs

• Each PE can be a 3rd-party IP (40% at Intel!)
• PEs share system components and interact

with each other new across-PEs threats
• Stuxnet attack exploited the

authentication of the Siemens
programmable logic controller by an
access to a Windows machine

146

Shared hardware components
in CPSoCs

• Historically, security was not considered as
a concern for CPS because of isolation

• Not the case anymore
• Researchers were able to control sensitive

(considered secure) engine control by
compromising the (considered insecure)
radio unit

• Reason? Sharing the CAN

147

Future DirectionsBack to the Big Picture

Possible
Directions for

Security in
CPSoCs

Identifying new vulnerabilities of MPSoCs,
which did not exist in traditional platforms

Developing cost- and performance-effective
methodologies to prevent or mitigate them

Adopting security as a
first-class citizen in

designing MPSoCs for MCS
(secure-by design concept).

Scheduling techniques

FANUS

148

Back to the Bigger Picture Future Directions
149

Back to the Bigger Picture Future Directions

Intelligent Cyber-Physical Systems-on-Chip
F

150

Predictable Shared Memory
Hierarchy

I propose architectures for predictable MPSoC-based CPS PREMIUM
Predictable

Memory
Hierarchy

Predictable CPS

Secure CPS Verified CPS

151

