

MOHAMED HASSAN

TOWARDS PREDICTABLE, SECURE, AND VERIFIED CYBER-PHYSICAL SYSTEMS-ON-CHIP (CPSoCs)

A disclaimer: Work presented in this talk has been done while affiliated to one of these fantastic places:

1

The IoT Case

The Automotive Case

Embedded Systems \rightarrow Cyber-Physical Systems MOTIVATION

compute

actuate

Embedded Systems \rightarrow Cyber-Physical Systems MOTIVATION

communicate

sense

AIRBAG CONTROL UNIT

Why do we need Predictable, Secure, and Verified CPS?

MOTIV

Predictable Cyber-Physical Systems

Predictable Cyber-Physical Systems MOTIVAT

NEW YORK POST

Baby monitors are terrifyingly easy to hack, new study says

BBC Child safety smartwatches 'easy' to hack,

By Joseph Venable Technology reporter

() 18 October 2017

watchdog says

Some smartwatches designed for children have security them vulnerable to hackers, a watchdog has warned.

1HEVERGE

Jeep hackers at it again, this time taking control of steering and braking systems

f 🎽 📝 share

25th USENIX Security Symposium

2

Lock It and Still Lose It —on the (In)Security of Automotive Remote Keyless Entry Systems

MOTIVATION

Secure Cyber-Physical Systems

F-22 Raptors' systems crash midflight over Pacific

Lockheed's shiny new F-22 Raptor stealth fighters may have owned a few war games, but crossing the International Date Line left them as helpless

- Mercedes Class A failed the moose test in 1997.
- Sensors on roof detect overturn and automatically open door.
- What happens if a thief jumps on the car roof?
- In 2007, 12 F-22s were going from Hawaii to Japan.
- After crossing the IDL, all 12 experienced multiple crashes.
 - No navigation
 - No fuel subsystems
 - Limited communications
 - ➢ Rebooting didn't help

=	The New York Times	c
ARCHIVES	1997	
Merced	les-Benz Tries to Put a	
Persiste	ent Moose Problem to I	Rest
By EDMUND L. AN	IDREWS DEC. 11, 1997	
000		

Verified Cyber-Physical Systems MOTIVATION

 Unlike traditional real-time embedded systems:

Why do we need CPSoCs?

~ 20 million lines of code in S Class Mercedes-Benz

MOTIVATION

- Unlike traditional real-time embedded systems:
 - Advanced CPS require significant computational power

- Unlike traditional real-time embedded systems:
 - Advanced CPS require significant computational power

- Unlike traditional real-time embedded systems:
 - Advanced CPS require significant computational power
 - Autonomous vehicles deploy complex sensor processing and sensor fusion capabilities which are both computation and data intensive

Challenge 2: Mixed-Criticality Nature of CPS

Challenge 2: Mixed-Criticality Nature of CPS

Orm Enabling A Mixed Safety-Criticality Future with Cortex-A76AE

Govind Wathan, Senior Product Manager Linley Fall Processor Conference 1st November 2018 Increased need for performance and mixed criticality as we move from assisted to autonomous driving systems

Mixed Criticality Systems

Mixed Criticality Systems

Solution to these challenges: Multiple Processor Systems-on-Chip (MPSoCs)

Why MPSoCs?

- Low cost
- High performance
- Energy Efficiency
- Low time-to-market (3rd party IPs)

MPSoCs

MPSoCs

Why Heterogenous MPSoCs?

 Variety of processing capabilities
→ Best-suits MCS conflicting requirements

Heterogenous MPSoCs

Research. Analyze. Advise.

The Linley Group

Integration Is Key to Low Cost

- Most IoT products require CPU, memory, radio, and analog I/O
- Microcontrollers combine CPU, memory, analog
 - Need to add second chip for radio
 - Allows flexibility in radio interface
- Some new processors integrate CPU, analog, and radio on one chip
 - Memory is on separate die (external or in package)
 - · Allows flexibility in memory size and cost
- Lowest cost comes from single-chip solution

Copyright 2015 The Linley Group

June 11, 2015

What about IoT?

17

Heterogenous MPSoCs with Real-time Processors

Heterogenous MPSoCs with Real-time Processors

Towards **Predictable**, Secure, and Verified CPSoCs

Predictable CPSoC

PREDICTABILITY

Predictable CPSoC

PREDICTABILITY

- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM

- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE command:
 - Bring data row from cells into sense amplifiers

- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE command:
 - Bring data row from cells into sense amplifiers
 - RD/WR commands:
 - To read/write from specific columns in the sense amplifiers

- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE command:
 - Bring data row from cells into sense amplifiers
 - RD/WR commands:
 - To read/write from specific columns in the sense amplifiers
 - PRECHARGE command:
 - to write back a previous row in the sense amplifiers before bringing the new one

DRAM

- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE command:
 - Bring data row from cells into sense amplifiers
 - RD/WR commands:
 - To read/write from specific columns in the sense amplifiers
 - PRECHARGE command:
 - to write back a previous row in the sense amplifiers before bringing the new one
- All commands have associated timing constraints that have to be satisfied by the controller

DRAM

- P processing elements
 - P_{cr} critical + P_{ncr} non-critical
- LLC is write-back write-allocate
 - Writes to DRAM are only cache evictions
- Single-channel single-rank DRAM subsystem

MODEL

• N_B DRAM banks

System Overview

System Overview

MODEL

- P processing elements
 - P_{cr} critical + P_{ncr} non-critical
- LLC is write-back write-allocate
 - Writes to DRAM are only cache evictions
- Single-channel single-rank DRAM subsystem
- N_B DRAM banks

Goal:

Derive an upper bound on the delay incurred by any memory request of a critical PE

Challenge: operations of one PE affect the temporal behavior of other PEs, which complicates the timing analysis of the system.

Most of the MCS scheduling techniques do not incorporate these interferences in their scheduling or analysis

Approaches focusing on shared resources mostly assume SMPs

MODEL

Why We Bother?

XANUS

Challenge: operations of one PE affect the

7.4.2.7 Where the software is to implement both safety and non-safety functions, then all of the software shall be treated as safety-related, unless adequate independence between the functions can be demonstrated in the design. [IEC61508-3]

MODEL

Why We Bother?

Big Picture

[EMSOFT'18] <u>Mohamed Hassan</u>, Rodolfo Pellizzoni, "Bounding DRAM Interference in COTS Heterogeneous MPSoCs for Mixed Criticality Systems", BEST PAPER AWARD

System Details

MODEL

System Details

Platform Instances

MODEL

The															
ANUS	OS							HW s	setup						
	nart	+br	nr	wb=0	,breor	der=0	wb=0	,breor	der=1	wb=1	,breor	der=0	wb=1	.,breor	der=1
	part	um	рг	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
		0	0												
	IIA-:	0	1												
	Part	1	0												
		1	1												
		0	0				1	44	Plat	forn	า				
144	Part	0	1					Ins	tand	٦P٢					
	~ 7	1	0												
	_	1	1												
		0	0												
	r-Cr	0	1												
	Par	1	0												
		1	1												

$\overline{\mathcal{O}_{h}}$															
ANUS	OS							HW s	setup						
	part	+br	nr	wb=0	,breor	der=0	wb=0	,breor	der=1	wb=1	,breor	der=0	wb=1	.,breor	der=1
	part	um	рг	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
		0	0												
	IIA	0	1												
	Part	1	0												
		1	1		Ob	servat	tion 1								
	ىد	0	0		Un	bound	edness	s of int	e <mark>r-b</mark> an	k RR w	ith reo	rderin	5 1 \ e e e e		
144	1 1 1 1 1 0 0 0 Unboundedness of inter-bank RR with reordering If RR reorders across all commands (breorder=1) and write batching is deployed (wb=0) → unbounded WC													no D	
	- No	1	0												
		1	1												
		0	0												
	r-Cr	0	1												
	Par	1	0												
		1	1												

<u>Ta</u>															
MANUS	OS							HW s	setup						
	nart	thr	pr	wb=0),breor	der=0	wb=0	,breor	der=1	wb=1	,breor	der=0	wb=1	,breor	der=1
	ματι	un	рі	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
		0	0												
	IIA	0	1												
	Part	1	0												
		1	1												
	<u>ц</u>	0	0												
108	Part	0	1				LIN								
	- No-	1	0					DOUNL							
		1	1												
		0	0												
	t- C	0	1												
	Par	1	0												
		1	1												

$\overline{O_{l_{\alpha}}}$																
MANUS	OS							HW s	setup							
		مر ما خ		wb=0	,breor	der=0	wb=0	,breor	der=1	wb=1	,breor	der=0	wb=1	.,breor	der=1	
	part	unr	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All	
		0	0													
	-All	0	1													
	Part	1	0													
		1	1													
		0	0	1 0 Observation 2:												
108	Part	0	1	W	rite bat Writ	ching ei e hatchi	ffect ng canc	els the e	effect of	RR bred	order:					
	~ 7	1	0		If w	$b = 1 \rightarrow b$	reorder	=x		in bree	Juci.					
		1	1													
		0	0													
	r-C	0	1													
	Par	1	0													
		1	1													

<u> </u>															
MANUS	OS							HW s	setup						
	nart	+br	nr	wb=0),breor	der=0	wb=0),breor	der=1	wb=1	,breor	der=0	wb=1	,breor	der=1
	part	um	рг	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
		0	0												
	IIA-:	0	1												
	Part	1	0												
		1	1												
		0	0												
72	Part	0	1				LINI						S	Same a	s
	- No-	1	0				UN	BOONL					wb=1	,breor	der=0
		1	1												
		0	0												
	r-Cr	0	1												
	Par	1	0												
		1	1												

OS					н	W setu	р				
port	+br	pr	wb=0),breor	der=0	wb=0),breor	der=1	wb=1	,breor	der=x
part	UIII	рг	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
	0	0									
-All	0	1									
Part	1	1 0 1 1 I									
	1	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
ш	0	1 1 0 0 0 1 UNBOUNDED									
Part	0										
No	1	0									
	1	1									
	0	0									
t-C	0	0 1									
Par	1	0									
	1	1									

General Observations

OS					Н	W setu	p				
nart	thr	pr	wb=0	,breor	der=0	wb=0	,breor	der=1	wb=1	,breor	der=x
part	un	μ	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
_	0	0									
t-All	0	1									
Part	1	0									
	1	1									
	0	0	LIN		אבר				LINI		אבר
Part	0	1		BOONL		LIN		חשר	UN	BOONL	
- No-	1	0					DOUNL				
	1	1									
	0	0	UN	BOUNE	DED				UN	BOUNE	DED
t- C	0	1									
Par	1	0									
	1	1									

General Observations

OS					Н	W setu	р				
part	thr	pr	wb=0	,breor	der=0	wb=0),breor	der=1	wb=1	,breor	der=x
part	un	рг	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-A
_	0	0									
t-All	0	1									
Part	1	0									
	10	bservat	ion 4:								
ш	0 Pa	art-All e	effect	a nat auf	for latro l		veloving o	r oo ofii ot	interfore		П
Par	0	thr=x		s not sui	ier mura-i	Jank reo	ruering o	r connict	menere	inces.	
No	1	If wb=	0 → pipe	e=x							
	1	1									
	0	0	UN	BOUNE	DED				UN	BOUNE	DED
т С	0	1									
Par	1	0									
	1	1									

General Observations

OS						HW setup					
nort	thr		wb	=0,breorde	er=0	wb=	=0,breorde	er=1	wb	=1,breorde	er=x
part	um	þr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
	0	0		confg1					confg11	confg12	confg13
t-All	0	1		confg2					confg14	confg15	confg16
Part	1	0		confg1 confg2					confg11	confg12	confg13
	1	1							confg14	confg15	confg16
	0	0		UNBOUNDED							
Part	0	1	0					.D	0	INBOUNDL	.0
No-I	1	0				U	NBOUNDE	.0			
	1	1									
	0	0	U	NBOUNDE	D				U	NBOUNDE	D
t- C	0	1									
Pari	1	0									
	1	1									

General Observations

C	OS 🛛						HW setup					
	ort	thr		wb=	=0,breorde	er=0	wb=	=0,breorde	r=1	wb	=1,breorde	er=x
p.	art	un	þi	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
		0	0		confg1					confg11	confg12	confg13
	-All	0	1		confg2					confg14	confg15	confg16
	Part	1	0		confg1					confg11	confg12	confg13
		1	Obse	ervatio	n 5:							5
		0	Part-	-Cr effe	ect whe	en wb=	=0					
	art	0	If Par	t-Cr & w	$i b=0 \rightarrow$	r _{ua} does	not suf	fer Intra	-bank r	eorderir	ng nor	
	1-0N	1	confil	ct interi	rerences	s from c	ritical PE	:S:				
	_	1	• 10	J-Cr and	1 000- <i>i</i>	All nave	same ei	lect on	WCD	_		
		0	0	U	NBOUNDE	D				U	NBOUNDE	D
(ې ۲	0	1									
	Part	1	0									
		1	1									

General Observations

PREDICTABILITY

68

OS						HW setup					
nort	the		wb	=0,breorde	er=0	wb=	=0,breorde	er=1	wb	=1,breorde	er=x
part	unr	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
	0	0		confg1					confg11	confg12	confg13
	0	1		confg2					confg14	confg15	confg16
Part	1	0		confg1 confg2					confg11	confg12	confg13
	1	1		confg2					confg14	confg15	confg16
	0	0									D.
Part	0	1	0	UNBOUNDED					0	NBOUNDE	.D
I-ON	1	0				U	NBOUNDE	:0			
_	1	1									
	0	0	U	NBOUNDE	D				U	NBOUNDE	D
ې ب	0	1	confg8								
Part	1	0	con	nfg9							
	1	1	con	fg10							

General Observations

General Observations

OS						HW setup					
nort	the		wb	=0,breorde	er=0	wb=	=0,breorde	er=1	wb	=1,breorde	er=x
part	unr	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
	0	0		confg1					confg11	confg12	confg13
-All	0	1		confg2					confg14	confg15	confg16
Part	1	0		confg1 confg2					confg11	confg12	confg13
	1	1		confg2					confg14	confg15	confg16
	0	0									
Part	0	1	U	UNBOUNDED					0	NBOUNDE	.D
No-I	1	0				0	NBOUNDE	.0			
	1	1		Cor	nfg7						
	0	0	U	NBOUNDE	D				U	NBOUNDE	D
L L	0	1	con	confg8							
Pari	1	0	con	ıfg9							
	1	1	con	fg10							

General Observations

General Observations

28

	OS	HW setu							etup					
	un a ut	thr	pr	wb=0,breorder=0			wb=0,breorder=1			wb=1,breorder=x				
	part			000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All		
	Part-All	0	0	confg1						confg11	confg12	confg13		
		0	1	confg2						confg14	confg15	confg16		
		1	0	confg1						confg11	confg12	confg13		
		1	1	confg2						confg14	confg15	confg16		
		0	0	UNBOUNDED										
	No-Part	0	1							UNDOUNDED				
		1	0				U	INBOUNDE	:0					
		1	1	Confg7										
	Part-Cr	0	0	UNBOUNDED						UNBOUNDED				
		0	1	confg8						confg23	confg24	confg25		
		1	0	con	nfg9									
		1	1	confg8						confg23	confg24	confg25		

General Observations

28

OS	н						HW setup					
nort	thr	pr	wb=0,breorder=0			wb=0,breorder=1			wb=1,breorder=x			
part			000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All	
	0	0		confg1					confg11	confg12	confg13	
t-All	0	1		confg2					confg14	confg15	confg16	
Part	1	0		confg1					confg11	confg12	confg13	
	1	1	confg2						confg14	confg15	confg16	
	0	0	UNBOUNDED									
Part	0	1							0	NBOUNDE	.D	
No-I	1	0	confg3	confg4	Confg5	UNBOUNDED			confg17	confg18	confg19	
	1	1	Confg6	Cor	nfg7					confg21	confg22	
	0	0	UNBOUNDED						UNBOUNDED			
r. C	0	1	Confg8						confg23	confg24	confg25	
Part	1	0	confg9 confg10						confg27	confg28		
	1	1	confg8						confg23	confg24	confg25	

144 Instances \rightarrow 28 Configurations

General Observations

PREDICTABILITY

wb=1,breorder=1

wb=1,breorder=0

Methodology

PEs	 A private 16KB L1 and a shared 1MB L2 cache An in-order PE has a maximum of one pending request to the DRAM An OOO PE has a maximum of 4 pending requests to the DRAM (PR = 4) Four-processor system unless otherwise specified 							
OS Mapping	 Through the virtual-to-physical address mapping component at MacSim's frontend Based on the configuration, we enable the corresponding partitioning (Part-All, Part-Cr, or No-Part) 							
DRAM	DDR3-1333H with single channel, single rank, and 8 banks							
MC	 Based on the configuration, Per-bank queues with RR among banks and FR-FCFS arbitration within each bank Based on the configuration: critical PEs can be assigned higher priority than non-critical PEs enable or disable the threshold for FR-FCFS For enabled threshold:N_{thr} = 8, unless otherwise specified enable or disable write batching 							
Benchmarks	EEMBC Automotive	 The two critical PEs execute a2time and rspeed The two non-critical PEs execute matrix and aifftr 						
	Synthetic	 Each of the critical PEs execute one instance of the latency benchmark Each of the non-critical PEs execute one instance of the Bandwidth benchmark 						

Evaluation

Compared to Confg 6 (No-Part):

- Confg 2 (Part-All):
 - 96% less WCD
 - 60% BW degradation

Evaluation

Compared to Confg 6 (No-Part):

- Confg 2 (Part-All):
 - 96% less WCD
 - 60% BW degradation

Evaluation

Compared to Confg 6 (No-Part):

- Confg 2 (Part-All):
 - 96% less WCD
 - 60% BW degradation
- Confg 8 (Part-Cr + FP):
 - 89% less WCD
 - 0.85% BW degradation

Evaluation

Predictable CPSoC

Common Approach

- May result in a poor memory or cache utilization
 - e.g.: a task has conflict misses, while other partitions may remain underutilized
- Does not scale with increasing number of cores
 - e.g.: number of PEs ≤ number of DRAM banks
- Not viable in emerging systems due to increased functionality and massive data

✓ Simpler timing analysis
 × Hardware changes
 × Long execution time

Solution: No caching of shared data

[Hardy et al., RTSS'09] [Lesage et al., RTNS'10] [Bansal et al., arXiv'19] [Chisholm et al., RTSS'16]

Solution:

No caching of shared data

[Hardy et al., RTSS'09] [Lesage et al., RTNS'10] [Bansal et al., arXiv'19] [Chisholm et al., RTSS'16] 24

✓ Private cache hits on shared data ✓ No hardware changes

× Limited multi-core parallelism

× Changes to OS scheduler

Another Solution: Task scheduling on shared data

- Scheduling tasks with shared data such that they never run in parallel [Becker et al. , ECRTS'16] 1.
- Assigning tasks with shared data to the same core [Chisholm et al, RTSS'16] 2.
- Incorporating run-time performance metrics collected through hardware counters to make data-wise scheduling decisions [Gracioli et al., SIGOPS'15] 3.

Example: B shares data with A and C

Another Solution: Task scheduling on shared data

- 1. Scheduling tasks with shared data such that they never run in parallel [Becker et al. , ECRTS'16]
- 2. Assigning tasks with shared data to the same core [Chisholm et al, RTSS'16]
- 3. Incorporating run-time performance metrics collected through hardware counters to make data-wise scheduling decisions [Gracioli et al., SIGOPS/15]

The mainstream solution is to provide shared memory and prevent incoherence through a hardware cache coherence protocol, making caches functionally invisible to software.

On-chip hardware coherence can scale

DOI:10.1145/2209249.22092

gracefully as the number of cores increases.

BY MILO M.K. MARTIN, MARK D. HILL, AND DANIEL J. SORIN

Why On-Chip Cache Coherence Is Here to Stay

SHARED MEMORY IS the dominant low-level communication paradigm in today's mainstream multicore processors. In a shared-memory system, the (processor) cores communicate via loads and stores to a shared address space. The cores use caches to reduce the average memory latency and memory traffic. Caches are thus beneficial, but private caches lead to the possibility of cache incoherence. The mainstream solution is to provide shared memory and prevent incoherence through a hardware cache coherence protocol, making caches functionally invisible to software. The incoherence problem and basic hardware coherence solution are outlined in the sidebar, "The Problem of Incoherence," page 86. Cache-coherent shared memory is provided by mainstream servers, desktops, laptops, and mobile devices and is available from all major vendors, including AMD, ARM, IBM, Intel, and Oracle (Sun).

8 COMMUNICATIONS OF THE ACH (JULY 2012 | VOL. 55 (NO. 7

Coherence is the norm in COTS platforms

Heterogeneous compute requires coherency

Coherence is the Industry's Choice

Coherency: The New Normal in SoCs Anush Mohandass anush@netspeedsystems.com

communicate efficiently is a daunting design challenge. A popular approach is to use high-performance and power-efficient shared-memory communication and a sophisticated on-chip cache-coherent interconnect. This presentation will

accelerators.

introduce a new technology that automates the architecture design process, supports CHI and ACE in one design, and uses advanced machinelearning algorithms to create an optimal pre-verified cache-coherent solution.

oday's SoCs include a mix of CPU cores,

computing clusters, GPUs and other computing resources and specialized

Getting heterogeneous processors to

Coherence is the Industry's Choice

mandating the simultaneous use of multiple types of processing units to efficiently execute sophisticated image processing, sensor fusion, and machine learning/AI algorithms. This presentation introduces **new** coherency platform technology that enables the integration of heterogeneous cache coherent hardware accelerators and CPUs, using a mixture of ARM ACE, CHI, and CHI Issue B protocols, into systems that meet both the requirements of high compute performance and ISO 26262-compliant functional safety.

Coherence is the Industry's Choice

Unpredictability in Sharing Data

[RTAS'17] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, "Predictable Cache Coherence for Multi-Core Real-Time Systems"

- Inter-core coherence interference on same cache line
- Inter-core coherence interference on different cache lines
- Inter-core coherence interference due to write hits
- Intra-core coherence interference

Unpredictability in Sharing Data

PMSI: Predictable Cache Coherence

Benefit of Coherence: Up to 3x performance

Problem of PMSI: Coherence effect on WC Data Sharing

How do we improve over that? Do all cores have to suffer this high WCL? → Differentiated-Service

Problem of PMSI: Coherence effect on WC Data Sharing

- Time-based Cache Coherence
 - Configurable timers for critical/non-critical cores
- Fixed Priority Arbitration
 - If both critical and non-critical requesting same cache line → critical gets it
- Allows for simultaneous data sharing
 - Both intra- and inter-criticality
- improves WCL for critical cores while improving the BW of non-critical cores

PENDULUM: Cache Coherence for MCS

[RTSS'19] Nivedita Sritharan, Anirudh M. Kaushik, <u>Mohamed Hassan</u>, Hiren Patel, "Predictable Cache Coherence for Multi-Core Real-Time Systems"

PENDULUM: Cache Coherence for MCS

1.50 33 1.40 1.30 1.20 beed 1.10 1.00 1.201.00 0.90 0.80 Synth-All Synth-A Synth-B Synth-C Synth-D Synth-E Synth-F Geomean Shared both Inter- and Intra-Criticality Shared Intra-Criticality Only

Close the WCL gap for critical cores

PENDULUM: Cache Coherence for MCS

Maintains overall performance benefits of coherence

1.50 33 1.40 1.30 1.20 1.10 1.00 1.201.00 0.90 0.80 Synth-All Synth-A Synth-B Synth-C Synth-D Synth-E Synth-F Geomean Shared both Inter- and Intra-Criticality Shared Intra-Criticality Only

Close the WCL gap for critical cores

PENDULUM: Cache Coherence for MCS

Security is a nightmare challenge on its own for all computing systems

Towards Predictable, *Secure*, and Verified CPSoCs

Three specific challenges for CPSoCs

Security is a nightmare challenge on its own for all computing systems

It is even more scary for CPS

Three specific challenges for CPSoCs

Denial-of-Service (DoS) Attacks [Moscibroda and Mutlu, USENIX'07]

Error Injection Attacks [Kim et al., ISCA'14]

Covert Channel Attacks [Wang et al., HPCA'14]

Side Channel Attacks [Wang et al., HPCA'14]

MCReverse

[RTAS'15] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, "Reverse Engineering Embedded Memory Controllers through Latency-based Analysis",

[TECS'18] <u>Mohamed Hassan</u>, Anirudh M. Kaushik, Hiren Patel, "Exposing Implementation Details of Embedded Memory Controllers through Latency-based Analysis"

Security

MCReverse

MCReverse

Security

MCReverse

Towards Predictable, Secure, and Verified CPSoCs

✓ Various arbitration decisions

DATE 10 Mohamed Hassan, Hiren Patel, "MCX plore: An Automated Framework for Validating Memory Controller Designs" (TCAN 17) Mohamed Massad, Gren Pite), "Gloxpore: Automating the Validation Process of DRAM Memory Controller Designs"

VERIFICATION

Щ

PAR 19 Mohamed Hassan, Hiren Patel, "MCXplore: An Automated Framework for Validating Memory Controller Designs" (JCAN 17) Mohamed Aussan, Gren Pats, "Ockpore: Automating the Validation Process of DRAM Memory Controller Designs"

DATE 10 Mohamed Hassan, Hiren Patel, "MCXplore: An Automated Framework for Validating Memory Controller Designs" (TCAN 17) Mohamed Massad, Gren Pate), "Oldspore: Automated Framework for Validating Memory Controller Designs"

Existing Solutions

Phase 1: Test Template Generation

Phase 1: Test Template Generation

Phase 1: Test Template Generation

Phase 2: Test Suite Generation

Phase 3: Diagnosis and Report

1. MPSoCs create switching alternatives

• Different modes of operation at different cluster of PEs?

Back to the Big Picture

Back to the Big Picture

1. MPSoCs create switching alternatives

- Different modes of operation at different cluster of PEs?
- Migrate instead of switching?
 - Dynamic Reconfiguration (IEC61508-7)

C.3.13 Dynamic reconfiguration

The logical architecture of the system has to be such that it can be mapped onto a subset of the available resources of the system. The architecture needs to be capable of detecting a failure in a physical resource and then remapping the logical architecture back onto the restricted resources left functioning. Although the concept is more traditionally restricted to recovery from failed hardware units, it is also applicable to failed software units if there is sufficient 'run-time redundancy' to allow a software re-try or if there is sufficient redundant data to make the individual and isolated failure be of little importance. This technique must be considered at the first system design stage.

Back to the Big Picture

. MPSoCs create switching alternatives

- Different modes of operation at different cluster of PEs?
- Migrate instead of switching?

2. MPSoCs open the door for customized solutions

- Using specialized PEs is a norm in MPSoCs
- Dedicating a PE for the runtime monitoring
 - faster detection of exceptional events → react in a timely manner
- PE can be further tailored to optimize the behavior of the monitoring techniques

Back to the Big Picture

CPSoCs Challenges in MCS

WCETs

Schedule

Task-to-

PE

"uncertainty in WCET does not come from the system itself; rather, it comes from our inability to measure (or compute) it with complete confidence"

Well, this may not be completely true for MPSoCs
In SMPs, which core (or cores) executing a task does not affect its measured execution time.
In MPSoCs, this decision directly affects the level of certainty in its WCET: Real-time vs High-performance PEs? Use scratchpads vs caches?

CPSoCs Challenges in MCS

2. Scalability challenges associated with these scheduling and monitoring techniques.

3. Mode switching in MPSoCs may incur task migrations or reassignment of heterogeneous cores to tasks

 the effects of these decisions on the switching overhead need to be quantified.

Manus

CPSoCs Opportunities for Predictability *All about Flexibility*

1. Which memory levels should be shared amongst which cores

• Does the GPU share the LLC with the CPU?

2. How to distribute the cache architecture?

• Would implementing a NUCA be adequate for MCS (e.g., helping in achieving different levels of isolation)?

3. Different types of on-chip memories

- Both caches and SPMs
- Most of the currently available approaches focus on a single type

4. Different types of available off-chip memories

- DDR, GDDR, RLDRAM, LPDDR, QDR.
- Investigating the cooperation of these types is also worth investigating

Back to the Big Picture

CPSoCs Challenges for Predictability

- 1. The interference exaggerates with the increase in the number of PEs
- 2. Understanding the architectural details of shared resources is inevitable to derive realistic bounds.
 - [MCS-MPSoCs, EMSOFT' 18]
- 3. Each type of PEs has its own memory access behavior, which complicates the analysis, leading to more pessimism
 - Data-intensive PEs (e.g. multimedia/DSP processors) can saturate system queues
 - A requirement- and criticality-aware:
 - Interconnect [CArb, RTAS'16]
 - DRAM MC [PMC, RTAS'15&TECS'16]

CPSoCs Challenges in Security

Cyber-physical Nature

25th USENIX Security Symposium

Lock It and Still Lose It —on the (In)Security of Automotive Remote Keyless Entry Systems

- CPS manage sensitive tasks in critical domains: power grids, cars, factories, nuclear plants
- Any security breach could lead to catastrophic consequences
- Hackers gained access to locked cars by only eavesdropping a single signal from the original remote keyless entry unit of the car

Heterogeneity of CPSoCs

- Each PE can be a 3rd-party IP (40% at Intel!)
- PEs share system components and interact with each other → new across-PEs threats
- Stuxnet attack exploited the authentication of the Siemens programmable logic controller by an access to a Windows machine

Shared hardware components in CPSoCs

- Historically, security was not considered as a concern for CPS because of isolation
- Not the case anymore
- Researchers were able to control sensitive (considered secure) engine control by compromising the (considered insecure) radio unit
 - Reason? Sharing the CAN

1HE VERGE

Jeep hackers at it again, this time taking control of steering and braking systems

By Jordan Golson | Aug 2, 2016, 1,45pm EDT

Identifying new vulnerabilities of MPSoCs, which did not exist in traditional platforms

Possible Directions for Security in CPSoCs

ANUS

Developing cost- and performance-effective methodologies to prevent or mitigate them

Adopting security as a first-class citizen in

designing MPSoCs for MCS (secure-by design concept). Scheduling techniques

Back to the Big Picture

Future Directions

Back to the Bigger Picture

Future Directions

Back to the Bigger Picture

Future Directions

