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Embedded Systems, The Future MOTIVATION

1998

# Embedded processors 
shipped units already 
surpassed PCs  

2030?

• IoT are forecasted to have 
billions of units by 2030!

• Autonomous cars have 
100s of embedded 
processors

Now?

All PCs in the world are 
less than 1% of the 
market!

PCs
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Colossus
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NEC’s UltaLite Wearables
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Embedded Systems Cyber-Physical Systems MOTIVATION
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Cyber-Physical Systems

communicatecommunicatecommunicatesensesensesense computecomputecompute actuateactuateactuate

Embedded Systems Cyber-Physical Systems MOTIVATION
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ACU

AIRBAG CONTROL UNIT

periodic activation

deadline

Predictable Cyber-Physical Systems MOTIVATION

Why do we need Predictable, Secure, 
and Verified CPS?
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Lock It and Still Lose It —on 
the (In)Security of Automotive 
Remote Keyless Entry Systems

Secure Cyber-Physical Systems MOTIVATION
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• In 2007, 12 F-22s were going from 
Hawaii to Japan.

• After crossing the IDL, all 12 
experienced multiple crashes.
No navigation
No fuel subsystems
Limited communications
Rebooting didn’t help

• Mercedes Class A failed the 
moose test in 1997. 

• Sensors on roof detect 
overturn and automatically 
open door.

• What happens if a thief jumps 
on the car roof?

Verified Cyber-Physical Systems MOTIVATION
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• Unlike traditional real-time embedded 
systems:
• Advanced CPS require significant 

computational power 

Challenge 1: Computation and Data intensive CPS MOTIVATION

2017

NO STANDARD

No certification standard, no 
consolidated technology.

~ 1.7 million lines of code 
in a F-22 Fighter Jet

~ 6.5 million lines of code     
in a Boeing 787

~ 20 million lines of code     
in S Class Mercedes-Benz

Why do we need CPSoCs?

17



• Unlike traditional real-time embedded 
systems:
• Advanced CPS require significant 

computational power 

Challenge 1: Computation and Data intensive CPS MOTIVATION

2017

NO STANDARD

No certification standard, no 
consolidated technology.

~ 1.7 million lines of code 
in a F-22 Fighter Jet

~ 6.5 million lines of code     
in a Boeing 787

~ 20 million lines of code     
in S Class Mercedes-Benz

18



• Unlike traditional real-time embedded 
systems:
• Advanced CPS require significant 

computational power 

Challenge 1: Computation and Data intensive CPS MOTIVATION

2017

NO STANDARD

No certification standard, no 
consolidated technology.

~ 1.7 million lines of code 
in a F-22 Fighter Jet

~ 6.5 million lines of code     
in a Boeing 787

~ 20 million lines of code     
in S Class Mercedes-Benz

19



• Unlike traditional real-time embedded 
systems:
• Advanced CPS require significant 

computational power

• Autonomous vehicles deploy complex sensor 
processing and sensor fusion capabilities 
which are both computation and data 
intensive

Challenge 1: Computation and Data intensive CPS MOTIVATION

2017

NO STANDARD

No certification standard, no 
consolidated technology.

~ 1.7 million lines of code 
in a F-22 Fighter Jet

~ 6.5 million lines of code     
in a Boeing 787

~ 20 million lines of code     
in S Class Mercedes-Benz
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• No longer solely hosting isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet requirements

Challenge 2:Mixed-Criticality Nature of CPS MOTIVATION

• High-criticality tasks
• Airbag Control Unit (ACU)
• Anti-lock Braking System 

(ABS)
• Engine Control Unit (ECU)
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• No longer solely hosting isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet requirements

MOTIVATION

• Medium-criticality tasks
• Navigation System
• Instrument Cluster
• Cruise Control

Challenge 2:Mixed-Criticality Nature of CPS
22



• No longer solely hosting isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet requirements

• Low-criticality tasks
• Air Conditioning Unit
• Connectivity Box
• Infotainment Unit

MOTIVATIONChallenge 2:Mixed-Criticality Nature of CPS
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Mixed Criticality Systems MOTIVATION

FANUS
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Mixed Criticality Systems MOTIVATION
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MPSoCs MOTIVATION

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO

Why MPSoCs?
• Low cost
• High performance
• Energy Efficiency
• Low time-to-market (3rd party IPs)

Solution to these challenges:
Multiple Processor Systems-on-Chip 

(MPSoCs)
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MPSoCs MOTIVATION

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO

Hennessy & Patterson, Turing Lecture,
A New Golden Age for Computer Architecture

FANUS
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Heterogenous MPSoCs MOTIVATION

MPSoCs

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO Heterogenous MPSoCs

GPU

DSP

ASIC2

CPU

FPG
A

ASIC1

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO

Why Heterogenous 
MPSoCs?
• Variety of processing capabilities 
Best-suits MCS conflicting 

requirements

FANUS
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What about IoT?

FANUS
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Heterogenous MPSoCs with Real-time 
Processors MOTIVATION

FANUS
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Heterogenous MPSoCs with Real-time 
Processors MOTIVATION

FANUS
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MPSoC Challenges MOTIVATION

How can existing code-bases be 
reused when adopting multi-cores?

PORTING / INTEGRATION

Multi-cores are significantly 
more complex machines. Can 
sufficient understanding be 
achieved for a safe use?

UNDERSTANDING

How to certify multi-core platforms? And 
how much will that cost?

CERTIFICATION

Off-Chip RT Network (e.g. CAN, SAFEbus)Off-Chip RT Network (e.g. CAN, SAFEbus)
How to achieve a level of 

predictability that is 
equivalent to single-cores 

without excessive pessimism?

Sharing HardwareSharing Hardware
computation is performed in parallel, but

I/O and
memory

shared

Node 1 Node 2 Node 3 Node 4

From multiple single-core systems

To a single multi-core system

Memory
I/O

devices

Core 1 Core 2

Core 3 Core 4

ECU

ECU

FANUS
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Predictable CPSoC PREDICTABILITY

Interconnect

DRAM

...

Shared 
Cache

Memory Controller

Shared on-chip cache hierarchy

Shared on-chip memory controller

Shared off-chip DRAM memory

Private
Cache

Private
Cache

PEnPE0

Shared on-chip interconnect

Towards Predictable, Secure, and Verified CPSoCs
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Predictable CPSoC PREDICTABILITY

CArb [RTAS’16]

DRAM

...

Shared 
Cache

Memory Controller

Predictable and MC-aware Bus

Shared on-chip cache hierarchy

Shared on-chip memory controller

Shared off-chip DRAM memory

Private
Cache

Private
Cache

PEnPE0
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Predictable CPSoC PREDICTABILITY

PMSI [RTAS’17], PENDULUM [RTSS’19]  
HourGlass [ArXiv’18], Ongoing….
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Predictable CPSoC PREDICTABILITY
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Predictable CPSoC PREDICTABILITY
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Predictable CPSoC PREDICTABILITY

PREMIUM
Predictable 

Memory 
Hierarchy

 Supports MCS

 Supports Shared 
Data

 Guaranteed service

FANUS
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Predictable CPSoC PREDICTABILITY

CArb [RTAS’16]

...

Shared 
Cache

Predictable and MC-aware Bus

Private
Cache

Private
Cache

PEnPE0

DRAM

Memory Controller
PMC [RTAS’15, TECS’16]

MCSim [TECS’17]
MCS-MPSoCs [EMSOFT’18, TCAD’18]

RLDRAM [RTSS’18]
DRAMbulism [RTAS’20]

PMSI [RTAS’17], PENDULUM [RTSS’19]
HourGlass [ArXiv’18], Ongoing….

PREMIUM
Predictable 

Memory 
Hierarchy

42



Predictable CPSoC PREDICTABILITY
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DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM

Background

FANUS
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DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

• RD/WR commands:
• To read/write from specific columns in

the sense amplifiers
• PRECHARGE command:

• to write back a previous row in the sense
amplifiers before bringing the new one

Background

FANUS
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Background DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

• RD/WR commands:
• To read/write from specific columns in

the sense amplifiers
• PRECHARGE command:

• to write back a previous row in the sense
amplifiers before bringing the new one

• All commands have associated timing constraints that have 
to be satisfied by the controller
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System Overview MODEL

• P processing elements
 Pcr critical + Pncr non-critical

• LLC is write-back write-allocate
• Writes to DRAM are only 

cache evictions
• Single-channel single-rank DRAM 

subsystem
• NB DRAM banks

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO
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System Overview MODEL

• P processing elements
 Pcr critical + Pncr non-critical

• LLC is write-back write-allocate
• Writes to DRAM are only 

cache evictions
• Single-channel single-rank DRAM 

subsystem
• NB DRAM banks

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO

Goal:
Derive an upper bound on the 
delay incurred by any memory 
request of a critical PE
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Challenge: operations of one PE affect the 
temporal behavior of other PEs, which 
complicates the timing analysis of the system. 

Most of the MCS scheduling techniques do not 
incorporate these interferences in their 
scheduling or analysis

Approaches focusing on shared resources 
mostly assume SMPs

MODELWhy We Bother?

FANUS
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Challenge: operations of one PE affect the 
temporal behavior of other PEs, which 
complicates the timing analysis of the system. 

Most of the MCS scheduling techniques do not 
incorporate these interferences in their 
scheduling or analysis

Approaches focusing on shared resources 
mostly assume SMPs

7.4.2.7 Where the software is to implement both 
safety and non-safety functions, then all of the 
software shall be treated as safety-related, unless 
adequate independence between the functions can 
be demonstrated in the design.
[IEC61508-3]

MODELWhy We Bother?

FANUS
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Big Picture PREDICTABILITY
[EMSOFT’18] Mohamed Hassan, Rodolfo Pellizzoni, "Bounding DRAM Interference in COTS Heterogeneous 
MPSoCs for Mixed Criticality Systems”, BEST PAPER AWARD

State-Space exploration of 
the COTS MPSoCs

Study their DRAM Behavior

UnpredictablePredictable

cannot be used 
for CPSConduct

timing analysis

Provide delay 
bounds

• Highlight features that 
lead to unpredictability

• Highlight features that 
provide tighter latency 
bounds and better 
bandwidth

FANUS
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System Details MODEL

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO

OS
Applications

OS Configuration

PE Architecture

MC Policies

Memory Behavior 
Depends on?:
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System Details MODEL

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO

OS
Applications Memory Behavior 

Depends on?:

• Priority:
• PEs can be given priorities 
• COTS platforms support different priority 

levels
• Existing analysis does not account for this

• Intra-bank scheduling
• FR-FCFS
• COTS also supports a threshold on 

reordering to prevent starvation
• Inter-bank scheduling

• RR across banks
• Two flavors: 

• Always schedule ready commands of any 
type (high performance)

• Reorder only commands of different type 
(prevent starvation)

• Read/Write arbitration, two flavors:
• Reads and writes have same priority
• Serve in batches, where reads have higher 

priority

OS Configuration

PE Architecture

MC Policies
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Platform Instances MODEL

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write batching

FR-FCFS Threshold
• 1: FR-FCFS is capped
• 0: no cap on FR-FCFS

Priority
• 1: Critical PEs are higher 

priority
• 0: no priority  

Inter-bank Reorder
• 1: Reorder across all commands

• 0: Reorder commands of diff types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical 
apps

• Part-All: Partition among all apps

56



Platform Instances MODEL

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write batching

FR-FCFS Threshold
• 1: FR-FCFS is capped
• 0: no cap on FR-FCFS

Priority
• 1: Critical PEs are higher 

priority
• 0: no priority  

Inter-bank Reorder
• 1: Reorder across all commands

• 0: Reorder commands of diff types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical 
apps

• Part-All: Partition among all apps
144 different platform

instances!
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General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1 

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0
0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

144 Platform 
Instances144

PREDICTABILITY

FANUS
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General Observations

144 different platform
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OS HW setup

part thr pr
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OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0
0 1
1 0
1 1

N
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Observation 1:
Unboundedness of inter-bank RR with reordering

If RR reorders across all commands (breorder=1) and no 
write batching is deployed (wb=0)  unbounded WCD144

PREDICTABILITY

FANUS

59



General Observations
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Observation 2:
Write batching effect

Write batching cancels the effect of RR breorder:
If wb=1  breorder=x

108

PREDICTABILITY
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General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1 

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A
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0 0

UNBOUNDED Same as 
wb=1,breorder=0

0 1
1 0
1 1

N
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General Observations

144 different platform
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OS HW setup
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Observation 3:
Unboundedness of FR-FCFS without threshold
If thr=0 & ((No-Part) || ((Part-Cr) & pr=0) Unbounded WCD72

PREDICTABILITY

FANUS

64



General Observations
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General Observations

144 different platform
instances!

OS HW setup

part thr pr
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Observation 4:
Part-All effect
If Part-All  rua does not suffer Intra-bank reordering or conflict interferences:
• thr=x
• If wb=0  pipe=x

54
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General Observations
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Observation 5:
Part-Cr effect when wb=0
If Part-Cr & wb=0  rua does not suffer Intra-bank reordering nor 
conflict interferences from critical PEs:
• IO-Cr and OOO-All have same effect on WCD

38
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General Observations

144 different platform
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Observation 6:
Priority effect when wb=0
If pr=1 & wb=0  pipeline architecture of non-critical PEs has no effect 
on WCD:
• IO-Cr and IO-All have same effect on WCD
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Observation 7:
Priority with Part-Cr effect
• thr=x
• If wb=0  pipe=x

Same as Part-All effect!!
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General Observations

144 different platform
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Evaluation

PEs

• A private 16KB L1 and a shared 1MB L2 cache
• An in-order PE has a maximum of one pending request to the DRAM
• An OOO PE has a maximum of 4 pending requests to the DRAM (PR = 4)
• Four-processor system unless otherwise specified

OS Mapping • Through the virtual-to-physical address mapping component at MacSim’s frontend 
• Based on the configuration, we enable the corresponding partitioning (Part-All, Part-Cr, or No-Part)

DRAM DDR3-1333H with single channel, single rank, and 8 banks

MC

• Based on the configuration, 
• Per-bank queues with RR among banks and FR-FCFS arbitration within each bank
• Based on the configuration: 

• critical PEs can be assigned higher priority than non-critical PEs
• enable or disable the threshold for FR-FCFS
• For enabled threshold:𝑁௧௛௥ = 8, unless otherwise specified
• enable or disable write batching

Benchmarks EEMBC Automotive • The two critical PEs execute a2time and rspeed
• The two non-critical PEs execute matrix and aifftr

Synthetic • Each of the critical PEs execute one instance of the latency benchmark Each of 
the non-critical PEs execute one instance of the Bandwidth benchmark
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Evaluation

Compared to Confg 6 
(No-Part):
• Confg 2 (Part-All):

 96% less WCD
 60% BW 

degradation
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Evaluation

Compared to Confg 6 
(No-Part):
• Confg 2 (Part-All):

 96% less WCD
 60% BW 
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Evaluation

Compared to Confg 6 
(No-Part):
• Confg 2 (Part-All):

 96% less WCD
 60% BW 

degradation

• Confg 8 (Part-Cr + 
FP):
 89% less WCD
 0.85% BW 
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Predictable CPSoC PREDICTABILITY

CArb [RTAS’16]

...

Shared 
Cache

Predictable and MC-aware Bus

Private
Cache

Private
Cache

PEnPE0

DRAM

Memory Controller
PMC [RTAS’15, TECS’16]

MCSim [TECS’17]
MCS-MPSoCs [EMSOFT’18, TCAD’18]

RLDRAM [RTSS’18]
DRAMbulism [RTAS’20]

PMSI [RTAS’17], PENDULUM [RTSS’19]
HourGlass [ArXiv’18]

PREMIUM
Predictable 

Memory 
Hierarchy
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Common Approach Data Sharing

• Adopts an independent-task model  No communication 
amongst tasksIgnore

• Enforcing complete isolation between tasks. 
• At the shared cache: strict cache partitioning and coloring
• At the DRAM: bank privatization Prevent

FANUS
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Common Approach Data Sharing

• May result in a poor memory or cache 
utilization
• e.g.: a task has conflict misses, while 

other partitions may remain 
underutilized

• Does not scale with increasing number of 
cores
• e.g.: number of PEs number of 

DRAM banks
• Not viable in emerging systems due to 

increased functionality and massive data

FANUS
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Solution:
No caching of shared data
[Hardy et al., RTSS’09] 
[Lesage et al., RTNS’10]
[Bansal et al., arXiv’19]
[Chisholm et al., RTSS’16]
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Solution:
No caching of shared data
[Hardy et al., RTSS’09] 
[Lesage et al., RTNS’10]
[Bansal et al., arXiv’19]
[Chisholm et al., RTSS’16]



Another Solution:
Task scheduling on shared data

1. Scheduling tasks with shared data such that they never run 
in parallel [Becker et al. , ECRTS’16]

2. Assigning tasks with shared data to the same core 
[Chisholm et al, RTSS’16] 

3. Incorporating run-time performance metrics  collected 
through hardware counters to make data-wise scheduling 
decisions [Gracioli et al., SIGOPS’15]
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Example: B shares data with A and C

A C

D B

0 45 60 90 120 150
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A D B

C

0 30 60 105 120 195
Deadline=120

Prevent them from running in parallel

Another Solution:
Task scheduling on shared data
1. Scheduling tasks with shared data such that they never run in parallel [Becker et al. , ECRTS’16]

2. Assigning tasks with shared data to the same core [Chisholm et al, RTSS’16] 

3. Incorporating run-time performance metrics  collected through hardware counters to make data-wise scheduling decisions [Gracioli et al., SIGOPS’15]

Map them to same core



Coherence is the norm in COTS platforms Data Sharing

The mainstream solution is to provide 
shared memory and prevent incoherence 
through a hardware cache coherence 
protocol, making caches functionally 
invisible to software. 
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Coherence is the Industry’s Choice Data Sharing
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Coherence is the Industry’s Choice Data Sharing
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Coherence is the Industry’s Choice Data Sharing
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Unpredictability in Sharing Data
Data Sharing

I

M SOwnUPG

OtherGETS

OwnGETM

OwnGETS or 
OtherGETS

𝜏ଵ𝜏ଶ 𝜏ଷ

+

Unpredictable

[RTAS’17 ] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, “Predictable Cache Coherence 
for Multi-Core Real-Time Systems" 
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Unpredictability in Sharing Data Data Sharing

I

M SOwnUPG

OtherGETS

OwnGETM

OwnGETS or 
OtherGETS

𝜏ଵ𝜏ଶ 𝜏ଷ

+

Unpredictable

 Inter-core coherence interference 
on same cache line 

 Inter-core coherence interference 
on different cache lines

 Inter-core coherence interference 
due to write hits 

 Intra-core coherence interference
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PMSI: Predictable Cache Coherence Data Sharing
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Benefit of Coherence: Up to 3x performance Data Sharing
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Problem of PMSI: Coherence effect on WC Data Sharing
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Problem of PMSI: Coherence effect on WC Data Sharing
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How do we improve over that? 
Do all cores have to suffer this high WCL?  Differentiated-Service
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PENDULUM: Cache Coherence for MCS
Data Sharing

• Time-based Cache Coherence
• Configurable timers for critical/non-critical 

cores
• Fixed Priority Arbitration

• If both critical and non-critical requesting 
same cache line  critical gets it

• Allows for simultaneous data sharing 
• Both intra- and inter-criticality

• improves WCL for critical cores while 
improving the BW of non-critical cores 

[RTSS’19 ] Nivedita Sritharan, Anirudh M. Kaushik, Mohamed Hassan, Hiren Patel, 
“Predictable Cache Coherence for Multi-Core Real-Time Systems" 103



PENDULUM: Cache Coherence for MCS Data Sharing
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PENDULUM: Cache Coherence for MCS Data Sharing
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PENDULUM: Cache Coherence for MCS Data Sharing
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Close the WCL gap 
for critical cores

Maintains overall 
performance benefits 
of coherence
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Security

Security is a nightmare challenge on 
its own for all computing systems

It is even more scary for CPS

Three specific challenges for 
CPSoCs

Towards Predictable, Secure, and Verified CPSoCs

FANUS
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Security
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Security
MCReverse

[RTAS’15 ] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, "Reverse Engineering Embedded Memory Controllers through Latency-based Analysis", 

[TECS’18] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, " Exposing Implementation Details of Embedded Memory Controllers through Latency-based 
Analysis"

Denial-of-Service (DoS) Attacks [Moscibroda and Mutlu, USENIX’07]

Error Injection Attacks [Kim et al., ISCA’14]

Covert Channel Attacks [Wang et al., HPCA’14]

Side Channel Attacks [Wang et al., HPCA’14]

FANUS
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SecurityMCReverse

Row of Cells
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Victim Row
Hammered Row

Repeatedly opening and closing a row enough times within a refresh interval induces 
disturbance errors in adjacent rows in most real DRAM chips you can buy today

OpenedClosed

Error Injection Attacks 
(rowhammer)
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Targeting different pages in same bank
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SecurityMCReverse

Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Hammered Row

Repeatedly opening and closing a row enough times within a refresh interval induces 
disturbance errors in adjacent rows in most real DRAM chips you can buy today

OpenedClosed

Error Injection Attacks 
(rowhammer)

D
RA

M

Targeting different pages in same bank

Ability to target consecutive accesses to conflicting DRAM pages on 
same bank

 Knowledge of the DRAM address mapping and page policy

Error Injection Attacks 
(rowhammer)
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SecurityMCReverse
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SecurityMCReverse

Best & Worst-
case Latencies 
for All Cases
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Based 
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Test 
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Rules
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SecurityMCReverse

Best & Worst-
case Latencies 
for All Cases

Latency-
Based 

Analysis

Test 
Algorithms MC

Observed 
Latencies

Inference 
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MC Details

Test 
Algorithms

Inference 
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Ex: Two read accesses to different banks same rank
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SecurityMCReverse

Best & Worst-
case Latencies 
for All Cases

Latency-
Based 

Analysis

Test 
Algorithms MC

Observed 
Latencies

Inference 
Rules

MC Details

Test 
Algorithms

Inference 
Rules

CP: same bank

OP: diff rwOP: diff cl
diff rk

diff 
bk

𝑏ଵ 𝑏ଶ 𝑏ଷ 𝑏ସ 𝑏ହ 𝑏଺

∃𝑖 ∈ 0, 𝑃𝑊 − 1 : 𝑏ଵ ≤ 𝑙ଶ
௜ < 𝑏ଶ ⟹ open-page 

policy
∃𝑖 ∈ 0, 𝑃𝑊 − 1 : 𝑏ସ < 𝑙ଶ

௜ < 𝑏ହ ⟹ close-page 
policy
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SecurityMCReverse
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Security
MCReverse
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Qualcomm Dragon 410c IoT board
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SecurityMCReverse
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SecurityMCReverse
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SECURITYA Step-by-Step Process

FANUS
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SECURITYA Step-by-Step Process

Step 1: Page policy
 Close-page
 Open-page
 Hybrid-page
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SECURITYA Step-by-Step Process

Step 2: Address Mapping
 All possible combinations
 Advanced XOR mapping

Step 1: Page policy
 Close-page
 Open-page
 Hybrid-page
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SECURITYA Step-by-Step Process

Step 2: Address Mapping
 All possible combinations
 Advanced XOR mapping

Step 1: Page policy
 Close-page
 Open-page
 Hybrid-page

Step 3: Arbitration Schemes
 FCFS
 RR

 FR-FCFS
 Reorder threshold
 Write buffer policy

125



VERIFICATIONDRAM Systems are Complex

Complex optimizations
Multiple reordering levels
Various arbitration decisions

[DATE’16] Mohamed Hassan, Hiren Patel, "MCXplore: An Automated Framework for Validating Memory Controller Designs"
[TCAD’17] Mohamed Hassan, Hiren Patel, " MCXplore: Automating the Validation Process of DRAM Memory Controller Designs”

Towards Predictable, Secure, and Verified CPSoCs
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VERIFICATIONDRAM Systems are Complex

Complex optimizations
Multiple reordering levels
Various arbitration decisions

[DATE’16] Mohamed Hassan, Hiren Patel, "MCXplore: An Automated Framework for Validating Memory Controller Designs"
[TCAD’17] Mohamed Hassan, Hiren Patel, " MCXplore: Automating the Validation Process of DRAM Memory Controller Designs”
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VERIFICATIONExisting Solutions

Benchmarks

 Time and effort conserving
 May not be memory intensive
 Lack easy-to-analyse memory 

patterns
 Do not explore the state space 

of the memory subsystem 
properties

Exhaustive
Tests

 Guaranteed coverage
 Very time and resource consuming 

(may not be possible)

Manual
Tests

 Allows for directed testing to 
cover specific properties

 Time Consuming 
 Prone to human errors

Random 
Tests

 Moderate Time and effort
 Questionable test coverage

Industrial 
Solutions

 Guaranteed Coverage
 Requires access to RTL
 Requires special hardware tools
 Cost

FANUS
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VERIFICATIONMCXplore: Big Picture
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VERIFICATIONPhase 1: Test Template Generation
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VERIFICATIONPhase 1: Test Template Generation
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Phase 1: Test Template Generation

CMD 
Model

REQ
Model

Captures the interrelation amongst 
memory requests

Interactions between memory 
commands and their timing 

constraints
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VERIFICATION
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Phase 1: Test Template Generation

Captures the interrelation amongst 
memory requests

Test
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New
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REQ
Model

 Test Plan: precisely specify test properties in TL
 Separate test template from actual tests
 Optimal Tests: with minimum number of 

requests (BMC)

Phase 1: Test Template Generation
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VERIFICATIONPhase 2: Test Suite Generation
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Phase 1: Test Template Generation

Test
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Map

Synta
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 Automated test generation
 Vital sequence patterns and test plans 

for state-of the-art MCs
 Test suites for commodity MC policies
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VERIFICATIONPhase 3: Diagnosis and Report
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Phase 1: Test Template Generation

Compare

Golden 
Metric

Same
?

Report 
Correctness

Report 
Bug

EN
D

 High-level statistics such as bandwidth

 do not require internal debugging 
capabilities (black box technique)

𝑈௖  

=  
𝑡ℎ𝑟 × 𝑡𝐵𝑈𝑆

𝑡𝑅𝐶𝐷 + 𝑡ℎ𝑟 − 1 𝑡𝐶𝐶𝐷 + 𝑅𝑡𝑜𝑃 + 𝑡𝑅𝑃
 

≅ 73%
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Future DirectionsBack to the Big Picture

CPSoCs
Opportunities 

for MCS

1. MPSoCs create switching alternatives
• Different modes of operation at different 

cluster of PEs?

FANUS
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Future DirectionsBack to the Big Picture

CPSoCs
Opportunities 

for MCS

1. MPSoCs create switching alternatives
• Different modes of operation at different cluster of PEs?
• Migrate instead of switching?

• Dynamic Reconfiguration (IEC61508-7)
C.3.13 Dynamic reconfiguration 
The logical architecture of the system has to be such that it can be mapped onto 
a subset of the available resources of the system. The architecture needs to be 
capable of detecting a failure in a physical resource and then remapping the 
logical architecture back onto the restricted resources left functioning. Although 
the concept is more traditionally restricted to recovery from failed hardware 
units, it is also applicable to failed software units if there is sufficient ‘run-time 
redundancy’ to allow a software re-try or if there is sufficient redundant data to 
make the individual and isolated failure be of little importance. This technique 
must be considered at the first system design stage.

FANUS
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Future DirectionsBack to the Big Picture

CPSoCs
Opportunities 

for MCS

. MPSoCs create switching alternatives
• Different modes of operation at different cluster of PEs?
• Migrate instead of switching?

2. MPSoCs open the door for customized solutions
• Using specialized PEs is a norm in MPSoCs
• Dedicating a PE for the runtime monitoring

• faster detection of exceptional events  react in a timely 
manner

• PE can be further tailored to optimize the behavior of the 
monitoring techniques

FANUS

139



CPSoCs Challenges in MCS
1. Common assumption: 

“uncertainty in WCET does not come from the 
system itself; rather, it comes from our inability to 
measure (or compute) it with complete confidence”

• Well, this may not be completely true for MPSoCs
In SMPs, which core (or cores) executing a task 

does not affect its measured execution time.
In MPSoCs, this decision directly affects the level 

of certainty in its WCET:
Real-time vs High-performance PEs?
Use scratchpads vs caches?
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CPSoCs Challenges in MCS
2. Scalability challenges associated with these 
scheduling and monitoring techniques. 

3. Mode switching in MPSoCs may incur task 
migrations or reassignment of heterogeneous cores to 
tasks 
 the effects of these decisions on the switching overhead 

need to be quantified. 
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Future DirectionsBack to the Big Picture

CPSoCs
Opportunities 

for 
Predictability

1. Which memory levels should be shared amongst which cores

• Does the GPU share the LLC with the CPU?

2. How to distribute the cache architecture? 

• Would implementing a NUCA be adequate for MCS (e.g., helping in achieving 
different levels of isolation)? 

3. Different types of on-chip memories

• Both caches and SPMs 
• Most of the currently available approaches focus on a single type 

4. Different types of available off-chip memories
• DDR, GDDR, RLDRAM, LPDDR, QDR. 
• Investigating the cooperation of these types is also worth investigating

All about
Flexibility

FANUS
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CPSoCs Challenges for Predictability
1. The interference exaggerates with the increase in 

the number of PEs
2. Understanding the architectural details of shared 

resources is inevitable to derive realistic bounds.
• [MCS-MPSoCs, EMSOFT’ 18]

3. Each type of PEs has its own memory access 
behavior, which complicates the analysis, leading 
to more pessimism 
• Data-intensive PEs (e.g. multimedia/DSP processors) can 

saturate system queues
• A requirement- and criticality-aware:

• Interconnect [CArb, RTAS’16]
• DRAM MC [PMC, RTAS’15&TECS’16]
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CPSoCs Challenges in Security

CYBER-PHYSICAL 
NATURE

HETEROGENEITY OF 
CPSOCS

SHARED COMPONENTS 
(AGAIN!) 
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Cyber-physical Nature

• CPS manage sensitive tasks in critical 
domains: power grids, cars, factories, nuclear 
plants

• Any security breach could lead to 
catastrophic consequences

• Hackers gained access to locked cars by only 
eavesdropping a single signal from the 
original remote keyless entry unit of the car
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Heterogeneity of CPSoCs

• Each PE can be a 3rd-party IP (40% at Intel!)
• PEs share system components and interact 

with each other new across-PEs threats
• Stuxnet attack exploited the 

authentication of the Siemens 
programmable logic controller by an 
access to a Windows machine 
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Shared hardware components
in CPSoCs

• Historically, security was not considered as 
a concern for CPS because of isolation

• Not the case anymore
• Researchers were able to control sensitive 

(considered secure) engine control by 
compromising the (considered insecure) 
radio unit 

• Reason? Sharing the CAN
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Future DirectionsBack to the Big Picture

Possible 
Directions for 

Security in 
CPSoCs

Identifying new vulnerabilities of MPSoCs, 
which did not exist in traditional platforms

Developing cost- and performance-effective 
methodologies to prevent or mitigate them

Adopting security as a 
first-class citizen in 

designing MPSoCs for MCS 
(secure-by design concept). 

Scheduling techniques

FANUS
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Back to the Bigger Picture Future Directions
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Back to the Bigger Picture Future Directions

Intelligent Cyber-Physical Systems-on-Chip
F
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Predictable Shared Memory 
Hierarchy

I propose architectures for predictable MPSoC-based CPS PREMIUM
Predictable 

Memory 
Hierarchy

Predictable CPS

Secure CPS Verified CPS
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