Managing DRAM Interference in Mixed Criticality
Embedded Systems

Mohamed Hassan
Electrical and Computer Engineering Department
McMaster University, Canada
Email: mohamed.hassan @mcmaster.ca

Abstract—Modern embedded systems such as those in au-
tonomous vehicles, drones, and robots have a mixed criticality
nature. They run both safety-critical tasks with tight timing
constraints as well as non-critical tasks with high average perfor-
mance demands. Traditional solutions deployed in both general-
purpose computing as well as low-end embedded systems are
no longer suitable. In this work, we study the challenges facing
the deployment of commercial-off-the-shelf memory systems for
mixed-criticality embedded systems and we provide potential
solutions to enable such deployment.

I. INTRODUCTION

The presence of embedded systems is significantly increas-
ing in many emerging domains such as healthcare, autonomous
vehicles, manufacturing automation, and Internet-of-Things
(IoT). Embedded systems in these domains have unique char-
acteristics and face new challenges that distinguish them from
traditional embedded systems. One of the key challenges is the
requirement to deploy tasks with various criticalities, compris-
ing what is known as Mixed Criticality Systems (MCS). The
criticality of a task is a reflection of the potential consequences
upon failure to meet the requirements of this task. Accordingly,
industry standards define distinct criticality levels, where each
criticality level introduces certain assurance measures against
failures to meet requirements of tasks running in this criticality
level. Manufacturers have to go through a rigorous certification
process to meet those measures. For instance, the DO-178C
avionics standard defines five Design Assurance Levels (DAL)
for software considerations in airborne systems, while the ISO
26262 automotive standard defines four Automotive Safety
Integrity Levels (ASIL) for systems deployed in automobiles.

Such mixed criticality environment is challenging for em-
bedded systems. This is because tasks of different criticalities,
and hence different requirements are required to simultane-
ously run on the same hardware platform and share same
resources due to area and cost considerations. Moreover, tasks
of different criticality usually have conflicting requirements.
Tasks with higher criticality are often latency sensitive with
strict worst-case temporal requirements, which if broken, can
lead to severe consequences or even life losses. In contrast,
tasks with lower criticality are often throughput sensitive
which require high average performance and can tolerate
infrequent deadline misses [1], [2].

Ideally, a hardware architecture that achieves both low
latency and high throughput will be able to accommodate

P
/ Bank

n CqL)
n Eo
STt
[e)
2| lea

Row Buffer

Z 1)
I
Row

Fig. 1: DRAM internal architecture

these different types of tasks. Nonetheless, in reality, the
architecture has a trade-off between these two metrics: im-
proving one usually comes at the expense of deteriorating
the other. Considering Dynamic Random Access Memories
(DRAMs), which is the commodity off-chip memory in most
computing systems nowadays [3]: on the one hand, achieving
high throughput (i.e. memory bandwidth in this case) requires
memory controllers to deploy complex optimizations including
multiple reordering and arbitration levels, prioritizations, and
adaptive policies. On the other hand, these optimizations result
in highly pessimistic worst case delay (WCD), which hinders
the ability of the architecture to run higher-criticality tasks.

In this paper, we focus on DRAMs as a vital component
in modern embedded systems. We study existing architectures
found in both general-purpose systems both analytically and
experimentally, and investigate their limitations upon adopted
in MCS.

Based on this study, we highlight potential directions to
manage DRAM accesses to achieve both low latency and high
average performance in MCS.

II. DRAM OPERATION
A. DRAM Internal Architecture

The DRAM is organized as banks. As Figure 1 delineates,
each bank consists of memory cells structured as an array of



|Core1| |Corg2| e

e R

E e e s g i
= =g
i Bank 0 Bank 1 BankN ) |2 3|
' \Scheduler) \Scheduler, Scheduler, _g 3l
1 * © !
| 9 ;
: Arbiter ) e« !
“._______________________________________\—_/_/
| DRAM

Fig. 2: Memory controller architecture

columns and rows. Each bank also has sense amplifiers, which
in addition to amplifying signals from DRAM cells, work as
a small cache holding the most recently accessed row of that
bank. This cache is usually referred to as the row buffer. The
memory address is provided to the DRAM in two stages. First,
the row segment of the address along with a row address strobe
(RAS) are provided to the DRAM device to fetch the requested
row from the cells array to the row buffer. This operation is
known as row activation (ACT). Then, the column segment
along with a column address strobe (CAS) are provided to the
DRAM to read/write (RD/WR) certain columns from the row
buffer. Exploiting data locality, accesses to data that is already
available in the row buffer do not require the first stage. Those
requests are referred to as row hits and they encounter a lower
latency. Contrarily, requests to different data than the one in
the row buffer have first to write the data in the row buffer
back to the DRAM cells before it can fetch its own data. This
operation is known as row precharging (PRE). Those requests
are referred to as row conflicts and they encounter a higher
access latency. Requests to the off-chip DRAM are managed
through the on-chip memory memory controller, which we
explain its details in the next subsection.

B. Memory Controller Architecture

Figure 2 depicts the architecture of a baseline memory
controller found in Commercial Off-The-Shelf (COTS) CPU
chips. The memory controller translates the request address
into the DRAM bank, row, and column segments to access
specific DRAM cells. It also translates the request into DRAM
commands that execute the DRAM access as needed: ACT,
PRE, RD, or WR. All these commands have to adhere to
certain timing constraints dictated by the DRAM standard. For
details about these timing constraint, we refer the reader to the
DRAM standard in [4].

To increase performance, the memory controller performs
multiple optimizations including reordering row hits over row

1%

u Write Batch
m FR-FCFS Reorder
Conflict

Inter Bank

Fig. 3: DRAM internal architecture

conflicts in the same bank, known as First Ready-First Come
First Serve (FR-FCFS) arbitration in the bank scheduler shown
in Figure 2. Nonetheless, to prevent starvation for conflict
requests, COTS controllers usually put a threshold on the max-
imum number of row hits that can be consecutively serviced
from same row before closing it, we call this threshold, Ny;..
In addition, since read requests are usually more critical for
performance than write requests as they can stall the processor
pipeline, the memory controller reorders reads over writes
deploying what is known as write batching. In write batching,
writes are buffered into a separate queue and are not serviced
until they form a designated batch size, which we call N,
throughout this paper. This also helps in mitigating the data
bus switching from reads to writes and vice versa, which has
huge overheads.

III. ANALYSIS OF MAJOR DRAM INTERFERENCE
SOURCES

We study the memory controller architecture in COTS
platforms to highlight the main sources of interference and
investigate their effect in both the WCD as well as the
system BW. Using the analysis in [5], We decompose the
total memory delay into its components covered in Section II.
Figure 3 depicts the percentage that each of these components
contributes to the total WCD. As the figure illustrates, the
major cause of large memory delays in COTS controllers
is the reordering. This reordering is implemented in two
components: the per-bank FR-FCFS arbitration, and the global
write batching arbitration. Therefore, this paper focuses on
these two components, which are found almost in all modern
memory controllers.

A. FR-FCFS Reorder Effect

1) Effect on WCD: In worst case, a request waits for
the maximum of (IV;,) requests reordered ahead of that
request. Since these N, requests are targeting an open row
by definition, they are separated by only tCCD cycles and
their total delay is Ny, - tCCD. However, since each of



these requests also can suffer from inter-bank interference
from other N B — 1 banks. Therefore, the total delay is:

Nipr - NB - tCCD.

B. Effect on BW

We also study the effect of reordering on the system BW.
Recall that reordering is originally implemented in COTS to
enable high memory bandwidth. Ideally, if there are enough
number of open requests to saturate the Np, threshold, the
memory pattern will be: open a row, service Ny, open
requests to that row, and then close that row and open another
one and repeat the pattern. Under this ideal situation, the peak
bandwidth is calculated as

(Nthr -NB+1)-64
Nypr - NB-tCCD +tRC’

The intuition behind this calculation is that the first request
has to open the row, so it consumes the large tRC delay.
Afterwards, all requests to same row are open and consume
tCCD cycles. Each of these requests is 64B.

C. Write Batching Reorder Effect

1) Effect on WCD: In worst-case, a read request has to
wait for a complete write batch before it can get serviced.
In addition, all the Ny p write requests of the batch are row
conflicts. Therefore, each of these requests according to the
DRAM standard has in worst case to take tRCD + tW L +
tB +tWR 4+ tRP cycles. As a result, the write batch worst
effect on WCD is:

Nwp - (tRCD +tWL+tB+tWR+tRP).

2) Effect of BW: Recall that to calculate the possible peak
BW, we have to consider the ideal situation. Ideally, the
memory controller has enough number of buffered requests
to keep alternating between read and write batches: it service
number of reads, afterwards, it services a write batch, and
then switch back to the reads. This will minimize the bus
turnaround delay, which is the main target of write batching. In
addition, in the ideal case and unlike the WCD situation: these
requests are open requests. Since most COTS architectures
deploy a write-back write-allocate policy, writes to DRAM
only occurs because of cache eviction of a modified cache
line. Hence, the number of writes at the DRAM controllers
are at maximum equal to the number of reads. Accordingly,
each write batch, a number of read requests equal to the
write batch is serviced before switching back to writes. From
this discussion, we dervie the peak BW of write batching as
follows:

(Nwp -2 -64)
Nwp-2-tCCD+ (tWL+tB+tWTR) +tRTW'

The (tWL+tB+tWTR) term represents the bus switching
overhead from writes to reads, while the t RT'W term accounts
for the read to write switching overhead.

IV. EVALUATION RESULTS
A. Evaluation Setup

We use MacSim [6], a multicore simulator to simulate
a dual-core COTS platform. For the DRAM subsystem, we
integrate DRAMSim2 [7] into MacSim. DRAMSIim2 is a
detailed DRAM simulator. It already implements a FR-FCFS
arbitration with reorder threshold. We extend DRAMSim?2 to
also implement write batching scheme with parametric batch
size. Without loss of generality, we use a DDR3-1600 DRAM
device with a single rank and a single channel. However,
the observations made in this paper equally applies to other
DRAM devices. To model the mixed criticality nature, we
simulate a heterogeneous system. We configure one core with
an out-of-order pipeline to represent a high-performance non-
critical core, while the other core is configured with an in-order
pipeline, which is a common configuration in real-time critical
cores to enable analyzability.

We use two applications: BW and latency [8]. In our setup,
BW represents a non-critical application that is bandwidth-
sensitive, while latency represents a critical application that is
latency-sensitive. Each application runs in one of the two cores
and share the same memory controller and off-chip DRAM
with the other application. We study the effect of the two
parameters detailed in Section III: reorder threshold and write
batching in both BW and WCD.

B. Effect of FR-FCFS Reorder Threshold

Figure 4 shows both the experimental and analytical results
across various values of FR-FCFS reorder threshold. We make
the following observations from the figure. 1) As anticipated
in Section III, increasing the threshold value, the system BW
increases (Figure 4b) at the expense of also an increase in the
WCD (Figure 4a). 2) There is a big gap between the observed
experimental bandwidth and the ideal peak bandwidth. As
Figure 4b delineates, on average, the experimental BW is
about 20% to 30% of the peak BW. The reason for this gap
is that to achieve the peak BW (as explained in Section III),
the memeory controller has to pressure the DRAM such that
there are always Ny, pending requests to the open row all
the time. This is usually not practically possible in traditional
applications, which have a mix of open and close/conflict
requests, and thus, leverage a lower BW. 3) With increasing the
threshold value, the gap between the measured and analytical
WCD increases. The intuition behind this observation is that to
encounter the analytical WCD for higher threshold values, a
higher number of requests have to be pending on the same
time (equal to Ng,-). As explained in observation 2, this
becomes less practical with higher Ny, values. Accordingly,
such analytical WCD is not observed in the experiments.

C. Effect of Write Batching

Figure 5 depicts the experimental and analytical results
across various values of high watermark of the write batching
mechanism. The low watermark is set to 0 in our experiments
such that we can completely control the write batching through
the higher watermark. From Figures 5a and 5b, we make the



12000

10000 ‘/‘—/“—7 * A -4
2 8000 —+-BW-peak
= 6000 BW-measured
2 4000

2000

4 8 16 32 64 128
FR-FCFS Reorder Threshold

(b) Bandwidth.

Fig. 4: Effect of FR-FCFS reorder threshold.

5000
4000 =A—WCD-analytical
@ WCD-measured
£, 3000
8 2000
=
1000
O -
4 8 16 32 64 128
FR-FCFS Reorder Threshold
(a) Worst-case delay.
10000
—~A—WCD-analytical
8000 WCD-measured
2 6000
o
4000
=
2000
o N

4 8 16 32 64 128
Write Batch Size

(a) Worst-case delay.

12000
10000
8000
6000
4000

BW[MB/s]

2000

—o—BW-peak
BW-measured
4 8 16 32 64 128

Write Batch Size
(b) Bandwidth.

Fig. 5: Effect of Write Batching.

following observations. 1) Similar to the FR-FCFS threshold,
increasing the write batch size, while increasing the BW, it
also increases the WCD encountered by any request to the
DRAM. As explained in Section III, increasing the write batch
size, decreases the effect of the bus turnaround delay between
request types (switching from read to write and vice versa);
thus, it increases the effective BW. On the other hand, since
in worst case, a read request has to wait for a complete write
batch before it can get serviced, increasing the write batch size
also increases the WCD. 2) By increasing the write batch size,
the gap between the observed and analytical WCD increases
(Figure 5a). This is because higher write batching values will
require the applications to push more requests to the memory
controller to saturate the write buffer, which may not occur in
the application behavior. For instance, for write batch of 128,
to observe the analytical WCD, a read has to arrive, where
there are pending 128 writes in the write queue. In addition,
the analytical WCD assumes that all these 128 writes are row
conflicts. However, this is a pathological case that is extremely
rare to occur on reality. With higher number of writes in the
queue, it is more likely that some of these writes hit on the
same row. Therefore, the actual observed WCD will be less
than the analytical one. 3) The same observation holds for the
BW in Figure 5b.

V. RELATED WORK

The memory subsystem is considered the main bottleneck
in many computing systems [3]. Accordingly, researchers have

investigated solutions to mitigate this bottleneck in general-
purpose computing (e.g. [9], [10]). Most of these solutions
aim at increasing DRAM performance at the expense of
latency predictability. Therefore, they are ill-suited for MCS
with strict timing constraints. Recently, multiple solutions are
introduced to reconcile this problem to achieve predictability
at the first place, which are surveyed in [11]. The problem
with these solutions is that they require a complete redesign
of the memory controller, which entails them not applicable
for COTS platforms. Three previous papers have investigated
latency bounds for COTS memory controllers [5], [12], [13],
among which only [5] takes the mixed criticality nature of
modern embedded systems into account. Unlike our proposed
study, all the three works, however, focus mainly on latency
bounds of critical requests and not the system bandwidth.
Recently, [14], [15] investigated Reduced-Latency DRAM
(RLDRAM) as an alternative to the Double-Data-Rate (DDR)
DRAM in the context of real-time systems [14], [15]. Unlike
those works, this work focuses on commodity COTS platforms
that utilize DDR DRAMs.

VI. CONCLUSION

We investigate the major sources of memory interference in
COTS architectures upon deploying mixed criticality systems.
We identified two main contributors to this interference: write
batching and FR-FCFS arbitration. Both heavily affects the
system predictability because of their deployed reordering
mechanism. WE study their effects on both memory delay



and bandwidth. Our study shows that although theoretically
increasing the amount of reordering done helps increasing the
system peak (ideal) bandwidth), after certain point there are
diminishing returns in practice. In addition, such increase will
also significantly increase worst-case delays. Therefore, we
conclude that reaching a compromise point between bandwidth
and worst-case delay to meet all requirements of mixed
criticality systems is the potential direction to explore. Such
point will be application-dependent. We provide analytical
equations as well as experimental evaluation to help designers
deciding this point.

REFERENCES

[1] M. Hassan and H. Patel, “A framework for scheduling DRAM accesses
for multi-core mixed-time critical systems,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2015.

[2] M. Hassan, H. Patel, and R. Pellizzoni, “PMC: A requirement-aware
DRAM controller for multi-core mixed criticality systems,” in ACM
Transactions on Embedded Computing Systems (TECS), 2016.

[3] O. Mutlu and L. Subramanian, “Research problems and opportunities
in memory systems,” Supercomputing frontiers and innovations, vol. 1,
no. 3, pp. 19-55, 2015.

[4] D. S. Standard, “Jedec jesd79-3,” 2007.

[5] M. Hassan and R. Pellizzoni, “Bounding dram interference in cots
heterogeneous mpsocs for mixed criticality systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 11, pp. 2323-2336, 2018.

[6] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,

“Macsim: A cpu-gpu heterogeneous simulation framework user guide,”

Georgia Institute of Technology, 2012.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle

accurate memory system simulator,” IEEE computer architecture letters,

vol. 10, no. 1, pp. 16-19, 2011.

[8] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance iso-
lation in multi-core platforms,” in 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2013, pp. 55-64.

[91 O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared dram systems,” in
ACM SIGARCH Computer Architecture News, vol. 36, no. 3. IEEE
Computer Society, 2008, pp. 63-74.

[10] K. K.-W. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson,
Y. Kim, and O. Mutlu, “Improving dram performance by parallelizing
refreshes with accesses,” in 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). 1EEE, 2014, pp.
356-367.

[11] D. Guo, M. Hassan, R. Pellizzoni, and H. Patel, “A comparative study
of predictable DRAM controllers,” ACM Transactions on Embedded
Computing Systems (TECS), 2018.

[12] H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, and R. Ra-
jkumar, “Bounding memory interference delay in cots-based multi-core
systems,” in 2014 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS). 1EEE, 2014.

[13] H. Yun, R. Pellizzoni, and P. K. Valsan, “Parallelism-aware memory
interference delay analysis for cots multicore systems,” in 2015 27th
Euromicro Conference on Real-Time Systems. 1EEE, 2015, pp. 184—
195.

[14] M. Hassan, “On the off-chip memory latency of real-time systems: Is
ddr dram really the best option?” in 2018 IEEE Real-Time Systems
Symposium (RTSS). 1EEE, 2018, pp. 495-505.

[15] ——, “Reduced latency dram for multi-core safety-critical real-time
systems,” Real-Time Systems, pp. 1-36, 2019.

[7

—



