
MCXplore: An Automated Framework for Validating Memory
Controller Designs

Mohamed Hassan and Hiren Patel

version1.0

Contents
1 Introduction 1

1.1 Non model checking mode . 2
1.2 Model Checking mode . 2

2 Installation 2
2.1 Download . 2
2.2 Required tools . 2

3 Usage 3

4 Configurations 3

5 Tool Flow 4

6 Directory Structure 5

7 Temporal Logic Specifications 6
7.1 LTL specification examples for the request interrelation model 6
7.2 LTL specification examples for the command interaction model 6

8 Complete Examples 7
8.1 Request Model Example . 7
8.2 Command Model Example . 11

9 Test Suites 13

10 Citation 13

1 Introduction
MCXplore is an automation tool that generates tests to validate the memory system and evaluate its per-
formance. The novel observation behind MCXplore is the following. Regardless of various policies proposed
for the memory system, the test pattern is still the same. This test pattern consists of a sequence of memory
requests. Each request has three major components: the address, the transaction type (whether read or
write), and the transaction size (the number of bytes to transfer). Based on this observation, instead of
building a validation framework per memory policy, MCXplore relies in the input test pattern to validate
any memory policy. MCXplore has two modes of operation: non model checking mode and model-checking
mode.

1

1.1 Non model checking mode
In the first one, the user configures a set of parameters to generate the test that has the desired properties.
These parameters represent the pattern required for the address and type of transactions in the test. This
mode is suitable for validating common memory controller aspects such as:

1. Common page policies such as close-, open- and adaptive-page policies.

2. Common address mapping schemes such as traditional address mappings with any segment order. For
example, CH:RW:RNK:BNK:CL, CH:RW:BNK,RNK,CL, ..., etc. It is also suitable for non traditional
mappings such as XOR address mapping, where bank bits are XORed with low-significant row bits.

This mode has a set of predefined– yet expandable– patterns for each of the address segments as well as
the transaction type. We tabulate currently implemented patterns in Table 4. Although this model is easy
to use, it does not necessarily cover the whole state space of the test pattern.

To use this mode, the user does not need to specify any model to the tool as this mode is the default for
MCXplore. Alternatively, the user can specify this mode by setting the -m flag to noMChk. As the flow
diagram in Figure 1 illustrates, the main script for this mode is MCXplore_noMChk.pl.

1.2 Model Checking mode
The second mode leverages model checking capabilities to cover the state space of the memory input test.
Model checking automates the state-space exploration of the test generation, and provides a formal method-
ology to define test properties. We create two abstract models to express the stimulus test of the MC: a
request interrelation model, REQmdl, and a command interaction model, CMDmdl, and we encode them
as FSMs in the NuSMV model checker. The two NuSMV models are in CMDmdl.smv and REQmdl.smv
under the \Models directory, respectively. the user is able to encode test properties as specifications ex-
pressed in temporal logic formulas. Formulas are negated such that they are true if required test properties
do not exist. For examples of these formulas, see Section 7. As the flow diagram in Figure 1 illustrates,
the main two script for these two models are MCXplore_REQmdl.sh and MCXplore_CMDmdl.sh,
respectively.

2 Installation
2.1 Download
• MCXplore can be downloaded from here:

https://caesr.uwaterloo.ca/mcxplore/,
or directly from the git repository at:
https://git.uwaterloo.ca/caesr-pub/mcxplore

• You need also to download the NuSMV model checker tool from: http://nusmv.fbk.eu/ and extract
to /NuSMV directory

2.2 Required tools
MCXplore is a combination of Shell and Perl scripts. Therefore, to properly use MCxplore, please make sure
that the following tools are installed in your system:

• Perl

In addition, please make sure that you use the bash Unix shell.

• For Linux and Mac OS users, simply switch to bash by running the following command:

/bin/bash

2

https://caesr.uwaterloo.ca/mcxplore/
https://git.uwaterloo.ca/caesr-pub/mcxplore
http://nusmv.fbk.eu/

or:

chsh -s /bin/bash

• For Windows users, there exist many tools to run bash scripts on Windows. Examples include:

– Cygwin, https://www.cygwin.com/

– win-bash, http://win-bash.sourceforge.net/

3 Usage
The usage of MCXplore is as simple as invoking the MCXplore.sh script as follows:

./ mcxplore [[-m model] [-o output_file] [-t DRAM_timing_file] [-s LTL_specs_file] |[-h]]

Table 1 illustrates the possible options and their description.

Table 1: Usage arguments.
Short flag Long flag Options Description

-m --model
CMDmdl Model Checking Command model

Specify which model to useREQmdl Model Checking request model
noMChk no model checking usage. noMChk is the

default
-o --out Any valid file name specify the output file name of the gener-

ated test. results/[model]/Test.trc is the
default

-t --DDrTiming Any valid file name specify the input timing file
with DDR constraints. DDrTim-
ings/DDR3_1600.tim is the default

-s --Spec Any valid file name specify the input LTL specification file
that models the test plan. LTL-
spec/CMDmdl.spec is the default

-h --help No options prints out this usage message

4 Configurations
There are four categories of configuration parameters. the user can configure any of these parameters by
modifying the configuration.data file.

1. Parameters that configure the syntax of the output test. Table 2 tabulates these parameters with their
explanation and options. The user can modify these parameters or add a different syntax by expanding
the GenerateTest.pl file.

Table 2: Test syntax parameters.
Parameter Possible Values Description
address_length Either 32bits or 64bits Number of address bits
initial_address Hex number aligns with the address_length parameter Address of the first request in the test

(default is 00000000 for 32bit address)
initial_type Either "read" or "write" type the first request in the test

syntax
11 Address\tTransaction_size\tType (tab separated). Ex-

ample: 0x00003F87 64 R syntax of the output test12 Address\tType (tab separated). Example: 0x00003F8 R
21 Address\sTransaction_size\sType (space separated).

Example: 0x00003F87 64 R
22 Address\sType (space separated). Example: 0x00003F87

R

type_syntax
31 READ (or WRITE)

syntax of the output type32 R (or W)
33 Read (or Write)

2. Parameters that configure test semantics but are model-independent. This category includes two
parameters: the number of requests in the test and the transaction size as Table 4 explains.

3

https://www.cygwin.com/
http://win-bash.sourceforge.net/

Table 3: Model-independent configuration parameters.
Parameter Possible Values Description
number_of_requests Any positive integer total number of requests in the test

transaction_size Any positive integer Number of bytes transferred per memory
transaction

For instance, if it is a cache line size, it is 64B or 128B

Table 4: Test configuration parameters for noMChk mode.
Parameter Possible Values Description

transaction_pattern

rd All requests are read

Pattern of request type
wr All requests are write
sw The test alternates between reads and writes (rd wr rd wr

....)
sw% User configures the percentage of switching by another

parameter(switch)
random The type of each request is randomly selected

switch An integer between 0 and 100 The switching % between reads
and writes in the test

row_pattern

hit All requests target the same row

The row (page) pattern of the test
conflict Each two consecutive requests target different rows
random Row bits of the request is chosen randomly
custom_hit User configures the number of row hits by another param-

eter(num_hits)
linear Each request target row rw + 1, where rw is the row of

the precedent request
locality% User configures the percentage of row locality by another

parameter(locality)
num_hits any non-negative integer such that num_hits < number_of_requests The number of row hits in the

test
locality An integer between 0 and 100 The row locality % in the test

rank_pattern

same all requests target same rank The rank pattern of the test
interleave Each two consecutive requests target different ranks
random Rank bits of the request is chosen randomly
interleave% User configures the percentage of rank interleaving by an-

other parameter(RankInterleave)
linear Each request target rank rnk + 1, where rnk is the rank

of the precedent request
RankInterleave An integer between 0 and 100 The rank interleaving % in the

test
bank_pattern Same as rank_inteleave values The bank pattern of the test
BankInterleave An integer between 0 and 100 The bank interleaving % in the

test
channel_pattern Same as rank_inteleave values The channel pattern of the test
ChannelInterleave An integer between 0 and 100 The channel interleaving % in

the test

3. Pattern configuration parameters for the no model checking mode. Table 3 illustrates these parameters,
their possible values and their description.

4. Address mapping parameters, which decides the bits assigned to each address segment (Channel, rank,
bank, row and column).

Table 5: Address mapping parameters.
Parameter Description Example
row_mask Mask determines row bits. A bit is 1 if it is a row bit and 0 otherwise. 7FF80000: bits 19 to 30 are row bits
bank_mask Mask determines bank bits. A bit is 1 if it is a bank bit and 0 otherwise. 70000: bits 16 to 18 are bank bits
rank_mask Mask determines rank bits. A bit is 1 if it is a rank bit and 0 otherwise. E000: bits 13 to 15 are rank bits
column_mask Mask determines column bits. A bit is 1 if it is a column bit and 0

otherwise.
1FC0: bits 6 to 12 are column bits

channel_mask Mask determines channel bits. A bit is 1 if it is a channel bit and 0
otherwise.

80000000: bit 31 is the channel bit

5 Tool Flow
Figure 1 delineates the flow diagram of MXCplore. The user starts by invoking the mcxplore.sh script
with the desired model. If the model was the noMChk one, the tool invokes the MCXplore_noMChk.pl

4

mcxplore.sh

model

model
Checking?

MCXplore_noMChk.pl

read_configuration()

extract_segments()

ReadConfiguration.pl

configuration.data

user
 configurations

generate_address_pattern()

count=0

count<
num_reqs

generate_type_pattern()

count++

generate_linear_address()

AddressGeneration.pl

generate_random_address()

generate_row()

generate_column()

generate_bank()

generate_rank()

generate_channel()

CMD or
 REQ?

MCXplore_CMDmdl.sh

run NuSMV on
CMDmdl.smv

CMdmdl_parser.pl

parse CMDmdl.bmc

analyse_command()

EOF(CMDmdl.bmc)

GenerateTest.pl

generate_address()

generate_type()

print_request()

TypeGeneration.pl

generate_RD_type()

generate_WR_type()

generate_Random_type()

generate_SW_type()

MCXplore_REQmdl.sh

run NuSMV on
REQmdl.smv

REQmdl_parser.pl

parse REQmdl.bmc

EOF(REQmdl.bmc)

generate_request()

done

N

Y
YY

N

NN

done

done

Y

REQCMD

DDR.tim file LTL.spec file

LTL SpecificationsDDR timing constraints

Figure 1: MCXplore tool flow.

script. MCXplore_noMChk.pl executes the following procedure:

1. Call ReadConfiguration.pl to read the user configurations and extract the address segments.

2. Generate the request address by invoking AddressGeneration.pl and generate the request type by
invoking TypeGeneration.pl

3. Print the request by calling print_request() method in GenerateTest.pl

4. Repeat steps 2 and 3 for the number of requests specified by the user

On the other hand, if the user specified theCMDmdlmodel, the tool invokes theMCXplore_REQmdl.sh
script. MCXplore_REQmdl.sh executes the following procedure:

1. Run the NuSMV model checker on the CMDmdl.smv model. This step produces the test template
(CMDmdl.bmc), which is the path produced by bounded model checking.

2. Call CMDmdl_parser.pl to parse the test template. The parser first reads the user configurations
(Specifically the address mapping and the model-independent configurations).

3. For each state in the template, Generate a request and print it in the test output file by calling the
generate_request() method in GeenrateTest.pl script.

For the REQmdl model, MCXplore deploys a similar procedure on the corresponding scripts for that
model.

6 Directory Structure
The top-level source directory of MCXplore contains several directories. The list of those directories is the
following:

5

/Docs contains this documentation
/Mappings contains address mapping schemes (*.map files)
/Models contains the command interaction and request interrelation models
/NuSMV should contain the NuSMV model checker tool
/LTLspec contains the LTL specification files for the request and command models (*.spec files)

/DDrTimings contains values of the DDR timing constraints, which are used by the command model
(*.tim files)

/results default directory for output test files
/TestSuites contains test suites and regression tests that can be used to validate and evaluate most

functionalities of modern memory controllers
/scripts contains useful automation scripts to sweep configuration parameters

7 Temporal Logic Specifications
NuSMV model checker allows for specifications expressed in Linear Temporal Logic (LTL). Typical LTL
operations we use in MCXplore are:

F p Condition p holds in one of the future time instants
G p Condition p holds in all of the future time instants
p U q ondition p holds until a state is reached where condition q holds
X p condition p is true in the next state

To help the user in properly setting the specifications, we accompany MCXplore with a wide set of spec-
ifications for both the command interaction and the request interrelation models. Below are some examples
of these specifications and their explanation. It is worth noting that all properties are negated such that the
model checker produces the path, where this property holds.

7.1 LTL specification examples for the request interrelation model
1. A test with 40% bank interleaving and 20% row locality:

LTLSPEC G !(total_hit =2 & total_bank_interleave =4 & total_requests =10)

2. A test with 34 requests, all of them targeting same bank. Requests 1 to 17 target the same row, say
RW1. Requests 18 to 34 target the same row, say RW2, which is different from RW1, RW1 6= RW2. This
test can be used to test the adaptive page policy and First-Ready First-Come-First-Serve (FR-FCFS)
arbitration with threshold as we illustrate in the DATE paper.

LTLSPEC G (consecutive_hit =16 -> ! F (total_bank_interleave =0 & total_
requests =34 & consecutive_hit =16 & total_hit =32))

7.2 LTL specification examples for the command interaction model
The command interaction model is specifically useful for validating the correctness of the timing constraints
and verifying that no timing violations occur due to any miss match between the memory controller and the
DRAM. We refer the user to our DATE paper for more details about the command interaction model.

1. Testing the Read-To-Precharge (tRTP) constraint. the intuition behind this specification is to make
sure that the test sequence highlights the effect for tRTP on the memory utilization. To assure this,
the number of read commands has to be larger enough to subsumes the effect of the tRAS constraint
between the ACT command and the corresponding PRE command. The specification also ensures that
all requests target the same bank by asserting that the number of read commands to a different bank or
rank is zero.

6

G ! (((value_READ_TO_PRE_DELAY * num_READ_TO_PRE_DELAY + num_tCCD *
value_tCCD + value_tRCD) > (value_tRAS)) & (num_READ_TO_PRE_DELAY > 0)

& (num_Rx_d =0) & (num_Rd_s =0))

2. Testing the CAS-to-CAS (tCCD) constraint. This specification creates requests targeting same bank and
row. Hence, all requests except the first one will consist of a read command only. Each read command is
separated by tCCD cycles from the previous one.

G ! ((num_requests =50) & (num_tCCD =49) & ((num_tRL =1)|(num_tWL =1)) &
(num_tBUS =1) & (num_Rx_d =0))

8 Complete Examples
8.1 Request Model Example
Consider the test with 40% bank interleaving and 20% row locality, with the following LTL specification:

LTLSPEC G !(total_hit =2 & total_bank_interleave =4 & total_requests =10)

running the MCxplore flow for this test invokes the NuSMV model checker, which produces an intermediate
file called REQmdl.bmc. The contents of the REQmdl.bmc are shown below.

*** This is NuSMV 2.5.4 (compiled on Fri Oct 28 13:48:41 UTC 2011)
*** Enabled addons are: compass
*** For more information on NuSMV see <http :// nusmv.fbk.eu >
*** or email to <nusmv - users@list .fbk.eu >.
*** Please report bugs to <nusmv - users@fbk .eu >

*** Copyright (c) 2010 , Fondazione Bruno Kessler

*** This version of NuSMV is linked to the CUDD library version 2.4.1
*** Copyright (c) 1995 -2004 , Regents of the University of Colorado

*** This version of NuSMV is linked to the MiniSat SAT solver .
*** See http :// www.cs. chalmers .se/Cs/ Research / FormalMethods / MiniSat
*** Copyright (c) 2003 -2005 , Niklas Een , Niklas Sorensson

WARNING *** This version of NuSMV is linked to the zchaff SAT ***
WARNING *** solver (see http :// www. princeton .edu /~ chaff/ zchaff .html). ***
WARNING *** Zchaff is used in Bounded Model Checking when the ***
WARNING *** system variable " sat_solver " is set to " zchaff ". ***
WARNING *** Notice that zchaff is for non - commercial purposes only. ***
WARNING *** NO COMMERCIAL USE OF ZCHAFF IS ALLOWED WITHOUT WRITTEN ***
WARNING *** PERMISSION FROM PRINCETON UNIVERSITY . ***
WARNING *** Please contact Sharad Malik (malik@ee . princeton .edu) ***
WARNING *** for details . ***

WARNING : single -value variable ’max ’ has been stored as a constant
-- no counterexample found with bound 0
-- no counterexample found with bound 1
-- no counterexample found with bound 2
-- no counterexample found with bound 3
-- no counterexample found with bound 4
-- no counterexample found with bound 5
-- no counterexample found with bound 6

7

-- no counterexample found with bound 7
-- no counterexample found with bound 8
-- specification G !((total_hit = 2 & total_bank_interleave = 4) &
-- total_requests = 10) is false
-- as demonstrated by the following execution sequence
Trace Description : BMC Counterexample
Trace Type: Counterexample
-> State: 1.1 <-

total_requests = 1
row = same
bank = same
rank = same
channel = same
column = same
consecutive_hit = 0
consecutive_conflict = 0
consecutive_bank_interleave = 0
consecutive_same_bank = 0
consecutive_rank_interleave = 0
consecutive_same_rank = 0
consecutive_channel_interleave = 0
consecutive_same_channel = 0
consecutive_column_interleave = 0
consecutive_same_column = 0
total_hit = 0
total_bank_interleave = 0
total_rank_interleave = 0
total_channel_interleave = 0
total_column_interleave = 0
bool_same_row = FALSE
bool_same_bank = TRUE
bool_same_rank = FALSE
bool_same_channel = TRUE
bool_same_column = TRUE
max = 10000

-> State: 1.2 <-
total_requests = 2
row = diff
rank = diff
consecutive_same_bank = 1
consecutive_rank_interleave = 1
consecutive_same_channel = 1
consecutive_same_column = 1
total_rank_interleave = 1

-> State: 1.3 <-
total_requests = 3
consecutive_same_bank = 2
consecutive_rank_interleave = 2
consecutive_same_channel = 2
consecutive_same_column = 2
total_rank_interleave = 2

-> State: 1.4 <-
total_requests = 4
consecutive_same_bank = 3

8

consecutive_rank_interleave = 3
consecutive_same_channel = 3
consecutive_same_column = 3
total_rank_interleave = 3
bool_same_bank = FALSE

-> State: 1.5 <-
total_requests = 5
bank = diff
consecutive_bank_interleave = 1
consecutive_same_bank = 0
consecutive_rank_interleave = 4
consecutive_same_channel = 4
consecutive_same_column = 4
total_bank_interleave = 1
total_rank_interleave = 4
bool_same_rank = TRUE

-> State: 1.6 <-
total_requests = 6
rank = same
consecutive_bank_interleave = 2
consecutive_rank_interleave = 0
consecutive_same_rank = 1
consecutive_same_channel = 5
consecutive_same_column = 5
total_bank_interleave = 2

-> State: 1.7 <-
total_requests = 7
consecutive_bank_interleave = 3
consecutive_same_rank = 2
consecutive_same_channel = 6
consecutive_same_column = 6
total_bank_interleave = 3
bool_same_rank = FALSE
bool_same_channel = FALSE
bool_same_column = FALSE

-> State: 1.8 <-
total_requests = 8
rank = diff
channel = diff
column = diff
consecutive_bank_interleave = 4
consecutive_rank_interleave = 1
consecutive_same_rank = 0
consecutive_channel_interleave = 1
consecutive_same_channel = 0
consecutive_column_interleave = 1
consecutive_same_column = 0
total_bank_interleave = 4
total_rank_interleave = 5
total_channel_interleave = 1
total_column_interleave = 1
bool_same_row = TRUE
bool_same_bank = TRUE
bool_same_rank = TRUE

9

bool_same_channel = TRUE
-> State: 1.9 <-

total_requests = 9
row = same
bank = same
rank = same
channel = same
consecutive_hit = 1
consecutive_bank_interleave = 0
consecutive_same_bank = 1
consecutive_rank_interleave = 0
consecutive_same_rank = 1
consecutive_channel_interleave = 0
consecutive_same_channel = 1
consecutive_column_interleave = 2
total_hit = 1
total_column_interleave = 2
bool_same_column = TRUE

-> State: 1.10 <-
total_requests = 10
column = same
consecutive_hit = 2
consecutive_same_bank = 2
consecutive_same_rank = 2
consecutive_same_channel = 2
consecutive_column_interleave = 0
consecutive_same_column = 1
total_hit = 2
bool_same_row = FALSE
bool_same_bank = FALSE
bool_same_rank = FALSE
bool_same_channel = FALSE
bool_same_column = FALSE

This specific REQmdl.bmc output illustrates that the bounded model checker runs for 10 states (0 to 9)
until it reaches to a counter-example. This is clearly because we set the number of requests in the test to be
10. Each state represents a unique request. The variables that maintain the same value as the previous state
are not shown. For each address segment (row, column, ... etc.), it is either the "same" or "diff " compared
to the previous request. all other variables in each state are counters to keep track of the address pattern.
Afterwards, REQmdl_parser.pl parses this file and produces the required output test file as we show
below.

0 x00000000 R
0 x00082000 R
0 x00104000 R
0 x00186000 R
0 x00218000 R
0 x002a8000 R
0 x00338000 R
0 x803ca040 R
0 x803ca080 R
0 x803ca080 R

10

8.2 Command Model Example
Consider the test required to validate the tRTP timing constraint, with the following LTL specification.

G ! (((value_READ_TO_PRE_DELAY * num_READ_TO_PRE_DELAY + num_tCCD *
value_tCCD + value_tRCD) > (value_tRAS)) & (num_READ_TO_PRE_DELAY > 0)

& (num_Rx_d =0) & (num_Rd_s =0))

running the MCxplore flow for this test invokes the NuSMV model checker, which produces an intermediate
file called CMDmdl.bmc. The contents of the CMDmdl.bmc are shown below.

*** This is NuSMV 2.5.4 (compiled on Fri Oct 28 13:48:41 UTC 2011)
*** Enabled addons are: compass
*** For more information on NuSMV see <http :// nusmv.fbk.eu >
*** or email to <nusmv - users@list .fbk.eu >.
*** Please report bugs to <nusmv - users@fbk .eu >

*** Copyright (c) 2010 , Fondazione Bruno Kessler

*** This version of NuSMV is linked to the CUDD library version 2.4.1
*** Copyright (c) 1995 -2004 , Regents of the University of Colorado

*** This version of NuSMV is linked to the MiniSat SAT solver .
*** See http :// www.cs. chalmers .se/Cs/ Research / FormalMethods / MiniSat
*** Copyright (c) 2003 -2005 , Niklas Een , Niklas Sorensson

WARNING *** This version of NuSMV is linked to the zchaff SAT ***
WARNING *** solver (see http :// www. princeton .edu /~ chaff/ zchaff .html). ***
WARNING *** Zchaff is used in Bounded Model Checking when the ***
WARNING *** system variable " sat_solver " is set to " zchaff ". ***
WARNING *** Notice that zchaff is for non - commercial purposes only. ***
WARNING *** NO COMMERCIAL USE OF ZCHAFF IS ALLOWED WITHOUT WRITTEN ***
WARNING *** PERMISSION FROM PRINCETON UNIVERSITY . ***
WARNING *** Please contact Sharad Malik (malik@ee . princeton .edu) ***
WARNING *** for details . ***

WARNING : single -value variable ’value_tRP ’ has been stored as a constant
WARNING : single -value variable ’value_tCCD ’ has been stored as a constant
WARNING : single -value variable ’value_tRAS ’ has been stored as a constant
WARNING : single -value variable ’value_tRC ’ has been stored as a constant
WARNING : single -value variable ’value_tRCD ’ has been stored as a constant
WARNING : single -value variable ’value_tRRD ’ has been stored as a constant
WARNING : single -value variable ’value_tFAW ’ has been stored as a constant
WARNING : single -value variable ’value_tRL ’ has been stored as a constant
WARNING : single -value variable ’value_tWL ’ has been stored as a constant
WARNING : single -value variable ’value_tRTP ’ has been stored as a constant
WARNING : single -value variable ’value_tWR ’ has been stored as a constant
WARNING : single -value variable ’value_tWTR ’ has been stored as a constant
WARNING : single -value variable ’value_tRTRS ’ has been stored as a constant
WARNING : single -value variable ’value_tBUS ’ has been stored as a constant
WARNING : single -value variable ’value_READ_TO_WRITE_DELAY ’
has been stored as a constant
WARNING : single -value variable ’value_RANK_TO_RANK_DELAY ’
has been stored as a constant
WARNING : single -value variable ’value_READ_TO_PRE_DELAY ’
has been stored as a constant

11

WARNING : single -value variable ’value_WRITE_TO_READ_DELAY_B ’
has been stored as a constant

WARNING : single -value variable ’value_WRITE_TO_READ_DELAY_R ’
has been stored as a constant

WARNING : single -value variable ’value_WRITE_TO_PRE_DELAY ’
has been stored as a constant

WARNING : single -value variable ’max ’ has been stored as a constant
Warning : cannot assign value 10001 to variable num_Rx_d
Warning : cannot assign value 10001 to variable num_Rd_s
-- no counterexample found with bound 0
-- no counterexample found with bound 1
-- no counterexample found with bound 2
-- no counterexample found with bound 3
-- no counterexample found with bound 4
-- specification G !((((value_READ_TO_PRE_DELAY * num_READ_TO_PRE_DELAY +
-- num_tCCD * value_tCCD) + value_tRCD > value_tRAS &
-- num_READ_TO_PRE_DELAY > 0) & num_Rx_d = 0) & num_Rd_s = 0)
-- is false
-- as demonstrated by the following execution sequence
Trace Description : BMC Counterexample
Trace Type: Counterexample
-> State: 1.1 <-

num_requests = 0
num_tRP = 0
num_tCCD = 0
num_tRAS = 0
num_tRC = 0
num_tRCD = 0
num_tRRD = 0
num_tFAW = 0
num_tRL = 0
num_tWL = 0
num_tRTP = 0
num_tWR = 0
num_tWTR = 0
num_tRTRS = 0
num_tBUS = 0
num_Rd_s = 0
num_Rx_d = 0
num_READ_TO_WRITE_DELAY = 0
num_RANK_TO_RANK_DELAY = 0
num_READ_TO_PRE_DELAY = 0
num_WRITE_TO_READ_DELAY_B = 0
num_WRITE_TO_READ_DELAY_R = 0
num_WRITE_TO_PRE_DELAY = 0
activated_banks = 0
command = As_s
constraint = RANK_TO_RANK_DELAY
value_tRP = 10
value_tCCD = 4
value_tRAS = 24
value_tRC = 34
value_tRCD = 10
value_tRRD = 4

12

value_tFAW = 20
value_tRL = 10
value_tWL = 9
value_tRTP = 5
value_tWR = 10
value_tWTR = 5
value_tRTRS = 1
value_tBUS = 4
value_READ_TO_WRITE_DELAY = 6
value_RANK_TO_RANK_DELAY = 5
value_READ_TO_PRE_DELAY = 5
value_WRITE_TO_READ_DELAY_B = 18
value_WRITE_TO_READ_DELAY_R = 4
value_WRITE_TO_PRE_DELAY = 23
max = 10000

-> State: 1.2 <-
num_requests = 1
num_tRCD = 1
command = Rs_s
constraint = tRCD

-> State: 1.3 <-
num_requests = 2
num_tCCD = 1
constraint = tCCD

-> State: 1.4 <-
num_requests = 3
num_tCCD = 2

-> State: 1.5 <-
num_requests = 4
num_tCCD = 3

-> State: 1.6 <-
num_READ_TO_PRE_DELAY = 1
command = P
constraint = READ_TO_PRE_DELAY

Afterwards, CMDmdl_parser.pl parses this file and produces the required output test file as we show
below.

0 x00000000 R
0 x00000040 R
0 x00000080 R
0 x000000c0 R

9 Test Suites
We accompany MCxplore with sets of regression tests to validate and evaluate most of the modern memory
controller properties. Namely, we provide three test suites based on the model we use to generate this test
suite. All test suites reside in the TestSuites subdirectory. Table 6 tabulates these test suites.

10 Citation
If your use of MCXplore contributes to a published paper, please cite our DATE research paper. The paper
can be downloaded from here:

13

Table 6: Test Suites
Suite Model used Description

regressionSuite noMChk this suite includes tests that cover all combinations of the configuration
parameters in Table 4

PoliciesSuite REQmdl this suite includes tests that test most commonly used policies of com-
modity memory controllers such as page policies, address mapping and
arbitration schemes.

TimingSuites CMDmdl this suite includes tests to detect any timing violations in most timing
constraints

https://ece.uwaterloo.ca/~m49hassa/publications/MCXplore_DATE16.pdf
The bibtex citation is:

@inproceedings {MCxplore ,
title ={ MCXplore : An Automated Framework for Validating Memory Controller
Designs },
author ={ Hassan , Mohamed and Patel , Hiren},
booktitle ={ IEEE Conference on Design , Automation and Test in Europe

(DATE) },
year ={2016}

}

14

https://ece.uwaterloo.ca/~m49hassa/publications/MCXplore_DATE16.pdf

	Introduction
	Non model checking mode
	Model Checking mode

	Installation
	Download
	Required tools

	Usage
	Configurations
	Tool Flow
	Directory Structure
	Temporal Logic Specifications
	LTL specification examples for the request interrelation model
	LTL specification examples for the command interaction model

	Complete Examples
	Request Model Example
	Command Model Example

	Test Suites
	Citation

