
PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for
Multi-Core Real-Time Systems

SALAH HESSIEN, McMaster University, Canada

MOHAMED HASSAN, McMaster University, Canada

Tasks in modern embedded systems such as automotive and avionics communicate among each other using shared data towards

achieving the desired functionality of the whole system. In commodity platforms, cores communicate data through the shared

memory hierarchy and correctness is maintained by a cache coherence protocol. Recent works investigated the deployment of

coherence protocols in real-time systems and showed significant performance improvements. Nonetheless, we find these works

to require modifications to commodity coherence protocols, assume simple in-order pipelines, and most importantly suffer from

significant latency delays due to coherence interference along with average performance degradation. In this work, we propose

PISCOT: a predictable and coherent bus architecture that (i) provides a considerably tighter bound compared to the state-of-the-

art predictable coherent solutions (4× tighter bounds in a quad-core system). (ii) It does so with a negligible performance loss

compared to conventional high-performance architecture coherence delays (less than 4% for SPLASH-3 benchmarks). This

improves average performance by up to 5× (2.8× on average) compared to its predictable coherence counterpart. Finally, (iii) it

achieves that without requiring any modifications to conventional coherence protocols. We show this by integrating PISCOT on

top of two protocols with a detailed implementation with complete transient states: MSI and MESI.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Networks → Network

reliability.

Additional Key Words and Phrases: datasets, neural networks, gaze detection, text tagging

1 INTRODUCTION

Multi-core platforms are the norm nowadays in all computing systems, and real-time embedded systems are no

exception. Multi-core platforms are envisioned to be the solution for the increasing computational and data demands

in modern real-time embedded systems such as those deployed in automotive, avionics, and Internet-of-things (IoT).

Nonetheless, multi-core platforms bring their own challenges. One of the biggest challenges is the interference

among various cores in the system while competing to access shared hardware resources such as memory buses,

shared caches, and off-chip memories. This interference hinders the system analyzability since the execution time

of a task on one core now depends on the run-time behavior of tasks running on other cores. In order to provide the

timing guarantees mandated by the real-time tasks, the hardware itself must be predictable such that the delays

resulting from the aforementioned interference can be analytically bounded. To address this challenge, several

efforts have been proposed to provide predictable memory buses [15, 17], shared caches [7, 11, 27, 35], and off-chip

memories [9, 12, 16].

Despite being effective in managing the timing interference, most of these solutions assume that tasks are

completely isolated with no communication among each other. We find this assumption to limit the applicability of

these solutions in practical embedded systems, which require inter-task communication such as those deployed

Authors’ addresses: Salah Hessien, salahga@mcmaster.ca, McMaster University, Hamilton, Ontario, Canada; Mohamed Hassan, mohamed.

hassan@mcmaster.ca, McMaster University, Hamilton, Ontario, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1539-9087/2022/8-ART $15.00

https://doi.org/10.1145/3556975

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1145/3556975

2 • Hessien, et al.

in automotive [10], and avionics [43]. Consequently, recent approaches investigated the communication among

tasks through shared data [2–4, 8, 13, 14, 20–22, 25, 36, 37, 40, 41]. Among these approaches, this paper is

focusing on enabling tasks to communicate and share data by deploying hardware cache coherence, which is the

approach followed by [2, 8, 13, 14, 20–22, 36, 37, 40, 41]. This is because cache coherence is the most commonly

followed approach by commodity multi-core platforms [28], it improves overall system performance, and it does

not impose any restrictions on the embedded legacy software or the operating system. In spite of their performance

improvements over other real-time oriented data sharing techniques [41], current predictable coherence works

suffer from several limitations. 1) They require major modifications to commodity coherence protocols (and

hence, the hardware cache controllers). Those modifications are difficult to adopt by industry because of the

significant time and intellectual effort required to implement and verify coherence protocols [32, 39]. 2) They

are only considering in-order cores, where each core can have a maximum of one pending request at a time. 3)

They suffer from extremely pessimistic worst-case latencies (WCLs) that reach to thousands of cycles for a single

memory request to the shared cache as we explain in detail in Section 4. We studied in the prliminary version of

this work [19] the deployment of coherence protocols using traditional predictable bus arbiters and investigate

the sources of significant latency increase due to coherence interference (Section 4). Our study shows that most

of the traditional arbitration schemes widely used in the real-time embedded systems domain are data-sharing

oblivious. Therefore, to enable coherent data sharing while minimizing the coherence delays, we need a novel bus

architecture that accommodates for this sharing by design. Motivated by this observation, we propose PISCOT, a

predictable and coherent bus architecture. PISCOT resembles the following contributions. 1) It substantially reduces

coherence delays, while improving overall system performance (Section 5). This is achieved by decoupling the data

responses from their coherence requests, implementing a split-transaction interconnect with two separate buses.

While the coherence requests are arbitrated using Time Division Multiplexing (TDM) to ensure predictability, the

data responses are managed in a First Come First Serve (FCFS) fashion to increase average performance. Balancing

the trade-off between predictability and performance is one of the main requirements of modern embedded systems.

2) Unlike existing solutions, PISCOT does not require any modifications to the underlying coherence protocol.

This is key since modifications to coherence protocols are both hard to be adopted by commercial chips and hard

to verify [2, 32, 39]. 3) To guarantee system predictability, we conduct a detailed timing analysis that formally

provides an analytical upper bound for the latency suffered by any memory request. The derived bounds are 4×

tighter than the state-of-the-art predictable coherent buses [14, 22, 41] for a quad-core system. 4) We deploy

PISCOT in two different cache architectures currently adopted by commercial embedded systems. In the first, cores

communicate only through the shared cache, while in the second, there is a direct cache-to-cache communication

bus to increase efficiency.

This paper extends the preliminary work in [19] by making the following additional contributions. 1) One of

the major aspects of PISCOT is that it works in tandem with conventional coherence protocols without requiring

any modifications to them nor to the architecture of PISCOT. To show this aspect, we integrate PISCOT on top

of two protocols with a detailed implementation including their complete transient state machines: the Modified-

Shared-Invalid (MSI) and the Modified-Exclusive-Shared-Invalid (MESI) protocols. MESI is the protocol deployed

in several embedded commercial-of-the-shelf (COTS) multi-core platforms such as NXP’s T4080 with the quad-

core E6500 architecture [6] that is commonly used in the avionics domain [33, 34], and ARM’s advanced micro

controller bus architecture (AMBA) with the coherent hub interface (CHI). Similar to the MSI integration, MESI’s

integration also includes different bus architectures: direct cache-to-cache and no cache-to-cache buses. 2) Since

also PISCOT further enables simplifications in the coherence states due to its predicable nature, we added a section

and a table discussing in detail how PISCOT can enable such simplifications (Section 5.2). 3) We also conduct

extensive experiments to compare MSI and MESI protocol’s behavior using both PISCOT and a commodity

non real-time bus architecture as a baseline for comparison. Results confirm that PISCOT’s latency bounds are

independent of the underlying coherence protocol. 4) Another important aspect of PISCOT compared to existing

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 3

predictable coherence solutions is supporting both in-order and out-of-order cores (more details are in Section 5).

In this paper, we study the effect of varying the possible number of pending requests (usually are the number of

available entries in miss status handling registers (MSHRs)) on the system behavior (Section 7.5). 5) Finally, we

conduct extensive sensitivity experiments to study the effect of the bus slot width (shared cache access time) on the

predictability and performance of the system (Section 7.4).

We evaluate PISCOT with both the representative SPLASH-3 benchmarks as well as synthetic benchmarks.

Comparisons with existing solutions show that PISCOT achieves up to 5× better performance (2.8× on average),

while increasing memory bandwidth utilization by 12× on average across the SPLASH-3 benchmarks. We release

the full implementation details as open-source for researchers to use and build on1.

2 CACHE COHERENCE: A BACKGROUND

One of the key contributions behind PISCOT is that it offers predictable and coherent data-sharing without the need

to apply any changes to the coherence protocol itself. Therefore, PISCOT operates in tandem with any underlying

coherence protocol. In this paper, we exemplify by integrating PISCOT with both MSI and MESI protocols. MSI is

the foundation of coherence protocols deployed in most existing architectures such as the MESIF protocol in Intel’s

i7 and the MOESI protocol in AMD’s Opteron [18]. MESI also is commonly used in COTS mult-core platforms

targeting embedded domains such as avionics and automotive. Examples include the NXP’s T4080 [6] multi-core

system-on-chip (SoC), and the ARM’s CHI architecture.

Coherence State Machine. Table 1 lists the complete state machine with transitions of both MSI and MESI

protocols. For MSI, there are three stable states for any cache line in a core’s private cache; modified (M): meaning

that the cache line is valid and modified (i.e. written), shared (S): meaning that it is valid but only read, and invalid

(I): indicating a cache line that either does not exist in the private cache or has a stale data (a cache miss). A cache

line can be in the S state in multiple cores’ private caches. On the other hand, to maintain data correctness, only

one core can have a cache line in the M state at any time, while all other cores will have this line in the I state. If a

core has a load (store) miss to a cache line, it will issue a GetS() (GetM()) coherence message on the bus, and once

it receives the data in its private cache, it moves to the S (M) state. A load to a cache line in the S or M state will be a

cache hit. A store to a cache line in the M state is also a cache hit. Contrarily, a store to a cache line in the S state

has to broadcast a coherence message on the bus (either a GetM() or an Upg() based on the deployed coherence

protocol details) to inform other cores that might be in S state to invalidate their lines.

A core with a cache line in the S or M state that observes in the bus a GetM() message from another core to the

same line (called OtherGetM()) has to move to the I state. If the core was in M state it also has to send the updated

data to the shared memory and/or the requesting core based on whether there is a communication interconnect

between private caches as we discuss later in this section. A core with the cache line in the M state upon observing a

GetS() of another core (OtherGetS()) has to send the updated data similar to the previous situation, while moving to

the S state.

Transient States. The aforementioned transitions between states do not usually happen atomically. They are

usually interrupted by other requests from other cores as requests to the memory bus from different cores are

allowed to interleave (i.e. there can be multiple pending requests at the same time) to increase system performance.

For instance, a request can be pending for data to be fetched from the main memory; hence, the system allows

for other younger requests to proceed if their data is already ready to increase overall throughput. During these

interruptions of a request, the cache line may need to change its state to keep track of the updated coherence events

on the bus, and this is the rule of transient states. Generally, a cache line moves to one or multiple transient state(s)

in its journey from one stable state to another. In the interest of this paper, we classify transient states into four

distinct categories.

1https://gitlab.com/FanosLab/piscot

ACM Trans. Embedd. Comput. Syst.

4 • Hessien, et al.

Table 1. MSI and MESI Coherence Protocols with transient states. Grayed cells are the ones added by MESI,

while red bold cells are the ones possible to be removed under PISCOT as Section 5.2 details. "� ": an invalid (not

possible) situation. "−": no action needs to be taken.

State Core Event Bus Event

L
o
a
d

S
to

re

R
ep

la
ce

O
w

n
G

et
S

O
w

n
G

et
M

O
w

n
P

u
tM

O
th

er
G

et
S

O
th

er
G

et
M

O
th

er
P

u
tM

O
w

n
d

a
ta

re
sp

o
n

se

O
w

n
E

x
cl

� ����� ���� / ���� ����� ���� / ���� � � � � - - - � �

���� ����� ����� ����� -/��� � � - - - −/� �� �

��� ����� ����� ����� � � � - -/ ��� � - ��� /� -/ ���

��� ����� ����� ����� � � � ���� -/ ��� � - ��� /� �

���� ����� ����� ����� � � � - -/ ����� - ��� �������� /� �

� �
�
�� ����� ����� ����� � � � - - - � ��+�������� / � �

��� � ����� ����� ����� � � � - - - ��� �������� /� �
� �

�
����� ����� ����� � �� /� � � − − � � �

��� � ����� ����� ����� � � � - - - ��� /� �
� �

�
����� ����� ����� � �� /� � � − − � � �

���� ����� ����� ����� � -/��� � - - - −/��� �

��� ����� ����� ����� � � � -/ ���� -/ ��� � - ��� /� �
��

�
����� ����� ����� � � �� /� � − − − � �

��� � ����� ����� ����� � � � - - - ��� �������� /� �

���� ����� ����� ����� � � � - -/ ����� - ��� �������� /� �

��
�
�� ����� ����� ����� � � � - - - � ��+�������� / � �

� ��� ����� ���� / ���� -/� � � � - -/� - � �

���� ��� ����� ����� � -/��� � - -/ ���� - −/��� �

��� ��� ����� ����� � � � -/ ���� -/��� � - ��� /� �
��

�
� �� ����� ����� � � �� /� � − −/���

� � �

��� � ��� ����� ����� � � � - - - ��� �������� /� �

���� ��� ����� ����� � � � - -/ ����� - ��� �������� /� �

��
�
�� � �� ����� ����� � � � − − − � ��+�������� / � �

� ��� ��� / � ����� ���� / ��� � � � ���� ����/ � ���� ���� / � - � �
� ��� ��� ����� ���� / ��� � � � ���� ����/ � ���� ���� / � - � �

��� ��� ��� ����� � � ���� ����/ � ���� ����/ � �� ���� ���� / � �� - � �
��� ��� ����� ����� � � ���� ����/ � ���� ����/ � �� ���� ���� / � �� - � �
��� ����� ����� ����� � � -/� - - - � �

• Waiting for data and message states: Those are marked with the superscript �� in Table 1. A core in these

transient states has a pending request that is not granted access to the bus yet by the arbiter. Once the request

message is issued on the bus, due to the reorderings and delays that can happen in the bus and its non-atomic

nature, the core can first see either its coherence message or the requested data.

• Waiting for data states: Those are marked with the superscript � in Table 1. These states indicate that the core

has already observed its coherence message but is yet waiting for data.

• Waiting for message states: Those are marked with the superscript � in Table 1. A core will be in one of these

states if it receives its data before observing its coherence message.

• Response to other requests states: While a core is in one of the aforementioned three categories, it can observe

requests from other cores (OtherGetM() or OtherGetS()) to the same cache line. Hence, it may need to move to

another transient state to acknowledge the receiving of this request.

To illustrate the four categories, assume a load request to a cache line that is in the I state. Once the request misses

in its private cache, the core queues a GetS() message to its local buffer waiting to be granted access to the bus by

the arbiter. In this case (as Table 1 shows), the line will move to the IS�� state, which indicates that the core is

waiting both to observe its message and receive the data in order to move from the stable I state to the stable S

state. Afterwards, if the core observes its coherence message on the bus, it will change its state to IS� indicating

that it is now waiting for data. On the other hand, if it receives the requested data before observing its coherence

message, it has to change its state to IS� and wait for its message to appear on the bus. This is necessary since

these broadcasted messages are the contract between all cores guaranteeing that they all observe changes to cache

lines in the same order; otherwise, data inconsistencies will exist among cores. An example state from the fourth

category happens if the core while in the IS� state, observes an OtherGetM() to the same cache line. As a result, it

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 5

has to move to the IS�I state. This state indicates that the core after receiving its requested data and conducting its

load operation, has to invalidate its cache line since there is another pending store request from another core to the

same cache line.

MESI: Exclusive State. MESI protocol optimizes over MSI by adding the Exclusive (E) state. A cache line in

the E state is valid, non-modified, and exclusive (i.e. not cached by another core). The E state offers the following

two main advantages. 1) A core that has a store request for a cache line in the E state hits silently without the need

to access the shared bus or communicate with other cores. This is because E means that no other core has this

line in its private cache. 2) In architectures where direct data transfer between cores’ private caches is enabled, a

core with a cache line in the E state can send this data directly to the requesting core. On the other hand, since

stores to lines in the E state occur silently, a core that needs to evict a cache line in the E state can no longer do

this silently (like the S state). Instead, it has to issue a write-back request, similar to the M state. As a result, the

performance of MESI protocol compared to MSI is application-dependent. We provide an in-depth discussion

about this performance with thorough experiments in Section 7.6. Since one of the major contributions of PISCOT

is that it works in tandem with any underlying protocol, in this paper, we integrate PISCOT with both the MSI and

MESI protocols.

Cache-to-Cache Communication. Two architectural models are considered with regard to how data is transferred

among cores’ private caches. The first model covers architectures that do not employ a direct cache-to-cache

interconnect. In this case, the owner core always has to send the data to the shared memory (such as the last-level

cache (LLC)). Afterwards, the shared memory sends this data to the requesting core. The second model represents

architectures that support direct cache-to-cache communication. In this model, the owner core sends the data

directly to the requesting core. In addition, if the requesting core’s message was a GetS() (meaning that it is a load

request), the owner also has to send the data to the shared memory since the shared memory will be the owner in

this case. In both models, if there is no owner core (i.e. no core has the requested line in the modified state), the

shared memory is the owner and it is responsible for sending the data to the requesting core.

3 RELATED WORK

Towards adopting multi-core platforms in real-time embedded systems, several proposals are introduced to

predictably manage shared hardware components among cores [7, 9, 11, 15, 17, 27, 35]. Among these, two lines of

work are closely related to this paper, memory bus arbitration, and cache coherence.

Predictable Bus Arbitration. The memory bus in a multi-core platform is one of the main sources of interference,

which was found to solely increase the Worst-Case Execution Time (WCET) by up to 44% in a quad-core system [30].

to address this challenge, researchers proposed predictable bus arbitration schemes. This includes: Time Division

Multiplexing (TDM) [17, 23], Round Robin (RR) [29], Harmonic RR (HRR) [42], and weighted [15] arbitration

schemes. Unlike all these works, which focus only on timing interference assuming that tasks do not share data,

PISCOT is a coherent bus that takes into account the cache coherence traffic and proposes a split-transaction

architecture, where coherence requests and their responses are decoupled and arbitrated separately to increase

system performance, while offering predictability.

Predictable Cache Coherence. There are multiple recent efforts to enable predictable sharing of data among

real-time tasks through cache coherence [2, 8, 13, 14, 20–22, 33, 36, 37, 40, 41]. PISCOT differentiates itself from

these works by enabling predictable cache coherence through its bus arbitration architecture without requiring

any changes to the coherence protocol (such as in [14, 20–22, 40, 41]), the operating system’s scheduler such

as in [8], or the legacy software. The DISCO solution in [13] improves the WCL bounds by requiring a special

handling of writes compared to reads. The works in [33, 36, 37] focus on modelling of cache coherence interference

effects (formally in [36, 37] and experimentally in [33]) assuming an abstract model of existing commodity bus

architectures. However, commercial architectures are not designed in the first place to be predictable, and thus,

ACM Trans. Embedd. Comput. Syst.

6 • Hessien, et al.

Table 2. Arbiters

Approaches Arbiter Examples

COTS High FCFS [1, 24],

platforms performance split-transaction [5, 38, 45],

baseline priority-based [1, 31]

Traditional Predictable TDM: [17, 23], RR: [29],

Real-Time by-design Harmonic RR (HRR): [42],

Arbitration weighted RR: [15]

Data-Aware builds on PMSI [14], CARP [22],

Arbitration traditional arbitration HourGlass [40], PENDULUM [41]

PISCOT Predictable split-transaction –

Shared Data

Support

Predictability

Coherence

Protocol

COTS

Traditional RT

Data-Aware RT

PISCOT

Fig. 1. Capabilities

provide only very pessimistic bounds if any. PISCOT, in contrast, is a predictable split-transaction coherent bus

architecture that significantly reduces WCLs, while maintaining high average performance.

4 MOTIVATION

Three main observations motivate this work. 1) Existing solutions supporting coherence data sharing in commodity

platforms are designed for performance. Accordingly, they provide no timing guarantees, and thus, cannot be

safely used in real-time systems. 2) Traditional real-time arbiters designed for predictability are not considering

data sharing among tasks, and it has been shown that even when using such predictable arbiters, they can lead to

unpredictable behaviors when considering such sharing using coherence [14]. 3) Recent solutions that support

coherence sharing of data are building on top of these traditional arbitration schemes. This leads to two significant

drawbacks in these solutions. First, despite achieving predictability, the guaranteed latency bounds are notoriously

large (in the range of thousands of cycles for a single request) [14, 22] which can be infeasible for systems with tight

timing requirements. Second, they support coherence by proposing amendments to existing coherence protocols,

which handicaps their adoption by industry in commercial platforms. We summarize these observations in Figure 1

and Table 2, and we discuss them in details in the following subsections.

4.1 Commodity Performance-Oriented Arbitration

Arbitration among different requests in COTS platforms is usually realized using a high-performance arbiter that

favors system performance over other metrics such as fairness and predictability. Such arbiter prioritizes requests

based on their arrival time (age-based priority), where older requests are serviced before younger ones. A common

example of such arbiter is the First-Come First-Serve (FCFS) scheme [1, 24]. Such arbitration is not predictable

since it provides no latency guarantees upon accessing the shared memory. This is because one core can have a

request that is pending (theoretically) forever, while other cores are saturating the queues. In addition to age-based

arbitration, some COTS platforms also deploy another level of fixed-priority arbitration to give higher-priority

for requests from a certain processor. This also entails no guarantees are granted to lower-priority requests. A

final observation about COTS arbiters is that for cache coherent systems, the bus is usually implemented as a

split-transaction interconnect to increase system performance by concurrently handling both coherent requests

(messages) and data responses [5, 38, 39]. For instance, the ARM Corelink CCI550 dictates separate channels for

snooping requests and their corresponding responses. Similarly, the Intel’s QPI designates different virtual channels

to data and coherence messages.

4.2 Traditional Real-Time Arbitration

In multi-core real-time systems, access to the shared memory (e.g. the Last-Level Cache (LLC)) is managed through

a predictable arbiter such as (TDM) [17, 23], and Round Robin (RR) [29]. Considering the TDM arbitration example

depicted in Figure 2, a request suffers a maximum latency of one TDM period before it is granted access to the bus.

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 7

GetM(C)

Rx(C)

GetM(A)

Rx(A)

GetM(B)

Rx(B)G
e
tM
(A
)

G
e
tM
(B
)

GetM(C)

50t � 100t � 150t � 200t �t

ArbL AccL
xt -

C0 C2 C1

C0 C1 C2

Fig. 2. Traditional TDM arbitration with no shared data.

GetM(A)GetM(A) GetM(A) WB(A) Rx(A) WB(A) Rx(A) WB(A) Rx(A)

GetM(A) GetM(A) GetM(A)

x 50t � 100t � 150t � 200t � 350t � 500t � 650t � 800t � 950t � 1050t� 1100t�t

ArbL CohL AccL

t -

C1C2C0

C0

C1

C2

Fig. 3. TDM-based coherence approach [14]. Initially, C1 owns A in the M state.

For a system with � cores, this is � · � cycles, where � is the slot width in cycles. This occurs when the requesting

core just misses its own slot. Please note that throughout this section, we denote a core as �� , where � is the core

index. The GetM(B) from �2 in Figure 2 is an example of such a request, where it arrives to the private cache

controller at timestamp � . Assuming that �2 just missed its own slot, it waits until � + 150 to gain access to the bus.

Since the system in Figure 2 has three cores, this is equivalent to a one TDM period of 3 slots assuming that the

slot width allows for only one memory transfer (one request) and is 50 cycles. Once granted access to the bus, the

request conducts its memory transfer consuming an extra slot (50 cycles) and finishes at � + 200.

The big limitation of this analysis is that it only applies if cores do not share data. In the example in Figure 2,

all the cores request to access different cache lines. Consequently, the shared memory is able to respond with the

correct data in the request’s same slot. Unfortunately, this does not apply if cores are allowed to share data. It

has been shown by [14] that shared data can lead to unpredictable behavior even when deploying a predictable

arbitration such as TDM.

4.3 Coherent Shared-Data Aware Predictable Arbitration

To guarantee predictability while allowing coherent sharing of data, several recent arbitration solutions have been

proposed [13, 14, 20–22, 41]. All these solutions assume a variant of the TDM arbitration scheme and propose

coherence protocol as well as architectural changes to support predictability. Despite showing that coherence

can lead to significant performance improvements in data-sharing real-time systems, they incur significant WCL

bounds. To illustrate this drawback, Figure 3 delineates the TDM behavior for the same system in Figure 2 but with

assuming that cores can share data, and hence, they issue requests to the same cache line, A. The example follows

the protocol guidelines from PMSI [14]. It is clear from Figure 3 the significant added latency due to the coherence

interference on the shared data. The request under analysis (GetM(A) from �2) in this case has to wait for every

other core to receive the data of cache line A, conduct the store operation, and then write it back to the shared

memory. Since the slot width of the TDM allows for only one memory transfer, and every core gets one slot per

TDM period, every core now requires two TDM periods to conduct the aforementioned operation. As a result, �2’s

GetM(A) request waits until timestamp � + 1050 in Figure 3 before it can start receiving its requested data. Formally,

for a system with � cores and a TDM arbitration with shared data, a request has to wait for up to (2 ·� 2 + 2 ·�) · �

before it can start transferring its requested data [14]. The other existing solutions while supporting systems with

mixed criticalities [22, 41], this comes at the expense of incurring even larger WCL than PMSI if all cores have the

same criticality.

ACM Trans. Embedd. Comput. Syst.

8 • Hessien, et al.

TDM Arbiter

FCFS Arbiter

L1$0
C

L1$
1
C

L1$
N
C

S
h
a
re

d
 M

e
m

o
ry

Response Bus

Request Bus

Service Queue

Fig. 4. PISCOT architecture example by applying it between private L1 caches and shared memory.

It is worth noting that in Figure 3 it might seem that there are many idle slots, and thus, this large latency can be

completely avoided using a work-conserving schedule. However, this is not true since there can be requests from

other cores in the system that utilize these slots. They are not shown in Figure 3 for simplicity. For example, �0

receives its requested data at timestamp � + 400. Thus, it can issue another request afterwards in its coming slots.

Clearly, in an out-of-order architecture, more pending memory requests can also co-exist in the system.

Two key observations we make in this paper about the existing predictable cache-coherent TDM-based solutions.

First, their previously highlighted large WCLs are mainly because they inherit the scheduling paradigm of traditional

real-time arbiters (such as TDM in this case but the argument applies to other arbiters such as RR). This paradigm

when applied to systems with shared data, it couples two different types of communication into the same bus

arbitration. Namely, it couples both coherence messages and data transfers and schedules them using the same

bus arbitration, which is inherited from traditional non-data-sharing TDM schedules. This in addition to the fact

that the TDM slot has to accommodate for at least one memory transfer to be efficient to service ready memory

requests, leading to the excessively large memory delays when introducing data sharing. Second, they impose

certain modifications to the coherence protocol to enable predictability. As previously discussed, modifications to

coherence protocols are highly costly in terms of verification and are thus inconceivable to adopt by industry.

Based on these observations, PISCOT targets to enable data sharing in real-time systems, while significantly

reducing the associated coherence delays by decoupling the two different communication types. This is achieved

by using a split-bus architecture, where requests (through coherence messages) and responses (i.e. data transfers)

are issued in different buses and are managed using different arbitration mechanisms. In addition, PISCOT does

not impose any changes to existing coherence protocols; therefore, disburden system designers from the need to

re-verify the coherence protocol.

5 PROPOSED SOLUTION

In this section, we detail the architectural details of PISCOT, which Figure 4 delineates its high-level modules.

Figure 4 shows PISCOT managing accesses between private L1 caches and shared memory. The details of the

deployed coherence protocol is not shown since as stated before PISCOT operates independent of these details and

hence any COTS coherence protocol can be assumed to be implemented in these caches. Compared to the solutions

discussed in Section 4, PISCOT makes multiple architecture decisions to take into account predictability by

design, while maintaining a high average-case performance. 1) PISCOT’s architecture migrates from the traditional

arbitration schemes considered by the community (such as TDM and RR) to a split-transaction bus interconnect

that connects private caches and the shared memory as Property 1 explains.

PROPERTY 1. PISCOT implements a split-transaction bus through deploying two buses: a Request Bus

and a Response Bus. The Request Bus is responsible for broadcasting the coherence messages initiating

memory requests, while the Response Bus transfers data as a response to these requests.

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 9

: ad
A IM

()GetM A

:A M

:A I

:A M

:A M

()GetM A

()GetM A

:A M : d
A IM

()GetM A

:A M

()GetM A

: ad
A IM : ad

A IM : ad
A IM

0

1

: ()

: ()

C Rx A

C WB A

:A M : d
A IM I

1

0

0

1

: ()

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

C WB A

:A M : d
A IM

()GetM A

: ad
A IM

:A I : d
A IM

: d
A IM I

: d
A IM I

: d
A IM

:A M : d
A IM I

: d
A IM I

: d
A IM

:A IorS

2

1

1

0

0

: ()

: ()

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

C WB A

C Rx A

: d
A IM I

: d
A IM

:A I :A IorS

2

1

1

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

: d
A IM

:A I

:A I

:A IorS

2 : ()C Rx A

:A I

:A I

:A M

:A M

GetM(A)GetM(A) GetM(A)GetM(A) GetM(A)

GetM(A)

4t �t

ReqBusL RespBusL

PutM(A) PutM(A) PutM(A)

6t � 8t � 12t � 16t �

8t � 58t � 108t � 158t � 208t � 258t� 308t�

t 6t � 8t � 12t � 16t � 58t � 158t � 258t� 308t�

AccL

()WB A

ShM

()WB A

ShM

()Tx A

ShM

()Tx A

ShM

()WB A

ShM

()Tx A

ShM

xt -

xt -

: ad
A IM

2

1

1

0

0

1

: ()

: ()

: ()

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

C WB A

C Rx A

C WB A

C0 C2 C1

C1 C0 C0 C1 C1 C2

:A I

ReqBus

RespBus

C0

C1

C2

Fig. 5. An illustrative example for the operation of PISCOT. Latency components are for the getM(A) request from

�2. At different time instances: the bottom of the figure shows the state of the private core’s cache line (left side),

shared memory state (marked in red), and the Service Queue contents on the right side.

2) Aiming at performance, the Request Bus and the Response Bus operate in parallel. On the other hand,

to simplify system analysis and maintain predictability, both buses communicate through only one module: the

Service Queue. Requests broadcasted on the Request Bus are buffered into the Service Queue until

they are selected by the Response Bus’s arbiter. 3) Unlike conventional solutions that use high-performance

arbiters at the expense of predictability (e.g. FCFS), the Request Bus in PISCOT is managed using a TDM

arbiter to predictably manage interference among different cores (Property 2). To increase system performance, a

work-conserving TDM is deployed, where at any slot, if the dedicated core does not have a ready request, the arbiter

picks the next core with a pending request instead of leaving the slot idle as in traditional non work-conserving

TDM. The TDM slot allows for one coherence (demand) request from the core that owns the slot, in addition to

any response message to this demand request. Under the implemented snooping-based protocol, a maximum of

only one response is possible as a result of a demand request. This is usually happens if there is an owner core that

indicates it needs to send the data as a response to the original demand request (PutM message).

PROPERTY 2. PISCOT manages the Request Bus using a work-conserving TDM arbiter.

4) The Response Bus’s arbiter implements a First-Come First-Serve (FCFS) scheduler, and thus, serves

requests based on their arrival time on the Service Queue (Property 3). The oldest request will be at the head

of the queue, and therefore, is serviced first by the FCFS response arbiter. Once selected by the FCFS arbiter, the

requested data is transferred on the Response Bus to the requesting core’s private cache, the request message

is removed from the Service Queue, then the core proceeds with its load/store operation indicating that the

request is successfully finished.

PROPERTY 3. PISCOT manages the Response Bus using a FCFS arbiter.

5) An important contribution of PISCOT compared to existing predictable coherence solutions is that it supports

out-of-order execution. PISCOT does so by allowing cores to have multiple outstanding requests, while distin-

guishing between two different types of outstanding requests from cores to the coherent cache hierarchy: pending

requests (not issued yet, Definition 5.1) , and in-service requests (issued but not finished yet, Definition 5.2). While

ACM Trans. Embedd. Comput. Syst.

10 • Hessien, et al.

PISCOT allows a core to have multiple of the former (usually decided by the number of MSHR entries), it limits

the later to be one per core.

Definition 5.1. (A Pending Request) is a request that misses in the core’s private cache and waiting to be issued

by the arbiter to the Request Bus to be serviced.

Definition 5.2. (An In-Service Request) is a request that misses in the core’s private cache and is granted access

to the shared Request Bus but is still waiting for its data response.

According to Property 4, outstanding requests from a certain core would remain in its local buffer and will not

be picked by the TDM arbiter if the core already has one request in-service (i.e. queued in the Service Queue).

The rationale for this is to limit the coherence interference among cores such that a request from any core can suffer

interference due to a maximum of only one request from each other core, which leads to tightening worst-case

latencies and minimizing interference from other cores compared to the conventional MSI protocol with FCFS

split-transaction bus as we detail in the latency analysis in Section 6.

PROPERTY 4. PISCOT supports Out-of-Order (OOO) architectures by allowing cores to issue multiple out-

standing requests. However, to limit coherence interference, it only services at most one request from any given

core at a time.

It is crucial to point out that although PISCOT limits in-service requests to one per core, it is still can leverage

the OOO significant performance improvement over in-order cores supported by the previous predictable coherent

protocols. This is because with this distinguish between pending and in-service requests, PISCOT allows private

cache hits OOO and independent of the pending requests, which enables the usage of non-blocking caches and

hits-under-misses.

5.1 Illustrative Example

To better explain the operation of PISCOT, we use the same example from Section 4 for a system with three cores:

�0–�2 and delineates PISCOT’s behavior in Figure 5. The example focuses on a single cache line A, which is

assumed to be initially owned by�1. At timestamp � − � , a store request to A from�0 misses in its private cache (it

was originally in I state). As a result, a GetM(A) message is placed in its cache controller’s local buffer waiting for

�0’s slot on the request bus. The line state changes in the private cache from I to IM�� waiting for its message

to appear on the bus. The same situation occurs for �2 at timestamp � . At � + 4, �0 is granted a slot by the TDM

arbiter and its request is issued on the Request Bus. The coherence message is assumed to consume two cycles

to be broadcasted. Accordingly, �0 observes its OwnGetM(A) on the bus and move to IM� while waiting for data.

On the other hand, once �1 observes �0’s GetM(A) (OtherGetM(A)) and since �1 is the owner of A, it responds

with placing the updated data in its local buffer to be written back to the shared memory (timestamp � + 6) and

moves to I state. In addition, two actions are pushed into the Service Queue as a result of�0’s request. This is

because �1 has to write back its updated A first to the shared memory and then the shared memory will send the

data to �0; these are indicated in Figure 5 in the Service Queue as �1:WB(A) and �0:Rx(A), respectively.

Simultaneously at � + 8, a GetM(A) request from �1 arrives and is issued on the Request Bus immediately

since it is �1’s slot. Similar to what happened during �0’s slot, �1 moves to the IM� state and two actions are

pushed into the Service Queue: �0:WB(A) and �1:Rx(A). The reason for this is that �0 should obtain its

requested data first, according to the FCFS schedule, conduct its store operation, and write back the updated data to

the shared memory before �1 can proceed with its GetM(A) request. For the same reason, �0 moves to the IM�I

state. This is indicated at timestamp � + 12. Now, �2 is finally granted access to the Request Bus and issues

its request. Similar events to those during �1’s slot occur with the difference that �1 is the owner responsible to

write-back A before the shared memory sends it to �2 according to the FCFS order. For the Response Bus, it

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 11

services requests in the Service Queue in order of their arrival as previously explained. Assuming that one

data transfer requires 50 cycles, it finishes the data transfer of �1’s WB(A) to shared memory at � + 58. �0’s Rx(A)

from shared memory at � + 108, performs its store operation and places the new data in its local buffer and moves to

I state. �0’s WB(A) to shared memory finishes at � + 158. �1’s Rx(A) from shared memory at � + 208, performs

its store operation and places the new data in its local buffer and moves to I state. �1’s WB(A) to shared memory

finishes at � + 258, and finally �2 receives A from shared memory at � + 308.

Comparing this with the behavior of PMSI adopting the traditional TDM bus in Figure 3, it shows the clear

advantage of PISCOT that reduces the total latency of the same sequence of memory requests by 792 cycles (from

� + 1100 to � + 308). More detailed comparisons on the effect of both WCL as well as average performance are

introduced in Section 7.

5.2 Coherence Protocol Simplification
As we discussed earlier, a key aspect of PISCOT is that it enables predictably and coherently sharing data without

any modifications to the underlying coherence protocol itself. Therefore, PISCOT arbitration mechanism explained

so far operates in tandem with any coherence protocol. Moreover, our investigation shows that deploying PISCOT

can in fact simplify the coherence protocol by removing some of its transient states due to its predictable architecture.

In this section, we iterate through the states that are no longer needed upon adopting PISCOT as the bus arbitration

mechanism, while the underlying coherence protocol is MSI or MESI. Before doing so, it is worth noting however

that, this does not mean that PISCOT obligates the removal of those transient states since as aforestated, PISCOT

does not require any changes to the coherence protocol. Instead, if one was to design a coherence protocol with

PISCOT, those states become obsolete. To verify this theory, in our implementation of the detailed MSI and MESI

protocols, we adopted two versions: 1) the original protocol with all the states including those that are not necessary

(i.e., fully implementing Table 1), and 2) the protocol with only the necessary states. States and transitions that can

be removed under PISCOT are indicated in red bold text in Table 1, while the new simplified protocol (under both

MSI and MESI) is shown in Table 3. Confirming our analysis, simplified protocols exhibit the exact same behavior

as their original counterparts and the obsolete states are not observed at all during both verification and execution.

We now detail those unnecessary states.

Two types of transient states are not necessary under PISCOT. First type is the waiting for message states

explained in Section 2. This includes three states for MSI: IM�, IS�, and SM�, and a forth one in MESI: IE�.

Based on the discussed operation of PISCOT, this situation will never occur for the following reason. A data

transfer occurs on the Response Bus only when its corresponding message is picked up from the Service

Queue by the FCFS arbiter. However, a message is only queued into the Service Queue when it is issued

on the Request Bus, which also means that the message is observed by the requesting core. Therefore, a core

will never receive its requested data before observing its own message. This reflects in Table 3 as marking these

scenarios as impossible ("� ").
Second type includes the states that track the fact that there are multiple pending requests from other cores

to the same cache line. This includes two states for MSI: SM�SI, and IM�SI and a third one in case of MESI:
IE�SI. These states indicate that while pending for data to write, the core first observed an OtherGetS(). As a
result, eventually after conducting the store (or exclusive read) operation, it has to send data and then move to S
state, and then observed another OtherGetM() message, and hence, the core must eventually invalidate. Those states
are originally needed for the core to keep track of the order of those other messages and to know once received
its data and performed its operation, which core to send the data to. In PISCOT, nonetheless, keeping order of
requests is simply maintained by the Service Queue. Accordingly, the core does not need to track the order
of other messages, and it only needs to track what state to move to eventually after receiving its data. Therefore,

as indicated by Table 3, if a core is in the SM�S state and observes an OtherGetM(), it can move to SM�I instead

of SM�SI. Similarly, if a core is in the IM�S state and observes an OtherGetM(), it can move to IM�I instead of

IM�SI. This removes the need to these two transient states in MSI. Similarly for MESI, if a core is in the IE�S

ACM Trans. Embedd. Comput. Syst.

12 • Hessien, et al.

Table 3. Simplified MSI and MESI protocols under PISCOT. Grayed cells are the ones added by MESI. "� ": an

invalid (not possible) situation. "−": no action needs to be taken.

State Core Event Bus Event

L
o
a
d

S
to

re

R
ep

la
ce

O
w

n
G

et
S

O
w

n
G

et
M

O
w

n
P

u
tM

O
th

er
G

et
S

O
th

er
G

et
M

O
th

er
P

u
tM

O
w

n
d

a
ta

re
sp

o
n

se

O
w

n
E

x
cl

� ����� ���� / ���� ����� ���� / ���� � � � � - - - � �

���� ����� ����� ����� -/��� � � - - - � �

��� ����� ����� ����� � � � - -/ ��� � - ��� /� -/ ���

��� ����� ����� ����� � � � ���� -/ ��� � - ��� /� �

���� ����� ����� ����� � � � - -/ ��� � - ��� �������� /� �

��� � ����� ����� ����� � � � - - - ��� �������� /� �

��� � ����� ����� ����� � � � - - - ��� /� �

���� ����� ����� ����� � -/��� � - - - � �

��� ����� ����� ����� � � � -/ ���� -/ ��� � - ��� /� �

��� � ����� ����� ����� � � � - - - ��� �������� /� �

���� ����� ����� ����� � � � - -/ ��� � - ��� �������� /� �

� ��� ����� ���� / ���� -/� � � � - -/� - � �

���� ��� ����� ����� � -/��� � - -/ ���� - � �

��� ��� ����� ����� � � � -/ ���� -/ ��� � - ��� / � �

��� � ��� ����� ����� � � � - - - ��� �������� /� �

���� ��� ����� ����� � � � - -/ ��� � - ��� �������� /� �
� ��� ��� / � ����� ���� / ��� � � � ���� ����/ � ���� ���� / � - � �
� ��� ��� ����� ���� / ��� � � � ���� ����/ � ���� ���� / � - � �

��� ��� ��� ����� � � ���� ����/ � ���� ����/ � �� ���� ���� / � �� - � �
��� ��� ����� ����� � � ���� ����/ � ���� ����/ � �� ���� ���� / � �� - � �
��� ����� ����� ����� � � -/� - - - � �

state and observes an OtherGetM(), it can move to IE�I instead of IE�SI. Note that this type of states can include
more than two states in more complicated protocols, which further increases the simplification benefit of PISCOT
for such protocols.

It is also important to mention that this simplification does not affect by any means the correctness of the

coherence protocol for data sharing. This can be reasoned about from two angles. First, from theory perspective, by

construction, the removed states cannot be visited at all under the operation of PISCOT as detailed in the previous

explanation. Second, from empirical verification perspective, as aforementioned, we implement both the full state

machine of the protocol as well as the simplified one and we run all our evaluation using both. For all experiments

including real benchmarks from the SPLASH-3 suite as well as data-stressing synthetic micro-benchmarks, both

implementations show exactly the same behavior. States to be removed are never visited in the full protocol, while

all other states and transitions are confirmed to be visited in both implementations. This empirically proves that the

behavior of the simplified protocol under PISCOT is exactly the same as the full protocol.

5.3 Satisfying Coherence Predictability Invariants

Coherence protocols can generally lead to unpredictable behaviors if not carefully managed. In addition, previous

works have shown that combining conventional coherence protocols with traditional predictable arbiters also breaks

system’s predictability [14]. Since we claim that PISCOT indeed achieves predictability by utilizing conventional

coherence while deploying the proposed split-transaction predictable arbiter, we believe it is necessary to elaborate

more on how PISCOT achieves this predictability. Authors of [14] introduced 6 invariants that they stated that

they must be satisfied to ensure predictability in the existence of coherence. We now show how PISCOT, unlike

PMSI [14], is satisfying those invariants without the need to modify the coherence protocol. This discussion also

illustrates the novel operation of PISCOT compared to traditional predictable arbiters such as TDM when tasks can

share data. For inclusiveness, we state each invariant and then prove how PISCOT satisfies it. We prove each case

by contradiction starting with a hypothesis that PISCOT breaks such invariant and then show that this contradicts

PISCOT’s operation explained at the beginning of this section.

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 13

INVARIANT 1. A predictable bus arbiter must manage coherence messages on the bus such that each core may

issue a coherence request on the bus if and only if it is granted an access slot to the bus.

LEMMA 5.3. PISCOT satisfies Invariant 1.

PROOF. The proof is trivial since allowing a core to send a request without being granted access by the arbiter

contradicts with PISCOT’s TDM arbiter at the Request Bus. □

INVARIANT 2. The shared memory services requests to the same line in the order of their arrival to the shared

memory.

LEMMA 5.4. PISCOT satisfies Invariants 2.

PROOF. Let ���� and ��� � be two requests to the same cache line such that ���� arrived to the shared memory

first. Assume that the shared memory serviced ��� � before ���� such that Invariant 2 is broken. (1)

Now considering PISCOT’s operation, ���� will arrive to the shared memory first only if it is broadcasted on the

Request Bus first. Hence, ���� arriving at the shared memory first indicates that it has been queued into the

Service Queue ahead of ��� � . Now, according to the Response Bus’s FCFS, ���� must be serviced before

��� � . (2)

(1) and (2) contradicts, which completes the proof. □

INVARIANT 3. A core responds to coherence requests in the order of their arrival to that core.

LEMMA 5.5. PISCOT satisfies Invariant 3.

PROOF. Let ���� (�) and ��� � (�) be two requests to cache lines � and � respectively that are owned by Core

C� such that C� observes ���� (�) first. To break Invariant 3, PISCOT has to service ��� � (�) before ���� (�). (1)

Now, according to PISCOT’s operation, a core responds to a request for a cache line that it owns by placing the

data immediately in its local buffer. Additionally, a WB action is queued into the Service Queue along with its

initiating coherence message of the request itself during the same Request Bus’s TDM slot. For instance, at

time � +8 in Figure 5,�0’s GetM(A) message resulted in pushing two actions to the Service Queue: 1)�1 has to

write back A (WB(A)) first and only afterwards 2) �2 can receive its requested data (RX(A)) from shared memory.

Since C� observes ���� (�) first, it mandates under PISCOT that ���� (�) was issued in the Request Bus before

��� � (�). Additionally, since requests are queued in the Service Queue based on their appearance timestamp on

the Request Bus, it mandates that ���� (�) and its corresponding WB(A) are queued in the Service Queue

ahead of ���� (�) and its WB(B). Finally, according to the Response Bus’s FCFS policy, ���� (�) will get its

data before ���� (�). (2)

(1) and (2) contradicts, which completes the proof. □

INVARIANT 4. A write request from a core that is a hit to a non-modified line in its private cache has to wait

for the arbiter to grant this core an access to the bus.

LEMMA 5.6. PISCOT satisfies Invariant 4.

PROOF. Let ���� (�) be a write request from core C� to line � that C� has in the S state in its private cache. To

break Invariant 4, PISCOT shall allow ���� (�) to hit in the private cache and execute the operation silently without

waiting for any permission from the bus arbiter. (1)

According to PISCOT’s coherence protocol inherited from conventional MSI/MESI (Table 1), a store to a cache

line in S state has to issue a getM() coherence message and wait in the SM�� state. Afterwards, this message is

only issued on the bus once its core is granted access according to the Request Bus’s TDM schedule. (2)

(1) and (2) contradicts, which completes the proof. □

ACM Trans. Embedd. Comput. Syst.

14 • Hessien, et al.

INVARIANT 5. A write request from a core that is a hit to a non-modified line, A, in its private cache has to

wait until all waiting cores that previously requested A get an access to A.

LEMMA 5.7. PISCOT satisfies Invariant 5.

PROOF. Let cache line � to be initially in the S state in core C �’s private cache. Let also ���� (�) be a read

request from core C� to cache line � that is broadcasted on the bus at time �1. Then, assume that C � at time �1 + �

(where � > 0) has a store request ��� � (�) to �. To break Invariant 5, assume that ��� � (�) is serviced before

���� (�). (1)

However, from Lemma 5.6, it follows that ��� � (�) has to wait for C �’s TDM slot on the Request Bus to

broadcast a ���� (�) message on the bus before it can proceed with its store operation. Assume that this happens

at time �2. Since ��� � (�) arrived at � + � , it follows that �2 ≥ �1 + � . As a result and from Lemma 5.4, ���� (�)

request is serviced before ��� � (�) since �2 > �1. (2)

(1) and (2) contradicts, which completes the proof. □

INVARIANT 6. Each core has to deploy a predictable arbitration between its own generated requests and its

responses to requests from other cores.

LEMMA 5.8. PISCOT satisfies Invariant 6.

PROOF. Assume a system with � cores C0 to C� such that one core C�, 0 ≤ � ≤ � , has a request to service

from the memory, say ���� , while all the other � − 1 cores keep issuing requests to cache lines that are modified

(owned) by C�. To break Invariant 6, C� keeps servicing these requests and is not granted a guaranteed time at all

where it can finish its ���� request. (1)

Now, we discuss how PISCOT schedules these requests. First, each core can only issue requests during its dedicated

TDM slot (Lemma 5.3). Second, an owner core responds to requests from another core immediately during this

other core slot and not its own slot (Lemma 5.5). Accordingly, for our dictated scenario, ���� has a guaranteed time

slot to be issued on the Request Bus. Finally, since the Response Bus services requests in their order on the

Service Queue, ���� is guaranteed to finish its data transfer once all requests in front of it in the Service

Queue finish their transfers. Now, it remains to show that the number of these requests is bounded. According

to the operation described at the beginning of this section, PISCOT only allows a maximum of one request from

any core at any time in the Service Queue. As a result, ���� cannot have more than � − 1 requests ahead of

it Service Queue, which guarantees it a bound on the time it can be serviced (Section 6 provides a detailed

latency analysis to derive these bounds). (2)

For now, (2) clearly contradicts (1), which completes the proof. □

6 ANALYTICAL WORST-CASE LATENCY

We derive the WCL suffered by any single request to the cache hierarchy that is managed by PISCOT. In doing so,

we will use Figure 5, where the GetM(A) from �2 is the request under analysis or ���. As previously explained, the

system in Figure 5 has three cores. As the figure illustrates, upon the arrival of the ��� at timestamp � , there is a

pending request from�0 to the same cache line A, which is initially owned by�1 in the M state. Generally, from its

arrival to the private cache controller buffer until it completely receives the requested data, a request suffers from

three different latency components. Namely, it suffers from latency due to arbitration on the request bus, denoted

as �������, latency due to arbitration on the response bus, denoted as �������, and finally the latency needed to

transfer its data from the memory denoted as ����. The ���� depends on the time required to access the shared

memory and transfer one cache line to the requesting core’s private cache. Now, we derive the worst-case latency

of each of the other two components. It is worth mentioning that since the architecture and operation of PISCOT is

independent of the underlying protocol. By construction, the driven latency bounds are the same for both MSI and

MESI. We will further evaluate this in Section 7.6.

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 15

LEMMA 6.1. Worst-Case Request-Bus Latency (���������). For a system with � cores, a request has to wait

for a maximum of ��������� cycles as calculated in Equation 1 before it is granted access to the request bus,

where ���� is the TDM slot width of the request bus in cycles.

���������
= � · ���� (1)

Recall that the request bus is managed using a TDM arbiter. In the worst case, the ��� arrives such that its core

has just missed its own slot. Since we have � cores and each core is allocated one TDM slot of width ���� , the ���

has to wait for � · ���� cycles before its corresponding core gets another slot. In Figure 5, ���� = 4 cycles and

� = 3; thus, the GetM(A) from �2 waits until � + 12 to gain access to the bus.

LEMMA 6.2. Worst-Case Response-Bus Latency (���������). For a system with � cores, a request has

to wait for a maximum of ��������� cycles from its arrival time to the Service Queue before it can start

receiving its requested data. ��������� is calculated by Equation 2, where ���� is the time required to conduct

one memory transfer on the response bus.

���������
= (2 · � − 1) · ���� (2)

Recall that the Response Bus services requests that arrive to the Service Queue from the Request

Bus in a FCFS fashion. In addition, PISCOT allows each core to have at most one request in the Service

Queue at any given time. Accordingly, the ��� waits in worst-case for a request from every other core to get

serviced. Moreover, in worst-case, each request can require two memory transfers. This is because each request can

be modified by another core and hence requires a write-back before the shared memory can send the updated data

to the requesting core. Since we have � − 1 other cores, this consumes a total of (� − 1) · 2 · ���� . Finally, the ���

itself in worst-case requires a write-back before it can start transferring its own data, which consumes an additional

���� . This leads to ���������
= (� − 1) · 2 · ���� + ���� or (2 · � − 1) · ���� . In Figure 5, where ���� = 50 cycles,

the GetM(A) from �2 incurs a ������� from � + 8 to � + 258, which is 250 cycles.

LEMMA 6.3. Total Request Worst-Case Latency (������). For a system with � cores, the maximum total

latency that a request can encounter from its arrival time to its private cache controller before it can start receiving

its requested data can be calculated as:

������
= � · (���� + 2����) (3)

Since ������
= ��������� + ���������� + ����, the proof directly follows from Lemmas 6.1 and 6.2, and

the fact that ���� = ���� per definition.

6.1 Direct Cache-to-Cache Communication

In this case, only one response slot is needed for any request as Lemma 6.4 proves. Therefore, the total request

WCL for such architecture reduces to the value in Lemma 6.5.

LEMMA 6.4. Worst-Case Response-Bus Latency with Cache-to-Cache Support (���������
�2�

). For a system

with � cores that supports direct communication among cores’ private caches, the maximum latency a request

can suffer from its arrival time to the global response queue before it can start receiving its requested data can be

calculated as in Equation 4, where ���� is the time required to conduct a memory transfer on the response bus.

���������
�2� = (� − 1) · ���� (4)

The proof directly follows from the proof of Lemma 6.2, with the exception that only one response slot is

required per core instead of two as follows. For any request, there are three possibilities. 1) A core requests to read

from or write to a cache line that is up-to-date at the shared memory. In this case, the shared memory transfers this

line to the requesting core. 2) A core requests to write to a line that is modified by another core. Thus, the owner

ACM Trans. Embedd. Comput. Syst.

16 • Hessien, et al.

core has to send this line to the requesting core. Since the latter is going to update the line, the shared memory does

not need to receive the line at the moment. 3) A core requests to read from a line that is modified by another core.

In this case, the owner has to send this line to both the requesting core and the shared memory. However, since the

architecture supports cache-to-cache communication, the data can be sent to both at the same slot. This proves that

under all these possibilities, only one response slot is needed instead of two compared to Lemma 6.2. In conclusion,

the ���������
�2�

= (� − 1) · ���� .

LEMMA 6.5. Total Request Worst-Case Latency with Cache-to-Cache Support (������
�2�

). For a system with

� cores that supports direct communication among cores’ private caches, the maximum total latency that a request

can encounter from its arrival time to its private cache controller before it can start receiving its requested data

can be calculated as:

������
= � · (���� + ����) (5)

The proof directly follows from summing the latency components in Lemmas 6.1 and 6.4, and the ����.

6.2 Total Task’s Worst-Case Memory Latency

The latencies derived so far are concerned with a single memory request. However, to derive the total task’s WCET,

the total memory latency,����, has to be obtained and then added to the worst-case computation time,���� ,

such that:

���� =���� +���� (6)

Let������ to be the per-request WCL to differentiate it from the total ����, where������ is either the

������ in Lemma 6.3 if no cache-to-cache is supported, or the ������
�2�

in Lemma 6.5 otherwise. We now show

different approaches to utilize this������ to derive����.

6.2.1 Using total number of requests. The first approach directly obtains���� through Equation 7, where

���� is the worst-case total number of issued memory requests by the task. ���� can be obtained by statically

analyzing the task in isolation [15].

���� = ���� ×������ (7)

6.2.2 Distinction between private and shared data. Although the bound provided in Equation 7 is safe, it is

rather pessimistic. This is because it assumes that all requests are misses, while in reality some of the requests will

hit in the private caches and thus suffer a much less latency than������ . One challenge in data-sharing systems

is that whether a task access to shared data hits or misses in the private cache depends on the access pattern of

competing tasks, entailing that no reasoning can be made about whether this access hits or misses in the private

cache by statically analyzing the task in isolation. Even worse, since shared cache lines can conflict with private

lines in the core’s private cache and hence evict each other, no analysis can be applied to access to private data

as well. In this case, Equation 7 applies. In contrast, if private and shared data are isolated from each other; for

instance, by mapping them to different cache sets, tighter memory latency bounds can be obtained for requests

to the private data. Assuming this isolation, a task’s hit ratio to the private data obtained from analyzing the task

in isolation still holds upon interference from co-running other tasks. As a result, in such system, we can obtain

the���� as in Equation 8, where �������� is the number of requests to private data, among them ����
����

ℎ��
are

hits in the private cache, and ����
����
���� are misses. �ℎ�� is the hit latency of the private cache and �����ℎ�� is the

number of requests to shared data. Since �ℎ�� <<������ (�ℎ�� is one or two cycles in modern architectures), the

���� bound in Equation 8 is generally tighter than that of Equation 7. The actual values depend on the ratio of

requests to private and shared data, and hence, is application dependent.

���� =����
����

ℎ��
× �ℎ�� + (����

����
���� + �����ℎ��) ×������ (8)

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 17

0

500

1000

1500

2000

2500

W
C

L
[c

y
c]

PMSI PISCOT PISCOT-C2C ByPassShared

Fig. 6. Per-request WCL for SPLASH-3 suite.

6.3 Replacement of Dirty Cache Lines
The analysis in Lemmas 6.1–6.5 assumes that when a request misses in the private cache, it is sent directly to the

bus arbiter to fetch the requested data. However, it is possible that the requested cache line is mapped to an entry

that already has a valid data of another cache line. This is called a cache conflict. In this case, the previous cache

line is to be evicted from the private cache and the requested cache line is to be fetched to the same entry. If the

evicted cache line has modified data, it has to be written first to the shared memory; otherwise, this data is going to

be lost. This adds an extra latency of one memory transfer (or ����) for each miss request in the worst case. In other

words, this adds � × ���� to the latencies in Lemmas 6.3 and 6.5. However, assuming that every request is going to

an eviction to a modified line is overly pessimistic and a tighter bound can be obtained as follows.

6.3.1 Total number of writes. Since the additional latency component is caused only upon evicting a dirty cache

line, the total number of these replacements is bounded by the total number of write requests of the task,����.

Accordingly, the effect of the replacement is better to be considered at the task level by updating Equation 7 to:

���� = ���� ×������ +���� × ���� (9)

6.3.2 Distinction between private and shared data. Moreover, if the isolation between private and shared
data discussed in Section 6.2.2 is adopted, the delay effects of replacement can be further reduced. This is because
the number of replacements happening withing private data can also be obtained from analyzing the task using
existing static analysis tools. Therefore, integrating the effect of replacements in Equation 8 leads to the����
in Equation 10, where ��������� is the worst-case number of dirty cache line replacements within private data,

�����ℎ�� is the worst-case number of write requests to shared data.

���� = ����
����

ℎ��
× �ℎ�� + ��������� × ���� + (����

����
���� + �����ℎ��) ×������ +�����ℎ�� × ���� (10)

7 EVALUATION

We develop an open-source simulation framework 2 to evaluate the performance of PISCOT and compare it with

state-of-the-art solutions. The simulation environment consists of a multi-core system with configurable number of

2https://gitlab.com/FanosLab/piscot

ACM Trans. Embedd. Comput. Syst.

https://gitlab.com/FanosLab/piscot

18 • Hessien, et al.

0

500

1000

1500

2000

2500

Synth1

W
C

L
[c

y
c]

PMSI PISCOT PISCOT-C2C ByPassShared

Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9

Fig. 7. Per-request WCL for the synthetic workloads.

cores and cache organization. The simulator parameters are chosen to emulate the behavior of quad-core system

running at 2.5GHz with out-of-order pipelines, 8KB direct-mapped L1 per-core private cache, and a 4MB 8-ways

set-associative L2 shared cache across all cores. Both L1 and LLC have a cache line size of 64 bytes. Furthermore,

each core and LLC/shared memory are embedded with cache controller units which implement the MSI coherence

state machine as described in sSection 2. In addition, we also compare in Section 7.6 both PISCOT and the baseline

FCFS using the MESI protocol.

The collection of these coherence controllers are connected to the memory bus using bi-directional FIFO queues

which are used for buffering incoming and outgoing messages generated by the coherence protocol. For PISCOT,

the request and the response buses are split and operate independently. The former uses work-conserving TDM

arbitration amongst cores with a slot width of 4 cycles (���� = 4 cycles), while the latter services the responses

in FCFS fashion assuming the access latency to the LLC is fixed equals to 50 cycles (���� = 50 cycles). The

effect of the LLC access latency on the system performance is explored in Section 7.4. Accesses that hit in the

L1 consume one cycle. We use a perfect LLC cache similar to existing works [14, 22] to avoid extra delays from

accessing off-chip DRAM to measure only coherence and memory bus latencies. The DRAM access overheads can

be computed using other approaches such as [9, 16], and they are additive [44] to the latencies derived in this work.

The address translation between virtual CPU address and physical memory address is disabled such that all

memory addresses generated by the cores are physical memory addresses. The maximum number of pending

requests (��������) a core can issue is set to 4 requests. This allows the core to issue multiple memory requests

in parallel. Section 7.5 studies the effect of the ��������’s value on the system performance. The private cache

controller has to track all pending requests issued on the bus and stall the core pipeline if it reaches to the maximum

��������. In addition, the controller needs to ensure that there is no more than one coherent message issued on

the bus or in its local buffer in case of multiple cache misses occur on the same cache line. Benchmarks. We

use the SPLASH-3 benchmark suite since it is a representative of multi-threaded applications with shared data.

In addition, we craft 9 synthetic workloads to stress the behavior of the evaluated approaches. All the synthetic

workload resemble the maximum data sharing among cores (all lines are shared). They only differ in their memory

intensity and the read/write ratio.

7.1 Per-Request Worst-Case Latency

Figures 6 and 7 depict the WCL for any request to the cache hierarchy for both SPLASH-3 benchmarks and the

synthetic workloads, respectively. The figures show both the analytical WCL bounds (T bars) and the observed

(experimental) WCL (colored solid bars). We compare the WCL of the two PISCOT schemes (where PISCOT-C2C

is the one supporting cache-to-cache communication) with PMSI and not caching the shared data (BypassShared)

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 19

0 5000 10000 15000 20000 25000
0

200

400

600

800

1000

1200

0 100 200 300 400
0

200
400
600
800
1000
1200

(a) MSI

2000 4000 6000 8000
100

00
120

00
140

00
0
50
100
150
200
250
300
350
400

(b) PISCOT

Fig. 8. Request latency histogram for the Ocean benchmark with the no cache-to-cache transfer architecture. �-axis

is the latency in cycles and �-axis is the number of requests encounter this latency.

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

P
IS

C
O

T

P
IS

C
O

T
-C

2
C

barnes cholesky fft fmm lu_non_contig ocean radiosity radix raytrace volrend water_nsquared water_spatial

[c
y

c
in

 M
il

li
o

n
s]

RespL ReplcL ReqL HitsL

Fig. 9. Total observed and analytical memory latency of Splash-3 benchmarks. Values in y-axis are in log scale.

approaches in [11, 26]. From this experiment, we make the following observations. 1) For both PISCOT and

PISCOT-C2C, all the observed WC latencies are always within the analytical worst-case latency bounds. 2) PISCOT

shows up to 4.9× improvement in the analytical WCL compared to PMSI. The analytical WCL of PMSI is 2050

cycles compared to 416 and 216 cycles in PISCOT and PISCOT-C2C, respectively. 3) Compared to PMSI, the

observed WCLs in PISCOT and PISCOT-C2C achieve up to 2.74× and 4× tighter bounds on average across

benchmarks, respectively.

4) PMSI incurs a large gap between experimental and analytical WCLs. In the SPLASH-3 benchmarks (Figure 6),

this gap ranges from 70% (barnes and ocean) and reaches up to 3.4× (cholesky and radix). This is because PMSI’s

analytical WCL assumes a pathological worst-case scenario that is hard to construct in real applications. On the

other hand, PISCOT achieves a tighter bound for the derived WCL. PISCOT achieves this tightness by enforcing

FCFS arbitration policy on the response bus.

To further investigate the behavior of PISCOT and conventional split-transaction MSI, Figure 8 plots the observed

latencies for requests for one of the BMs (Ocean) (others show similar behavior) for both solutions. As the figure

illustrates, for MSI 8a, it shows a huge latency variability. Although most of the requests finish relatively fast, there

are requests that their latencies reach up to 1200 cycles. On the other hand, PISCOT encounters less variability

ACM Trans. Embedd. Comput. Syst.

20 • Hessien, et al.

Fig. 10. Execution time slowdown compared to conventional MSI protocol with FCFS split-transaction bus.

(Requests are suffering between 0 − 400 cycles and all latencies under PISCOT operation are lower than its

corresponding analytical bounds, which confirms the predictability of PISCOT.

7.2 Total Worst Case Latency

In this experiment we are interested in calculating the total memory WCL suffered by the total number of memory

requests generated by a core during a period of time � . Figure 9 shows both the analytical bound for the total WCL

derived by Equation 7 (T bars) and the observed total latencies (colored solid bars). Furthermore, the observed one

is decomposed to its sub-components: a) the request bus arbitration latency, b) the response bus memory transfer

latency, c) the hit latency in the core’s private cache, and d) the write-backs latency due to replacement. From

Figure 9, we conclude the following observations. 1) The response bus latency component dominates the total WCL

for all applications. For instance, the total observed response latency reach up to 8× (barnes and volrend) and 4.3×

on average larger than the replacement latency. This emphasises the conclusion we made in Section 6.3 that the

effect of the eviction delays should be considered at the task-level and not the request-level. 2) Since SPLASH-3

applications exhibit a reduced ratio of writes compared to reads, they do not stress the difference between PISCOT

and PISCOT-C2C in the observed response bus latency. Therefore, to further show this effect, we execute synthetic

experiments using the synthetic benchmarks that are used to generate WCL in Figure 7 except that we change the

percentage of the CPU memory write request to 50% of total memory requests. The results show that PISCOT-C2C

achieves up to 1.74× (1.56× on average) higher bandwidth compared to PISCOT.

7.3 Average-Case Performance

Figure 10 shows the slowdown of PISCOT and PMSI compared to the conventional MSI with split-transaction

FCFS bus. PMSI’s slowdown is 2× on average (and up to 4.3×) across all benchmarks. This is due to the coupling

of coherence and data transfer on the same TDM bus as explained in Section 4 in addition to the enforced protocol

changes. Authors of [14] compared PMSI with an MSI+conventional TDM arbiter, for which they reported that

PMSI showed only a 45% slowdown. Recall here we consider MSI+split-transaction bus. These results combined

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 21

0
200
400
600
800

1000
1200
1400
1600
1800
2000

25 50 75 100

W
CL

 [c
yc

]

ResponseB us Slot W idth

NoC 2C FC FS - a2time01-trace
FC FS - aifirf01-trace
FC FS - b asefp01-trace
FC FS - empty-trace
FC FS - iirflt01-trace
FC FS - pntrch01-trace
FC FS - rspeed01-trace
FC FS - ttsprk01-trace
P ISC OT - a2time01-trace
P ISC OT - aifirf01-trace
P ISC OT - b asefp01-trace
P ISC OT - empty-trace
P ISC OT - iirflt01-trace
P ISC OT - pntrch01-trace
P ISC OT - rspeed01-trace
P ISC OT - ttsprk01-trace0

100
200
300
400
500
600
700
800

25 50 75 100

W
CL

 [c
yc

]

ResponseB us Slot W idth

C 2C

Fig. 11. Effect of shared cache access latency on

predictability

0

500

1000

1500

2000

2500

3000

1 4 8 16

W
CL

 [C
yc

]

M ax numb er of OOO P ending Requests

NoC 2C FC FS - a2time01-trace
FC FS - b asefp01-trace
FC FS - empty-trace
FC FS - iirflt01-trace
FC FS - pntrch01-trace
FC FS - rspeed01-trace
FC FS - ttsprk01-trace
P ISC OT - a2time01-trace
P ISC OT - b asefp01-trace
P ISC OT - empty-trace
P ISC OT - iirflt01-trace
P ISC OT - pntrch01-trace
P ISC OT - rspeed01-trace
P ISC OT - ttsprk01-trace

0

400

800

1200

1600

Npend = 1 Npend = 4 Npend = 8 Npend = 16

W
CL

 [C
yc

]

M ax numb er of OOO P ending Requests

C 2C

Fig. 12. Effect of OOO depth on predictability

0
2
4
6
8

10
12

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

C 2C NoC 2C C 2C NoC 2C C 2C NoC 2C C 2C NoC 2C C 2C NoC 2C C 2C NoC 2C C 2C NoC 2C C 2C NoC 2C

a2time01-trace aifirf01-trace b asefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

ET
 [C

yc
 in

 M
ill

io
ns

]

L2-Lat = 25 L2-Lat = 50 L2-Lat = 75 L2-Lat = 100

Fig. 13. Effect of shared cache access latency on execution time

emphasise our observation that the split-bus architecture can significantly increase performance compared to the

traditionally considered bus architectures by the real-time community. On the other hand, Figure 10 shows that

PISCOT achieves comparable results with slowdown in the range of 1% − 4%. This is clearly a negligible cost for

achieving timing predictability with tight latency bounds.

We also observe that PISCOT improves the bandwidth utilization for the SPLASH-3 benchmarks by 12×

compared to PMSI (results are not shown due to space limitation). This significant improvement is because PMSI

adopting the traditional TDM, which wastes many bus slots in only issuing coherence requests as we detailed in

Section 4. On the other hand, PISCOT maximizes bus utilization by splitting the coherence and response into two

buses with two different slot widths and arbitration.

7.4 Effect of Shared Cache Access Latency
Effect on Predictability. The analysis in Section 6 (e.g. Equations 3 and 5) shows a linear relationship between

the worst-case latency and the ResponseBus’s slot width, ���� . The latter is defined in Section 6 as the time

required to conduct a memory transfer from LLC to any of the cores on the response bus. To study the effect

of this time on the system’s predictability and performance, we sweep ����� to have the values of 25, 50, 75, or

100 cycles. Figure 11 delineates the observed per-request WCL both for PISCOT and baseline FCFS with no

cache-to-cache interconnect (upper, NoC2C) and with cache-to-cache interconnect (lower, C2C) using the EEMBC

benchmarks with the aforementioned setup of a quad-core system. 1) From the figure, it is clear that the slope

of PISCOT is smaller than that of FCFS for all benchmarks both in case of NoC2C and C2C. This shows that

the predictability that PISCOT offers over the baseline commodity FCFS gets more crucial for higher access

ACM Trans. Embedd. Comput. Syst.

22 • Hessien, et al.

0
50

100
150
200
250
300
350
400
450

C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C

a2time01-trace aifirf01-trace b asefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

W
CL

 [C
yc

]

M SI M ESI

Fig. 14. PISCOT’s WCL for both MSI and MESI

latency of the shared cache. 2) Across all the values of the ResponseBus’s slot width, the observed WCL for

PISCOT is less than the analytical bounds dictated in Section 6. Using Equations 3 and 5, the analytical bounds

are 116, 216, 316, 416 (216, 416, 616, 816) for C2C (NoC2C) with a slot width of 25, 50, 75, and 100, respectively.

This confirms the safeness of the provided bounds. Furthermore, all observed WCLs are very close to the derived

bounds, which also confirms the tightness of the conducted analysis thanks to PISCOT’s predictable-by-design

architecture. 3) Finally, comparing both C2C and NoC2C results across different slot widths show the importance

of having the hardware capability of supporting direct cache-to-cache transfers amond cores without the need to go

through the LLC in improving WCL.

Effect on Performance. The improved predictability of PISCOT compared to commodity arbiters comes at a

slight performance cost. Figure 13 shows the execution time for PISCOT vs baseline FCFS assuming both NoC2C

and C2C architectures with the same EEMBC benchmark suite quad-core setup as before. The results show that

increasing the LLC access time (ResponseBus’s slot width), PISCOT’s performance degrades slightly compared

to baseline FCFS. In case of C2C, this degradation in average ranges between 3% to 5% for different slot widths. On

the other hand, in the case of NoC2C, this degradation becomes worse and ranges from 7% in case of ����� = 25

cycles to 17% in case of ����� = 100. The fundamental reason for this degradation is the design choice of PISCOT

to reduce the latency bounds by allowing each core to have only one request in-service at any given time as detailed

in Section 5.

7.5 Effect of Out-of-Order Depth
One important aspect of PISCOT compared to all previous work in predictable coherence solutions is to support

OOO cores. On the other hand, to ensure tight latency bounds, PISCOT while allowing cores to have multiple

pending requests, it limits the number of in-service requests from any core to one. In this section, we study the effect

of the maximum number of possible pending requests on predictability, ��������. This number usually is dictated by

the number of entries in MSHR registers. We sweep this number from 1 to 16 and we plot the WCLs in Figure 12.

The setup is exactly as before using a quad-core system. As Figure 12 illustrates, the WCL in all experiments

is fixed and independent of the value of �������� in case of PISCOT. On the other hand, the observed WCL in

case of commodity FCFS increases with the increase of �������� since a request will suffer more interference by

increasing the number of possible requests in the service. For some benchmarks, this increase saturates after a

certain value of ��������. Intuitively, this is because for those specific experiments, some benchmarks do not have

enough parallelism to saturate the possible number of pending requests.

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 23

2
2.5

3
3.5

4
4.5

5
5.5

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

FC
FS

PI
SC

O
T

C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C

a2time01-trace aifirf01-trace b asefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

ET
 [C

yc
 in

 M
ill

io
ns

]

M SI M ESI

Fig. 15. MESI vs MSI: EEMBC execution time for PISCOT and FCFS with cache-to-cache and no -cache-to-cache

architectures

0
50

100
150
200
250
300
350
400
450

C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C C 2C No C 2C

RW S tride16 RW S tride16NoIntrf RW S tride8Rand RW Stride32Rand R75RandL1M iss R85RandL1M iss R75RandW rap R40RandW rap

W
CL

 [C
yc

]

M SI M ESI

Fig. 16. MESI vs MSI: WCL

0
2
4
6
8

10
12
14
16
18
20

RW Stride16 RW Stride16NoIntrf RW Stride8Rand RW Stride32Rand R75RandL1M iss R85RandL1M iss R75RandW rap R40RandW rap

ET
 [C

yc
 in

 M
ill

io
ns

]

M SI M ESI

Fig. 17. MESI vs MSI: execution time

7.6 MSI vs MESI
A fundamental contribution of PISCOT over existing predictable cache coherence solutions is that it enables

predictability without the need to modify the underlying hardware cache coherence protocols. To show this

advantage, we implement the Modified-Exclusive-Shared-Invalid (MESI) protocol and integrate it in our simulation

framework that has PISCOT as its bus arbiter. This integration does not require any changes to the PISCOT

architecture. We only enabled the use of MESI as the underlying coherence protocol in the cache controllers and

PISCOT seemingly works with it. Since we release the source code of our simulation infrastructure, one can add

any other protocol of choice. Figure 14 illustrates the observed WCL for PISCOT using both MSI and MESI

ACM Trans. Embedd. Comput. Syst.

24 • Hessien, et al.

Table 4. Synthetic micro-benchmarks description

Benchmark Description

RWStride16 Sequential read-modify-write memory accesses with stride offset equals 16 Bytes.

RWStride16NoIntrf Sequential read-modify-write memory accesses with stride offset equals 16 Bytes, and no shared data between cores

RWStride8Rand Random read-modify-write memory accesses with stride offset equals 8 Bytes.

RWStride32Rand Random read-modify-write memory accesses with stride offset equals 32 Bytes.

R75RandL1Miss Random memory accesses with read percentage equals 75% and all requests are miss in L1 Cache.

R85RandL1Miss Random memory accesses with read percentage equals 85% and all requests are miss in L1 Cache.

R75RandWrap Random memory accesses with read percentage equals 75% and address wrapping every 1024 KBytes.

R40RandWrap Random memory accesses with read percentage equals 40% and address wrapping every 1024 KBytes.

protocols for the EEMBC quad-core setup. As results emphasis, PISCOT’s WCL is the same independent of the

protocol, and less than (but very close) to the analytical bounds ensuring safe yet tight bounds. Figure 15, on

the other hand, delineates the execution time for both protocols using PISCOT and baseline FCFS. The results

show that across the EEMBC setup, there is very little difference (within 1%) in behavior between MSI and MESI.

We believe this is due to the nature of the EEMBC setup that maximizes data sharing by running the exact same

benchmark across all the four cores. To further investigate the differences between MESI and MSI behavior, we

create a set of synthetic micro-benchmarks (Table 4) that stresses the benefits and drawbacks of both protocols.

The WCL and execution time results are depicted in Figures 16 and 17, respectively. Figure 16 confirms again

that the derived latency bounds for PISCOT hold for both MSI and MESI protocols. Results in the figures are

for the C2C scenarios. Results in Figure 17 sheds light on the differences between MESI and MSI protocols.

MESI achieves considerable improvement over MSI for the read-modify-write micro-benchmarks: 48%, 52%, and

42% for the RWStride16NoIntrf, RWStride8Rand, and RWStride32Rand, respectively. On the other hand,

MSI outperforms MESI for the read-dominant random benchmarks with up to 38% better performance for the

R85RandL1Miss micro-benchmark. The rationale behind these results is that for the former micro-benchmarks of

the read-modify-write and high locality behavior, the MESI protocol leverages the E state to move silently (and

faster) to the M state. This emphasises the benefit of the E state in decreasing memory traffic on the bus in case of a

write after a read. In contrast, for the latter benchmarks with the random and read-dominant pattern, MESI does not

exploit the same benefit from the E state. Contrarily, with evictions introduced by the random behavior, MESI has

to write-back blocks in the E state to the main memory (even if they are not modified), while MSI does not need to

write-back those blocks if they are in the S state.

7.7 Effect of Number of Contending Cores on Latency Bounds

Increasing the number of cores competing to access shared memory, the contention effects from these cores will

increase. This is clear from the latency bound equations both for PMSI in Section 4.3 as well as PISCOT’s analysis

in Section 6, where these bounds are functions in the number of cores. In Figure 18, we delineate the latency

bounds for different number of cores to see how different predictable solutions address the increasing contention.

Contention (latency bounds) in PMSI increases the most. This confirms its analysis since its bounds are quadratic

in the number of cores. On the other hand, PISCOT with its two versions has a linear relationship between the

bounds and the number of cores. Hence, it shows better control of the increasing contention when the number of

cores increase in the system.

8 CONCLUSION

PISCOT is a predictable and coherent bus architecture that provides significantly tighter bounds than existing

predictable coherence protocols with a performance near to that achieved by conventional high-performance arbiters.

PISCOT achieves this by decoupling the data responses from their coherence requests utilizing a split-transaction

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 25

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6 7 8

Pe
r R

eq
ue

st
 W

CL
 [c

yc
]

Number of C ores

P M SI B yP assShared P ISC OT P ISC OT C 2C

Fig. 18. Latency bounds for different number of contending cores.

predictable bus arbiter. PISCOT can be realized without any modifications to the coherence protocol or cache

controller. In this work, PISCOT was integrated to both MSI and MESI protocols. We have also studied the effects

of different architectural parameters on the performance of PISCOT including LLC access latency as well as number

of outstanding requests from OOO cores. Results show that PISCOTachieves 4× tighter memory latency bounds

for a quad-core system with 5× (2.8× on average) better performance compared to the state-of-the-art predictable

coherence solutions.

REFERENCES
[1] WL Bain Jr and SR Ahuja. 1981. Performance analysis of high-speed digital buses for multiprocessing systems. In Proceedings of the 8th

annual symposium on Computer Architecture. 107–133.

[2] Ayoosh Bansal, Jayati Singh, Yifan Hao, Jen-Yang Wen, Renato Mancuso, and Marco Caccamo. 2019. Cache Where you Want!

Reconciling Predictability and Coherent Caching. arXiv preprint arXiv:1909.05349 (2019).

[3] Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis, and Thomas Nolte. 2016. Contention-free execution

of automotive applications on a clustered many-core platform. In IEEE Euromicro Conference on Real-Time Systems (ECRTS).

[4] M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson, and F. D. Smith. 2016. Reconciling the Tension Between Hardware

Isolation and Data Sharing in Mixed-Criticality, Multicore Systems. In IEEE Real-Time Systems Symposium (RTSS).

[5] Michael A Fischer. 1988. Fair arbitration technique for a split transaction bus in a multiprocessor computer system. US Patent 4,785,394.

[6] Freescale semicondutor. 2016. QorIQ T2080 Reference Manual. Also supports T2081. Document Number: T2080RM. Rev. 3, 11/2016.

[7] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo Pellizzoni. 2015. A Survey on Cache

Management Mechanisms for Real-Time Embedded Systems. ACM Comput. Surv. (2015).

[8] Giovani Gracioli and Antônio Augusto Fröhlich. 2015. On the Design and Evaluation of a Real-Time Operating System for Cache-Coherent

Multicore Architectures. ACM SIGOPS Oper. Syst. Rev. (2015).

[9] Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. 2018. A comparative study of predictable dram controllers. ACM

Transactions on Embedded Computing Systems (TECS) (2018).

[10] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst. 2017. Communication centric design in complex

automotive embedded systems. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik.

[11] D. Hardy, T. Piquet, and I. Puaut. 2009. Using Bypass to Tighten WCET Estimates for Multi-Core Processors with Shared Instruction

Caches. In IEEE Real-Time Systems Symposium (RTSS).

[12] Mohamed Hassan. 2018. On the Off-chip Memory Latency of Real-Time Systems: Is DDR DRAM Really the Best Option?. In IEEE

Real-Time Systems Symposium (RTSS).

[13] Mohamed Hassan. 2020. Discriminative Coherence: Balancing Performance and Latency Bounds in Data-sharing Multi-Core Real-Time

Systems. In Euromicro Conference on Real-Time Systems (ECRTS). 1–22.

[14] M. Hassan, A. M. Kaushik, and H. Patel. 2017. Predictable Cache Coherence for Multi-core Real-Time Systems. In IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS).

ACM Trans. Embedd. Comput. Syst.

26 • Hessien, et al.

[15] M. Hassan and H. Patel. 2016. Criticality- and Requirement-Aware Bus Arbitration for Multi-Core Mixed Criticality Systems. In IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS).

[16] Mohamed Hassan and Rodolfo Pellizzoni. 2018. Bounding DRAM interference in COTS heterogeneous MPSoCs for mixed criticality

systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2018).

[17] Farouk Hebbache, Mathieu Jan, Florian Brandner, and Laurent Pautet. 2018. Shedding the Shackles of Time-Division Multiplexing. In

IEEE Real-Time Systems Symposium (RTSS).

[18] John L Hennessy and David A Patterson. 2011. Computer architecture: a quantitative approach. Elsevier.

[19] Salah Hessien and Mohamed Hassan. 2020. The Best of All Worlds: Improving Predictability at the Performance of Conventional

Coherence with No Protocol Modifications. In 2020 IEEE Real-Time Systems Symposium (RTSS). IEEE, 218–230.

[20] Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel. 2020. Designing predictable cache coherence protocols for multi-core

real-time systems. IEEE Trans. Comput. (2020).

[21] Anirudh M. Kaushik and Hiren Patel. 2021. A Systematic Approach to Achieving Tight Worst-Case Latency and High-Performance

Under Predictable Cache Coherence. In proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS). IEEE, 1–12.

[22] Anirudh M. Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel. 2019. CARP: A Data Communication Mechanism for Multi-Core

Mixed-Criticality Systems. In IEEE Real-Time Systems Symposium (RTSS).

[23] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik Roychoudhury. 2011. Bus-aware multicore WCET analysis

through TDMA offset bounds. In Euromicro Conference on Real-Time Systems (ECRTS).

[24] Manpreet S Khaira. 1996. Fast first-come first served arbitration method. US Patent 5,574,867.

[25] Namhoon Kim, Micaiah Chisholm, Nathan Otterness, James H Anderson, and F Donelson Smith. 2017. Allowing shared libraries while

supporting hardware isolation in multicore real-time systems. In IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS).

[26] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. 2010. Shared Data Caches Conflicts Reduction for WCET Computation in

Multi-Core Architectures.. In International Conference on Real-Time and Network Systems.

[27] Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, and Rodolfo Pellizzoni. 2013. Real-time cache

management framework for multi-core architectures. In IEEE 19th Real-Time and Embedded Technology and Applications Symposium

(RTAS).

[28] MILO MK MARTIN, MARK D HILL, and DANIEL J SORIN. 2012. Why On-Chip Cache Coherence Is Here to Stay. Communications

of ACM (2012).

[29] Marco Paolieri, Eduardo Quiñones, Francisco J Cazorla, Guillem Bernat, and Mateo Valero. 2009. Hardware support for WCET analysis

of hard real-time multicore systems. ACM SIGARCH Computer Architecture News (2009).

[30] Rodolfo Pellizzoni, Bach D Bui, Marco Caccamo, and Lui Sha. 2008. Coscheduling of cpu and i/o transactions in cots-based embedded

systems. In IEEE Real-Time Systems Symposium (RTSS).

[31] Francesco Poletti, Davide Bertozzi, Luca Benini, and Alessandro Bogliolo. 2003. Performance analysis of arbitration policies for SoC

communication architectures. Design Automation for Embedded Systems (2003).

[32] Fong Pong and Michel Dubois. 1995. A new approach for the verification of cache coherence protocols. IEEE Transactions on Parallel

and Distributed Systems (1995).

[33] Roger Pujol, Hamid Tabani, Jaume Abella, Mohamed Hassan, and Francisco J. Cazorla. 2020. Empirical Evidence for MPSoCs in Critical

Systems: The Case of NXP’s T2080 Cache Coherence. In IEEE Design Automation and Test in Europe (DATE). 1–4.

[34] D. Radack et al. (Rockwell Collins). 2018. Civil Certification of Multi-core Processing Systems in Commercial Avionics.

[35] Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber. 2009. Towards time-predictable data caches for chip-multiprocessors. In

Springer International Workshop on Software Technolgies for Embedded and Ubiquitous Systems (IFIP).

[36] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. 2019. Modeling cache coherence to expose interference. In 31st Euromicro

Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[37] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. 2020. On How to Identify Cache Coherence: Case of the NXP QorIQ T4240. In

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[38] Ashok Singhal, Bjorn Liencres, Jeff Price, Frederick M Cerauskis, David Broniarczyk, Gerald Cheung, Erik Hagersten, and Nalini

Agarwal. 1999. Implementing snooping on a split-transaction computer system bus. US Patent 5,978,874.

[39] Daniel J Sorin, Mark D Hill, and David A Wood. 2011. A primer on memory consistency and cache coherence. Synthesis Lectures on

Computer Architecture (2011).

[40] N. Sritharan, A. M. Kaushik, M. Hassan, and H. Patel. 2017. Hourglass: Predictable time-based cache coherence protocol for dual-critical

multi-core systems. (2017).

[41] Nivedita Sritharan, Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel. 2019. Enabling Predictable, Simultaneous and Coherent

Data Sharing in Mixed Criticality Systems. (2019).

ACM Trans. Embedd. Comput. Syst.

PISCOT: A Pipelined Split-Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems • 27

[42] Man-Ki Yoon, Jung-Eun Kim, and Lui Sha. 2011. Optimizing tunable WCET with shared resource allocation and arbitration in hard

real-time multicore systems. In IEEE Real-Time Systems Symposium (RTSS).

[43] Mohamed Younis and Mohamed Aboutabl. 2002. Communication handling in integrated modular avionics. US Patent App. 09/821,601.

[44] Heechul Yun, Rodolfo Pellizzoni, and Prathap Kumar Valsan. 2015. Parallelism-aware memory interference delay analysis for COTS

multicore systems. In Euromicro Conference on Real-Time Systems (ECRTS).

[45] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and Robert J Safranek. 2010. Intel® quickpath interconnect architectural features

supporting scalable system architectures. In IEEE Symposium on High Performance Interconnects.

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	2 Cache Coherence: A background
	3 Related Work
	4 Motivation
	4.1 Commodity Performance-Oriented Arbitration
	4.2 Traditional Real-Time Arbitration
	4.3 Coherent Shared-Data Aware Predictable Arbitration

	5 Proposed solution
	5.1 Illustrative Example
	5.2 Coherence Protocol Simplification
	5.3 Satisfying Coherence Predictability Invariants

	6 Analytical Worst-Case Latency
	6.1 Direct Cache-to-Cache Communication
	6.2 Total Task's Worst-Case Memory Latency
	6.3 Replacement of Dirty Cache Lines

	7 Evaluation
	7.1 Per-Request Worst-Case Latency
	7.2 Total Worst Case Latency
	7.3 Average-Case Performance
	7.4 Effect of Shared Cache Access Latency
	7.5 Effect of Out-of-Order Depth
	7.6 MSI vs MESI
	7.7 Effect of Number of Contending Cores on Latency Bounds

	8 Conclusion
	References

