
PREPRINT: "N. Sritharan, A. M. Kaushik, M. Hassan, and H. Patel, "Enabling Predictable, Simultaneous and Coherent Data Sharing in Mixed Crit
icality Systems," in proceedings of IEEE Real-Time Systems Symposium (RTSS), 2019, pp. 1-11."

Enabling Predictable, Simultaneous and Coherent
Data Sharing in Mixed Criticality Systems

Nivedita Sritharan ∗, Anirudh Mohan Kaushik ∗, Mohamed Hassan †, and Hiren Patel ∗
∗ Department of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada, {first.last}@uwaterloo.ca
† Department of Electrical and Computer Engineering, McMaster University, Ontario, Canada, mohamed.hassan@mcmaster.ca

Abstract—Emerging embedded systems deployed in the auto-
motive and avionics domains execute applications with different
criticalities, comprising what is known as Mixed Criticality
Systems (MCS). Applications in MCS often share data between
tasks (coming from sensors for instance). Data sharing is chal-
lenging because it can lead to increased response times or even
unpredictable behaviors if not carefully addressed. Therefore,
several prior works in MCS either assumed that tasks do not
share data or disallowed it by design. Recent solutions attempt
to mitigate the effects of data sharing, albeit by introducing
new restrictions on the system either by prohibiting applications
from caching shared data or prohibiting the operating system
from running tasks with shared data in parallel. We find these
solutions also to have limited applicability as they deteriorate
system schedulability and prohibit simultaneous access to shared
data. In this paper, we propose PENDULUM: a time-based cache
coherence protocol to enable simultaneous and predictable access
to shared data in MCS. Our evaluation shows that PENDULUM,
achieves flexibility and better performance compared to existing
solutions, while maintaining system predictability.

Index Terms—Mixed-criticality systems, multi-core platforms,
cache coherence protocols

I. INTRODUCTION

Embedded systems are ubiquitous nowadays. They enable
many domains including: automotive [1], [2], avionics [3], [4],
and healthcare [5], [6]. Embedded systems in these domains
execute tasks of different criticalities, comprising what is
known as Mixed Criticality Systems (MCS). In MCS, both
critical (Cr) and non-critical (nCr) tasks execute on the same
computing platform, and hence, share hardware resources.
Although there has been a recent focus on the predictable
management of these resources to satisfy requirements of
MCS [7]–[11], prior works either assumed that tasks do not
share data or disallowed it entirely by design. This is because
sharing data if not carefully handled can lead to unpredictable
behaviors [12], [13]. Recent works made a similar observa-
tion [12]–[14] and explored solutions to enable data sharing
among tasks [12], [15]–[18]. Our study of these solutions [12],
[15]–[18] show that they ease the constraint on shared data, but
at the expense of introducing new constraints on the system.
For instance, cache bypassing [15], [16] prohibits shared data
from being cached in private caches of cores, while shared data
aware scheduling [12], [17], [18] imposes restrictions on the
task-to-core mapping and scheduling. These solutions prohibit
simultaneous access to shared data by multiple tasks meaning
multiple cores cannot cache and access shared data in their

private caches on the same time. This leads to performance
degradation of the system, while shifting the problem of
shared data to the software level. Bypass techniques [15],
[16] require modifications to legacy software and extensions
to the instruction set architecture to encode bypass decisions
per memory instruction. Shared data aware techniques [12],
[17], [18] require the operating system scheduler to take into
account shared data information upon scheduling tasks on
cores. Authors in [13] enable simultaneous access to shared
data in the context of real-time systems by introducing a
predictable cache coherence protocol called PMSI. However,
PMSI [13] is not designed for MCS as it services all cores both
Cr and nCr equally regardless of their criticality. Therefore, if
the coherence protocol developed in [13] is deployed on a
MCS arbiter (e.g. using fixed-priority arbitration to prioritize
Cr cores), it can lead to unpredictable latencies as we discuss in
Section II. This work addresses the problem of data sharing in
multi-core MCS by introducing PENDULUM. PENDULUM is a
criticality-aware coherence protocol that enables simultaneous,
coherent, and predictable access to shared data in MCS.
Towards this target, we make the following contributions.

Contributions. (1) We study the limitations of the state-of-
the-art techniques that allow for shared data in MCS and dis-
cuss the causes of these limitations (Section II). (2) We enable
tasks in MCS to simultaneously share and access data. This
is achieved by introducing PENDULUM, a criticality-aware
cache coherence protocol that orchestrates access to shared
data from both Cr and nCr cores. (3) With the existence of
shared data, we bound the worst-case memory latency (WCL)
suffered by any Cr core through timing analysis (Section VI).
(4) We equip PENDULUM with configurable timers that reduce
cache line invalidations and increase system performance. By
configuring these timers, the system designer has the ability
to address the trade-off between reducing the WCL of Cr
cores and increasing average performance of nCr cores, which
are usually conflicting requirements in MCS. We study the
effects of those timers and provide guidelines on selecting
their values for various design use-cases (Section V-A). (5)
We conduct a detailed evaluation that compares PENDULUM
with the state-of-the-art techniques using both SPLASH-2
benchmarks, which are representative for applications with
shared data as well as synthetic benchmarks (Section VIII).
(6) Finally, we release the implementation of PENDULUM
as a step towards enabling the research community to ex-

1.
30

4.
62

7.
84

2.
51

1.
65

1.
72

3.
58

1.
41

2.
53

0

1

2

3

4

5

6

7

8

9

LU FFT Radix Ocean FMM Cholesky Radiosity Raytrace Geomean

Sl
ow

do
w

n
Uncache shared

Fig. 1: The slowdown of uncaching the shared data.

plore predictable data sharing mechanisms without introducing
scheduling constraints or software modifications. PENDULUM
can be found at https://git.uwaterloo.ca/caesr-pub/pendulum.

II. MOTIVATION: THE STATE OF THE ART

With the rise of using multi-core platforms for real-time
systems, predictably managing shared hardware resources in
these platforms became a necessity. Therefore, several recent
research efforts were proposed to provide predictable access
to shared interconnects (e.g. [9], [19], [20]), shared caches
(e.g. [21]–[23]), and shared DRAMs (e.g. [10], [11], [24]). A
subset of these efforts took criticality into account targeting
MCS such as [7]–[11]. These works focus on predictably
resolving timing interference, i.e. bounding the latency over-
heads resulting from other competing cores that access these
shared resources. However, another source of interference
is data interference, which results from data sharing among
cores. Two common approaches to avoid such interference are
(1) assume tasks do not share data or (2) disable data sharing
by design. However, both these approaches disable communi-
cation between multiple cores in the multi-core system. As a
result, different tasks or even jobs of the same parallel task
running on multiple cores cannot share data. To address this
limitation, recent works have investigated solutions to enable
data sharing, which we describe in the following subsections.

A. Uncaching Shared Data

This approach disables caching of shared data in private
cache hierarchies to provide predictable access to shared
data [15], [16]. This comes at the expense of both degraded
average-case performance and high WCL since any access
to this shared data has to go to the shared memory. To
illustrate the effect of this limitation, we plot in Figure 1
the slowdown resulting from uncaching the shared data as
compared to allowing to cache this data using the Modified-
Shared-Invalidate (MSI) coherence protocol for the SPLASH-2
benchmarks. The slowdown reaches up to 7.84× for the Radix
benchmark. The detailed setup is explained in Section VIII.
Additionally, this approach requires modifications to legacy
software and extensions to the instruction set architecture to
encode bypass decisions per memory instruction.

B. Shared Data Aware Scheduling

The second approach is to schedule tasks at the operating
system level such that interference due to shared data is
mitigated [12], [17], [18]. This approach allows different tasks

to share data; nonetheless, it puts constraints on how they are
scheduled by the system scheduler. For instance,the solution
described in [12] maps all tasks with shared data to same core.
The solution in [18] focuses on automotive domain and is
limited to a specific task model, where a task can be statically
composed of three distinct phases: read, execute, and write
phases. Then, tasks are scheduled such that overlap between
memory phases (read and write) of different tasks is strictly
prohibited; thus, shared data is not simultaneously accessed.

We argue that this approach deteriorates the system schedu-
lability. To illustrate the limitations of this approach, Figure 2
delineates the scheduling of four tasks, τ0–τ3 with execution
times of 60, 90, 45, and 30, respectively. All four tasks have
the same deadline of 120 and are released at time 0. Task
τ1 shares data with both τ0 and τ3, but there is no shared
data between τ0 and τ3. Task τ2 does not share data with
other tasks. The system has two cores, Core0 and Core1. In
Figure 2a, the scheduler does not take into account any shared
data constraints. It schedules tasks τ0 and τ3 in Core0 and
tasks τ1 and τ2 in Core1. In this schedule, all tasks meet their
deadlines. In Figure 2b, the scheduler applies the constraint
of prohibiting tasks with shared data from running in parallel.
Thus, task τ1 cannot run in parallel with τ0 and τ3. Under this
constraint, there is no feasible schedule where all tasks can
meet their requirements. For the schedule shown in Figure 2b,
task τ1 finishes at time 150 and misses its deadline. The
scheduler in Figure 2c adopts the constraint of mapping tasks
with shared data to the same core. Thus, it maps tasks τ0, τ1,
and τ3 to Core0. Again, there no feasible schedule that can
meet the requirements of all tasks. Task τ1 in Figure 2c misses
its deadline by finishing at time 195. From this example, im-
posing constraints on system scheduler to mitigate shared data
interference deteriorates system schedulability and can deem
task sets unschedulable, which otherwise can be scheduled.

Based on this discussion, we strongly believe that a new
solution is needed to enable data sharing in MCS without
imposing new constraints on the system. The solution we
propose handles shared data, while not requiring alterations
to either the application software and the system scheduler
by enforcing cache coherence at the hardware level. We next
briefly discuss the related work in cache coherence.

C. Cache Coherence

Cache coherence enables cores in multi-core architectures
to have simultaneous access to shared data, while maintaining
a correct and updated view of this data for all cores. A read to
a shared cache line returns the result of the most recent write
to this line. We cover the background of the detailed operation
of cache coherence protocols in Section III, while focusing on
the high-level view and the related works in this section.

1) Cache Coherence in General-Purpose Computing:
Cache coherence has been extensively studied in the context of
general-purpose computing [25]. It is the mainstream solution
for handling shared data in multi-core platforms [26]. There
are two classes of cache coherence protocols: (1) snooping
bus-based protocols and (2) directory-based protocols [27]. In

0 60 90 105 120
Deadline = 120

𝜏"
𝜏# 𝜏$

𝜏%Core0

Core1

(a) No shared data constraints on scheduling.
Task set is schedulable.

0 45 60 90 120 150
Deadline = 120

𝜏"
𝜏#

𝜏$
𝜏%

Core0

Core1

(b) Tasks with shared data cannot run in parallel.
Task set is unschedulable.

0 30 60 105120 195
Deadline = 120

𝜏" 𝜏#
𝜏$

𝜏%Core0

Core1

(c) Tasks sharing data have to be on same core.
Task set is unschedulable.

Fig. 2: Limitations of the shared-data aware scheduling approach: shared data induced constraints on task scheduler.

snooping bus-based protocols, cores broadcast their memory
requests to all cores on a snooping bus. However, broadcasting
limits the scalability of snooping bus-based protocols for
systems with large number of cores. In directory-based proto-
cols, cores send coherence messages to a directory that holds
sharer information about the requested data, and the directory
responds with appropriate actions to ensure a coherent view of
the requested data across cores. These protocols offer a trade-
off that improves scalability with increasing number of cores
at the expense of larger request latencies due to additional
communication between the directory and the requesting cores.

2) Time-Based Cache Coherence: With increasing core
count, the number of coherence messages transmitted on the
network also increases resulting in increased network traffic
and increased request latencies to shared data. To mitigate this
impact of increasing core count on the request latencies to
shared data, time-based cache coherence protocols have been
proposed for multi-core systems with large core counts (many-
core systems) [28]–[33]. The key idea behind time-based cache
coherence is that once a core obtains a copy of a shared
cache line in its private cache, it maintains its validity for
a certain period of time regardless of the actions of the other
cores, and self invalidates this copy after the time period. Self
invalidation removes the need to transmit certain coherence
messages resulting in reduced network traffic.

For MCS, we find that the timers in time-based cache
coherence protocols, which track the duration of cache lines
held by cores in their private caches, provide a natural way to
enable bounded access latencies to shared data and criticality
awareness. Hence, in this work, we take inspiration from time-
based cache coherence protocols, and design PENDULUM, a
time-based snooping bus-based cache coherence protocol for
MCS. Prior time-based cache coherence protocols dynamically
adapted the timer configurations during application execution
in order to deliver better application performance. On the other
hand, PENDULUM uses deterministic timer configurations that
do not change during application execution in order to meet the
predictability requirements of MCS, while providing as much
performance as possible for nCr requests on a best-effort basis.

3) Cache Coherence for Real-Time Systems: Recently,
Hassan et al. [13] proposed the PMSI cache coherence pro-
tocol, which is a predictable cache coherence protocol for
multi-core real-time systems. In this work, they showed that
deploying a predictable cache coherence protocol provided
significant performance advantages over the aforementioned
approaches. However, the PMSI cache coherence protocol

assumes that all cores are of the same criticality level (Cr).
As a result, deploying the PMSI cache coherence protocol on
a MCS will result in requests from Cr cores to be subjected
to significant coherence interference from nCr cores.

The need for a criticality-aware coherence protocol. An
important observation we make in this work is that deploying a
predictable, yet non-criticality-aware coherence protocol such
as PMSI in a MCS will hinder the required independence
between Cr and nCr applications mandated by standards such
as the IEC-61508 [34]. This is true even when Cr applications
are offered a higher priority. The reason for this is that a Cr
core can gain access to the arbiter and issue a memory request;
however, this request can be to a cache line that is either owned
or previously requested by a nCr core. In this case, the Cr core
has to wait for the nCr core based on coherence protocol rules
(e.g. Invariant 2 in [13] that ensures the order of access to
the same cache line based on the issuance time). Worse still,
the Cr request may have unbounded latency because of this
dependence on the nCr behaviour. This occurs if a Cr request
has to wait for a nCr request to same cache line, which in turn
is not guaranteed a bounded latency to finish.

On the other hand, PENDULUM by construction considers
the mixed-criticality nature as a first-class principle. Thus, it
provides tight latency bounds for Cr cores, while providing as
much performance as possible for the nCr ones. In addition,
unlike PMSI, PENDULUM is a time-based coherence protocol,
which utilizes timers to reduce invalidations and coherence
misses. Further, it provides configurable timers to enable the
designer to tune the system for specific performance/bounds
requirements, which are dependent on the application.

III. CACHE COHERENCE PROTOCOLS: A BACKGROUND

A cache coherence protocol implements a set of rules that
ensure data correctness. This set identifies states that denote
the read and write permissions of each cache line in the core’s
private cache. Transitions between these states occur due to
either an activity by the core itself (for instance, a load or
store instruction) or activities of other cores in the system
on the same cache line (such as a load or store miss to this
cache line). The MSI cache coherence protocol is a standard
cache coherence protocol that several modern cache coherence
protocols are based upon such as MESIF and MOESI protocols
[27]. Therefore, we use MSI in this section to explain the
basics of coherence protocols. MSI has three stable states. The
semantics for each of these states are as follows: (1) Invalid
(I) indicates that the cache line does not have valid data. (2)

TABLE I: MSI protocol. msg/state denotes that a core issues the message msg, and moves to coherence state state.

State Current core Other cores
Load Store Replacement Load Miss (OtherGetS) Store Miss (OtherGetM) Other Upg

Invalid (I) Issue GetS/S Issue GetM/M – – – –
Shared (S) Hit Issue Upg/M /I – /I /I

Modified (M) Hit Hit Issue PutM/I Send Data/I Send Data/I –

Modified (M) represents that the core has modified the cache
line data; hence, it owns the cache line, and has the most up-
to-date data. Only one core can have a cache line in the M
state. (3) Shared (S) identifies that the cache line was read,
but not modified. Multiple cores may have the same cache line
in the S state. This allows read hits in their respective private
caches. Allowing multiple cores to have a cache line in the S
state, and only one core to have a cache line in the M state
is referred to as maintaining the single writer multiple reader
(SWMR) invariant.

Transitions between states occur by exchanging coherence
messages among cores and between cores and shared memory.
Table I illustrates transitions among stable states of the MSI
protocol. For instance, in Table I, when a core has a load
(store) request to a cache line that is currently in I state,
it issues a GetS (GetM) message on the bus, waits until
it receives its data and then moves to the S (M) state. The
GetS (GetM) message issued by this core on the bus is going
to be observed by other cores as OtherGetS (OtherGetM)
message. On the other hand, if a core wants to evict (replace)
a cache line that is in the M state, it has to issue a PutM
message to write back the data to the shared memory before
it moves to the I state.

IV. SYSTEM MODEL

We consider a multi-core MCS that consists of a set of
both Cr and nCr tasks running on N cores. Each core can
run any number of tasks; however, for sake of simplifying
the discussion, we assume that all tasks mapped to a specific
core are either Cr or nCr. Accordingly, cores can be classified
into two sets: a set of NCr critical cores running Cr tasks
and a set of NnCr non-critical cores running nCr tasks, where
N = NCr + NnCr. It is worth noting that PENDULUM can
be seamlessly deployed in MCS where a core runs both Cr
and nCr tasks. However, in this case, the bus arbiter needs to
consider tasks not cores [35], and it must track the criticality of
the task currently running by each core such that criticality-
dependent states of PENDULUM (Section V-D) will depend
on the task identification number (ID) instead of the core ID.
This is true because there is no coherence interference between
tasks on same core since they share the same private caches.
Other sources of interference that can arise from sharing
the same core (e.g. cache thrashing) are outside the scope
of this paper, and can be resolved using existing solutions
that are orthogonal to PENDULUM such as cache locking,
or coloring [14]. Aside from this assumption, we do not
require any restrictions on how tasks are mapped to cores or
scheduled. This allows PENDULUM to easily integrate with
various existing task scheduling techniques targeting multi-

core platforms. Each core has its own private cache(s), which
is usually the L1 cache and shares a lower-level of memory
with all other cores, which can be the on-chip last-level cache
(LLC), the off-chip main memory, or both. Cores share a com-
mon interconnect (e.g. a bus) connecting private caches and
the shared memory. Private caches can also communicate with
each other, which allows for a cache-to-cache data transfer.
This is the common architecture in commercial-off-the-shelf
(COTS) platforms as it increases system performance. For the
timing analysis, we assume that cores are in-order and allow
for only one outstanding memory request.

PENDULUM does not impose restrictions on how the timing
interference on the shared memory is resolved, whether it is
the LLC or the main memory. For simplicity of exposition, we
conduct the analysis assuming accesses to the shared memory
are managed through a fixed-priority arbitration, where Cr
cores have a higher priority than nCr cores. Requests from
different Cr cores are arbitrated using a work-conserving
time-division multiplexing (TDM) scheduler, while arbitration
among requests from different nCr cores uses round robin
(RR). This arbiter uses a TDM-based scheduler, where each
Cr core is granted one slot each TDM period. nCr cores are
granted access to the shared bus only during TDM slots where
none of the Cr cores have a pending request. We call these slots
slack slots. Selecting which nCr core is granted a slack slot is
determined by RR arbitration. Assuming a specific arbitration
scheme helps in example illustrations and in conducting timing
analysis to derive bounds for a request to the shared memory
in the presence of data sharing. Nonetheless, existing work on
arbitrating access to shared memories either for caches or for
DRAM is orthogonal to this work and can be integrated with
PENDULUM to manage shared data. Moreover, prioritizing Cr
over nCr cores is a common approach in MCS since Cr cores
are time-sensitive and require tight timing bounds, while nCr
cores are generally performance-oriented. Cores can share data
among each other to allow for communication across threads
of the same task or across tasks. PENDULUM is a hardware
cache coherence protocol that enables data sharing without
requiring modifications to software. Accordingly, it works for
MCS with no shared data, MCS with shared data among the
same criticality level only (between Cr tasks for instance), and
MCS with shared data among different criticality levels.

V. PROPOSED SOLUTION: PENDULUM

We introduce the details of the PENDULUM coherence
protocol, and explain how it enables coherent and simulta-
neous sharing of data while taking into account unique design
principles of MCS. Due to space constraints, we explain in
detail only the coherence states that are either introduced or

TABLE II: The four timer values of PENDULUM. Each core based on its criticality has two timer fields per cache line.

Timer Owner Requesting core Effect on Cr cores Effect on nCr cores
Average performance WCL Average performance WCL

Timer(Cr,Cr) Cr Cr Dependent on application Increases No effect No effect
Timer(Cr,nCr) Cr nCr Increases No effect Decreases Increase
Timer(nCr,Cr) nCr Cr Decreases Increases Increases No effect

Timer(nCr,nCr) nCr nCr No effect No effect Dependent on application Increases

modified by PENDULUM, while we briefly explain the states
that PENDULUM directly inherits from MSI-based protocols
without modification. For a detailed explanation of all the
transient states of MSI-based protocols, we refer the reader
to a technical report [36]. The main motivation in modifying
the coherence protocol is to achieve two design goals: (1)
time-based coherence, and (2) criticality-aware coherence. We
next detail the realization of these two goals.

A. Timers

We maintain two timer fields per cache line for each core.
Values of these fields are selected from four possible timer val-
ues based on the criticality of the owner and requestor cores;
thus, timer values are expressed as Timer(Owner,Requestor).
The basic idea of these timers is that the Owner holds a
valid copy of the cache line for a period of time equal to
the timer value before it invalidates itself to provide access to
the Requestor. If there is no Requestor to that cache line
when the timer expires, the Owner does not invalidate its data
copy, and the timer value is replenished to allow the Owner
to retain the cache line for another timer period. As Table II
illustrates, a cache line in a Cr core has timers Timer(Cr,Cr)
and Timer(Cr,nCr), while a cache line in a nCr core has
timers Timer(nCr,Cr) and Timer(nCr,nCr). The timer counters
are configurable, and timer values are use-case specific and
depend on the characteristics of the running tasks. Next, we
discuss the impact of each timer to help the system designer in
determining the suitable timer values. We discuss this impact
on both average performance as well as per-request WCL of
Cr and nCr cores. The timing analysis to compute the WCL
is discussed in Section VI. The discussion of the average
performance uses the cache average access time as defined
by Equation 1, where %hitRate is the application’s L1 cache
hit rate, thit is the L1 cache hit access time, and tmiss is the
miss penalty of the L1 cache.

tavg = %hitRate · thit + (1−%hitRate) · tmiss (1)

1) Timer(Cr,Cr): With increasing Timer(Cr,Cr), the Cr re-
questor has to wait longer to receive data for a requested
cache line that is owned by another Cr core. As a result, tmiss

increases, which in turn increases both the WCL and tavg of
Cr cores. However, increasing Timer(Cr,Cr) allows a Cr owner
core to have multiple hit accesses to the owned cache line
during this period. This would increase %hitRate, which in
turn decreases tavg. Therefore, the overall effect of increasing
Timer(Cr,Cr) on average performance of Cr cores is application
dependent as it depends on how many requests are issued to a

certain cache line within a specific time window. Timer(Cr,Cr)
has no effect at all on nCr cores.
Guideline. If minimizing Cr’s WCL is the most important
target, Timer(Cr,Cr) should be set to its minimum value.

2) Timer(nCr,nCr): Similar to Timer(Cr,Cr), increasing
Timer(nCr,nCr) increases the WCL of a memory request from
a nCr core, while its effect on the average-case performance
of nCr cores is application dependent. Timer(nCr,nCr) has no
effect at all on Cr cores.
Guideline. Tasks running on nCr cores do not require strict
timing guarantees, and benefit from improved average-case
performance. Hence, a task running on an nCr core can
benefit from a high Timer(nCr,nCr) value if it exhibits temporal
locality in its memory access pattern.

3) Timer(Cr,nCr): Since the requestor in this case is nCr,
Timer(Cr,nCr) has no effect on the WCL and on the tmiss of
the Cr cores. Increasing Timer(Cr,nCr) increases the average-
case performance of Cr cores, since it increases the %hitRate.
On the other hand, it increases the WCL of nCr cores and
deteriorates their average performance. This is because it
increases tmiss of nCr cores.
Guideline. Configuring Timer(Cr,nCr)’s value enables the de-
signer to decide the trade-off between average-case perfor-
mance demands from nCr cores from one side and the Cr
cores from the other side. For instance, if Cr applications are
latency-sensitive with low average-case demands, while nCr
ones require high average performance, Timer(Cr,nCr) can be
set to its minimum value.

4) Timer(nCr,Cr): Timer(nCr,Cr) is the counterpart of
Timer(Cr,nCr). Accordingly and following a similar rationale,
increasing Timer(nCr,Cr) increases the average-case perfor-
mance of nCr at the expense of increasing the WCL and
deteriorating the average performance of Cr cores.
Guideline. Setting Timer(Cr,nCr)’s value enables the designer
to address the trade-off between average performance demands
from nCr cores from one side and the WCL demands from Cr
cores from the other side.

After detailing the operation of PENDULUM’s configurable
timers, we now discuss the coherence states of PENDULUM.
Table III shows all the transient states and transitions of
PENDULUM. In addition to the three MSI coherence mes-
sages discussed in Section III, PENDULUM uses three other
messages: (1) SelfInv, which is issued by a core that wants
to downgrade a cache line from shared to invalid state (e.g.
because of replacement). (2) AllInv, which is a message
broadcasted by the shared memory when all sharers have self-
invalidated. This coherence message is necessary to inform a
pending store to a shared data that it is safe to proceed with

Core3

Core0

Core1

Core2

TDM
Slots

Owner
of A

ST

GetS

getM

S

IMD

getM
IMDSMA

IMDI

S

àSTM

IMD IMDI

STI I

MTI

MTI

M

I

I

Timer(nCr,Cr)
Timer(Cr,Cr)

Timer(Cr,Cr) Timer(Cr,Cr)

Total Latency

3

4

5

6

8

9

10

11

12
GetS
ISD

getM

ISAD1372

getM
IMD

getM

14

Cor
e0

 is
su

ed

St t
o A

Core0

rec
eiv

ed
 A

1

Fig. 3: An example of PENDULUM’s operation. Cores0–2 are Cr, while Core3 is nCr. All requests are to same cache line A.

the store request. (3) SendData, which is sent by a core that
is ready to send a cache line to a requestor. We divide the
coherence states in Table III into three categories: (1) states
that are inherited from the MSI-based protocols (Section V-B),
(2) timer-related states (Section V-C), and (3) states that enable
criticality-awareness (Section V-D).

B. MSI-based Coherence States

We briefly explain the MSI-based transient states and for
a detailed background on these states, we refer the reader to
the technical report in [36]. MSI-based states in Table III can
be classified into two types: (1) transient states to indicate the
waiting for coherence messages (ISAD, IMAD, SIA, SMA, and
MIA), and (2) transient states to indicate the waiting for data
messages (ISD, IMD, ISDI, and IMDI). The first type indicates
that the core issued a coherence message, but did not observe
it yet on the bus. For instance, ISAD (IMAD) means that a load
(store) request to a cache line that was in I state is issued, but
the OwnGetS (OwnGetM) is not observed yet. The second
type indicates that the core observed its coherence message
on the bus, but is waiting to receive the requested data. For
instance, ISD (IMD) indicates that a load (store) request was
issued to a cache line that was in I state, but it is still waiting
for the data. The cache line will be in the ISDI (IMDI) state
if while waiting for its data in (i.e. in ISD (IMD)), a store
request to the same cache line is issued by another core.

C. Timer-related Coherence States

Figure 3 shows an illustrative example for the operation of
PENDULUM. We use this example throughout the remainder
of this paper to illustrate the operation of PENDULUM, the
semantics of the coherence states, and the analysis of the

coherence latency. Figure 4 shows the timer-related coherence
states and their transitions in PENDULUM.

The following rules dictate the operation of timers and the
corresponding PENDULUM states and transitions. (1) Once a
core receives a cache line, it starts its corresponding timers
(ST in Figure 4). This is the situation at timestamp 1 in
Figure 3 for Core0. In addition, if the cache line was in the
ISDI or IMDI state, it moves to the ST I (Figure 4a) or MT I
(Figure 4b) state, respectively, and waits for the timer to expire
before it invalidates itself. For instance, in Figure 3, Core1 was
at IMD state at 4 waiting for data of the cache line A. Then,
it moves to IMDI state at 5 because Core2 issued its store
request to A. Once Core1 receives its data at 8 , it moves
to the MT I state. (2) If a timer expires and the cache line is
not requested by another core with the same criticality level as
the timer, then the timer is replenished (RT). This is important
to avoid unnecessary invalidations. (3) If a core has a cache
line in S state and another core requests the same cache line
to modify (OtherGetM), the current core moves to ST I state,
waits for its timer to expire (WT), and issues a self-invalidation
to the arbiter (SelfInv). This is the transition from S to ST I
in Figure 4a. In Figure 3, Core3 moves to the ST I state at 4
because of Core1’s getM request and waits for its timer expiry,
which occurs at 7 . (4) If a core owns a cache line (M state)
and another core issues a request to this cache line, a similar
process to (3) occurs with the exception that the owner moves
to MT I state (Figure 4b). In Figure 3, Core0 moves the state of
cache line A from M to MT I at 13 because of Core3’s request
to A. (5) Multiple cores can share the same cache line in the
S state without modification. In this case, every sharer has
its own timer counting down based on when it obtained this
cache line independent of the other cores. A requestor to that
cache line has to wait for the core whose timer expires the last

𝑆"𝐼

𝑆

OtherGetM/
SelfInv &

WT

𝐼𝑆$𝐼
Data/

read & ST

𝑆"𝑀

Store/
WT𝐼

Rep/
SelfInv

Timeout

Load/
Hit

OtherGetM/
SelfInv

(a) ST I: Transitioning from shared to invalid.

𝑀"𝐼

𝑀
𝐼𝑀$𝐼

Data/
write & ST

𝐼
Timeout

Load or
Store/Hit OtherGetM or

OtherGetS/
SendData & WT

Rep/
PutM &

SendData OtherGetM or
OtherGetS/
SendData

(b) MT I: Transitioning from modified to invalid.

𝑆"𝑀

𝑆𝑆"𝐼
Store/
WT

𝑀
Timeout/
SelfInv &

GetM

Load/
Hit Store/

WT

OtherGetM /
SelfInv

(c) ST M: Transitioning from shared to modified.

Fig. 4: Timer-related states introduced by PENDULUM and their corresponding transitions.

TABLE III: PENDULUM private cache coherence states. Shaded rows are the timer-related states. WT: Wait for timer timeout,
RT: Replenish timer, ST: Start timer. msg/state denotes that a core Issues the message msg, and moves to coherence state
state. Cells marked as “×“ indicate that a particular transition cannot happen, and cells marked as “−“ denote that a cache
line in that state does not change state with a core event or bus event.

State Core events Bus events - common to Cr and nCr cores

Load Store Replacement Timeout OwnGetS OwnGetM OwnPutM OwnSelfInv AllInv OwnSendData Data OtherGetS-
Cr or -nCr

OtherGetM-
Cr or -nCr

I Issue
GetS/ISAD

Issue
GetM/IMAD X X X X X - - X X - -

ISAD X X X X /ISD X X - - X X - -

ISD X X X X X X X - - X load/S
and ST Criticality-dependent (Table IV)

ISDI X X X X X X X - - X load/ST I
and ST

S Hit /ST M and
WT

Issue
SelfInv/SIA

/S and
RT X X X X X X X -

Issue
SelfInv/ST I
and WT

ST I Hit ST M and
WT

Issue
SelfInv/SIA /SIA X X X X X X X - Issue SelfInv

SIA Hit
Issue
SelfInv and
GetM/SMA

Issue Self-
Inv X X X X /SI X X X - Issue SelfInv

SI Hit Issue
GetM/IMAD /I X X X X X /I X X - -

ST M Hit X X

Issue
SelfInv
and
GetM
/SMA

X X X X X X X - Issue SelfInv

SMA Hit X X X X /IMD X /IMAD X X X - Issue SelfInv
IMAD X X X X X /IMD X - - X X - -

IMD X X X X X X X - - X store/M
and ST * *

IMDI X X X X X X X - - X store/MT I
and ST * *

M Hit Hit Issue
PutM/MIA

/M and
RT X X X X X X X

Issue Send-
Data / MT I
and WT

Issue
SendData
/MT I and WT

MT I Hit Hit
Issue
PutM and
SendData/MIA

/MIA X X X X X X X Issue Send-
Data

Issue
SendData

MIA Hit Hit Issue PutM X X X WB/I X X send data to re-
questor/I X Issue Send-

Data
Issue
SendData

before it can obtain the cache line. In Figure 3 at the TDM slot
between timestamps 2 and 3 , both Core0 and Core3 have a
valid read-only version of A. Note that ST M transient state is
still a read-only shared state. (6) If a core has a store request
to a cache line that it has in S state, it has to wait for its timer
to expire and then issue this store request on the bus. This
is necessary to maintain coherent data sharing since S state
implies that other cores can also have this line in S, which
will not be invalidated until their timer expiration. Therefore,
as shown in Figure 4c, if a core has a store request to a cache
line in the S or the ST I state, it moves to ST M, waits for timer
expiration, invalidates, and then issues the GetM to the arbiter.
This is Core0’s request situation in Figure 3 at 1 . (7) ST I is
effectively a shared state; therefore, loads to a cache line in
this state are cache hits. Similarly, MT I is a modified state,

where loads or stores to a cache line in this state are cache
hits. (8) If a cache line is in ST I or MT I and a Timeout occurs
or a replacement (Rep in Figure 4) is requested by the core,
this ine will eventually move to the I state. In case of MT I, a
write back to the shared memory is also needed (PutM and
SendData messages in Figure 4b). Dotted lines in Figure 4
denote that the cache line may move to other transient states
until it observes its coherence messages and then move to the
indicated stable state. However, these transient states are not
related to the timers, and we refer the reader to [36] for the
complete transition table.

D. Handling Mixed Criticality
Deploying a criticality-aware arbiter to protect Cr requests

from interference by assigning them higher priority is not
enough for MCS if tasks are simultaneously sharing data. In

TABLE IV: Different PENDULUM transitions based on criticality levels.

Criticality level of owner core State Requesting core is Cr Requesting core is nCr
Load Store Load Store

Cr
ISD - Issue SelfInv /ISDI - Issue SelfInv /ISDI
ISDI - Issue SelfInv - Issue SelfInv
IMD Issue SendData /IMDI Issue SendData /IMDI Issue SendData /IMDI Issue SendData /IMDI
IMDI Issue SendData Issue SendData Issue SendData Issue SendData

nCr
ISD - reIssue GetS /ISAD - Issue SelfInv /ISDI
ISDI - reIssue GetS /ISAD - Issue SelfInv /ISDI
IMD reIssue GetM /IMAD reIssue GetM /IMAD Issue SendData /IMDI Issue SendData /IMDI
IMDI reIssue GetM /IMAD reIssue GetM /IMAD Issue SendData /IMDI Issue SendData /IMDI

such systems, requests to shared memory are not necessarily
atomic, since the data transfer might not start in the same
slot in which the request was issued. This might happen
for instance because another core already has the requested
data in its private cache (as Figure 3 illustrates). In MCS,
the cache coherence protocol has to ensure data correctness,
while determining actions based on the criticality of memory
requests. Otherwise, a Cr request may have to wait indefinitely
because of a nCr’s request to the same cache line as explained
in Section II-C3. Accordingly, some of PENDULUM state tran-
sitions are dependent on the criticality of the communicating
cores. These transitions are indicated as Criticality-depedent
in Table IV. It is important to observe that these transitions
and their corresponding states cover the situation of pending
requests where a core issued a request to a cache line, but is
still waiting to get the data (this is the owner core), and in the
mean time another core requests an access to the same cache
line (this is the requestor core). The transitions in Table IV can
be classified into the following two categories. 1) The owner’s
criticality is higher than or equal to the requestor’s criticality.
In this case, the owner gets the data first, performs its access,
and then invalidates its cache line after its corresponding timer
expires. If the owner’s request was a store, the owner sends the
data as well after the timer expiration to the requestor. This is
the case in Table IV, where the owner is Cr regardless of the
requestor’s criticality, or both the owner and the requestor are
nCr. For instance in Figure 3, Core1 issues a store request to
A at 4 and moves to the IMD state, while waiting for data. In
the mean time, Core2 has a store request to A at 5 . Since both
Core1 and Core2 are Cr, Core1 moves to the IMDI state and
gets access to A first (at 8), before it invalidates (at 9) such
that Core2 gains access to A at 10 . This means effectively,
accesses to same cache line from cores of same criticality
are served in their arrival order. 2) The owner’s criticality is
lower than the requestor’s criticality. This is the case where
the owner is a nCr core, while the requestor is Cr. In this
case, the owner’s request will be preempted and the core has
to reissue its request. This preemption only affects the nCr’s
request latency and has no effect on the system state. This
is because the request was still pending and data transfer did
not yet start. On the other hand, this preemption is necessary
to provide the Cr cores with the independence from the nCr
cores behavior on shared data, and thus, ensure a bounded
latency for requests from Cr cores. In Figure 3, Core3 issues

a GetS to A and moves to ISD at 13 waiting for Core0’s
timer expiration. In the mean time, Core2 issues a GetM to A
at 14 . Since Core2 is Cr, while Core3 is nCr, Core3’s request
to A is preempted, and it moves to the ISAD state, which
means it is waiting for its request to A to be reissued.

E. Hardware Overhead

Two timer fields are added to each cache line, which adds to
the overhead of the cache area. In our current implementation,
to reduce this overhead, we designate the values of these timers
to be a multiple of the arbiter period. This alignment of timer
values to arbiter periods allows us to reduce the timer bits
to 4 bits for each timer. This reduces the overhead by 75%
compared to state-of-the-art time-based coherence protocols,
which use 32-bit timers per cache line [33], [37]. We find that
allocating 4 bits per timer is sufficient since it allows timers to
go up to 16 periods of the arbiter schedule. It is worth noting
that this overhead is low considering the current cache size in
COTS platforms. For instance, the Intel i7 Haswell processor
has an L1 cache size of 32KB [38], and a tag array of size 2KB
to store state bits and address information. PENDULUM adds
8 bits per cache line, which results in an additional overhead
of 0.5KB (1.47% additional overhead).

F. Supporting Systems with More than Two Criticality Levels

Supporting systems with arbitrary number of criticality
levels is beyond the scope of this paper and is left as a
future extension. Nonetheless, such an extension is feasible
without requiring either significant changes in the operation of
PENDULUM or additional overheads. Two main components
need to be changed to support an arbitrary number of criticality
levels: timers and criticality-dependent coherence states.

1) The number of timer fields will remain the same (two
per core). However, their semantics will change. Instead of
depending on whether the owner/requestor is Cr or nCr, they
should depend on whether the requestor has a lower criticality
than the owner or not. Accordingly, the two timer fields of
each core will have the value of Timer(HCr) and Timer(LCr).
Timer(HCr) applies if the requestor’s criticality is higher
than the owner’s criticality, while the Timer(LCr) applies
otherwise. A core Corei has to invalidate its cache line after
Timer(HCr) (Timer(LCr)) if the requestor has higher (equal
or lower) criticality than Corei.

2) Similarly, the semantics of the coherence states that are
dependent on the criticality (those tabulated in Table IV), has

to change to reflect the relative criticality level of the requestor
as compared to the owner. To exemplify, assume that Corei
issued a request to cache line A and is waiting for data in state
ISD and another Corej issues a store request to A. If Corej
has a lower criticality than Corei, then Corei will gain access
to A first. On the other hand, if Corej has a higher priroity
than Corei, Corei request is preempted and it has to reissue
its request to A.

VI. TIMING ANALYSIS

In this section, we derive the latency bounds for a memory
request issued by a Cr core to the shared memory. Towards
doing so, we define three latency components: access latency
(Definition 1), arbitration latency (Definition 2), and coherence
latency (Definition 3). Any request to the shared memory
incurs one or more of these latency components.

Definition 1: Access latency, Lacc, is the time consumed
by a request, while it is performing the access and transferring
the requested data to the core.
Access latency accounts for the time needed to perform the
memory operation once the request is granted access to the
requested data, and hence, it is independent of the arbitration
policy and does not include the effect of any interference from
other requests. It includes the time required to transfer the
requested data from the shared memory (or another core’s
private cache) to the private cache of the requesting core.
We assume that Lacc is a fixed latency. This latency can be
considered as the WC access latency of the shared memory.
Determining the value of Lacc is outside the scope of this
paper and existing work can be used to determine it both for
LLCs [23] and DRAMs [39].

Definition 2: Arbitration latency, Larb
r , is the latency

incurred by a request r due to the arbitration on the shared
memory bus. It is measured from the timestamp when r is
issued to the bus until it is granted access to the memory.
Larb
r accounts for the latency suffered by a request due to

other requests that are scheduled by the arbiter before this
request regardless of their requested cache lines.

Definition 3: Coherence latency, Lcoh
r , is the additional

latency incurred by a request r due to the coherence protocol
rules that ensure data correctness in the cache hierarchy. It is
due to requests from other cores to the same cache line of r.

For any memory request from a Cr core, to incur the WCL,
it has to incur both WC arbitration latency, WCLarb, and
WC coherence latency WCLcoh, in addition to the access
latency. Equation 2 calculates this total WCL. Accordingly, to
bound the memory latency incurred by any request, it remains
to calculate WCLarb and WCLcoh. We derive WCLarb in
Lemma 1 and derive WCLcoh in Lemma 2.

WCL =WCLarb +WCLcoh + Lacc (2)

Lemma 1: (WC Arbitration Latency) The WC arbitration
latency of a request generated by any Cr core is:

WCLarb = NCr × SW

Proof: The proof directly follows from the arbitration
policy. Since Cr cores are arbitrated using TDM and nCr cores
are granted access only in slack slots, a request incurs the WC
arbitration latency when it arrives such that it just misses its
own core’s slot; thus, it has to wait for a full TDM period.
Since each Cr core has one slot per TDM period and the slot
width is SW , the TDM period is NCr × SW .

Lemma 2: (WC Coherence Latency When Data Sharing
Is Enabled Among All Cores) The WC coherence latency,
WCLcoh, incurred by a request issued by any Cr core is:

WCLcoh = Timer(Cr,Cr) + Timer(nCr,Cr)− SW
+ (NCr − 1)×

(
Timer(Cr,Cr) + (NCr − 1)× SW

)
Proof: Let the Cr core under analysis to be Corei, which

issues a request to a cache line A.
(1) Coherence interference from Cr cores: The WC coher-
ence interference for Corei occurs when all other Cr cores have
pending store/write requests to the same cache line, A. Further,
all these pending requests from other Cr cores are scheduled
before Corei’s request. Since the coherence protocol enforces
the SWMR invariant, only one core can obtain A to write at a
time. Consequently, all these pending write requests to A are
serialized. Each of these NCr − 1 other Cr cores obtains A
in M state for a period of Timer(Cr,Cr). Moreover, since each
core gains access to the bus only in its dedicated slot, once a
core’s timer expires, it can take a maximum of NCr − 1 slots
before another core obtains A. This results in a total coherence
interference of (NCr−1)×

(
Timer(Cr,Cr)+(NCr−1)×SW

)
from other Cr cores.
(2) Coherence interference from nCr cores: In addi-
tion, Corei can suffer a maximum coherence delay of
Timer(nCr,Cr)−SW from nCr cores, due to the fixed-priority
scheduling. This maximum delay occurs when a nCr core gains
access to the same cache line requested by Corei just before
Corei sends its request to the arbiter. This nCr core needs one
slack slot to gain such access, which explains the subtracted
SW term.
(3) Coherence interference because of a write to a non-
modified cache line: Finally if Corei’s request to A was a
write, it can suffer additional latency if it already has A in
S state in its private cache. This is because as explained in
Section V, PENDULUM disallows write hits to non-modified
cache lines. Therefore, a write request to a block in S state
has to wait for the timer to expire before it is sent to the
arbiter. Since a Cr core keeps a cache line with another Cr
pending request for a maximum of Timer(Cr,Cr), the WC of
this additional latency if Corei’s request to A was a write
request and Corei has A in S state is Timer(Cr,Cr).

From 1–3, WCLcoh when data sharing is enabled among
all cores is as calculated in Lemma 2.
Figure 3 shows this WCLcoh for a system with 3 Cr cores and
one or more of nCr cores (the number of nCr is irrelevant).
Core0 is the core under analysis, which has a cache line A
in S state. At timestamp 1 , Core0 has a store request to A.
However, this request has to wait until the expiration of A’s

timer (timestamp 3) before it can be sent to the arbiter. In
the mean time, and directly before the expiration of A’s timer
in Core0’s private cache (timestamp 2), Core3, which is a
nCr core obtains a slack slot and issues a read request to A.
Since the arbiter has no pending Cr requests to A (Core0’s
store request is still pending for the timer expiration and not
send to the arbiter yet), Core3 gains access to A. At timestamp
3 , Core0’s timer expires; however, Core0 still has to wait for
its own slot before the arbiter issues its store request to A.
At timestamp 4 , Core1 utilizes its own slot to send a store
request to A; however, it has to wait for Core3’s Timer(nCr,Cr)
timer to expire. Similar situation occurs for Core2 in its slot
at timestamp 5 . In this case Core2 has to wait for both Core3
and Core1. Core0’s store request to A is issued at timestamp
6 , but it has to wait for Core3, Core1, and Core2 accesses to
A. Although Core3’s timer expires at 7 , Core1 waits for its
slot at 8 to gain access to A. After the expiration of Core1’s
timer at 9 , Core2 obtains A at 10 and his timer expires at
11 . Finally, Core0 obtains A and perform its store operation at
12 . From Figure 3, the total latency that Core0’s store request
to A suffers is Timer(Cr,Cr) + Timer(nCr,Cr)− SW + 2×(
Timer(Cr,Cr)+2×SW

)
+3×SW . The last term (3×SW)

is the arbitration and access latency.
Lemma 3: (WC Coherence Latency When Data Sharing

Is Enabled Among Critical Cores Only) The WC coherence
latency, WCLcoh, incurred by a request issued by any Cr core
if data is only shared among Cr cores can be calculated as:

WCLcoh = Timer(Cr,Cr)

+ (NCr − 1)×
(
Timer(Cr,Cr) + (NCr − 1)× SW

)
Proof: If the system disallows data sharing between Cr

and nCr cores, a Cr core will not suffer coherence interference
from the nCr. The proof directly follows from Lemma 2 by
eliminating the coherence interference delays from the nCr.

VII. CORRECTNESS OF PENDULUM

In order to ensure the correctness of PENDULUM under all
possible states and transitions, we use a combination of three
methodologies. All of them exhaustively cover all protocol
states, which provides evidence of the correctness of the
proposed protocol. 1) Manual Testing. We handcraft synthetic
benchmarks that are carefully designed to cover all possible
state transitions, including both stable and transient states. We
then execute these benchmarks and log detailed debugging
messages that capture the behavior of PENDULUM in every
cycle. Finally, we examine these logged messages to ensure
the correctness of PENDULUM. 2) Random Tests. We utilize
the Ruby Random Tester that is included with the gem5
simulator [40] to generate 10 million random test requests
to the shared memory hierarchy with PENDULUM as the
implemented coherence protocol. Then similar to the manual
testing, we examine all detailed logs to ensure correctness
for all tests. 3) Data Correctness. We prototype PENDULUM
in the gem5 micro-architectural simulator [40], and use the
SPLASH-2 benchmarks as a representation of real benchmarks

with shared data [41]. SPLASH-2 benchmarks comprise of
data verification routines that report the correctness of the
output produced by the multi-threaded benchmark routines.
We found that all SPLASH-2 benchmarks on PENDULUM
execute correctly, and the verification routines validate the data
output for the multi-threaded benchmark routines.

VIII. EVALUATION

Setup. We prototype PENDULUM in gem5 [40], a micro-
architectural simulator that models the memory subsystem and
coherence protocol with high precision. Table V tabulates
the considered system parameters. We set accesses to the
LLC to be cache hits to eliminate the interference on off-
chip main memory and focus solely on the latency overhead
of maintaining coherence copies of shared data in the cache
hierarchy. DRAM interference is outside the scope of this work
and existing works can be used to predictably manage accesses
to main-memory (e.g. [42], [43]) or bound its interference
(e.g. [39]). These works are orthogonal to PENDULUM and
their delays are additive to those derived in this work [44].

Benchmarks. In our evaluation, we use both real bench-
marks and synthetic benchmarks. For the real benchmarks, we
use SPLASH-2 [41], a multi-threaded benchmark suite (Sec-
tion VIII-A). The purpose of the synthetic benchmarks is to
stress the behavior of the evaluated solutions (Section VIII-B).

A. SPLASH-2 Parallel Benchmarks

We use the SPLASH-2 benchmarks to compare PENDULUM
with prior works both from performance and WCL aspects.

1) Average-Case Performance: Figure 5 compares the per-
formance of PENDULUM with the MSI conventional (non-
predictable) coherence protocol as well as the following three
predictable approaches: Uncache shared, Task mapping,
and PMSI. The details of these approaches are discussed in
Section II. For PENDULUM, we set the timer values to be
one TDM period for each of them. The effect of various
timer values is then studied in Section VIII-C. Each of the
benchmarks in Figure 5 consists of four parallel threads that
share data among each other. To emulate the data sharing
among Cr and nCr, two of the threads are mapped to two
Cr cores, and the other two are mapped to two nCr cores.
For PMSI, all cores are considered critical since it does not
distinguish between different criticalities and equally allocates
service to all cores. All results in Figure 5 are normalized
to the MSI execution time. Results show the advantage of
utilizing cache coherence in increasing system performance.
PENDULUM introduces 42% slowdown on average compared
to conventional MSI protocol. This is up to 1.9× better
performance than Task mapping (66% on average) and up
to 3.48× better performance than Uncache shared (78% on
average). This is because cache coherence allows for simul-
taneous sharing of data, which as opposed to task mapping
technique, does not limit system parallelism and as opposed
to Uncache shared, allows for private cache hits for shared
data. Additionally, PENDULUM achieves up to 13% and 4%
on average better performance than PMSI.

TABLE V: Evaluation setup.

Param Configuration

System A quad-core system with 2 Cr and 2 nCr cores
Core Scalar, in-order pipeline, 2GHz operating frequency

Cache
L1-D, L1-I = 16KB direct-mapped,
64B cache line, 3 cycle latency
shared L2 (LLC), 1MB, 8-way set associative

Arbiter Cr cores get higher priority by assigning them dedicated
TDM slots, where nCr gain access on slack slots only. Slot
width is 50 cycle

1.
30

4.
62

7.
84

2.
51

1.
65 1.
72

3.
58

1.
41 2.

53

1.
67

1.
26

5.
06

2.
82

4.
79

2.
18 2.
50

1.
17

2.
35

1.
22

1.
22 1.

97

1.
91

1.
40

1.
51

1.
32 1.
49

1.
48

1.
19

1.
14 1.

75 1.
89

1.
36

1.
33

1.
21 1.

73

1.
42

0

2

4

6

8

LU FFT Radix Ocean FMM Cholesky Radiosity Raytrace Geomean

Sl
ow

do
w

n

Uncache shared Task mapping PMSI PENDULUM

Fig. 5: Performance slowdown compared to MSI protocol.

2) Worst-Case Per-Request Latency: Figure 6 depicts the
per-request WCL for SPLASH-2 benchmarks using different
approaches. Uncache all does not use private caches at all for
applications with shared data. We make two main observations
from Figure 6. 1) PENDULUM achieves much better per-
request WCL compared to PMSI. The main reason is that
PENDULUM is a criticality-aware coherence protocol that
carefully accounts for the core criticality in its coherence
transitions as we detailed in Section V-D. Therefore, it limits
the coherence interference from nCr cores. 2) The WCL of
Uncache all, Uncache shared, and Task mapping is lower
than PENDULUM. The reason is that these solutions avoid the
coherence latency (and thus, reduces the per-request WCL)
through disallowing simultaneous access to shared data as dis-
cussed in Section II which comes at the expense of increasing
the task’s overall execution time from other aspects. While
Uncache all and Uncache shared increase the number of
cache misses by not caching shared data, Task mapping limits
task parallelism. Therefore, the values of those approaches’
WCL in Figure 6 are not representative sense they do not take
into account the stated factors.

B. Synthetic Benchmarks

We design seven synthetic benchmarks to stress the behavior
of PENDULUM and highlight interesting observations. The
first benchmark is the Synth-All, which is designed to stress
maximum data sharing across cores. In this benchmark all
cores (Cr and nCr) execute the same sequence of memory
operations on the same shared data. In addition to Synth-
All, we design the six workloads tabulated in Table VI with
varying cache locality to highlight the role of timers. We
introduce the metric request interval to vary the cache locality
in the synthetic benchmarks. The request interval defines the
time interval between memory requests to the same cache line
by a core. As Table VI shows, we vary the request interval
in these benchmarks for both Cr and nCr cores such that
they exhibit a varying cache locality behavior. This stresses

0

500

1000

1500

2000

2500

PMSI PENDULUM Uncache-all Uncache
shared

Task mapping

W
C

L
 [

C
yc

le
s]

Fig. 6: Per-request analytical (T-sharp bar) and ob-
served/experimental WCL (colored bar) for SPLASH-2.

TABLE VI: Synthetic workloads.

Workload Request interval
(Cr) (nCr)

Synth-A 10 cycles 20 cycles
Synth-B 10 cycles 10 cycles
Synth-C 10 cycles 5 cycles
Synth-D 20 cycles 10 cycles
Synth-E 5 cycles 10 cycles
Synth-F 5 cycles 5 cycles

the timers behavior since the timer values determine the
period a cache line resides in the private caches of the cores.
Since PMSI is the most relevant to this work as it enables
predictable and simultaneous data sharing, we focus these
synthetic experiments on comparing PENDULUM with PMSI.
Similar to Section VIII-A, because PMSI does not support
mixed criticality and provide equal service to all cores, all
cores are considered critical for PMSI. On the other hand, for
PENDULUM, we assign two cores as Cr and the other two as
nCr. Additionally, we compare two possible configurations of
a MCS: 1) a system where data is shared only among cores
of same criticality (Shared Intra-Criticality Only in Figures 7
and 8), and 2) a system where data is shared across criticality
(i.e. among both Cr and nCr cores), which is shown as Shared
both Inter and Intra-Criticality in Figures 7 and 8.

1) Average-Case Performance: Figure 7 delineates the
speedup that PENDULUM achieves over PMSI for both data
sharing with only same criticality and data sharing across
criticalities with an average speedup of 20% and 33%, respec-
tively. These results align with the discussion in Section II.
PENDULUM achieves this speedup by allowing cores to retain
their ownership of cache lines in their private caches for a
dedicated time, which is determined by the configurations of
the timers. On the other hand, PMSI follows the conventional
snooping methodology, where cores have to invalidate their
cache lines immediately once requested to be modified by
another core, which creates the ping-pong effect we discussed
in Section II-C2. Figure 7 also shows that PENDULUM in
a system that restricts data sharing among only cores of
same criticality achieves better performance for most of the
synthetic benchmarks. This is intuitive since such system
has less interference among cores (thus, less invalidations).
However, this comes at the expense of constraining data flow
among tasks in the system. Whether data is shared among

1.
20

1.
33

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

Synth-All Synth-A Synth-B Synth-C Synth-D Synth-E Synth-F Geomean

S
pe

ed
up

Shared both Inter- and Intra-Criticality Shared Intra-Criticality Only

Fig. 7: PENDULUM performance with both data sharing among
1) cores of same criticality and, 2) all cores. All values are
normalized to PMSI performance.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Synth-All Synth-A Synth-B Synth-C Synth-D Synth-E Synth-F

W
C

L
 [

C
yc

le
s]

Arbitration latency Coherence latency
Total latency (Shared Intra-Cr Only) Total latency (Shared both Inter- and Intra-Cr)
Total latency PMSI

Fig. 8: Analytical (T-sharp bars) and experimental (colored
bars) WCL for the benchmarks in Table VI.

same criticality or across criticalities is use-case dependent and
PENDULUM is compatible with both system configurations.

2) Worst-Case Per-Request Latency: Figure 8 illustrates
the WCL of PENDULUM for both data sharing only among
same criticality cores and among all cores as well as the
WCL of PMSI. It also shows the worst-case values for the
latency components: arbitration, and coherence (access latency
to shared memory has a fixed value of 50 cycles). The solid
bars in Figure 8 are the observed WCL from experiments,
while the T-shape above each bar represents the analytical
WCL from Section VI. As Figure 8 highlights, PENDULUM
achieves much lower WCL than PMSI. PENDULUM achieves
3.56× less analytical latency than PMSI when the system
shared data among all cores and observed WCL shows a
similar trend. Another observation from Figure 8 is that the
gap between analytical and observed WCLs for PENDULUM
is much smaller compared to PMSI, which indicates that
PENDULUM also achieves higher predictability with tighter
bounds. This can be explained based on the discussion in
Section II-C3. PMSI is not designed for MCS and hence it
falls short of meeting MCS requirements. PENDULUM, on the
other hand, is criticality-aware and is able to minimize the
interference that a Cr core suffers from nCr cores. This is
achieved by both the fixed-priority arbitration that dedicates
slots to Cr only and service nCr at best effort utilizing
slack slots, and the criticality-aware coherence protocol with
different behavior based on cores’ criticalities.

C. Role of Timer Configuration

In Section V-A, we discussed in details the effect of
the timer values of PENDULUM in the WCL and average
performance of both Cr and nCr cores. We conduct a set of

0

1

2

3

4

5

6

0 200 400 600 800 1000

N
or

m
la

iz
ed

 W
CL

 o
f C

r

Timer(nCr,Cr) [Cycles]

(a) WCL of Cr cores.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 200 400 600 800 1000

N
or

m
al

iz
ed

 B
W

 o
f n

Cr

Timer (nCr,Cr) [cycles]

(b) Bandwidth of nCr cores.

Fig. 9: Impact of Timer(nCr,Cr).

experiments, where we vary each of the four timers and study
its effect in a quad-core system comprising two Cr and two nCr
cores. Because of the space limitations, we only show in this
section the results for the Timer(nCr,Cr). Timer(nCr,Cr) is the
most interesting timer since it rules the relationship between
Cr and nCr cores and its value addresses the trade-off between
WCL of Cr and average performance of nCr, which are the two
commonly considered objectives in MCS. Figure 9 delineates
the findings of this study. We increase Timer(nCr,Cr) value in
multiples of 100 cycles since it has to be a multiple of TDM
periods as explained in Section V-A. We normalize all results
to the value of Timer(nCr,Cr) = 100 cycles. As expected,
increasing Timer(nCr,Cr) increases the WCL of Cr cores. This
aligns with the analytical bound in Lemma 2. On the other
hand, by increasing Timer(nCr,Cr), nCr cores achieve higher
bandwidth since their hit rate increases by locking cache lines
in their private caches for at least Timer(nCr,Cr).

IX. CONCLUSION

Enabling data sharing is an important feature for MCS for
emerging domains including automotive and avionics. How-
ever, this should be done without imposing new restrictions in
the system or applications that hinder applicability. Towards
this target, we propose PENDULUM a solution to enable si-
multaneous data sharing for MCS tasks without imposing any
restrictions on the system schedulability or the tasks’ legacy
software. PENDULUM is a cache coherence protocol designed
for MCS with configurable capabilities that enable the MCS
designer to address the trade-offs between predictability and
average performance requirements from both critical and non-
critical tasks. Comparisons with state-of-the-art solutions show
that PENDULUM achieves flexibility and better performance,
while ensuring predictability.

X. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers and our
shepherd for their valuable feedback and suggestions.

REFERENCES

[1] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty, “Time-
triggered implementations of mixed-criticality automotive software,”
DATE ’12, EDA Consortium, 2012.

[2] G. Xie, G. Zeng, Z. Li, R. Li, and K. Li, “Adaptive dynamic scheduling
on multifunctional mixed-criticality automotive cyber-physical systems,”
IEEE Transactions on Vehicular Technology, 2017.

[3] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing archi-
tectures in avionics,” in 2012 Ninth European Dependable Computing
Conference, IEEE, 2012.

[4] M. G. Hill and T. W. Lake, “Non-interference analysis for mixed
criticality code in avionics systems,” in Proceedings ASE 2000. Fifteenth
IEEE International Conference on Automated Software Engineering,
IEEE, 2000.

[5] K. K. Venkatasubramanian, S. Nabar, S. K. Gupta, and R. Poovendran,
“Cyber physical security solutions for pervasive health monitoring sys-
tems,” in E-Healthcare Systems and Wireless Communications: Current
and Future Challenges, IGI Global, 2012.

[6] C. Kotronis, G. Minou, G. Dimitrakopoulos, M. Nikolaidou, D. Anag-
nostopoulos, A. Amira, F. Bensaali, H. Baali, and H. Djelouat, “Manag-
ing criticalities of e-health iot systems,” in 17th International Conference
on Ubiquitous Wireless Broadband (ICUWB), IEEE, 2017.

[7] B. Lesage, I. Puaut, and A. Seznec, “PRETI: Partitioned real-time shared
cache for mixed-criticality real-time systems,” in Proceedings of the 20th
International Conference on Real-Time and Network Systems (RTNS),
ACM, 2012.

[8] N. C. Kumar, S. Vyas, R. K. Cytron, C. D. Gill, J. Zambreno, and
P. H. Jones, “Cache design for mixed criticality real-time systems,” in
International Conference on Computer Design (ICCD), 2014.

[9] M. Hassan and H. Patel, “Criticality- and Requirement-Aware Bus
Arbitration for Multi-Core Mixed Criticality Systems,” in IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
IEEE, 2016.

[10] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst, “A mixed critical mem-
ory controller using bank privatization and fixed priority scheduling,”
in International Conference on Embedded and Real-Time Computing
Systems and Applications, IEEE, 2014.

[11] J. Jalle, E. Quiones, J. Abella, L. Fossati, M. Zulianello, and F. J.
Cazorla, “A Dual-Criticality Memory Controller (DCmc): Proposal
and Evaluation of a Space Case Study,” in IEEE Real-Time Systems
Symposium, IEEE, 2014.

[12] M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson, and
F. D. Smith, “Reconciling the Tension Between Hardware Isolation and
Data Sharing in Mixed-Criticality, Multicore Systems,” in IEEE Real-
Time Systems Symposium (RTSS), IEEE, 2016.

[13] M. Hassan, A. M. Kaushik, and H. Patel, “Predictable Cache Coherence
for Multi-core Real-Time Systems,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), IEEE, 2017.

[14] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pel-
lizzoni, “A Survey on Cache Management Mechanisms for Real-Time
Embedded Systems,” ACM Computing Surveys, 2015.

[15] D. Hardy, T. Piquet, and I. Puaut, “Using Bypass to Tighten WCET
Estimates for Multi-Core Processors with Shared Instruction Caches,”
in IEEE Real-Time Systems Symposium (RTSS), IEEE, 2009.

[16] B. Lesage, D. Hardy, and I. Puaut, “Shared Data Caches Conflicts
Reduction for WCET Computation in Multi-Core Architectures.,” in
International Conference on Real-Time and Network Systems, 2010.

[17] G. Gracioli and A. A. Fröhlich, “On the Design and Evaluation of a Real-
Time Operating System for Cache-Coherent Multicore Architectures,”
ACM SIGOPS Operating Systems Review - Special Topics, 2015.

[18] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T. Nolte,
“Contention-free execution of automotive applications on a clustered
many-core platform,” in IEEE Euromicro Conference on Real-Time
Systems (ECRTS), 2016.

[19] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero,
“Hardware Support for WCET Analysis of Hard Real-time Multicore
Systems,” in ACM Annual International Symposium on Computer Ar-
chitecture (ISCA), 2009.

[20] F. Hebbache, M. Jan, F. Brandner, and L. Pautet, “Shedding the Shackles
of Time-Division Multiplexing,” in IEEE Real-Time Systems Symposium
(RTSS), 2018.

[21] V. Suhendra and T. Mitra, “Exploring Locking & Partitioning for
Predictable Shared Caches on Multi-cores,” in ACM Annual Design
Automation Conference (DAC), 2008.

[22] M. Schoeberl, W. Puffitsch, and B. Huber, “Towards time-predictable
data caches for chip-multiprocessors,” in Springer International Work-
shop on Software Technolgies for Embedded and Ubiquitous Systems
(IFIP), 2009.

[23] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, “Making
Shared Caches More Predictable on Multicore Platforms,” in IEEE
Euromicro Conference on Real-Time Systems (ECRTS), 2013.

[24] D. Guo, M. Hassan, R. Pellizzoni, and H. Patel, “A Comparative Study
of Predictable DRAM Controllers,” ACM Transactions on Embedded
Computing Systems (TECS), 2018.

[25] P. Stenstrom, “A survey of cache coherence schemes for multiproces-
sors,” IEEE Computer, 1990.

[26] M. M. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Communications of ACM, 2012.

[27] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, 2011.

[28] S. L. Min and J.-L. Baer, “Design and analysis of a scalable cache
coherence scheme based on clocks and timestamps,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), 1992.

[29] X. Yuan, R. Melhem, and R. Gupta, “A timestamp-based selective inval-
idation scheme for multiprocessor cache coherence,” in IEEE Workshop
on Challenges for Parallel Processing (ICPP), 1996.

[30] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas, “Memory coherence in
the age of multicores,” in IEEE International Conference on Computer
Design (ICCD), 2011.

[31] K. S. Shim, M. H. Cho, M. Lis, O. Khan, and S. Devadas, “Library
cache coherence,” 2011.

[32] X. Yu and S. Devadas, “Tardis: Time traveling coherence algorithm
for distributed shared memory,” in IEEE International Conference on
Parallel Architecture and Compilation (PACT), 2015.

[33] Y. Yao, G. Wang, Z. Ge, T. Mitra, W. Chen, and N. Zhang, “Efficient
timestamp-based cache coherence protocol for many-core architectures,”
in ACM International Conference on Supercomputing (ICS), 2016.

[34] IEC61508, “Functional safety of electrical/electronic/programmable
electronic safety-related systems,” 2010.

[35] A. Alhammad and R. Pellizzoni, “Trading cores for memory bandwidth
in real-time systems,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2016.

[36] N. Sritharan, A. M. Kaushik, M. Hassan, and H. Patel, “PENDULUM:
A Cache Coherence Protocol for Mixed Criticality Systems, A Technical
Report.”

[37] I. Singh, A. Shriraman, W. W. Fung, M. O’Connor, and T. M. Aamodt,
“Cache coherence for GPU architectures,” in IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), 2013.

[38] Intel, “Intel 64 and IA-32 Architectures Optimization Reference Man-
ual,” 2016.

[39] H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar,
“Bounding memory interference delay in COTS-based multi-core sys-
tems,” in IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014.

[40] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, et al., “The gem5 simulator,” ACM SIGARCH Comput.
Archit. News, 2011.

[41] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in ACM Annual International Symposium on Computer Archi-
tecture (ISCA), 1995.

[42] M. Hassan, H. Patel, and R. Pellizzoni, “PMC: A requirement-aware
DRAM controller for multicore mixed criticality systems,” ACM Trans.
Embed. Comput. Syst., 2017.

[43] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst Case Analysis of DRAM
Latency in Multi-requestor Systems,” in IEEE Real-Time Systems Sym-
posium (RTSS), 2013.

[44] H. Yun, R. Pellizzon, and P. K. Valsan, “Parallelism-Aware Memory
Interference Delay Analysis for COTS Multicore Systems,” in IEEE
Euromicro Conference on Real-Time Systems (ECRTS), 2015.

