
PENDULUM: A Cache Coherence Protocol for Mixed
Criticality Systems, A Technical Report

NIVEDITA SRITHARAN, University of Waterloo
ANIRUDH MOHAN KAUSHIK, University of Waterloo
MOHAMED HASSAN, McMaster University
HIREN PATEL, University of Waterloo

1 INTRODUCTION
In this technical report, we explain the details of the PENDULUM, the cache coherence protocol
proposed for Mixed Criticality Systems in [1]. The coherence protocol is realized in the hardware
through a state machine deployed by the cache controller in the private cache of each core. We first
explain the main three stable states deployed by the traditional Modified-Shared-Invalidate (MSI)
protocol, then we detail the coherence messages, and then finally we explain the transient states.

2 STABLE STATES
PENDULUM has the same three stable states as the Modified-Shared-Invalidate (MSI) protocol. The
semantics of these states are as follows: 1) Invalid (I) indicates that the cache line does not have valid
data. 2) Modified (M) represents that the core has modified the cache line data; hence, it owns the
cache line, and has the most up-to-date data. Only one core can have a cache line in the M state. This
is also referred to as maintaining the single writer multiple reader (SWMR) invariant. 3) Shared (S)
identifies that the cache line was read, but not modified. Multiple cores may have the same cache line
in the S state. This allows read hits in their respective private caches.

3 COHERENCE MESSAGES
In bus snooping coherence, data correctness is maintained across different cores by exchanging
messages on the bus. A core will broadcast a message on the bus to indicate a new coherence request
or state change that other cores have to be aware of to maintain data correctness. There are three
standard coherence messages that conventional MSI cache coherence protocols include, which we
illustrate in Table 1. In addition to these messages, PENDULUM also introduces three new coherence
messages: SelfInv, AllInv, and SendData, which we explain in Table 2.

Table 1. MSI coherence messages

message Explanation
GetM Coherence message is broadcasted on stores to signal that data is going to be modified.
GetS Coherence message on loads to signal that data is going to only be read.
PutM Coherence message on dirty cache line replacements to signal that data needs to be written back.

4 TRANSIENT STATES
If the bus connecting all cores in the system is an atomic in-order bus, then each initiated request will
complete without interference from other requests. Therefore, a request that is being serviced will
move from its initial stable state to another stable state before the system starts servicing another

Authors’ addresses: Nivedita Sritharan, University of Waterloo; Anirudh Mohan Kaushik, University of Waterloo; Mohamed
Hassan, McMaster University; Hiren Patel, University of Waterloo.

, Vol. 1, No. 1, Article . Publication date: March 2020.



2 Nivedita Sritharan, Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel

Table 2. New coherence messages introduced by PENDULUM

message Explanation
SelfInv Coherence message is broadcasted when the core needs to downgrade or self-

invalidate from a shared to invalid state.
AllInv Coherence message is broadcasted by the shared memory when all sharers have

self-invalidated. This coherence message is necessary to signal a pending store
to a shared data that all sharers have self-invalidated, which eliminates violation
of the fundamental Single-Writer-Multiple-Reader invariant.

SendData Coherence message is broadcasted by a core that is ready to send a cache line
to a requestor

request. However, an atomic in-order bus is not practical since it introduces significant performance
degradation. The bus arbiter has to stall all cores, while a request is waiting for its data. This data
can take hundreds of cycles if it is fetched from main memory. Unnecessarily stalling other requests,
which can be ready and can be serviced immediately. Therefore, most commodity systems implement
non-atomic out-of-order buses to enhance performance. In such buses, the stall time of one core
waiting for data response can be used to service requests of other cores. However, the cache controller
has to remember the status of this waiting interrupted request. This is achieved by introducing
transient states that indicate the status of each request, while it is waiting to move to a final stable
state. Tables 3 and 4 shows all possible states, coherence messages, and transitions between these
states. We categorize the transient states of PENDULUM into three categories.

1) Transient states to indicate the waiting for data messages. 2) Transient states to indicate the
waiting for coherence messages. 3) Timer-related Transient states introduced by PENDULUM. In
addition to these three categories, we also explain in details the states that are criticality-aware, i.e.
their transitions differ between Cr and nCr cores in Section 4.4.

4.1 Transient States to Indicate the Waiting for Data Messages
These states indicate that the request message has been sent, but the data response has not yet been
received. Examples of these states are: ISD and IMD . ISD indicates that a load request was issued
to a cache line that was originally in I state but it is still waiting for the data to be read. Similarly,
IMD indicates that a store request was issued to a cache line that was originally in I state but it is
still waiting for the data to be written. If a core Corei is waiting for data in ISD (IMD ) state and
another core issues a store request, then Corei moves to the ISD I (IMD I) state which means that after
Corei performs its load (store) operation, it moves eventually to the I state (immediately in case of
traditional MSI and after a timeout in case of PENDULUM) to enable the other core to perform its
store operation. In case of IMD I, a write back of the data is also needed.

4.2 Transient States to Indicate the Waiting for Coherence Messages
Due to the non-atomic nature of the bus, a core can issue a coherence request on the bus but observes
a request from another core on the bus before it observes its own issued request.

4.2.1 Transitioning from I to S or M. Consider the case between I and S stable states. A core that
has a load request to a cache line in I state issues a GetS coherence request to the bus and moves to
the ISAD transient state. Once the request observes its OwnGetS, it moves to the ISD state to wait
for its own data as explained earlier. A similar situation occurs between I and M states. A core that
has a store request to a cache line in I state issues a GetM coherence request to the bus and moves to

, Vol. 1, No. 1, Article . Publication date: March 2020.



PENDULUM: A Cache Coherence Protocol for Mixed Criticality Systems, A Technical Report 3

the IMAD transient state. Once the core observes its OwnGetM, it moves to the IMD state to wait for
its own data.

4.2.2 Transitioning from S or M to I. Now, consider the transition from M to I. To replace a block
in M state, the core issues a PutM request to the bus. Until it observes its OwnPutM on the bus, the
cache line stays in the MIA state. Once OwnPutM is observed, it sends the data to the memory and
moves to the I state. A similar behavior occurs when downgrading from S to I. If the core wants to
replace a cache line in I state, it issues a selfInv message to the bus. Until it observes this OwnSelfInv
message on the bus, the cache line stays in the SIA state. Once OwnSelfInv message is observed by
the core, it moves to the SI state waiting for the replacement to occur and then move to I state. In the
meantime, if a core has a cache line in SI state and observes an AllInv message on the bus, it also
invalidates and moves to I state.

4.2.3 Transitioning from S to M. In PENDULUM, if a core has a store request to a cache line
that it owns in S state, it has to wait for its timer to expire and then issue this store request to the
arbiter [1]. Therefore, if a core has a store request to a cache line in S state, it moves to ST M (timer
states are explained in Section 4.3), waits for timer expiration, and then issues a SelfInv followed by
a GetM message to the arbiter and move to the SMA state. If the core observes its OwnSelfInv, it
moves to the IMAD state, and waits to observe the OwnGetM message. If it observes its OwnGetM,
it moves to the IMD state.

4.3 Novel Timer-Related Transient states introduced by PENDULUM
In this subsection, we discuss coherence states that are related to the timers operation (shaded in

grey in Table 3), while we discuss coherence states that are related to the criticality-awareness in
Subsection 4.4. The following rules dictate the operation of timers and the corresponding PENDULUM
states and transitions.

(1) Once a core receives a cache line, it starts its corresponding timers (ST in Table 3). In addition,
if the cache line was in the ISD I or IMD I state, it moves to the ST I or MT I state, respectively,
and waits for the timer to expire before it invalidates itself. The cache line will be in the ISD I
or IMD I state if while waiting for its data, a store request is issued by another core as detailed
in Section 4.1.

(2) If a timer times out while the cache line is not requested by another core with the same
criticality considered by the timer, the timer is replenished (RT in Table 3). This is important
to avoid unnecessary invalidations.

(3) If a core owns a cache line in S state and another core requests the same cache line to modify
(OtherGetM), the owner moves to ST I state, waits for its timer to expire (WT), and then issues
a self-invalidation to the arbiter (SelfInv).

(4) If a core owns a cache line in M state and another core issues a request to this cache line, a
similar process to (3) occurs with the exception that the owner moves to MT I state.

(5) Multiple cores can share same cache line in the read-only state (e.g. S) without modification .
In this case, every sharer has its own timer counting based on when it obtained this cache line
independent of the other cores. A requestor to that cache line has to wait for the core whose
timer expires the last before it can obtain the cache line.

(6) If a core has a store request to a cache line that it owns in S state, it has to wait for its
timer to expire and then issue this store request to the arbiter. In other words, write hits to
non-modified cache lines are disallowed. This is necessary to maintain coherent data sharing,
while simplifying the analysis to provide latency guarantees. Therefore, as shown in Table 3, if
a core has a store request to a cache line in S state, it moves to ST M, waits for timer expiration,
invalidates, and then issues the GetM to the arbiter.

, Vol. 1, No. 1, Article . Publication date: March 2020.



4 Nivedita Sritharan, Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel

4.4 Handling Mixed Criticality
As aforementioned, deploying a criticality-aware arbiter to protect Cr requests from interference by
assigning them higher priority is not enough for MCS if tasks are simultaneously sharing data. In
such system, requests to shared memory are not necessarily atomic, since the data transfer might
not start on the same slot in which the request was issued. This might happen for instance because
another core already has the requested data in its private cache. In MCS, the cache coherence protocol
has to ensure data correctness, while determining actions based on the criticality of memory requests.
Otherwise, a Cr request may have to wait indefinitely because of nCr request to same cache line.
Accordingly, some of PENDULUM state transitions are dependent on the owner core as well as the
requestor core. These transitions are identified in Table 3 as Criticality-dependent and are detailed
in Table 4. It is important to observe that these transitions and their corresponding states cover the
situation of pending requests where a core issued a request to a cache line but is still waiting to get
the data (this is the owner core), and in the mean time another core requests an access to the same
cache line (this is the requestor core). The transitions in Table 4 can be classified into two categories
as follows.

(1) The owner’s criticality is higher than or equal to the requestor’s criticality. In this case, the
owner gets the data first, performs its access, and then invalidates after its corresponding
timer’s expiry. If the owner’s request was a store, the owner sends the data as well after the
timer expiration to the requestor. This is the case in Table 4, where the owner is Cr regardless
of the requestor’s criticality, or both the owner and the requestor are nCr.

(2) The owner’s criticality is lower than the requestor’s criticality. This is the case where the owner
is a nCr core, while the requestor is Cr. In this case, the owner’s request will be preempted and
the core has to reissue its request. This preemption only affects the nCr’s request latency and
has no effect on the system state. This is because the request was still pending and data transfer
did not yet start. On the other hand, this preemption is necessary to provide the Cr cores with
the sufficient independence from the nCr cores behavior on shared data, and thus, ensure a
bounded latency for requests from Cr cores.

, Vol. 1, No. 1, Article . Publication date: March 2020.



PENDULUM: A Cache Coherence Protocol for Mixed Criticality Systems, A Technical Report 5

Ta
bl

e
3.

P
E

N
D

U
LU

M
pr

iv
at

e
ca

ch
e

co
he

re
nc

e
st

at
es

.S
ha

de
d

ro
w

s
ar

e
th

e
tim

er
-r

el
at

ed
st

at
es

.W
T:

W
ai

tf
or

tim
er

tim
eo

ut
,R

T:
R

ep
le

ni
sh

tim
er

,
S

T:
S

ta
rt

tim
er

.m
sд
/s
ta
te

de
no

te
s

th
at

a
co

re
is

su
es

th
e

m
es

sa
ge

m
sд

,a
nd

m
ov

es
to

co
he

re
nc

e
st

at
e
st
at
e.

C
el

ls
m

ar
ke

d
as

“×
“i

nd
ic

at
e

th
at

a
pa

rt
ic

ul
ar

tra
ns

iti
on

ca
nn

ot
ha

pp
en

,a
nd

ce
lls

m
ar

ke
d

as
“−

“d
en

ot
e

th
at

a
ca

ch
e

lin
e

in
th

at
st

at
e

do
es

no
tc

ha
ng

e
st

at
e

w
ith

a
co

re
ev

en
to

rb
us

ev
en

t.

St
at

e
C

or
e

ev
en

ts
B

us
ev

en
ts

-c
om

m
on

to
C

ra
nd

nC
rc

or
es

L
oa

d
St

or
e

R
ep

la
ce

m
en

t
Ti

m
eo

ut
O

w
nG

et
S

O
w

nG
et

M
O

w
nP

ut
M

O
w

nS
el

fI
nv

A
llI

nv
O

w
nS

en
dD

at
a

D
at

a
O

th
er

G
et

S-
O

th
er

G
et

M
-

C
ro

rn
C

r
C

ro
rn

C
r

I
is

su
e

G
et

S/
IS

A
D

is
su

e
G

et
M

/IM
A
D

X
X

X
X

X
-

-
X

X
-

-
IS

A
D

X
X

X
X

/IS
D

X
X

-
-

X
X

-
-

IS
D

X
X

X
X

X
X

X
-

-
X

lo
ad

/S
an

d
ST

C
ri

tic
al

ity
-d

ep
en

de
nt

(T
ab

le
4)

IS
D

I
X

X
X

X
X

X
X

-
-

X
lo

ad
/S
T

Ia
nd

ST
S

hi
t

/S
T

M
an

d
is

su
e

/S
an

d
R

T
X

X
X

X
X

X
X

-
is

su
e

Se
lf

In
v/

W
T

Se
lfI

nv
/S

IA
ST

Ia
nd

W
T

ST
I

hi
t

ST
M

an
d

W
T

is
su

e
Se

lfI
nv

/S
IA

/S
IA

X
X

X
X

X
X

X
-

is
su

e
Se

lf
In

v

SI
A

hi
t

is
su

e
Se

lf
In

v
an

d
G

et
M

/S
M

A
is

su
e

Se
lf

In
v

X
X

X
X

/S
I

X
X

X
-

is
su

e
Se

lf
In

v

SI
hi

t
is

su
e

G
et

M
/IM

A
D

/I
X

X
X

X
X

/I
X

X
-

-
ST

M
hi

t
X

X
is

su
e

Se
lf

In
v

an
d

G
et

M
/S

M
A

X
X

X
X

X
X

X
-

is
su

e
Se

lf
In

v

SM
A

hi
t

X
X

X
X

/I
M

D
X

/I
M

A
D

X
X

X
-

is
su

e
Se

lf
In

v
IM

A
D

X
X

X
X

X
/I

M
D

X
-

-
X

X
-

-
IM

D
X

X
X

X
X

X
X

-
-

X
st

or
e/

M
an

d
ST

*
*

IM
D

I
X

X
X

X
X

X
X

-
-

X
st

or
e/

M
T

Ia
nd

ST
*

*

M
hi

t
hi

t
is

su
e

/M
an

d
R

T
X

X
X

X
X

X
X

is
su

e
Se

nd
D

at
a

/
is

su
e

Se
nd

D
at

a
/

Pu
tM

/M
IA

M
T

Ia
nd

W
T

M
T

Ia
nd

W
T

M
T

I
hi

t
hi

t
is

su
e

Pu
tM

an
d

Se
nd

D
at

a/
M

IA

/M
IA

X
X

X
X

X
X

X
is

su
e

Se
nd

D
at

a
is

su
e

Se
nd

D
at

a

M
IA

hi
t

hi
t

is
su

e
Pu

tM
X

X
X

W
B

/I
X

X
se

nd
da

ta
to

re
qu

es
to

r/
I

X
is

su
e

Se
nd

D
at

a
is

su
e

Se
nd

D
at

a

, Vol. 1, No. 1, Article . Publication date: March 2020.



6 Nivedita Sritharan, Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel

Table 4. Different PENDULUM transitions based on criticality.

Requesting Core
Owner State Cr nCr
Core load store load store

Cr

ISD - issue SelfInv /ISD I - issue SelfInv /ISD I
ISD I - issue SelfInv - issue SelfInv
IMD issue SendData /IMD I issue SendData /IMD I issue SendData /IMD I issue SendData /IMD I
IMD I issue SendData issue SendData issue SendData issue SendData

nCr

ISD - reissue GetS /ISAD - issue SelfInv /ISD I
ISD I - reissue GetS /ISAD - issue SelfInv /ISD I
IMD reissue GetM /IMAD reissue GetM /IMAD issue SendData /IMD I issue SendData /IMD I
IMD I reissue GetM /IMAD reissue GetM /IMAD issue SendData /IMD I issue SendData /IMD I

REFERENCES
[1] Nivedita Sritharan, Anirudh M. Kaushik, Mohamed Hassan, and Hiren Patel. Enabling predictable, simultaneous and

coherent data sharing in mixed criticality systems. In proceedings of IEEE Real-Time Systems Symposium (RTSS), pages
1–11, December 2019.

, Vol. 1, No. 1, Article . Publication date: March 2020.


	Abstract
	1 Introduction
	2 Stable States
	3 Coherence Messages
	4 Transient States
	4.1 Transient States to Indicate the Waiting for Data Messages
	4.2 Transient States to Indicate the Waiting for Coherence Messages
	4.3 Novel Timer-Related Transient states introduced by PENDULUM
	4.4 Handling Mixed Criticality 

	References

