
The Best of All Worlds: Improving Predictability at
the Performance of Conventional Coherence with

No Protocol Modifications
Salah Hessien

McMaster University, Canada
salahga@mcmaster.ca

Mohamed Hassan
McMaster University, Canada
mohamed.hassan@mcmaster.ca

Abstract—Tasks in modern embedded systems such as au-
tomotive and avionics communicate among each other using
shared data towards achieving the desired functionality of the
whole system. In commodity platforms, cores communicate data
through the shared memory hierarchy and correctness is main-
tained by a cache coherence protocol. Recent works investigated
the deployment of coherence protocols in real-time systems
and showed significant performance improvements. Nonetheless,
we find these works to suffer from two main drawbacks. 1)
They suffer from significant latency delays due to coherence
interference. 2) They require amendments to existing coherence
protocols. This represents a significant obstruction hindering the
industry adoption of these proposals since it requires to re-verify
the coherence protocol. Coherence verification is considered
one of the most complex challenges in computer architecture,
which makes it inconceivable for chip manufacturers to adopt
modifications to their already verified protocols that they have
stable for decades.

In this work, we propose PISCOT: a predictable and coherent
bus architecture that (i) provides a considerably tighter bound
compared to the state-of-the-art predictable coherent solutions
(4× tighter bounds in a quad-core system). (ii) It does so with
a negligible performance loss compared to conventional high-
performance architecture coherence delays (less than 4% for
SPLASH-3 benchmarks). This improves average performance by
up to 5× (2.8× on average) compared to its predictable coherence
counterpart. Finally, (iii) it achieves that without requiring any
modifications to conventional coherence protocols.

I. INTRODUCTION

Multi-core platforms are the norm nowadays in all comput-
ing systems, and real-time embedded systems are no excep-
tion. Multi-core platforms are envisioned to be the solution
for the increasing computational and data demands in modern
real-time embedded systems such as those deployed in au-
tomotive, avionics, and Internet-of-things (IoT). Nonetheless,
multi-core platforms bring their own challenges. One of the
biggest challenges is the interference among various cores
in the system while competing to access shared hardware
resources such as memory buses, shared caches, and off-chip
memories. This interference hinders the system analyzability
since the execution time of a task on one core now depends
on the run-time behavior of tasks running on other cores. In
order to provide the timing guarantees mandated by the real-
time tasks, the hardware itself must be predictable such that the
delays resulting from the aforementioned interference can be

analytically bounded. To address this challenge, several efforts
have been proposed to provide predictable memory buses [1]–
[3], shared caches [4]–[8], and off-chip memories [9]–[11].

Despite being effective in managing the timing interference,
most of these solutions assume that tasks are completely
isolated with no communication among each other. We find
this assumption to limit the applicability of these solutions in
practical embedded systems, which require inter-task commu-
nication such as those deployed in automotive [12], and avion-
ics [13]. Consequently, recent approaches investigated the
communication among tasks through shared data [14]–[25].
Among these approaches, this paper is focusing on enabling
tasks to communicate and share data by deploying hardware
cache coherence, which is the approach followed by [17]–
[25]. This is because cache coherence is the most commonly
followed approach by commodity multi-core platforms [26],
it improves overall system performance, and it does not
impose any restrictions on the embedded legacy software or
the operating system. In spite of their performance benefits,
previous predictable coherence works [18], [21] suffer from
two drawbacks. 1) They require major modifications to com-
modity coherence protocols (and hence, the hardware cache
controllers). Those modifications are difficult to adopt by
industry because of the significant time and intellectual effort
required to implement and verify coherence protocols [27],
[28]. 2) They suffer from extremely pessimistic worst-case
latencies (WCLs) that reach to thousands of cycles for a single
memory request to the shared cache as we explain in detail in
Section III. Motivated by these limitations, this paper proposes
a solution to allow for coherent sharing of data in multi-
core real-time systems without requiring any changes to the
coherence protocol, while notoriously reducing the WCL upon
accessing the cache hierarchy. This is achieved by proposing
PISCOT as a memory bus arbiter resembling the following
contributions.

Contributions. 1) We study the deployment of coherence
protocols using traditional predictable bus arbiters and inves-
tigate the sources of significant latency increase due to coher-
ence interference (Section III). Our study shows that most of
the traditional arbitration schemes widely used in the real-
time embedded systems domain are data-sharing oblivious.
Therefore, to enable coherent data sharing while minimizing

the coherence delays, we need a novel bus architecture that
accommodates for this sharing by design. 2) Motivated by this
observation, we propose PISCOT, a predictable and coherent
bus architecture that substantially reduces coherence delays,
while improving overall system performance (Section IV).
This is achieved by decoupling the data responses from their
coherence requests, implementing a split-transaction intercon-
nect with two separate buses. While the coherence requests
are arbitrated using Time Division Multiplexing (TDM) to
ensure predictability, the data responses are managed in a
First Come First Serve (FCFS) fashion to increase average
performance. Balancing the trade-off between predictability
and performance is one of the main requirements of modern
embedded systems. Unlike existing solutions, PISCOT does
not require any modifications to the underlying coherence pro-
tocol. This is key since modifications to coherence protocols
are both hard to be adopted by commercial chips and hard to
verify [22], [27], [28]. PISCOT should be implemented as a
predictable hardware arbiter managing accesses to the shared
memory. Although implementing a bus arbiter in conventional
systems will definitely require hardware modifications, two
main differences are worth noting. 1) It is a must to deploy a
predictable bus arbitration to ensure timing guarantees anyway
regardless of supporting coherence or not. 2) Verifying a bus
arbiter is a notoriously easier task than a coherence protocol,
which makes it more appealing to adopt by industry. 3) We
conduct a detailed timing analysis for the latency suffered
by any memory request. The analysis provides an analytical
bound that guarantees the system predictability (Section V).
The derived bounds are 4× tighter than the state-of-the-art pre-
dictable coherent buses [18], [20], [21] for a quad-core system.
4) We deploy PISCOT in two different cache architectures
currently adopted by commercial embedded systems. In the
first, cores communicate only through the shared cache, while
in the second, there is a direct cache-to-cache communication
bus to increase efficiency. 5) We evaluate PISCOT with both
the representative SPLASH-3 benchmarks as well as synthetic
benchmarks. Comparisons with existing solutions show that
PISCOT achieves up to 5× better performance (2.8× on
average), while increasing memory bandwidth utilization by
12× on average across the SPLASH-3 benchmarks.

II. CACHE COHERENCE: A BACKGROUND

One of the key contributions behind PISCOT is that it
offers predictable and coherent data-sharing without the need
to apply any changes to the coherence protocol itself. In
this paper, we exemplify by integrating PISCOT with the
foundational Modified-Shared-Invalid (MSI) protocol. Despite
of its simplicity, MSI is the foundation of coherence protocols
deployed in most existing architectures such as the MESIF
protocol in Intel’s i7 and the MOESI protocol in AMD’s
Opteron [29]. Figure 1 delineates the complete state diagram
of MSI. For MSI, there are three stable states for any cache line
in a core’s private cache; modified (M): meaning that the cache
line is valid and modified (i.e. written), shared (S): meaning
that it is valid but only read, and invalid (I): indicating a

cache line that either does not exist in the private cache or
has a stale data (a cache miss). A cache line can be in the S
state in multiple cores’ private caches. On the other hand, to
maintain data correctness, only one core can have a cache line
in the M state at any time, while all other cores will have this
line in the I state. If a core has a load (store) miss to a cache
line, it will issue a GetS() (GetM()) coherence message on the
bus, and once it receives the data in its private cache, it moves
to the S (M) state. A load to a cache line in the S or M state will
be a cache hit. A store to a cache line in the M state is also a
cache hit. Contrarily, a store to a cache line in the S state has
to broadcast a coherence message on the bus (either a GetM()
or an Upg() based on the deployed coherence protocol details)
to inform other cores that might be in S state to invalidate their
lines. A core with a cache line in the S or M state that observes
in the bus a GetM() message from another core to the same
line (called OtherGetM()) has to move to the I state. If the core
was in M state it also has to send the updated data to the shared
memory and/or the requesting core based on whether there is
a communication interconnect between private caches as we
discuss later in this section. A core with the cache line in the
M state upon observing a GetS() of another core (OtherGetS())
has to send the updated data similar to the previous situation,
while moving to the S state.

Transient States. The aforementioned transitions between
states do not usually happen atomically. They are usually
interrupted by other requests from other cores as requests to
the memory bus from different cores are allowed to interleave
(i.e. there can be multiple pending requests at the same time)
to increase system performance. For instance, a request can be
pending for data to be fetched from the main memory; hence,
the system allows for other younger requests to proceed if their
data is already ready to increase overall throughput. During
these interruptions of a request, the cache line may need to
change its state to keep track of the updated coherence events
on the bus, and this is the rule of transient states. Generally,
a cache line moves to one or multiple transient state(s) in its
journey from one stable state to another. In the interest of this
paper, we classify transient states into four distinct categories.

• Waiting for data and message states: A core in these
transient states has a pending request that is not granted
access to the bus yet by the arbiter. Once the request
message is issued on the bus, due to the reorderings and
delays that can happen in the bus and its non-atomic nature,
the core can first see either its coherence message or the
requested data.

• Waiting for data states: These states indicate that the
core has already observed its coherence message but is yet
waiting for data.

• Waiting for message states: A core will be in one of these
states if it receives its data before observing its coherence
message.

• Response to other requests states: While a core is in one of
the aforementioned three categories, it can observe requests
from other cores (OtherGetM() or OtherGetS()) to the same

M

I

S

adIM

aIM

dIM S

dIM I

dSM I

aII

aMI

adSM

dSM

aSM
L

o
ad

 /
is

su
e

G
et

S

/*

/

Own-
GetS

/

/

Other -GetS

Other-
GetM

/

O
w

n
-D

at
a

/
H

it/

/
**

O
w

n
-D

at
a

/
H

it

/

O
w

n
-G

et
S

/
H

it

/

O
w

n
-D

at
a

/

**

/

Store /
 issue GetM

/
O

w
n

-G
et

M

/

Own-Data / Hit
/

Own-Data / Hit
/

Other-
GetM

/

Oth
er-

GetS

/

O
th

er
-G

et
M

/
/

O
w

n
-D

at
a

/
H

it

an
d

 S
en

d
D

at
a

/

O
w

n
D

at
a

/
H

it

an
d

 S
en

d
D

at
a

St
o

re
 /

 is
su

e
G

et
M

/

Own-GetM

/

Own-Data
/

Own-GetM / Hit
/

O
w

n
D

at
a

/
H

it

an
d

 S
en

d
D

at
a

/

Own-Data
/

Own-GetM / Hit
/

O
th

er
-G

et
M

/

Other-GetS
/

Other-GetM/

O
th

er
-G

et
M

/

O
th

er
-G

et
M

 o
r

R
ep

la
ce

m
en

t

/

O
w

n
-D

at
a

/
H

it

an
d

 S
en

d
D

at
a

/

Other-
GetM

O
w

n
-D

at
a

/
H

it

an
d

 S
en

d
D

at
a

/

O
w

n
-D

at
a

/
H

it
 a

n
d

 S
en

d
D

at
a

/

/

Other-
GetS

/ **

/*

/

Other-GetS

Replacement /
issue PutM

/

O
w

n
-P

u
tM

 /

Se
n

d
D

at
a

/

Other-GetMorS /
SendData

/

Own-
PutM

/

/*

/

*

Other-GetS / SendData
/

OtherGetM /
SendData

/

dSM SI

/

/

*

Load / Hit Or
Other-GetS

/

/
Load / Hit Or

Other-GetS

/ Load / Hit

Other-
GetM

/

Load 0r
Store / Hit

/

/

**

**/
/

L
o

ad
 /

 H
it

O
r

O
th

er
-G

et
S

**

/

/

L
o

ad
 0

r
St

o
re

 /
 H

it

dIS I dIS adIS

aIS

dIM

dSM S

dIM SI

* = Other-GetM, Other-GetS, or Other-PutM. ** = Other-GetM or Other-GetS.

Fig. 1: MSI Coherence Protocol with transient states. States and transitions dashed are those that can be removed from the
original MSI protocol under PISCOT.

cache line. Hence, it may need to move to another transient
state to acknowledge the receiving of this request.

To illustrate the four categories, assume a load request to a
cache line that is in the I state. Once the request misses in its
private cache, the core queues a GetS() message to its local
buffer waiting to be granted access to the bus by the arbiter.
In this case (as Figure 1 shows), the line will move to the
ISad state, which indicates that the core is waiting both to
observe its message and receive the data. Afterwards, if the
core observes its coherence message on the bus, it will change
its state to ISd indicating that it is now waiting for data. On the
other hand, if it receives the requested data before observing its
coherence message, it has to change its state to ISa and wait
for its message to appear on the bus. This is necessary since
these broadcasted messages are the contract between all cores
guaranteeing that they all observe changes to cache lines in the
same order; otherwise, data inconsistencies will exist among
cores. An example state from the fourth category happens if
the core while in the ISd state, observes an OtherGetM() to the
same cache line. As a result, it has to move to the ISdI state.
This state indicates that the core after receiving its requested
data and conducting its load operation, has to invalidate its
cache line since there is another pending store request from
another core to the same cache line.

Cache-to-Cache Communication. Two architectural mod-
els are considered with regard to how data is transferred among
cores’ private caches. The first model covers architectures that
do not employ a direct cache-to-cache interconnect. In this
case, the owner core always has to send the data to the shared

memory (such as the last-level cache (LLC)). Afterwards,
the shared memory sends this data to the requesting core.
The second model represents architectures that support direct
cache-to-cache communication. In this model, the owner core
sends the data directly to the requesting core. In addition, if
the requesting core’s message was a GetS() (meaning that it
is a load request), the owner also has to send the data to the
shared memory since the shared memory will be the owner in
this case. In both models, if there is no owner core (i.e. no
core has the requested line in the modified state), the shared
memory is the owner and it is responsible for sending the data
to the requesting core.

III. MOTIVATION

Three main observations motivate this work. 1) Exiting
solutions supporting coherence data sharing in commodity
platforms are designed for performance. Accordingly, they
provide no timing guarantees, and thus, cannot be safely
used in real-time systems. 2) Traditional real-time arbiters
designed for predictability are not considering data sharing
among tasks, and it has been shown that even when using such
predictable arbiters, they can lead to unpredictable behaviors
when considering such sharing using coherence [18]. 3) Recent
solutions that support coherence sharing of data are building
on top of these traditional arbitration schemes. This leads to
two significant drawbacks in these solutions. First, despite
achieving predictability, the guaranteed latency bounds are no-
toriously large (in the range of thousands of cycles for a single
request) [18], [21] which can be infeasible for systems with

TABLE I: Positioning PISCOT compared to existing approaches.
Approaches Arbiter Shared Data Support Coherence Protocol Predictability Examples

COTS High 33 33 7 FCFS [30], [31],
platforms performance split-transaction [32]–[35],
baseline priority-based [31], [36]

Traditional Predictable 7(not data-aware) 7 33 TDM: [1], [3], [37], RR: [38],
Real-Time by-design Harmonic RR (HRR): [39],
Arbitration weighted RR: [2]
Data-Aware builds on 33 3(requires coherence modifications) 3(with significant latency bounds) PMSI [18], CARP [21],
Arbitration traditional arbitration HourGlass [19], PENDULUM [20]
PISCOT Predictable split-transaction 33 33(with no changes to existing protocols) 33(with tight latency bounds) –

GetM(C)
Rx(C)

GetM(A)
Rx(A)

GetM(B)
Rx(B)G

et
M
(A
)

G
et
M
(B
)

GetM(C)

50t � 100t � 150t � 200t �t
ArbL AccL

xt -

C0 C2 C1

C0 C1 C2

Fig. 2: Traditional TDM arbitration with no shared data.

tight timing requirements. Second, they support coherence by
proposing amendments to existing coherence protocols, which
handicaps their adoption by industry in commercial platforms.
We summarize these observations in Table I, and we discuss
them in details in the following subsections.

A. Commodity Performance-Oriented Arbitration

Arbitration among different requests in COTS platforms is
usually realized using a high-performance arbiter that favors
system performance over other metrics such as fairness and
predictability. Such arbiter prioritizes requests based on their
arrival time (age-based priority), where older requests are
serviced before younger ones. A common example of such
arbiter is the First-Come First-Serve (FCFS) scheme [30],
[31]. Such arbitration is not predictable since it provides
no latency guarantees upon accessing the shared memory.
This is because one core can have a request that is pending
(theoretically) forever, while other cores are saturating the
queues. In addition to age-based arbitration, some COTS
platforms also deploy another level of fixed-priority arbitration
to give higher-priority for requests from a certain processor.
This also entails no guarantees are granted to lower-priority
requests. A final observation about COTS arbiters is that for
cache coherent systems, the bus is usually implemented as a
split-transaction interconnect to increase system performance
by concurrently handling both coherent requests (messages)
and data responses [27], [32]–[35]. For instance, the ARM
Corelink CCI550 dictates separate channels for snooping re-
quests and their corresponding responses [34]. Similarly, the
Intel’s QPI designates different virtual channels to data and
coherence messages [35].

B. Traditional Real-Time Arbitration

In multi-core real-time systems, access to the shared mem-
ory (e.g. the Last-Level Cache (LLC)) is managed through a
predictable arbiter such as (TDM) [1], [3], [37], and Round
Robin (RR) [38]. Considering the TDM arbitration example

depicted in Figure 2, a request suffers a maximum latency
of one TDM period before it is granted access to the bus.
For a system with N cores, this is N · S cycles, where S
is the slot width in cycles. This occurs when the requesting
core just misses its own slot. Please note that throughout this
section, we denote a core as Cx, where x is the core index. The
GetM(B) from C2 in Figure 2 is an example of such a request,
where it arrives to the private cache controller at timestamp
t. Assuming that C2 just missed its own slot, it waits until
t+150 to gain access to the bus. Since the system in Figure 2
has three cores, this is equivalent to a one TDM period of 3
slots assuming that the slot width allows for only one memory
transfer (one request) and is 50 cycles. Once granted access to
the bus, the request conducts its memory transfer consuming
an extra slot (50 cycles) and finishes at t+ 200.

The big limitation of this analysis is that it only applies if
cores do not share data. In the example in Figure 2, all the
cores request to access different cache lines. Consequently,
the shared memory is able to respond with the correct data
in the request’s same slot. Unfortunately, this does not apply
if cores are allowed to share data. It has been shown by [18]
that shared data can lead to unpredictable behavior even when
deploying a predictable arbitration such as TDM.

C. Coherent Shared-Data Aware Predictable Arbitration

To guarantee predictability while allowing coherent shar-
ing of data, several recent arbitration solutions have been
proposed [18], [20], [21], [25]. All these solutions assume
a variant of the TDM arbitration scheme and propose co-
herence protocol as well as architectural changes to support
predictability. Despite showing that coherence can lead to
significant performance improvements in data-sharing real-
time systems, they incur significant WCL bounds. To illustrate
this drawback, Figure 3 delineates the TDM behavior for the
same system in Figure 2 but with assuming that cores can
share data, and hence, they issue requests to the same cache
line, A. The example follows the protocol guidelines from
PMSI [18]. It is clear from Figure 3 the significant added
latency due to the coherence interference on the shared data.
The request under analysis (GetM(A) from C2) in this case
has to wait for every other core to receive the data of cache
line A, conduct the store operation, and then write it back to
the shared memory. Since the slot width of the TDM allows
for only one memory transfer, and every core gets one slot
per TDM period, every core now requires two TDM periods
to conduct the aforementioned operation. As a result, C2’s
GetM(A) request waits until timestamp t + 1050 in Figure 3

GetM(A)GetM(A) GetM(A) WB(A) Rx(A) WB(A) Rx(A) WB(A) Rx(A)

GetM(A) GetM(A) GetM(A)

x 50t � 100t � 150t � 200t � 350t � 500t � 650t � 800t � 950t � 1050t� 1100t�t

ArbL CohL AccL

t -

C1C2C0

C0

C1

C2

Fig. 3: TDM-based coherence approach [18]. Initially, C1 owns A in the M state.

before it can start receiving its requested data. Formally, for
a system with N cores and a TDM arbitration with shared
data, a request has to wait for up to (2 · N2 + 2 · N) · S
before it can start transferring its requested data [18]. The
other existing solutions while supporting systems with mixed
criticalities [20], [21], this comes at the expense of incurring
even larger WCL than PMSI if all cores have the same
criticality. The DISCO solution in [25] improves the WCL
bounds by requiring a special handling of writes compared to
reads.

It is worth noting that in Figure 3 it might seem that
there are many idle slots, and thus, this large latency can
be completely avoided using a work-conserving schedule.
However, this is not true since there can be requests from
other cores in the system that utilize these slots. They are not
shown in Figure 3 for simplicity. For example, C0 receives
its requested data at timestamp t + 400. Thus, it can issue
another request afterwards in its coming slots. Clearly, in an
out-of-order architecture, more pending memory requests can
also co-exist in the system.

Two key observations we make in this paper about the ex-
isting predictable cache-coherent TDM-based solutions. First,
their previously highlighted large WCLs are mainly because
they inherit the scheduling paradigm of traditional real-time
arbiters (such as TDM in this case but the argument applies
to other arbiters such as RR). This paradigm when applied
to systems with shared data, it couples two different types
of communication into the same bus arbitration. Namely,
it couples both coherence messages and data transfers and
schedules them using the same bus arbitration, which is
inherited from traditional non-data-sharing TDM schedules.
This in addition to the fact that the TDM slot has to ac-
commodate for at least one memory transfer to be efficient
to service ready memory requests, leading to the excessively
large memory delays when introducing data sharing. Second,
they impose certain modifications to the coherence protocol to
enable predictability. As previously discussed, modifications to
coherence protocols are highly costly in terms of verification
and are thus inconceivable to adopt by industry.

Based on these observations, PISCOT targets to enable data
sharing in real-time systems, while significantly reducing the
associated coherence delays by decoupling the two different
communication types. This is achieved by using a split-bus
architecture, where requests (through coherence messages) and
responses (i.e. data transfers) are issued in different buses
and are managed using different arbitration mechanisms. In
addition, PISCOT does not impose any changes to existing
coherence protocols; therefore, disburden system designers

TDM Arbiter

FCFS Arbiter

L1$0C

L1$
1C

L1$
NC

S
ha

re
d

M
em

or
y

Response Bus

Request Bus

Service Queue

Fig. 4: PISCOT architecture.

from the need to re-verify the coherence protocol.

IV. PROPOSED SOLUTION

In this section, we detail the architectural details of PISCOT,
which Figure 4 delineates its high-level modules. Compared
to the solutions discussed in Section III and highlighted in
Table I, PISCOT makes multiple architecture decisions to take
into account predictability by design, while maintaining a high
average-case performance.
• PISCOT’s architecture migrates from the traditional arbitra-

tion schemes considered by the community (such as TDM
and RR) to a split-transaction bus interconnect that connects
private caches and the shared memory as Rule 1 explains.
Rule 1: PISCOT implements a split-transaction bus through
deploying two buses: a Request Bus and a Response
Bus. The Request Bus is responsible for broadcasting
the coherence messages initiating memory requests, while
the Response Bus transfers data as a response to these
requests.

• Aiming at performance, the Request Bus and the
Response Bus operate in parallel. On the other hand,
to simplify system analysis and maintain predictability, both
buses communicate through only one module: the Service
Queue. Requests broadcasted on the Request Bus are
buffered into the Service Queue until they are selected
by the Response Bus’s arbiter.

• Unlike conventional solutions that use high-performance
arbiters at the expense of predictability (e.g. FCFS), the
Request Bus in PISCOT is managed using a TDM
arbiter to predictably manage interference among different
cores (Rule 2). To increase system performance, a work-
conserving TDM is deployed, where at any slot, if the
dedicated core does not have a ready request, the arbiter
picks the next core with a pending request instead of leaving
the slot idle as in traditional non work-conserving TDM.
Rule 2: PISCOT manages the Request Bus using a work-
conserving TDM arbiter.

: adA IM

()GetM A

:A M

:A I

:A M

:A M

()GetM A

()GetM A

:A M : dA IM

()GetM A

:A M

()GetM A

: adA IM : adA IM : adA IM
0

1

: ()

: ()

C Rx A

C WB A

:A M : dA IM I

1

0

0

1

: ()

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

C WB A

:A M : dA IM

()GetM A

: adA IM

:A I : dA IM

: dA IM I

: dA IM I

: dA IM

:A M : dA IM I

: dA IM I

: dA IM

:A IorS

2

1

1

0

0

: ()

: ()

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

C WB A

C Rx A

: dA IM I

: dA IM

:A I :A IorS

2

1

1

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

: dA IM

:A I

:A I

:A IorS

2 : ()C Rx A

:A I

:A I

:A M

:A M

GetM(A)GetM(A) GetM(A)GetM(A) GetM(A)

GetM(A)

4t �t
ReqBusL RespBusL

PutM(A) PutM(A) PutM(A)

6t � 8t � 12t � 16t �

8t � 58t � 108t � 158t � 208t � 258t� 308t�

t 6t � 8t � 12t � 16t � 58t � 158t � 258t� 308t�

AccL

()WB A
ShM

()WB A

ShM
()Tx A

ShM
()Tx A

ShM
()WB A
ShM

()Tx A

ShM

xt -

xt -

: adA IM

2

1

1

0

0

1

: ()

: ()

: ()

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

C WB A

C Rx A

C WB A

C0 C2 C1

C1 C0 C0 C1 C1 C2

:A I

ReqBus

RespBus

C0

C1

C2

Fig. 5: An illustrative example for the operation of PISCOT. Latency components are for the getM(A) request from C2. At
different time instances: the bottom of the figure shows the state of the private core’s cache line (left side), shared memory
state (marked in red), and the Service Queue contents on the right side.

• The Response Bus’s arbiter implements a First-Come
First-Serve (FCFS) scheduler, and thus, serves requests
based on their arrival time on the Service Queue
(Rule 3). The oldest request will be at the head of the
queue, and therefore, is serviced first by the FCFS response
arbiter. Once selected by the FCFS arbiter, the requested
data is transferred on the Response Bus to the requesting
core’s private cache, the request message is removed from
the Service Queue, then the core proceeds with its
load/store operation indicating that the request is success-
fully finished.
Rule 3: PISCOT manages the Response Bus using a
FCFS arbiter.

• PISCOT supports out-of-order execution and allows cores to
have multiple outstanding requests. Nonetheless, according
to Rule 4, those requests from a certain core would remain
in its local buffer and will not be picked by the TDM arbiter
if the core already has one request in-service (i.e. queued
in the Service Queue). The rationale for this is to limit
the coherence interference among cores such that a request
from any core can suffer interference due to a maximum
of only one request from each other core, which leads to
tightening worst-case latencies and minimizing interference
from other cores compared to the conventional MSI protocol
with FCFS split-transaction bus as we detail in the latency
analysis in Section V.
Rule 4: PISCOT supports OOO architectures by allowing
cores to issue multiple outstanding requests. However, to
limit coherence interference, it only services at most one
request from any given core at a time.

A. Illustrative Example

To better explain the operation of PISCOT, we use the
same example from Section III for a system with three cores:

C0–C2 and delineates PISCOT’s behavior in Figure 5. The
example focuses on a single cache line A, which is assumed to
be initially owned by C1. At timestamp t−x, a store request
to A from C0 misses in its private cache (it was originally
in I state). As a result, a GetM(A) message is placed in its
cache controller’s local buffer waiting for C0’s slot on the
request bus. The line state changes in the private cache from
I to IMad waiting for its message to appear on the bus. The
same situation occurs for C2 at timestamp t. At t + 4, C0
is granted a slot by the TDM arbiter and its request is issued
on the Request Bus. The coherence message is assumed
to consume two cycles to be broadcasted. Accordingly, C0
observes its OwnGetM(A) on the bus and move to IMd while
waiting for data. On the other hand, once C1 observes C0’s
GetM(A) (OtherGetM(A)) and since C1 is the owner of A, it
responds with placing the updated data in its local buffer to
be written back to the shared memory (timestamp t+ 6) and
moves to I state. In addition, two actions are pushed into the
Service Queue as a result of C0’s request. This is because
C1 has to write back its updated A first to the shared memory
and then the shared memory will send the data to C0; these are
indicated in Figure 5 in the Service Queue as C1:WB(A)
and C0:Rx(A), respectively.

Simultaneously at t+8, a GetM(A) request from C1 arrives
and is issued on the Request Bus immediately since it is
C1’s slot. Similar to what happened during C0’s slot, C1
moves to the IMd state and two actions are pushed into the
Service Queue: C0:WB(A) and C1:Rx(A). The reason for
this is that C0 should obtain its requested data first, according
to the FCFS schedule, conduct its store operation, and write
back the updated data to the shared memory before C1 can
proceed with its GetM(A) request. For the same reason, C0
moves to the IMdI state. This is indicated at timestamp
t + 12. Now, C2 is finally granted access to the Request

Bus and issues its request. Similar events to those during
C1’s slot occur with the difference that C1 is the owner
responsible to write-back A before the shared memory sends
it to C2 according to the FCFS order. For the Response
Bus, it services requests in the Service Queue in order
of their arrival as previously explained. Assuming that one
data transfer requires 50 cycles, it finishes the data transfer
of C1’s WB(A) to shared memory at t+ 58. C0’s Rx(A) from
shared memory at t + 108, performs its store operation and
places the new data in its local buffer and moves to I state.
C0’s WB(A) to shared memory finishes at t+158. C1’s Rx(A)
from shared memory at t + 208, performs its store operation
and places the new data in its local buffer and moves to I
state. C1’s WB(A) to shared memory finishes at t+ 258, and
finally C2 receives A from shared memory at t+ 308.

Comparing this with the behavior of PMSI adopting the
traditional TDM bus in Figure 3, it shows the clear advantage
of PISCOT that reduces the total latency of the same sequence
of memory requests by 792 cycles (from t+1100 to t+308).
More detailed comparisons on the effect of both WCL as well
as average performance are introduced in Section VI.

B. Satisfying Coherence Predictability Invariants

Coherence protocols can generally lead to unpredictable
behaviors if not carefully managed. In addition, previous
works have shown that combining conventional coherence
protocols with traditional predictable arbiters also breaks sys-
tem’s predictability [18]. Since we claim that PISCOT indeed
achieves predictability by utilizing conventional coherence
while deploying the proposed split-transaction predictable ar-
biter, we believe it is necessary to elaborate more on how
PISCOT achieves this predictability. Authors of [18] intro-
duced 6 invariants that they stated that they must be satisfied
to ensure predictability in the existence of coherence. We
now show how PISCOT, unlike PMSI [18], is satisfying those
invariants without the need to modify the coherence protocol.
This discussion also illustrates the novel operation of PISCOT
compared to traditional predictable arbiters such as TDM when
tasks can share data. For inclusiveness, we state each invariant
and then prove how PISCOT satisfies it. We prove each case
by contradiction starting with a hypothesis that PISCOT breaks
such invariant and then show that this contradicts PISCOT’s
operation explained at the beginning of this section.

Invariant 1: A predictable bus arbiter must manage coher-
ence messages on the bus such that each core may issue a
coherence request on the bus if and only if it is granted an
access slot to the bus.

Lemma 1: PISCOT satisfies Invariant 1.
Proof: The proof is trivial since allowing a core to send a

request without being granted access by the arbiter contradicts
with PISCOT’s TDM arbiter at the Request Bus.

Invariant 2: The shared memory services requests to the
same line in the order of their arrival to the shared memory.

Lemma 2: PISCOT satisfies Invariants 2.
Proof: Let Reqi and Reqj be two requests to the same

cache line such that Reqi arrived to the shared memory first.

Assume that the shared memory serviced Reqj before Reqi
such that Invariant 2 is broken. (1)
Now considering PISCOT’s operation, Reqi will arrive to the
shared memory first only if it is broadcasted on the Request
Bus first. Hence, Reqi arriving at the shared memory first
indicates that it has been queued into the Service Queue
ahead of Reqj . Now, according to the Response Bus’s
FCFS, Reqi must be serviced before Reqj . (2)
(1) and (2) contradicts, which completes the proof.

Invariant 3: A core responds to coherence requests in the
order of their arrival to that core.

Lemma 3: PISCOT satisfies Invariant 3.
Proof: Let Reqi(A) and Reqj(B) be two requests to

cache lines A and B respectively that are owned by Core
Ck such that Ck observes Reqi(A) first. To break Invariant 3,
PISCOT has to service Reqj(B) before Reqi(A). (1)
Now, according to PISCOT’s operation, a core responds to a
request for a cache line that it owns by placing the data imme-
diately in its local buffer. Additionally, a WB action is queued
into the Service Queue along with its initiating coherence
message of the request itself during the same Request
Bus’s TDM slot. For instance, at time t + 8 in Figure 5,
C0’s GetM(A) message resulted in pushing two actions to
the Service Queue: 1) C1 has to write back A (WB(A))
first and only afterwards 2) C2 can receive its requested data
(RX(A)) from shared memory. Since Ck observes Reqi(A)
first, it mandates under PISCOT that Reqi(A) was issued
in the Request Bus before Reqj(B). Additionally, since
requests are queued in the Service Queue based on their
appearance timestamp on the Request Bus, it mandates
that Reqi(A) and its corresponding WB(A) are queued in the
Service Queue ahead of Reqi(B) and its WB(B). Finally,
according to the Response Bus’s FCFS policy, Reqi(A)
will get its data before Reqi(B). (2)
(1) and (2) contradicts, which completes the proof.

Invariant 4: A write request from a core that is a hit to
a non-modified line in its private cache has to wait for the
arbiter to grant this core an access to the bus.

Lemma 4: PISCOT satisfies Invariant 4.
Proof: Let Reqi(A) be a write request from core Ck to

line A that Ck has in the S state in its private cache. To break
Invariant 4, PISCOT shall allow Reqi(A) to hit in the private
cache and execute the operation silently without waiting for
any permission from the bus arbiter. (1)
According to PISCOT’s coherence protocol inherited from
conventional MSI (Figure 1), A store to a cache line in S
state has to issue a getM() coherence message and wait in the
SMad state. Afterwards, this message is only issued on the
bus once its core is granted access according to the Request
Bus’s TDM schedule. (2)
(1) and (2) contradicts, which completes the proof.

Invariant 5: A write request from a core that is a hit to a
non-modified line, A, in its private cache has to wait until all
waiting cores that previously requested A get an access to A.

Lemma 5: PISCOT satisfies Invariant 5.

Proof: Let cache line A to be initially in the S state in
core Cj’s private cache. Let also Reqi(A) be a read request
from core Ci to cache line A that is broadcasted on the bus at
time t1. Then, assume that Cj at time t1+δ (where δ > 0) has
a store request Reqj(A) to A. To break Invariant 5, assume
that Reqj(A) is serviced before Reqi(A). (1)
However, from Lemma 4, it follows that Reqj(A) has to wait
for Cj’s TDM slot on the Request Bus to broadcast a
GetM(A) message on the bus before it can proceed with its
store operation. Assume that this happens at time t2. Since
Reqj(A) arrived at t + δ, it follows that t2 ≥ t1 + δ. As a
result and from Lemma 2, Reqi(A) request is serviced before
Reqj(A) since t2 > t1. (2)
(1) and (2) contradicts, which completes the proof.

Invariant 6: Each core has to deploy a predictable arbitra-
tion between its own generated requests and its responses to
requests from other cores.

Lemma 6: PISCOT satisfies Invariant 6.
Proof: Assume a system with N cores C0 to CN such

that one core Ci, 0 ≤ i ≤ N , has a request to service from
the memory, say Reqi, while all the other N − 1 cores keep
issuing requests to cache lines that are modified (owned) by
Ci. To break Invariant 6, Ci keeps servicing these requests and
is not granted a guaranteed time at all where it can finish its
Reqi request. (1)
Now, we discuss how PISCOT schedules these requests. First,
each core can only issue requests during its dedicated TDM
slot (Lemma 1). Second, an owner core responds to requests
from another core immediately during this other core slot and
not its own slot (Lemma 3). Accordingly, for our dictated
scenario, Reqi has a guaranteed time slot to be issued on the
Request Bus. Finally, since the Response Bus services
requests in their order on the Service Queue, Reqi is
guaranteed to finish its data transfer once all requests in front
of it in the Service Queue finish their transfers. Now, it
remains to show that the number of these requests is bounded.
According to the operation described at the beginning of this
section, PISCOT only allows a maximum of one request from
any core at any time in the Service Queue. As a result,
Reqi cannot have more than N − 1 requests ahead of it
Service Queue, which guarantees it a bound on the time it
can be serviced (Section V provides a detailed latency analysis
to derive these bounds). (2)
For now, (2) clearly contradicts (1), which completes the proof.

V. ANALYTICAL WORST-CASE LATENCY

We derive the WCL suffered by any single request to the
cache hierarchy that is managed by PISCOT. In doing so,
we will use Figure 5, where the GetM(A) from C2 is the
request under analysis or rua. As previously explained, the
system in Figure 5 has three cores. As the figure illustrates,
upon the arrival of the rua at timestamp t, there is a pending
request from C0 to the same cache line A, which is initially
owned by C1 in the M state. Generally, from its arrival to the
private cache controller buffer until it completely receives the

requested data, a request suffers from three different latency
components. Namely, it suffers from latency due to arbitration
on the request bus, denoted as ReqBusL, latency due to
arbitration on the response bus, denoted as ResBusL, and
finally the latency needed to transfer its data from the memory
denoted as AccL. The AccL depends on the time required to
access the shared memory and transfer one cache line to the
requesting core’s private cache. Now, we derive the worst-case
latency of each of the other two components.

Lemma 7: Worst-Case Request-Bus Latency
(ReqBusLWC). For a system with N cores, a request
has to wait for a maximum of ReqBusLWC cycles as
calculated in Equation 1 before it is granted access to the
request bus, where SReq is the TDM slot width of the request
bus in cycles.

ReqBusLWC = N · SReq (1)

Proof: Recall that the request bus is managed using a
TDM arbiter. In the worst case, the rua arrives such that its
core has just missed its own slot. Since we have N cores and
each core is allocated one TDM slot of width SReq , the rua
has to wait for N · SReq cycles before its corresponding core
gets another slot.
In Figure 5, SReq = 4 cycles and N = 3; thus, the GetM(A)
from C2 waits until t+ 12 to gain access to the bus.

Lemma 8: Worst-Case Response-Bus Latency
(ResBusLWC). For a system with N cores, a request
has to wait for a maximum of ResBusLWC cycles from
its arrival time to the Service Queue before it can start
receiving its requested data. ResBusLWC is calculated by
Equation 2, where SRes is the time required to conduct one
memory transfer on the response bus.

ResBusLWC = (2 ·N − 1) · SRes (2)

Proof: Recall that the Response Bus services requests
that arrive to the Service Queue from the Request
Bus in a FCFS fashion. In addition, PISCOT allows each
core to have at most one request in the Service Queue
at any given time. Accordingly, the rua waits in worst-
case for a request from every other core to get serviced.
Moreover, in worst-case, each request can require two memory
transfers. This is because each request can be modified by
another core and hence requires a write-back before the
shared memory can send the updated data to the requesting
core. Since we have N − 1 other cores, this consumes a
total of (N − 1) · 2 · SRes. Finally, the rua itself in worst-
case requires a write-back before it can start transferring its
own data, which consumes an additional SRes. This leads to
ResBusLWC = (N−1) ·2 ·SRes+SRes or (2 ·N−1) ·SRes.

In Figure 5, where SRes = 50 cycles, the GetM(A) from C2
incurs a ResBusL from t+8 to t+258, which is 250 cycles.

Lemma 9: Total Request Worst-Case Latency (TotLWC).
For a system with N cores, the maximum total latency that a
request can encounter from its arrival time to its private cache

controller before it can start receiving its requested data can
be calculated as:

TotLWC = N · (SReq + 2SRes) (3)

Proof: Since TotLWC = ReqBusLWC +
RespBusLWC + accL, the proof directly follows from
Lemmas 7 and 8, and the fact that accL = SRes per
definition.

A. Direct Cache-to-Cache Communication

In this case, only one response slot is needed for any request
as Lemma 10 proves. Therefore, the total request WCL for
such architecture reduces to the value in Lemma 11.

Lemma 10: Worst-Case Response-Bus Latency with
Cache-to-Cache Support (ResBusLWC

C2C). For a system with
N cores that supports direct communication among cores’
private caches, the maximum latency a request can suffer from
its arrival time to the global response queue before it can start
receiving its requested data can be calculated as in Equation 4,
where SRes is the time required to conduct a memory transfer
on the response bus.

ResBusLWC
C2C = (N − 1) · SRes (4)

Proof: The proof directly follows from the proof of
Lemma 8, with the exception that only one response slot is
required per core instead of two as follows. For any request,
there are three possibilities. 1) A core requests to read from or
write to a cache line that is up-to-date at the shared memory.
In this case, the shared memory transfers this line to the
requesting core. 2) A core requests to write to a line that is
modified by another core. Thus, the owner core has to send
this line to the requesting core. Since the latter is going to
update the line, the shared memory does not need to receive
the line at the moment. 3) A core requests to read from a line
that is modified by another core. In this case, the owner has
to send this line to both the requesting core and the shared
memory. However, since the architecture supports cache-to-
cache communication, the data can be sent to both at the same
slot. This proves that under all these possibilities, only one
response slot is needed instead of two compared to Lemma 8.
In conclusion, the ResBusLWC

C2C = (N − 1) · SRes.
Lemma 11: Total Request Worst-Case Latency with

Cache-to-Cache Support (TotLWC
C2C). For a system with N

cores that supports direct communication among cores’ private
caches, the maximum total latency that a request can encounter
from its arrival time to its private cache controller before it
can start receiving its requested data can be calculated as:

TotLWC = N · (SReq + SRes) (5)

Proof: The proof directly follows from summing the
latency components in Lemmas 7 and 10, and the AccL.

B. Total Task’s Worst-Case Memory Latency

The latencies derived so far are concerned with a single
memory request. However, to derive the total task’s WCET,
the total memory latency, WCML, has to be obtained and

then added to the worst-case computation time, WCCT , such
that:

WCET =WCCT +WCML (6)

Let WCLReq to be the per-request WCL to differentiate
it from the total WCML, where WCLReq is either the
TotLWC in Lemma 9 if no cache-to-cache is supported, or
the TotLWC

C2C in Lemma 11 otherwise. We now show different
approaches to utilize this WCLReq to derive WCML.

1) Using total number of requests: The first approach
directly obtains WCML through Equation 7, where NReq
is the worst-case total number of issued memory requests by
the task. NReq can be obtained by statically analyzing the
task in isolation [2].

WCML = NReq ×WCLReq (7)

2) Distinction between private and shared data: Although
the bound provided in Equation 7 is safe, it is rather pes-
simistic. This is because it assumes that all requests are misses,
while in reality some of the requests will hit in the private
caches and thus suffer a much less latency than WCLReq .
One challenge in data-sharing systems is that whether a task
access to shared data hits or misses in the private cache
depends on the access pattern of competing tasks, entailing
that no reasoning can be made about whether this access hits
or misses in the private cache by statically analyzing the task
in isolation. Even worse, since shared cache lines can conflict
with private lines in the core’s private cache and hence evict
each other, no analysis can be applied to access to private data
as well. In this case, Equation 7 applies. In contrast, if private
and shared data are isolated from each other; for instance,
by mapping them to different cache sets, tighter memory
latency bounds can be obtained for requests to the private data.
Assuming this isolation, a task’s hit ratio to the private data
obtained from analyzing the task in isolation still holds upon
interference from co-running other tasks. As a result, in such
system, we can obtain the WCML as in Equation 8, where
NReqpriv is the number of requests to private data, among
them NReqprivhit are hits in the private cache, and NReqprivmiss

are misses. Lhit is the hit latency of the private cache and
NReqshrd is the number of requests to shared data. Since
Lhit << WCLreq (Lhit is one or two cycles in modern
architectures), the WCML bound in Equation 8 is generally
tighter than that of Equation 7. The actual values depend on
the ratio of requests to private and shared data, and hence, is
application dependent.

WCML =NReqprivhit × Lhit

+ (NReqprivmiss +NReqshrd)×WCLReq (8)

C. Replacement of Dirty Cache Lines

The analysis in Lemmas 7–11 assumes that when a request
misses in the private cache, it is sent directly to the bus arbiter
to fetch the requested data. However, it is possible that the
requested cache line is mapped to an entry that already has a
valid data of another cache line. This is called a cache conflict.

0

500

1000

1500

2000

2500

W
C

L
[c

yc
]

PMSI PISCOT PISCOT-C2C ByPassShared

Fig. 6: Per-request WCL for SPLASH-3 suite.

In this case, the previous cache line is to be evicted from the
private cache and the requested cache line is to be fetched to
the same entry. If the evicted cache line has modified data, it
has to be written first to the shared memory; otherwise, this
data is going to be lost. This adds an extra latency of one
memory transfer (or SRes) for each miss request in the worst
case. In other words, this adds N × SRes to the latencies in
Lemmas 9 and 11. However, assuming that every request is
going to an eviction to a modified line is overly pessimistic
and a tighter bound can be obtained as follows.

1) Total number of writes: Since the additional latency
component is caused only upon evicting a dirty cache line,
the total number of these replacements is bounded by the total
number of write requests of the task, WReq. Accordingly, the
effect of the replacement is better to be considered at the task
level by updating Equation 7 to:

WCML = NReq ×WCLReq +WReq × SRes (9)

2) Distinction between private and shared data: Moreover,
if the isolation between private and shared data discussed in
Section V-B2 is adopted, the delay effects of replacement can
be further reduced. This is because the number of replacements
happening withing private data can also be obtained from an-
alyzing the task using existing static analysis tools. Therefore,
integrating the effect of replacements in Equation 8 leads to
the WCML in Equation 10, where NReplpriv is the worst-
case number of dirty cache line replacements within private
data, WReqshrd is the worst-case number of write requests to
shared data.

WCML = NReqprivhit × Lhit +NReplpriv × SRes

+ (NReqprivmiss +NReqshrd)×WCLReq +WReqshrd × SRes

(10)

VI. EVALUATION

We develop an open-source simulation framework 1 to
evaluate the performance of PISCOT and compare it with state-
of-the-art solutions. The simulation environment consists of
a multi-core system with configurable number of cores and
cache organization. The simulator parameters are chosen to
emulate the behavior of quad-core system running at 2.5GHz
with out-of-order pipelines, 8 kB direct-mapped L1 per-core

1https://gitlab.com/FanosLab/piscot-and-msi-split-bus

0

500

1000

1500

2000

2500

Synth1

W
C

L
[c

yc
]

PMSI PISCOT PISCOT-C2C ByPassShared

Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9

Fig. 7: Per-request WCL for the synthetic workloads.

private cache, and a 4MB 8-ways set-associative L2 shared
cache across all cores. Both L1 and LLC have a cache line size
of 64 bytes. Furthermore, each core and LLC/shared memory
are embedded with cache controller units which implement
the MSI coherence state machine as described in section II.
The collection of these coherence controllers are connected to
the memory bus using bi-directional FIFO queues which are
used for buffering incoming and outgoing messages generated
by the coherence protocol. For PISCOT, the request and the
response buses are split and operate independently. The former
uses work-conserving TDM arbitration amongst cores with
a slot width of 4 cycles (SReq = 4 cycles), while the latter
services the responses in FCFS fashion assuming the access
latency to the LLC is fixed equals to 50 cycles (SRes = 50
cycles). Accesses that hit in the L1 consume one cycle. We
use a perfect LLC cache similar to existing works [18], [21] to
avoid extra delays from accessing off-chip DRAM to measure
only coherence and memory bus latencies. The DRAM access
overheads can be computed using other approaches such as [9],
[10], [40], and they are additive [41] to the latencies derived
in this work.

The address translation between virtual CPU address and
physical memory address is disabled such that all memory ad-
dresses generated by the cores are physical memory addresses.
The maximum number of pending requests (NPending) a
core can issue is set to 4 requests. This allows the core to
issue multiple memory requests in parallel. The private cache
controller has to track all pending requests issued on the
bus and stall the core pipeline if it reaches to the maximum
NPending . In addition, the controller needs to ensure that there
is no more than one coherent message issued on the bus or
in its local buffer in case of multiple cache misses occur
on the same cache line. Benchmarks. We use the SPLASH-
3 [42] benchmark suite since it is a representative of multi-
threaded applications with shared data. In addition, we craft
9 synthetic workloads to stress the behavior of the evaluated
approaches. All the synthetic workload resemble the maximum
data sharing among cores (all lines are shared). They only
differ in their memory intensity and the read/write ratio.

A. Per-Request Worst-Case Latency

Figures 6 and 7 depict the WCL for any request to the cache
hierarchy for both SPLASH-3 benchmarks and the synthetic
workloads, respectively. The figures show both the analytical
WCL bounds (T bars) and the observed (experimental) WCL

(colored solid bars). We compare the WCL of the two PISCOT
schemes (where PISCOT-C2C is the one supporting cache-
to-cache communication) with PMSI and not caching the
shared data (BypassShared) approaches in [5], [43]. From
this experiment, we make the following observations. 1) For
both PISCOT and PISCOT-C2C, all the observed WC latencies
are always within the analytical worst-case latency bounds.
2) PISCOT shows up to 4.9× improvement in the analytical
WCL compared to PMSI. The analytical WCL of PMSI is
2050 cycles compared to 416 and 216 cycles in PISCOT and
PISCOT-C2C, respectively. 3) Compared to PMSI, the observed
WCLs in PISCOT and PISCOT-C2C achieve up to 2.74× and
4× tighter bounds on average across benchmarks, respectively.

4) PMSI incurs a large gap between experimental and
analytical WCLs. In the SPLASH-3 benchmarks (Figure 6),
this gap ranges from 70% (barnes and ocean) and reaches
up to 3.4× (cholesky and radix). This is because PMSI’s
analytical WCL assumes a pathological worst-case scenario
that is hard to construct in real applications. On the other
hand, PISCOT achieves a tighter bound for the derived WCL.
PISCOT achieves this tightness by enforcing FCFS arbitration
policy on the response bus.

To further investigate the behavior of PISCOT and con-
ventional split-transaction MSI, Figure 8 plots the observed
latencies for requests for one of the BMs (Ocean) (others
show similar behavior) for both solutions. As the figure
illustrates, for MSI 8a, it shows a huge latency variability.
Although most of the requests finish relatively fast, there
are requests that their latencies reach up to 1200 cycles. On
the other hand, PISCOT encounters less variability (Requests
are suffering between 0 − 400 cycles and all latencies under
PISCOT operation are lower than its corresponding analytical
bounds, which confirms the predictability of PISCOT.

B. Total Worst Case Latency

In this experiment we are interested in calculating the
total memory WCL suffered by the total number of memory
requests generated by a core during a period of time t. Figure 9
shows both the analytical bound for the total WCL derived by
Equation 7 (T bars) and the observed total latencies (colored
solid bars). Furthermore, the observed one is decomposed to
its sub-components: a) the request bus arbitration latency, b)
the response bus memory transfer latency, c) the hit latency
in the core’s private cache, and d) the write-backs latency due
to replacement. From Figure 9, we conclude the following
observations. 1) The response bus latency component domi-
nates the total WCL for all applications. For instance, the total
observed response latency reach up to 8× (barnes and volrend)
and 4.3× on average larger than the replacement latency.
This emphasises the conclusion we made in Section V-C
that the effect of the eviction delays should be considered
at the task-level and not the request-level. 2) Since SPLASH-
3 applications exhibit a reduced ratio of writes compared to
reads, they do not stress the difference between PISCOT and
PISCOT-C2C in the observed response bus latency. Therefore,
to further show this effect, we execute synthetic experiments

0 5000 10000 15000 20000 25000
0

200

400

600

800

1000

1200

0 100 200 300 400
0

200
400
600
800
1000
1200

(a) MSI

2000 4000 6000 8000
10000

12000
14000

0
50

100
150
200
250
300
350
400

(b) PISCOT

Fig. 8: Request latency histogram for the Ocean benchmark
with the no cache-to-cache transfer architecture. y-axis is
the latency in cycles and x-axis is the number of requests
encounter this latency.

using the synthetic benchmarks that are used to generate WCL
in Figure 7 except that we change the percentage of the CPU
memory write request to 50% of total memory requests. The
results show that PISCOT-C2C achieves up to 1.74× (1.56×
on average) higher bandwidth compared to PISCOT.

C. Average-Case Performance

Figure 10 shows the slowdown of PISCOT and PMSI com-
pared to the conventional MSI with split-transaction FCFS bus.
PMSI’s slowdown is 2× on average (and up to 4.3×) across
all benchmarks. This is due to the coupling of coherence and
data transfer on the same TDM bus as explained in Section III
in addition to the enforced protocol changes. Authors of [18]
compared PMSI with an MSI+conventional TDM arbiter, for
which they reported that PMSI showed only a 45% slowdown.
Recall here we consider MSI+split-transaction bus. These
results combined emphasise our observation that the split-bus
architecture can significantly increase performance compared
to the traditionally considered bus architectures by the real-
time community. On the other hand, Figure 10 shows that
PISCOT achieves comparable results with slowdown in the
range of 1% − 4%. This is clearly a negligible cost for
achieving timing predictability with tight latency bounds.

We also observe that PISCOT improves the bandwidth
utilization for the SPLASH-3 benchmarks by 12× compared
to PMSI (results are not shown due to space limitation).
This significant improvement is because PMSI adopting the
traditional TDM, which wastes many bus slots in only issuing
coherence requests as we detailed in Section III. On the
other hand, PISCOT maximizes bus utilization by splitting the
coherence and response into two buses with two different slot
widths and arbitration.

VII. RELATED WORK

Towards adopting multi-core platforms in real-time embed-
ded systems, several proposals are introduced to predictably
manage shared hardware components among cores [1]–[9].
Among these, two lines of work are closely related to this
paper, memory bus arbitration, and cache coherence.

Predictable Bus Arbitration. The memory bus in a multi-
core platform is one of the main sources of interference, which

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

P
IS

C
O

T

P
IS

C
O

T-
C

2
C

barnes cholesky fft fmm lu_non_contig ocean radiosity radix raytrace volrend water_nsquared water_spatial

[c
yc

 in
 M

ill
io

n
s]

RespL ReplcL ReqL HitsL

Fig. 9: Total observed and analytical memory latency of Splash-3 benchmarks. Values in y-axis are in log scale.

Fig. 10: Execution time slowdown compared to conventional MSI protocol with FCFS split-transaction bus.

was found to solely increase the Worst-Case Execution Time
(WCET) by up to 44% in a quad-core system [44]. to address
this challenge, researchers proposed predictable bus arbi-
tration schemes. This includes: Time Division Multiplexing
(TDM) [1], [3], [37], Round Robin (RR) [38], Harmonic RR
(HRR) [39], and weighted [2] arbitration schemes. Unlike all
these works, which focus only on timing interference assuming
that tasks do not share data, PISCOT is a coherent bus that
takes into account the cache coherence traffic and proposes
a split-transaction architecture, where coherence requests and
their responses are decoupled and arbitrated separately to
increase system performance, while offering predictability.

Predictable Cache Coherence. There are multiple recent
efforts to enable predictable sharing of data among real-
time tasks through cache coherence [17]–[25]. PISCOT dif-
ferentiates itself from these works by enabling predictable
cache coherence through its bus arbitration architecture with-
out requiring any changes to the coherence protocol (such
as in [18]–[21]), the operating system’s scheduler such as
in [17], or the legacy software. The work in [23] focuses on

formal modelling of cache coherence interference effects using
an abstract model of existing commodity bus architectures.
However, commercial architectures are not designed in the first
place to be predictable, and thus, provide only very pessimistic
bounds if any. PISCOT, in contrast, is a predictable split-
transaction coherent bus architecture that significantly reduces
WCLs, while maintaining high average performance.

VIII. CONCLUSION

PISCOT is a predictable and coherent bus architecture
that provides significantly tighter bounds than existing pre-
dictable coherence protocols (4× tighter memory latency
bounds for a quad-core system) with a performance near
to that achieved by conventional high-performance arbiters
(less than 4% overhead), which is 5× (2.8× on average)
better performance compared to the state-of-the-art predictable
coherence solutions. PISCOT achieves this by decoupling the
data responses from their coherence requests utilizing a split-
transaction predictable bus arbiter. PISCOT can be realized
without any modifications to the coherence protocol or cache
controller.

REFERENCES

[1] B. Cilku, B. Frömel, and P. Puschner, “A dual-layer bus arbiter for
mixed-criticality systems with hypervisors,” in IEEE International Con-
ference on Industrial Informatics (INDIN), 2014.

[2] M. Hassan and H. Patel, “Criticality- and requirement-aware bus arbi-
tration for multi-core mixed criticality systems,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2016.

[3] F. Hebbache, M. Jan, F. Brandner, and L. Pautet, “Shedding the shackles
of time-division multiplexing,” in IEEE Real-Time Systems Symposium
(RTSS), 2018.

[4] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pel-
lizzoni, “A survey on cache management mechanisms for real-time
embedded systems,” ACM Comput. Surv., 2015.

[5] D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten WCET
estimates for multi-core processors with shared instruction caches,” in
IEEE Real-Time Systems Symposium (RTSS), 2009.

[6] N. C. Kumar, S. Vyas, R. K. Cytron, C. D. Gill, J. Zambreno, and P. H.
Jones, “Cache design for mixed criticality real-time systems,” in IEEE
International Conference on Computer Design (ICCD), 2014.

[7] M. Schoeberl, W. Puffitsch, and B. Huber, “Towards time-predictable
data caches for chip-multiprocessors,” in Springer International Work-
shop on Software Technolgies for Embedded and Ubiquitous Systems
(IFIP), 2009.

[8] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-time cache management framework for multi-core ar-
chitectures,” in IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013.

[9] D. Guo, M. Hassan, R. Pellizzoni, and H. Patel, “A comparative
study of predictable dram controllers,” ACM Transactions on Embedded
Computing Systems (TECS), 2018.

[10] M. Hassan and R. Pellizzoni, “Bounding dram interference in cots
heterogeneous mpsocs for mixed criticality systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2018.

[11] M. Hassan, “On the off-chip memory latency of real-time systems: Is
ddr dram really the best option?” in IEEE Real-Time Systems Symposium
(RTSS), 2018.

[12] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Com-
munication centric design in complex automotive embedded systems,”
in 29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[13] M. Younis and M. Aboutabl, “Communication handling in integrated
modular avionics,” Oct. 3 2002, uS Patent App. 09/821,601.

[14] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T. Nolte,
“Contention-free execution of automotive applications on a clustered
many-core platform,” in IEEE Euromicro Conference on Real-Time
Systems (ECRTS), 2016.

[15] M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson, and
F. D. Smith, “Reconciling the tension between hardware isolation and
data sharing in mixed-criticality, multicore systems,” in IEEE Real-Time
Systems Symposium (RTSS), 2016.

[16] N. Kim, M. Chisholm, N. Otterness, J. H. Anderson, and F. D. Smith,
“Allowing shared libraries while supporting hardware isolation in multi-
core real-time systems,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2017.

[17] G. Gracioli and A. A. Fröhlich, “On the design and evaluation of a
real-time operating system for cache-coherent multicore architectures,”
ACM SIGOPS Oper. Syst. Rev., 2015.

[18] M. Hassan, A. M. Kaushik, and H. Patel, “Predictable cache coherence
for multi-core real-time systems,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017.

[19] N. Sritharan, A. M. Kaushik, M. Hassan, and H. Patel, “Hourglass:
Predictable time-based cache coherence protocol for dual-critical multi-
core systems,” 2017.

[20] ——, “Enabling predictable, simultaneous and coherent data sharing in
mixed criticality systems,” 2019.

[21] A. M. Kaushik, P. Tegegn, Z. Wu, and H. Patel, “Carp: A data
communication mechanism for multi-core mixed-criticality systems,” in
IEEE Real-Time Systems Symposium (RTSS), 2019.

[22] A. Bansal, J. Singh, Y. Hao, J.-Y. Wen, R. Mancuso, and M. Cac-
camo, “Cache where you want! reconciling predictability and coherent
caching,” arXiv preprint arXiv:1909.05349, 2019.

[23] N. Sensfelder, J. Brunel, and C. Pagetti, “Modeling cache coherence
to expose interference,” in 31st Euromicro Conference on Real-Time
Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2019.

[24] ——, “On how to identify cache coherence: Case of the nxp qoriq
t4240,” in 32nd Euromicro Conference on Real-Time Systems (ECRTS
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[25] M. Hassan, “Discriminative coherence: Balancing performance and la-
tency bounds in data-sharing multi-core real-time systems,” in Euromicro
Conference on Real-Time Systems (ECRTS), 2020, pp. 1–22.

[26] M. M. MARTIN, M. D. HILL, and D. J. SORIN, “Why on-chip cache
coherence is here to stay,” Communications of ACM, 2012.

[27] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, 2011.

[28] F. Pong and M. Dubois, “A new approach for the verification of cache
coherence protocols,” IEEE Transactions on Parallel and Distributed
Systems, 1995.

[29] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[30] M. S. Khaira, “Fast first-come first served arbitration method,” Nov. 12
1996, uS Patent 5,574,867.

[31] W. Bain Jr and S. Ahuja, “Performance analysis of high-speed digital
buses for multiprocessing systems,” in Proceedings of the 8th annual
symposium on Computer Architecture, 1981, pp. 107–133.

[32] M. A. Fischer, “Fair arbitration technique for a split transaction bus in
a multiprocessor computer system,” Nov. 15 1988, uS Patent 4,785,394.

[33] A. Singhal, B. Liencres, J. Price, F. M. Cerauskis, D. Broniarczyk,
G. Cheung, E. Hagersten, and N. Agarwal, “Implementing snooping
on a split-transaction computer system bus,” Nov. 2 1999, uS Patent
5,978,874.

[34] ARM, “ARM CoreLink CCI-550 Cache Coherent Interconnect,
Technical Reference Manual,” 2015. [Online]. Available: https:
//static.docs.arm.com/100282/0001/corelink cci550 cache coherent
interconnect technical reference manual 100282 0001 01 en.pdf

[35] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel R©
quickpath interconnect architectural features supporting scalable system
architectures,” in IEEE Symposium on High Performance Interconnects,
2010.

[36] F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance
analysis of arbitration policies for soc communication architectures,”
Design Automation for Embedded Systems, 2003.

[37] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoud-
hury, “Bus-aware multicore wcet analysis through tdma offset bounds,”
in Euromicro Conference on Real-Time Systems (ECRTS), 2011.

[38] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero, “Hard-
ware support for wcet analysis of hard real-time multicore systems,”
ACM SIGARCH Computer Architecture News, 2009.

[39] M.-K. Yoon, J.-E. Kim, and L. Sha, “Optimizing tunable wcet with
shared resource allocation and arbitration in hard real-time multicore
systems,” in IEEE Real-Time Systems Symposium (RTSS), 2011.

[40] M. Hassan and R. Pellizzoni, “Analysis of memory-contention in hetero-
geneous cots mpsocs,” in Euromicro Conference on Real-Time Systems
(ECRTS), 2020.

[41] H. Yun, R. Pellizzoni, and P. K. Valsan, “Parallelism-aware memory
interference delay analysis for cots multicore systems,” in Euromicro
Conference on Real-Time Systems (ECRTS), 2015.

[42] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,” in
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2016.

[43] B. Lesage, D. Hardy, and I. Puaut, “Shared Data Caches Conflicts
Reduction for WCET Computation in Multi-Core Architectures.” in
International Conference on Real-Time and Network Systems, 2010.

[44] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha, “Coscheduling of
cpu and i/o transactions in cots-based embedded systems,” in IEEE Real-
Time Systems Symposium (RTSS), 2008.

