The Best of All Worlds: Improving Predictability
at the Performance of Conventional Coherence

with No Protocol Modifications

McMaster

University B

Gas leak sansor

==
B .
-

;
Bod:

T 7 B

Flight Control Data Buses

Systems Data Buses

3 _ Electronics Unit Electronics Unit
Aircraft Information

Data is a Key in all
modern applications

S

S0S ;un Camerz

e Adopts an independent-task model 2 No communication
amongst tasks

e Enforcing complete isolation between tasks.
Prevent e At the shared cache: strict cache partitioning and coloring
e At the DRAM: bank privatization

Common Approach Data Sharing

» May result in a poor memory or cache
utilization

. e.%: a task has conflict misses, while
other partitions may remain
underutilized

* Does not scale with increasing number
of cores

e e.g..number of PEs < number of
DRAM banks

. Not viable in emerging systems due to |
|dncreased functionality and massive
ata

Common Approach Data Sharing

Solution:

No caching of shared data

Hardy et al., RTSS’09]
Lesage et al., RTNS 10]
v/ Simpler timing analysis Bansal et al., arXiv'19]

X Hardware changes Chisholm et al., RTSS 16]
X Long execution time

B Uncache shared

o
N
~N

Slowdown
o = N W B O 1 o0 DO

LN
tﬂ

LU Radix Ocean Cholesky Radiosity Raytrace Geomean

Solution:
No caching of shared data

[Hardy et al., RTSS’09]
[Lesage et al., RTNS 10]
[Bansal et al., arXiv’'19]
[Chisholm et al., RTSS’16]

DOR:10.0045,/2 00340 2200280

On-chip hardware coherence can scale
gracefully as the number of cores increases.

Why On-Chip
Cache

Coherencels
Here to Stay

SHARED MEMORY 15 the dominant low-level
communication paradigm in today's mainstream
multicore processors. In a shared-memory system,
the (processor) cores communicate via loads and
stores to a shared address space. The cores use caches
to reduce the average memory latency and memory
traffic. Caches are thus beneficial, but private caches
lead to the possibility of cache incoherence. The
mainstream solution is to provide shared memory
and prevent incoherence through a hardware cache
coherence protocol, making caches functionally
invisible to software. The incoherence problem and
basic hardware coherence solution are outlined in
the sidebar, “The Problem of Incoherence,” page 86.
Cache-coherent shared memory is provided by
mainstream servers, desktops, laptops, and mobile
devices and is available from all major vendors,
including AMD, ARM, IBM, Intel, and Oracle (Sun).

T8 comMUNICATiONS OF THE LEE JULY 38T | WO ES | WD T

Coherence is the norm in COTS platforms |Data Sharing

Heterogeneous compute requires coherency

+ Flexible heterogeneous architecture

« Blend compute and acceleration for
target solution

« Fast, reliable transport to shared
memory
« Maximize throughput, minsmaze bitency

« Accelerate SoC deployment

« IP designed, optimized and validated
for systems

Ak)

Coherence is the Industry’s Choice Data Sharing

bday's SoCs include a mix of CPU cores,
computing clusters, GPUs and other
computing resources and specialized
, accelerators.
Coherency: The New Normal in SoCs Getting heterogeneous processors to
Anush Mohandass . _— : :
\dsystems.com communicate efficiently is a daunting
design challenge. A popular approach
is to use high-performance and
power-efficient shared-memory
communication and a sophisticated
on-chip cache-coherent
interconnect. This presentation will
introduce a new technology that
automates the architecture design
process, supports CHI and ACE in one
design, and uses advanced machine-
learning algorithms to create an optimal
pre-verified cache-coherent solution.

Coherence is the Industry’s Choice Data Sharing

futonomous driving requirements are
mandating the simultaneous use of
multiple types of processing units to
efficiently execute sophisticated image
processing, sensor fusion, and machine
learning/Al algorithms.

This presentation introduces new
coherency platform technology
that enables the integration of
heterogeneous cache coherent
hardware accelerators and CPUs,
using a mixture of ARM ACE, CHI, and
CHI Issue B protocols, into systems
that meet both the requirements of
high compute performance and ISO
26262-compliant functional safety.

ARTERISIZ

Enabling Mixed-Protocol

Heterogeneous Cache Coherency
and ISO 26262 Functional Safety

@

Coherence is the Industry’s Choice Data Sharing

i
_? OtherG Eth{,_T_lﬂ""“w[\
i:—T . SendData

: i r w M) - . T U o Own-
H = = o — A =
| o Other -GetS == _ @ o= - = = PutM *
= = Tz= Tz | BE - mo ' - = 1
=3, . = - = & [y 1= B ET oS
T — 4 — - —_— iy O owm o 4O .
- = | - ~ E D = = o o = w Other-GetMors /
= S gy = i - = = ' o '
= E iy S o & o SendData
c4 | 53 on =
= =< z - ;
o M = L = ; ;
| = S = Replacement |
| = issue PutM
: S 5 -~
r:hu/ax = tn # o Meon
S T, T P = b 4
Bs oY - PR NG o NI
[- -l ek v 5w (7R = N ' " - ,
L = ! - = Owm-Data == 0wn-GetM [Hit
D i . . = }F J
: * ' M
L] ~ I i }
| L I J .
\ o : Cmvn-Data / Hit
= L v § Load / Hit :
i —
Lo "n. . I I
E E .__-.F:_ H-_-_' Other-Gets] 1] . >
| T = | - Owmn-Data [/ Hit
Eh = Other-"~ _ | % = '
d o, GetM - ' < —— = —
£ = | E Load / Hit Or S -
=z = - < 2 Other-Gets = ! ™
g - =] 2w - Sl = Load Or
2 o - -] =< ~ L e TG
— | | -\-\"-. T
: .J:‘- ':'ﬂ:".ET' ag E “_:::- | :: é J_: E llr\.il"r.- --t_;ll StI::-E' .'ll Hlt
. — P r— T— y
EZ Gets a r""—T s = 0 kbl duluiints o I ¥4 /0 mbal ey
Load / Hit Or ZE = = T iy Uwn-Data S = Own-GetM [Hit
d — E o | 1 i
. — wn o - a0 = !
Other-Gets s = E £ - g Shore | !
= - — " — N [
= | ETE erES Other-Gets
v ¥ 'ff i issue GetM
Y — . :
| ¥ Other-GetS ;fSenuDaI:a

-

* = Other-GetM, Other-GetS, or Other-PutM. *¥* = Other-GetM or Other-GetS.

A
v

Coherence is A complex Machinery Data Sharing

Traditional Real-Time:
* Predictable by design
.+ TDM, RR, WRR, H\(

 Does not support shared data, put aside
coherence

Conventional COTS:

*High performance arbitration \/
*FCFS, Split-Tx, Priority-Based, ..

*Shared data is entirely supported through a
hardware cache coherence protocol W

*Not Predictable X

t t+50 t+100 t+150 t+200

Arbitration Latenc Access Latenc

State-of-the-art Data Sharing

Traditional Real-Time:
* Predictable by design
.+ TDM, RR, WRR, H\(

 Does not support shared data, put aside
coherence

Conventional COTS:

*High performance arbitration \/

*FCFS, Split-Tx, Priority-Based, ..

*Shared data is entirely supported through a
hardware cache coherence protocol W

*Not Predictable X

A

Nl 2
| . . &
< &)
3 0 '
8 N . St(A) : Rx(A) W St(B) | Rx(B) |
t t+50 t+100 t+150 t+200

Arbitration Latenc Access Latenc

State-of-the-art

Data Sharing

Conventional COTS:

*High performance arbitration \/
*FCFS, Split-Tx, Priority-Based, ..

Traditional Real-Time:
* Predictable by design

.+ TDM, RR, WRR, H\(

 Does not support shared data, put aside

*Shared data is entirely supported through a coherence

hardware cache coherence protocol V
*Not Predictable X

St(A) Rx(A) } St(B) Rx(B) St(C) Rx(C)

t t+50 t+100 t+150 t+200

Arbitration Latenc Access Latenc

State-of-the-art Data Sharing

Traditional Real-Time:

* Predictable by design
> ¢ TDM; RR) WRR’ H%’

Conventional COTS:
*High performance arbitration \/ .
*FCFS, Split-Tx, Priority-Based, .. \

*Shared data is entirely supported through a '
o)\'R
J

hardware cache coherence protocol W
.

 Does not support shared data, put aside

O h
T\ T x
>

*Not Predictable X

CO: St(A) \

S
&
S St(A) Rx(A)

St(B) | Rx(B) | St(C) | Rx(C)

i

t t+50 t+100 t+150 t+200

K < Arbitration Latency 3ﬁccess Latenqé/

State-of-the-art Data Sharing

Traditional Real-Time:

Conventional COTS:
*High performance arbitration \/ .
*FCFS, Split-Tx, Priority-Based, .. \

* Predictable by design
> ¢ TDM; RR/ WRR’ H%’

 Does not support shared data, put aside

O h
T\
>

*Shared data is entirely supported through a
hardware cache coherence protocol V

*Not Predictable X

CO: St(A) \

S
3
S St(A) Rx(A)

St(B) | Rx(B) | St(C) | Rx(C)

i

t t+50 t+100 t+150 t+200

/ K < Arbitration Latency : EACCESS Latenc)é/

k ﬂ [RTAS’17 | Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel,

“Predictable Cache Coherence for Multi-Core Real-Time Systems”

State-of-the-art Data Sharing

Traditional Real-Time:
* Predictable by design

\‘; . TDM, RR, WRR, H\(
 Does not support shared data, put aside

Conventional COTS:

*High performance arbitration \/ .
*FCFS, Split-Tx, Priority-Based, .. |

*Shared data is entirely supported through a \ » v X / coherence x
hardware cache coherence protocol "é \'l \'/

-Not Predictable 2K " ” .<

: : ‘ ‘ ‘ , 4 s D
2 g J
® ® g S | St(A) A Rx(A) } St(B) | Rx(B) | St(C) | Rx(C)
Data-Aware Arbitration: e e o o

- - *Builds on traditional arbitration < _.. i

*Shared data is supportedw
*BUT requires coherence protocol modifications /"
*Coherence leads to good performance

*Also achives predictability, but with significant \/
atency bounds

*PMSI [RTAS’17], CARP [RTSS’19], HourGlass
Arxiv'18], PENDULUM [RTSS’19]

State-of-the-art Predictable

Coherence

4.5

4
35 B PMS| B ByPass

c 3
2.5
9O
5 2
&)
% 1.5

1

0

LU FFT Radix Ocean Cholesky Radiosity Raytrace Geomean

[RTAS’17 | Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel,
“Predictable Cache Coherence for Multi-Core Real-Time Systems”

Predictable
Coherence

Benefit of Coherence: Up to 3x performance

A)

=
N
-

O

CO: St(A)
C2: St(A)

St(A) RxA)
t t+50 t+100

CO cannot receive A from Mem,
it has to wait for C1 to WB first

* Assume same example from before

*But, let all 3 cores request to access same cache line A

* Assume initially A is modified by C1 in its private cache

*Let as before, our request under analysis is St(A) from C2

Problem: Coherence effect on WC Predictable

Coherence

)

O |
\
St(A) Rx{A) | St(A) RxtA) @ St(A) Rx:4)

t t+50 t+100 t+150 t+200

CO: St(A)
C2: St(A)

CO cannot receive A C1l and C2 has to wait

from Mem, it has to for CO to conform to
wait for C1 to WB first the coherence order

Problem: Coherence effect on WC Predictable

Coherence

s
Vg

O |
\
St(A) Rx{A) || St(A) ' RxtA) « St(A) Rx:4) wait | WB(A) wait | Rx(A) & wait

t t+50 t+100 t+150 t+200

CO: St(A)
C2: St(A)

| wait

t+350 t+500

C1 performs the WB Only then, CO receives data
and finishes its request

Problem: Coherence effect on WC Predictable

Coherence

)

<, = 5
= = u|
8 O St(A) Rx{A) || St(A) Rxtd) St(A) Rxi4) wait |WB(A) wait | Rx(A) = wait ~ wait WB(A) = wait wait A Rx(A) | wait
t t+50 t+100 t+150 t+200 t+350 t+500 t+650 t+800
In next period, CO performs Only then, C1 receives data
the WB

and finishes its request

Problem: Coherence effect on WC Predictable

Coherence

s
Vg

O |
\
St(A) Rx{A) || St(A) Rx¢A) St(A) Rxi4) wait WB(A) wait | Rx(A) = wait wait AWB(A)‘ wait

t+50 t+100 t+150

CO: St(A)
C2: St(A)

 wait A Rx(A) | wait WB(A) wait Rx(A)

t t+200 t+350 t+500 t+650 t+800

t+950 t+1100

Finally, C1 performs the WB Afterwards, C2 receives data
and finishes its request

Problem: Coherence effect on WC Predictable

Coherence

)

<, = 5

= = u|

8 O St(A) Rx{A) || St(A) Rxtd) St(A) Rxi4) wait |WB(A) = wait | Rx(A) | wait = wait WB(A) - wait wait A Rx(A) | wait AWB(A)A wait | Rx(A)
t t+50 t+100 t+150 t+200 t+350 t+500 t+650 t+800 t+950 t+1100
¢ Arbitration Latency > € Coherence Latency éCS L

Problem: Coherence effect on WC Predictable

Coherence

s
Vg

O]
\
St(A) Rx{A) || St(A) Rx¢A) St(A) Rxi4) wait WB(A) wait | Rx(A) = wait wait AWB(A)‘ wait wait Rx(A) wait WB(A) wait

t+50 t+100 t+150

CO: St(A)
C2: St(A)

R
t+950 t+1100

t t+200 t+350 t+500 t+650 t+800

¢ Arbitration Latency > € Coherence Latency éCS L

=@-PMS| =4=ByPass

s . S S
0 2 4 6 8
Number of Cores

Problem: Coherence effect on WC Predictable

Coherence

)

O]
\
St(A) Rx{A) || St(A) Rxtd) St(A) Rxi4) wait |WB(A) wait | Rx(A) = wait ~ wait WB(A) = wait wait Rx(A) wait WB(A) wait

CO: St(A)
C2: St(A)

| Rx(A)

t t+50 t+100 t+150 t+200 t+350 t+500 t+650 t+800 t+50 | t+1100
¢ Arbitration Latency > € Coherence Latency s écg L

* Adopting Traditional Arbitration for coherence results in

coupling coherence requests with responses oo
e This results in huge WCLs of PMSI oot i s
* |t also requires the coherence modifications to %jjjg
conform to this arbitration, while maintaining 5 2
oredictable behavior ° . . .
* Can we achieve predictable coherence without imposing e

coherence modifications?
* Yes—> by deploying a predictable split-Tx bus

PISCOT Main Idea PICCICIERIC

Coherence

Traditional Real-Time:
* Predictable by design

\w} . TDM, RR, WRR, H\(
 Does not support shared data, put aside

Conventional COTS:

*High performance arbitration \/
*FCFS, Split-Tx, Priority-Based, ..

',

*Shared data is entirely supported through a ‘ coherence
hardware cache c)o(herence protocol W &\"%\' .v/g\'/é x
*Not Predictable //‘% %/‘\\
PISCOT Data-Aware Arbitration:

*Shared data is supported w *Shared data is supportecw
With NO protocol modifications w *BUT requires coherence protocol modifications /"
*Achieves better performance than existing coherence *Coherence |eads to good performance
solutionsw *Also achives predictability, but with significant latency bounds\/
*Also achives predictability, with tight latency boundsw *PMSI [RTAS’17], CARP [RTSS’19], HourGlass [Arxiv'18],

PENDULUM [RTSS'19]

PISCOT vs. State-of-the-art PISCOT

(1) PISCOT implements a split-
Unlike COTS systems, the Request Bus transaction bus:

Arbiter is a work-conserving TDM arbiter + A Request Bus is responsible for

broadcasting the coherence
messages initiating memory
requests, while
A Response Bus transfers data as a
~response to these requests.

C, o el e—> Request Bus <1+ Both buses operate fully in parallel
TDM Arbiter I I I
P N and synchronize using a Service
2
C | C Service Queue E Queue
© LS K/ =
=
=
C | FCFS Arbiter
© | L1$

Response Bus

PISCOT High-Level Architecture PISCOT

(1) Split-Bus

PISCOT implements a split-transaction bus:

A Request Bus is responsible for
broadcasting the coherence messages
initiating memory requests, while

A Response Bus transfers data as a
response to these requests.

Request Bus

Shared Memory

PISCOT High-Level Architecture

PISCOT

(1) Split-Bus

PISCOT implements a split-transaction bus:

A Request Bus is responsible for
broadcasting the coherence messages
initiating memory requests, while

A Response Bus transfers data as a
response to these requests.

(2) Request Arbiter

Unlike COTS systems, the Request
Bus Arbiter is a work-conserving
TDM arbiter

—> To achieve PREDICTABILITY

Request Bus
Work-conserving TDM Arbiter

H—

Response Bus

Shared Memory

PISCOT High-Level Architecture

PISCOT

(1) Split-Bus

PISCOT implements a split-transaction bus:

A Request Bus is responsible for
broadcasting the coherence messages
initiating memory requests, while

A Response Bus transfers data as a
response to these requests.

(2) Request Arbiter

Unlike COTS systems, the Request
Bus Arbiter is a work-conserving
TDM arbiter

—> To achieve PREDICTABILITY

(3) Response Arbiter

The Response Bus’s arbiter is FCFS:
e serves requests based on their arrival
time on the Service Queue

Request Bus
Work-conserving TDM Arbiter

FCFS Arbiter
Response Bus

H—
H

Shared Memory

PISCOT High-Level Architecture

PISCOT

(1) Split-Bus

PISCOT implements a split-transaction bus:

A Request Bus is responsible for
broadcasting the coherence messages
initiating memory requests, while

A Response Bus transfers data as a
response to these requests.

(2) Request Arbiter

Unlike COTS systems, the Request
Bus Arbiter is a work-conserving
TDM arbiter

—> To achieve PREDICTABILITY

(3) Response Arbiter

The Response Bus’s arbiter is FCFS:
e serves requests based on their arrival
time on the Service Queue

Request Bus
Work-conserving TDM Arbiter

FCFS Arbiter

Response Bus

Shared Memory

PISCOT High-Level Architecture

(4) Service Queue

Both buses operate fully in parallel
and synchronize using a Service
Queue

PISCOT

(1) Split-Bus

PISCOT implements a split-transaction bus: | |(2) Request Arbiter :
| | m " (3) Response Arbiter
A Request Bus is responsible for Unlike COTS systems, the Request . |
o the coh Bus Arbiter is a work-conserving The Response Bus'’s arbiter is FCFS:
.br.o.ad.castlng the conerence meossages . * serves requests based on their arrival
initiating memory requests, while DM arbl’Fer time on the Service Queue
* A Response Bus transfers data as a = To achieve PREDICTABILITY

response to these requests.

(4) Service Queue

Both buses operate fully in parallel
and synchronize using a Service
Queue

Request Bus
Work-conserving TDM Arbiter

(5) Bounding Interference

* Allows cores to issue multiple
outstanding requests.

* However, to limit coherence

FCFS Arbiter interference, it only services at

Response Bus most one request from any given

core at a time. I
PISCOT High-Level Architecture PISCOT

Shared Memory

1: St(A)

CO: C1:

CO: St(A)
C2: St(A)

St(A) PutM(A) Request Bus
t t+4 t+8

Cl=>Mem: Mem=CO:
WB(A) Send(A)

Response Bus

t+8 t+58 t+108
Mad
- * Assume same example from before
*all 3 cores request to access same cache line A
A IM¢ * Assume initially A is modified by C1 in its private cache

eour request under analysis is St(A) from C2

Problem: Coherence effect on WC EXAMPLE

1: St(A)

CO: St(A)
C2: St(A)

CO: C1: C1: CO:

st(A) PutM(A) | St(A) | PutM(A) Request Bus
t t+4 t+8 t+12

—

: ~¢@: | c: co: cn
Service ﬂ-- St(A) PutM(A) | St(A) PutM(A)

Cl=>Mem: Mem=>CO:

WB(A) Send(A)
t+8 t+58 t+108 t+208 t+308

Response Bus

s
t+8 t+12

* Assume same example from before

*all 3 cores request to access same cache line A
* Assume initially A is modified by C1 in its private cache

eour request under analysis is St(A) from C2

Problem: Coherence effect on WC EXAMPLE

1: St(A)

CO: C1: C1: CO: C2: C1:

CO: St(A)
C2: St(A)

St(A) PutM(A) St(A) . PutM(A) ., St(A) . PutM(A)
t t+4 t+8 t+12 t+16

Request Bus

: B DG G 0. | C1:
SerVICe QU St(A) PutM(A) St(A) PutM(A) St(A) PutM(A)

_—

Cl=>Mem: Mem=>CO:

WB(A) Send(A)
t+8 t+58 t+108 t+208 t+308

Response Bus

* Assume same example from before
)
t+8 t+12 t+16

MY
*all 3 cores request to access same cache line A

* Assume initially A is modified by C1 in its private cache

eour request under analysis is St(A) from C2

Problem: Coherence effect on WC EXAMPLE

1: St(A)

CO: C1: C1: CO: C2: C1:

CO: St(A)
C2: St(A)

St(A) PutM(A) St(A) . PutM(A) ., St(A) . PutM(A)
t t+4 t+8 t+12 t+16

Request Bus

: ~ ¢ ¢ | ¢ | co co cr
SerVICe QU St(A) PutM(A) St(A) PutM(A) St(A) PutM(A)

_—

Cl=>Mem: Mem=>CO:

WB(A) Send(A)
t+8 t+58 t+108 t+208 t+308

Response Bus

.
*all 3 cores request to access same cache line A
* Assume initially A is modified by C1 in its private cache
t+8

t+12 t+16 t+108 *our request under analysis is St(A) from C2

* Assume same example from before

Problem: Coherence effect on WC EXAMPLE

1: St(A)

CO: C1: C1l: CO: C2: C1:

CO: St(A)
C2: St(A)

St(A) PutM(A) St(A) . PutM(A) ., St(A) . PutM(A)
t t+4 t+8 t+12 t+16

Request Bus

: ~ ¢ ¢ | ¢ | co co cr
SerVICe QU St(A) PutM(A) St(A) PutM(A) St(A) PutM(A)

Cl>oMem: Mem—>C0: CO2>Mem: | Mem—2>Cl:

WB(A) Send(A) . WB(A) | Send(A)
t+8 t+58 t+108 t+208 t+308

Response Bus

.
*all 3 cores request to access same cache line A
* Assume initially A is modified by C1 in its private cache
t+8

t+208 T
t+12 t+16 t+108 ’ *our request under analysis is St(A) from C2

* Assume same example from before

Problem: Coherence effect on WC EXAMPLE

<
o+
Vp)
—

CO: C1: C1l: CO: C2: C1:

CO: St(A)
C2: St(A)

st(A) PutM(A) || St(A) | PutM(A) | St(A) . PutM(A)

Request Bus
t t+4 t+8 t+12 t+16

: ~ ¢ ¢ | ¢ | co co cr
SerVICe QU St(A) PutM(A) St(A) PutM(A) St(A) PutM(A)

—

Cl1>Mem: Mem=>C0: | CO2>Mem: Mem—=>Cl: Cl2>Mem: Mem—>C2:
WB(A) Send(A) . WB(A) . Send(A) , WB(A) . Send(A) Response Bus
t+8 t+58 t+108 t+208 t+308

.
*all 3 cores request to access same cache line A
* Assume initially A is modified by C1 in its private cache
t+8

t+208 t+308 . .
t+12 t+16 t+108 * eour request under analysis is St(A) from C2

* Assume same example from before

Problem: Coherence effect on WC EXAMPLE

1: St(A)

CO: C1: C1l: CO: C2: C1:

CO: St(A)
C2: St(A)

St(A) PutM(A) St(A) . PutM(A) ., St(A) . PutM(A)
t t+4 t+8 t+12 t+16

Request Bus

¢ RegBus Latency 3

: B DG G 0. | C1:
SerVICe QU St(A) PutM(A) St(A) PutM(A) St(A) PutM(A)

—

: ResBus Latency s EAccg

Cl1>Mem: Mem=>C0: | CO2>Mem: Mem—=>Cl: Cl2>Mem: Mem—>C2:
. WB(A) . Send(A) Response Bus

WB(A) Send(A) . WB(A) | Send(A)
t+8 t+58 t+108 t+208 t+308

.
*all 3 cores request to access same cache line A
* Assume initially A is modified by C1 in its private cache
t+8

t+208 t+308 .
t+12 t+16 t+108 ’ *our request under analysis is St(A) from C2

* Assume same example from before

Problem: Coherence effect on WC EXAMPLE

CO: C1: C1l: CO: C2: C1:
St(A) PutM(A) St(A) . PutM(A) ., St(A) . PutM(A)

t t+4 t+8 t+12 t+16
Total Latency of 308 cycles compared to

<«—ReaBus latency 1150 for PMSI

: — I T 7y
Service Qu m- St(A) PutM(A) St(A) PutM(A) St(A) :
- - : -3 * Generally, improves coherence

ResBus Latenc Lecly interference from a N2 to a N

Cl1>Mem: Mem=>C0: | CO2>Mem: Mem—=>Cl: Cl2>Mem: Mem—>C2:
WB(A) Send(A) . WB(A) | Send(A) , WB(A) , Send(A)

t+8 t+58 t+108 t+208

e Assume ¢

*all 3 core

t+8

t+16 t+108 t+208 t+308
t+12 *our requ

£
Problem: Coherence effect on WC EXAMPLE

Yy

PMSI I PISCOT 5 PISCOT-C2C W ByPassShared

2500
2000 T T
Elﬁﬂu ..
. s d 1000
Predictability and Latency Bounds = I I
+ Four-core system and figures are for D e en A en U en A en en A en e Uen Ulen 'an
: o & o & & & 3 g a Pl
SPLASH-3 and synthetics workloads. & & f & « é:f ﬁ“‘“ &
4::‘-*"&; “# m*}’?
PISCOT shows more than 4x
improvement in bOth the analytical &2 PMSI = PISCOT B PISCOT-C2C m ByPassShared
2500
and observed WCL compared to 2000
PMSI 3 1500 §
glﬂﬂﬂ g
EW
Z

% ! i 5 =, =, =, =, e
! y, N 5 =, =, =, =, e
5 | i 5 =, =, =, =, s
! y, N 5 =, =, =, =, e
. ! 4, i 5 L L L L .

Synthl Synth2 Synth3 Synth4 SynthS Synth6é Synth7 Synth8 Synth9

Fvaluation EVALUATION

itlab.com/FanoslLab/piscot-and-msi-split-bus

https://gitlab.com/FanosLab/piscot-and-msi-split-bus

1004 120

10

00 ado

G0a0

400
200
0

100 ZoO 300 400

Predictability and Latency Bounds

* Four-core system (Fig is for Ocean BM)

D

* PISCOT is able to avoid the unpredictability/

0 5000 10000 15000 20000 25000

variability behavior of conventional MSI

400 | (a) MSI
350 |
300
250
200
150
100
50
0

2000 4000 6000 8000 ~oF o0 Q9
RIS

(b) PISCOT

Fvaluation EVALUATION

itlab.com/FanoslLab/piscot-and-msi-split-bus

https://gitlab.com/FanosLab/piscot-and-msi-split-bus

Average-Case Performance

* Slowdown compared to conventional MSI
 PMSI’s slowdown is 2x on average (and up to
4.3x) across all benchmarks.

B MSI (split-TX) 9 PISCOT @ PMSI

Slowdown
w A5 U1 O

N

* coupling of coherence and data transfer
 PISCOT achieves comparable results with
slowdown in the range of 1% - 4%

1
27

A

E
4 /
/ /
/
/ /
/ /
/ /
[/
4 /
A /
/ #
/
/ 5
/ A

T T T T
o W i N T S T B e e e e e T
b S S e S e N e S Sy

L% e
AR

b

N
i
S

Fvaluation EVALUATION

itlab.com/FanoslLab/piscot-and-msi-split-bus

https://gitlab.com/FanosLab/piscot-and-msi-split-bus

Traditional Real-Time:

* Predictable by design ‘y
. TDM} RR} WRR; HRR;

Conventional COTS:

*High performance arbitration \/
*FCFS, Split-Tx, Priority-Based, ..

*Shared data is entirely supported through a
hardware cache coherence protocol \/

*Not Predictable x

* Does not support shared data, put aside
coherence x

PISCOT Data-Aware Arbitration:

«With NO protocol modifications \y *BUT requires coherence protocol modifications \/
*Achieves better performance than existing coherence * Coherence leads to good performance

SGlutiGnsw » Also achives predictability, but with significant latency bounds\/"
*Also achives predictability, with tight latency boundsyf *PMSI [RTAS’17], CARP [RTSS’19], HourGlass [Arxiv'18],

PENDULUM [RTSS'19]

PISCOT vs. State-of-the-art Data Sharing

ummary SUMMARY
&

Conventional COTS:
*High performance arbitration \/
*FCFS, Split-Tx, Priority-Based, ..

Traditional Real-Time:

{ < * Predictable by design \/

- : + TDM, RR, WRR, HRR, ...

*Shared data is entirely supported through a \ W « Does not support shared data, put aside
hardware cache coherence protocol w ~\‘\ i coherence x
*Not Predictable X

PISCOT Data-Aware Arbitration:

*Predictable split-transaction bus *Builds on traditional arbitration

+Shared data is supported % *Shared data is supportede¢?”

*With NO protocol modifications w *BUT requires coherence protocol modifications \/

*Achieves better performance than existing coherence *Coherence leads to good performance

solutionsw «Also achives predictability, but with significan

*Also achives predictability, with tight latency bounds% *PMSI [RTAS’17], CARP [RTSS’19], Hour

PENDULUM [RTSS'19]

(1) Split-Bus
PISCOT implements a split-transaction bus: (2) Request Arbiter
« A Request Bus is responsible for Unlike COTS systems, the Request
broadcasting the coherence messages Bus Arbiter is a work-conserving
initiating memory requests, while TDM arbiter
* A Response Bus transfers data as a = To achieve PREDICTABILITY

(3) Response Arbiter

The Response Bus’s arbiter is FCFS:

* serves requests based on their arrival
time on the Service Queue

response to these requests.

Cco Request Bus

Work-conserving TDM Arbiter

FCFS Arbiter

C1

Shared Memory

CN

Response Bus

PISCOT High-Level Architecture

Summary

(4) Service Queue

Both buses operate fully in parallel
and synchronize using a Service
Queue

(5) Bounding Interference

* Allows cores to issue multiple
outstanding requests.

« However, to limit coherence
interference, it only services at
most one request from any given
core at a time.

SUMMARY
- 46

Conventional COTS: Traditional Real-Time: (1) Split-Bus _
«High performance arbitration \ + Predictable by design ¢ PISCOT implemen?s a split-transaction bus: {erzlii:?:(l;?:tsi::rl:‘:rthe N (3) Response Arbiter
*FCFS, Split-Tx, Priority-Based, .. - TDM, RR, WRR, HRR, ... ‘ Qrij,g?:\ss;f;i,.:z rcesﬁg:lesr:ien:oerssages . is\; Work,—conser\?ing The Response Bus's arbiter iS_FCF.S:
-f]r;?gs;ﬂarza;:cr:se :g;!reelrlcseuppc:rtec: wugh a * Does not support shared data, put aside initiating memory requests, while TDM arbiter) i::;ez;iize;;;?::e(izz;he" arrival
protoce coherence x * A Response Bus transfers data as a — To achieve PREDICTABILITY

*Not Predictable x

response to these requests.

(4) Service Queue
Both buses operate fully in parallel

PISCOT Data-Aware Arbitration: co Request Bus and synchronize using a Service
«Predictable split-transaction bus *Builds on traditional arbitration L1S R Work-conserving TDM Arbiter Queue
*Shared data is supportedw

-8
*Shared data is supported ¢ & g (5) Bounding Interference
«With NO protocol modifications ¢ *BUT requires coherence protocol modifications £/’ , C_/ 2 « Allows cores to issue multiple
*Achieves better performance than existing coherence *Coherence leads to good performance SFN' € Ql"eu b kS outstanding requests.
solutions ¢ «Also achives predictability, but with significant latency boundss\/ © * However, to limit coherence
*Also achives predictability, with tight latency bounds ¢/ *PMSI [RTAS’17], CARP [RTSS’19], HourGlass [Arxiv'18], FCFS Arbiter & interference, it only services at

PENDULUM [RTSS'19]

Response Bus — most one request from any given
core at a time.

PISCOT vs. State-of-the-art Data Sharing lll PISCOT High-Level Architecture

B MSI (split-TX) 9 PISCOT @ PMSI

(+)]

w

Slowdown
N W b

La et b Nt N S

"
/
’
’
v
/
V!
’
’
’
’
’
5
.

AR
AR

Lo e s e,]
(I
2223
AR

Comparable COTS Performance

Summa ry SUMMARY

Conventional COTS: Traditional Real-Time: (1) Split-Bus (2) Request Arbit
’ o - o - . equest Arbiter .
«High performance arbitration N « Predictable by design W& PISCOT |mplemenFs a split transactlon bus: . q (3) Response Arbiter
*FCFS, Split-Tx, Priority-Based, .. « TDM RR. WRR. HRR. .. i o : The Response Bus'’s arbiter is FCFS:
i i Y ’ ’ broadeasting the conerence messages Bus Arbiterisa work-conserving * serves requests based on their arrival
*Shared data is entirely supported through a * Does not support shared data, put aside initiating memory requests, while TDM arbiter i t?; Service Q
hardware cache coherence protocol v/ ’ . Ime on the Servicgadeue
Not Predictable) coherence 3 » A Response Bus transfers data as a > To achieve PREDICTABILITY 1200
ot Fredictabie response to these requests. - _-_‘"‘“‘-_.___‘_‘_‘1
(4) Service Queue
)) Both buses operate fully in parallel 1000 120
PISCOT Data-Aware Arbitration: co Request Blus —» and synchronize using a Service 100
«Predictable split-transaction bus *Builds on traditional arbitration L1 5] Work-conserving TDM Arbiter - Queue Eﬂﬂ, 200
*Shared data is supported ‘¢’ *Shared data is supported's’ - e (5) Bounding Interference _—
«With NO protocol modifications ¢ *BUT requires coherence protocol modifications £/’ , - 2 « Allows cores to issue multiple 50 400
*Achieves better performance than existing coherence *Coherence leads to good performance SFN' € Qi'leua kS outstanding requests. :
solutions ¢ «Also achives predictability, but with significant latency boundss\/ _czu * However, to limit coherence 200
*Also achives predictability, with tight latency bounds g *PMSI [RTAS’17], CARP [RTSS’19], HourGlass [Arxiv'18], FCFS Arbiter 9 interference, it only services at 4004 g ;
PENDULUM [RTSS'19] Response Bus — most one request from any given o oo b Gon nd
core at a time.
200
PISCOT vs. State-of-the-art Data Sharing Jll PISCOT High-Level Architecture 4= \\ hile Avoiding
))00

A it

6 B MS! (split-TX) £ PISCOT @PMSI un p rEd ICta b | I It
5
c4
E ‘ /,
T 3 4 /
3 f‘ . / ;
o : / g 7 D
wn 2 5 4 4 ’ P :“'
1 b / 1 B [/
4 5 / ’
' ANd BN 1 081 ANt /
o HNE 7 / / / / /

2000 4000 6000 BOOD ~o° o ¥

(b) PISCOT

Comparable COTS Performance

Summa ry SUMMARY

Conventional COTS: Traditional Real-Time: (1) Split-Bus _
«High performance arbitration \ + Predictable by design ¢ PISCOT implemen?s a split-transaction bus: {erzlii:?:(l;?:tsi::rl:‘:rthe N (3) Response Arbiter
*FCFS, Split-Tx, Priority-Based, .. - TDM, RR, WRR, HRR, ... ‘ Qrij,g?:\ss;f;i,.:z rcesﬁg:lesr:ien:oerssages . is\; Work,—conser\?ing The Response Bus's arbiter iS_FCF.S:
-f]r;?gs;ﬂarza;:cr:se :g;!reelrlcseuppc:rtec: wugh a * Does not support shared data, put aside initiating memory requests, while TDM arbiter) i::;ez;iize;;;?::e(izz;he" arrival
protoce coherence x * A Response Bus transfers data as a — To achieve PREDICTABILITY 1200

*Not Predictabl
ot Preaictable x response to these requests.

(4) Service Queue
)) Both buses operate fully in parallel 1000

PISCOT Data-Aware Arbitration: co Request Bus and synchronize using a Service
«Predictable split-transaction bus *Builds on traditional arbitration L1S R Work-conserving TDM Arbiter > Queue soo
*Shared data is supported ¢/’ *Shared data is supportedssd’ - e (5) Bounding Interference
*With NO protocol modifications ¢ *BUT requires coherence protocol modifications £/ , C_/ 2 * Allows cores to issue multiple
*Achieves better performance than existing coherence *Coherence leads to good performance SFN' € Ql"eu b kS outstanding requests. 600

solutionsw «Also achives predictability, but with significant latency boundss\/ © * However, to limit coherence
*Also achives predictability, with tight latency boundsw *PMSI [RTAS’17], CARP [RTSS’19], HourGlass [Arxiv'18], FCFS Arbiter & interference, it only services at 4004

PENDULUM [RTSS'19] Response Bus — most one request from any given
core at a time.

200

_.; While Avoiding =
Its

PISCOT vs. State-of-the-art Data Sharing

B MSI (split-TX) 9 PISCOT @ PMS| un p FEd |Cta b | I |t
& PMSI o PISCOT B PISCOT-C2C W ByPassShared
2500
5
4 2000 - 1 1 T T - -
.g 3 g E g 500 V4 ¥ ¥y N
E , ?: 7 E P) =
@2 / / ’ / 7 :-' $ 1000
/ / 7 / / / 2 Z 7 7
»nll ol ; TR |
4 HNE / 1 HNY HR * Jon 4 en A e ﬁ n ﬁ /8 ﬁ enllt
o HHNE Z / 4 HNE Z Z , AER al =] 1Z8E] 12 al Z8E] IZ8E] IZ8E] 1728 DZE] al

2000 4000 6000 BOOD ~o° o ¥
IRV

(b) PISCOT

And significantly improves coherence Latency Bounds

Comparable COTS Performance

Summa ry SUMMARY

