
The Best of All Worlds: Improving Predictability 
at the Performance of Conventional Coherence 

with No Protocol Modifications

Salah Hessien, Mohamed Hassan

1



Data is a Key in all 
modern applications

MOTIVATION
2



Common Approach Data Sharing

•Adopts an independent-task model → No communication 
amongst tasksIgnore

•Enforcing complete isolation between tasks. 

•At the shared cache: strict cache partitioning and coloring

•At the DRAM: bank privatization 
Prevent



Common Approach Data Sharing

• May result in a poor memory or cache 
utilization
• e.g.: a task has conflict misses, while 

other partitions may remain 
underutilized

• Does not scale with increasing number 
of cores
• e.g.: number of PEs ≤ number of 

DRAM banks

• Not viable in emerging systems due to 
increased functionality and massive 
data



Solution:
No caching of shared data
[Hardy et al., RTSS’09] 
[Lesage et al., RTNS’10]
[Bansal et al., arXiv’19]
[Chisholm et al., RTSS’16]



Solution:
No caching of shared data
[Hardy et al., RTSS’09] 
[Lesage et al., RTNS’10]
[Bansal et al., arXiv’19]
[Chisholm et al., RTSS’16]



Coherence is the norm in COTS platforms Data Sharing

The mainstream solution is to provide 
shared memory and prevent incoherence 
through a hardware cache coherence 
protocol, making caches functionally 
invisible to software. 



Coherence is the Industry’s Choice Data Sharing



Coherence is the Industry’s Choice Data Sharing



Coherence is the Industry’s Choice Data Sharing



Coherence is A complex Machinery Data Sharing



State-of-the-art Data Sharing

Conventional COTS:
•High performance arbitration

•FCFS, Split-Tx, Priority-Based, ..

•Shared data is entirely supported through a
hardware cache coherence protocol

•Not Predictable

Traditional Real-Time:
• Predictable by design

• TDM, RR, WRR, HRR, …

• Does not support shared data, put aside
coherence

St(A) Rx(A)

C
0

: S
t(

A
)

C
2

: S
t(

C
)

t t+50 t+100 t+150 t+200

Arbitration Latency Access Latency



State-of-the-art Data Sharing

St(A) Rx(A) St(B) Rx(B)

C
0

: S
t(

A
)

C
2

: S
t(

C
)

C
1

: S
t(

B
)

t t+50 t+100 t+150 t+200

Arbitration Latency Access Latency

Conventional COTS:
•High performance arbitration

•FCFS, Split-Tx, Priority-Based, ..

•Shared data is entirely supported through a
hardware cache coherence protocol

•Not Predictable

Traditional Real-Time:
• Predictable by design

• TDM, RR, WRR, HRR, …

• Does not support shared data, put aside
coherence



State-of-the-art Data Sharing

St(A) Rx(A) St(B) Rx(B) St(C) Rx(C)

C
0

: S
t(

A
)

C
2

: S
t(

C
)

C
1

: S
t(

B
)

t t+50 t+100 t+150 t+200

Arbitration Latency Access Latency

Conventional COTS:
•High performance arbitration

•FCFS, Split-Tx, Priority-Based, ..

•Shared data is entirely supported through a
hardware cache coherence protocol

•Not Predictable

Traditional Real-Time:
• Predictable by design

• TDM, RR, WRR, HRR, …

• Does not support shared data, put aside
coherence



State-of-the-art Data Sharing

+

Conventional COTS:
•High performance arbitration

•FCFS, Split-Tx, Priority-Based, ..

•Shared data is entirely supported through a
hardware cache coherence protocol

•Not Predictable

Traditional Real-Time:
• Predictable by design

• TDM, RR, WRR, HRR, …

• Does not support shared data, put aside
coherence



State-of-the-art Data Sharing

+

Unpredictable
[RTAS’17 ] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, 
“Predictable Cache Coherence for Multi-Core Real-Time Systems" 

Conventional COTS:
•High performance arbitration

•FCFS, Split-Tx, Priority-Based, ..

•Shared data is entirely supported through a
hardware cache coherence protocol

•Not Predictable

Traditional Real-Time:
• Predictable by design

• TDM, RR, WRR, HRR, …

• Does not support shared data, put aside
coherence



State-of-the-art

Data-Aware Arbitration:
•Builds on traditional arbitration

•Shared data is supported

•BUT requires coherence protocol modifications

•Coherence leads to good performance

•Also achives predictability, but with significant
latency bounds

•PMSI [RTAS’17], CARP [RTSS’19], HourGlass
[Arxiv’18], PENDULUM [RTSS’19]

Conventional COTS:
•High performance arbitration

•FCFS, Split-Tx, Priority-Based, ..

•Shared data is entirely supported through a
hardware cache coherence protocol

•Not Predictable

Traditional Real-Time:
• Predictable by design

• TDM, RR, WRR, HRR, …

• Does not support shared data, put aside
coherence

Predictable 
Coherence



Benefit of Coherence: Up to 3x performance

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

LU FFT Radix Ocean FMM Cholesky Radiosity Raytrace Geomean

Ex
ec

u
ti

o
n

 T
im

e

PMSI ByPass

[RTAS’17 ] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, 
“Predictable Cache Coherence for Multi-Core Real-Time Systems" 

Predictable 
Coherence



Problem: Coherence effect on WC Predictable 
Coherence

19

St(A) Rx(A)C
0

: S
t(

A
)

C
2

: S
t(

A
)

t t+50 t+100

C
1

: S
t(

A
)

•Assume same example from before

•But, let all 3 cores request to access same cache line A

•Assume initially A is modified by C1 in its private cache

•Let as before, our request under analysis is St(A) from C2

C0 cannot receive A from Mem,
it has to wait for C1 to WB first



Problem: Coherence effect on WC Predictable 
Coherence

20

St(A) Rx(A)C
0

: S
t(

A
)

C
2

: S
t(

A
)

t t+50 t+100 t+150 t+200

C
1

: S
t(

A
)

St(A) Rx(A) St(A) Rx(A)

C0 cannot receive A
from Mem, it has to
wait for C1 to WB first

C1 and C2 has to wait
for C0 to conform to
the coherence order



Problem: Coherence effect on WC
21

St(A) Rx(A)C
0

: S
t(

A
)

C
2

: S
t(

A
)

t t+50 t+100 t+150 t+200

C
1

: S
t(

A
)

St(A) Rx(A) St(A) Rx(A) wait WB(A) wait Rx(A) wait wait

C1 performs the WB Only then, C0 receives data
and finishes its request

t+350 t+500

Predictable 
Coherence



Problem: Coherence effect on WC
22

St(A) Rx(A)C
0

: S
t(

A
)

C
2

: S
t(

A
)

t t+50 t+100 t+150 t+200

C
1

: S
t(

A
)

St(A) Rx(A) St(A) Rx(A) wait WB(A) wait Rx(A) wait wait WB(A) wait wait Rx(A) wait

In next period, C0 performs
the WB

Only then, C1 receives data
and finishes its request

t+650t+350 t+500 t+800

Predictable 
Coherence



Problem: Coherence effect on WC
23

St(A) Rx(A)C
0

: S
t(

A
)

C
2

: S
t(

A
)

t t+50 t+100 t+150 t+200

C
1

: S
t(

A
)

St(A) Rx(A) St(A) Rx(A) wait WB(A) wait Rx(A) wait wait WB(A) wait wait Rx(A) wait WB(A) wait Rx(A)

Finally, C1 performs the WB Afterwards, C2 receives data
and finishes its request

t+650t+350 t+500 t+800 t+950 t+1100

Predictable 
Coherence



Problem: Coherence effect on WC
24

St(A) Rx(A)C
0

: S
t(

A
)

C
2

: S
t(

A
)

t t+50 t+100 t+150 t+200

C
1

: S
t(

A
)

St(A) Rx(A) St(A) Rx(A) wait WB(A) wait Rx(A) wait wait WB(A) wait wait Rx(A) wait WB(A) wait Rx(A)

Arbitration Latency Coherence Latency Acc L

t+650t+350 t+500 t+800 t+950 t+1100

Predictable 
Coherence



Problem: Coherence effect on WC
25

St(A) Rx(A)C
0

: S
t(

A
)

C
2

: S
t(

A
)

t t+50 t+100 t+150 t+200

C
1

: S
t(

A
)

St(A) Rx(A) St(A) Rx(A) wait WB(A) wait Rx(A) wait wait WB(A) wait wait Rx(A) wait WB(A) wait Rx(A)

Arbitration Latency Coherence Latency Acc L

t+650t+350 t+500 t+800 t+950 t+1100

Predictable 
Coherence



PISCOT Main Idea
26

St(A) Rx(A)C
0

: S
t(

A
)

C
2

: S
t(

A
)

t t+50 t+100 t+150 t+200

C
1

: S
t(

A
)

St(A) Rx(A) St(A) Rx(A) wait WB(A) wait Rx(A) wait wait WB(A) wait wait Rx(A) wait WB(A) wait Rx(A)

Arbitration Latency Coherence Latency Acc L

• Adopting Traditional Arbitration for coherence results in 
coupling coherence requests with responses
• This results in huge WCLs of PMSI
• It also requires the coherence modifications to 

conform to this arbitration, while maintaining 
predictable behavior

• Can we achieve predictable coherence without imposing 
coherence modifications?
• Yes→ by deploying a predictable split-Tx bus

t+650t+350 t+500 t+800 t+950 t+1100

Predictable 
Coherence



PISCOT vs. State-of-the-art PISCOT

Conventional COTS:
•High performance arbitration

•FCFS, Split-Tx, Priority-Based, ..

•Shared data is entirely supported through a
hardware cache coherence protocol

•Not Predictable

Traditional Real-Time:
• Predictable by design

• TDM, RR, WRR, HRR, …

• Does not support shared data, put aside
coherence

Data-Aware Arbitration:
•Builds on traditional arbitration

•Shared data is supported

•BUT requires coherence protocol modifications

•Coherence leads to good performance

•Also achives predictability, but with significant latency bounds

•PMSI [RTAS’17], CARP [RTSS’19], HourGlass [Arxiv’18],
PENDULUM [RTSS’19]

PISCOT
•Predictable split-transaction bus

•Shared data is supported

•With NO protocol modifications

•Achieves better performance than existing coherence
solutions

•Also achives predictability, with tight latency bounds



PISCOT High-Level Architecture
28

(1) PISCOT implements a split-
transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence 
messages initiating memory 
requests, while

• A Response Bus transfers data as a 
response to these requests.

• Both buses operate fully in parallel 
and synchronize using a Service 
Queue

Unlike COTS systems, the Request Bus 
Arbiter is a work-conserving TDM arbiter

PISCOT



PISCOT High-Level Architecture
29

(1) Split-Bus
PISCOT implements a split-transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence messages 
initiating memory requests, while

• A Response Bus transfers data as a 
response to these requests.

Request Bus

Response Bus

L1 $

L1 $

L1 $

C0

C1

CN Sh
ar

ed
 M

em
o

ry
PISCOT



PISCOT High-Level Architecture
30

(1) Split-Bus
PISCOT implements a split-transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence messages 
initiating memory requests, while

• A Response Bus transfers data as a 
response to these requests.

(2) Request Arbiter
Unlike COTS systems, the Request 
Bus Arbiter is a work-conserving 
TDM arbiter
→ To achieve PREDICTABILITY

Request Bus

Response Bus

L1 $

L1 $

L1 $

C0

C1

CN

Work-conserving TDM Arbiter

Sh
ar

ed
 M

em
o

ry
PISCOT



PISCOT High-Level Architecture
31

(1) Split-Bus
PISCOT implements a split-transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence messages 
initiating memory requests, while

• A Response Bus transfers data as a 
response to these requests.

(2) Request Arbiter
Unlike COTS systems, the Request 
Bus Arbiter is a work-conserving 
TDM arbiter
→ To achieve PREDICTABILITY

(3) Response Arbiter
The Response Bus’s arbiter is FCFS:
• serves requests based on their arrival 

time on the Service Queue

Request Bus

Response Bus

L1 $

L1 $

L1 $

C0

C1

CN

Work-conserving TDM Arbiter

FCFS Arbiter Sh
ar

ed
 M

em
o

ry
PISCOT



PISCOT High-Level Architecture
32

(1) Split-Bus
PISCOT implements a split-transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence messages 
initiating memory requests, while

• A Response Bus transfers data as a 
response to these requests.

(2) Request Arbiter
Unlike COTS systems, the Request 
Bus Arbiter is a work-conserving 
TDM arbiter
→ To achieve PREDICTABILITY

(3) Response Arbiter
The Response Bus’s arbiter is FCFS:
• serves requests based on their arrival 

time on the Service Queue

Request Bus

Response Bus

L1 $

L1 $

L1 $

C0

C1

CN

Work-conserving TDM Arbiter

FCFS Arbiter

Service Queue

Sh
ar

ed
 M

em
o

ry

(4) Service Queue
Both buses operate fully in parallel 
and synchronize using a Service 
Queue

PISCOT



PISCOT High-Level Architecture
33

(1) Split-Bus
PISCOT implements a split-transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence messages 
initiating memory requests, while

• A Response Bus transfers data as a 
response to these requests.

(2) Request Arbiter
Unlike COTS systems, the Request 
Bus Arbiter is a work-conserving 
TDM arbiter
→ To achieve PREDICTABILITY

(3) Response Arbiter
The Response Bus’s arbiter is FCFS:
• serves requests based on their arrival 

time on the Service Queue

Request Bus

Response Bus

L1 $

L1 $

L1 $

C0

C1

CN

Work-conserving TDM Arbiter

FCFS Arbiter

Service Queue

Sh
ar

ed
 M

em
o

ry

(4) Service Queue
Both buses operate fully in parallel 
and synchronize using a Service 
Queue

(5) Bounding Interference
• Allows cores to issue multiple 

outstanding requests. 
• However, to limit coherence 

interference, it only services at 
most one request from any given 
core at a time.

PISCOT



Problem: Coherence effect on WC OBSERVATIONS
34

C0:
St(A)

C1: 
PutM(A)C

0
: S

t(
A

)

C
2

: S
t(

A
)

t t+4

C
1

: S
t(

A
)

A: IMad

A: M

A: IMad

t+8

C0:
St(A)

C1: 
PutM(A)Service Queue

C1→Mem:
WB(A)

Mem→C0: 
Send(A)

t+8 t+58 t+108

A: IMd

A: I

A: IMad

Request Bus

Response Bus

•Assume same example from before

•all 3 cores request to access same cache line A

•Assume initially A is modified by C1 in its private cache

•our request under analysis is St(A) from C2t+8

EXAMPLE



Problem: Coherence effect on WC OBSERVATIONS
35

C0:
St(A)

C1: 
PutM(A)C

0
: S

t(
A

)

C
2

: S
t(

A
)

t t+4

C
1

: S
t(

A
)

A: IMad

A: M

A: IMad

t+8

C0:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)Service Queue

t+12

C1→Mem:
WB(A)

Mem→C0: 
Send(A)

t+8 t+58 t+208 t+308t+108

A: IMd

A: I

A: IMad

A: IMdI

A: IMd

A: IMad

Request Bus

Response Bus

•Assume same example from before

•all 3 cores request to access same cache line A

•Assume initially A is modified by C1 in its private cache

•our request under analysis is St(A) from C2t+8 t+12

EXAMPLE



Problem: Coherence effect on WC OBSERVATIONS
36

C0:
St(A)

C1: 
PutM(A)C

0
: S

t(
A

)

C
2

: S
t(

A
)

t t+4

C
1

: S
t(

A
)

A: IMad

A: M

A: IMad

t+8

C0:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)Service Queue

t+12 t+16

C1→Mem:
WB(A)

Mem→C0: 
Send(A)

t+8 t+58 t+208 t+308t+108

A: IMd

A: I

A: IMad

A: IMdI

A: IMd

A: IMad

A: IMdI

A: IMdI

A: IMd

Request Bus

Response Bus

•Assume same example from before

•all 3 cores request to access same cache line A

•Assume initially A is modified by C1 in its private cache

•our request under analysis is St(A) from C2t+8 t+12 t+16

EXAMPLE



Problem: Coherence effect on WC OBSERVATIONS
37

C0:
St(A)

C1: 
PutM(A)C

0
: S

t(
A

)

C
2

: S
t(

A
)

t t+4

C
1

: S
t(

A
)

A: IMad

A: M

A: IMad

t+8

C0:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)Service Queue

t+12 t+16

C1→Mem:
WB(A)

Mem→C0: 
Send(A)

t+8 t+58 t+208 t+308t+108

A: IMd

A: I

A: IMad

A: IMdI

A: IMd

A: IMad

A: IMdI

A: IMdI

A: IMd

A: M->I

A: IMdI

A: IMd

Request Bus

Response Bus

•Assume same example from before

•all 3 cores request to access same cache line A

•Assume initially A is modified by C1 in its private cache

•our request under analysis is St(A) from C2t+8 t+12 t+16 t+108

EXAMPLE



Problem: Coherence effect on WC OBSERVATIONS
38

C0:
St(A)

C1: 
PutM(A)C

0
: S

t(
A

)

C
2

: S
t(

A
)

t t+4

C
1

: S
t(

A
)

A: IMad

A: M

A: IMad

t+8

C0:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)Service Queue

t+12 t+16

C1→Mem:
WB(A)

Mem→C0: 
Send(A)

t+8 t+58 t+208 t+308t+108

C0→Mem:
WB(A)

Mem→C1: 
Send(A)

A: IMd

A: I

A: IMad

A: IMdI

A: IMd

A: IMad

A: IMdI

A: IMdI

A: IMd

A: M->I

A: IMdI

A: IMd

A: I

A: M->I

A: IMd

Request Bus

Response Bus

•Assume same example from before

•all 3 cores request to access same cache line A

•Assume initially A is modified by C1 in its private cache

•our request under analysis is St(A) from C2t+8 t+12 t+16 t+108 t+208

EXAMPLE



Problem: Coherence effect on WC OBSERVATIONS
39

C0:
St(A)

C1: 
PutM(A)C

0
: S

t(
A

)

C
2

: S
t(

A
)

t t+4

C
1

: S
t(

A
)

A: IMad

A: M

A: IMad

t+8

C0:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)Service Queue

t+12 t+16

C1→Mem:
WB(A)

Mem→C0: 
Send(A)

t+8 t+58 t+208 t+308t+108

C0→Mem:
WB(A)

Mem→C1: 
Send(A)

C1→Mem:
WB(A)

Mem→C2: 
Send(A)

A: IMd

A: I

A: IMad

A: IMdI

A: IMd

A: IMad

A: IMdI

A: IMdI

A: IMd

A: M->I

A: IMdI

A: IMd

A: I

A: M->I

A: IMd

A: I

A: I

A: M

Request Bus

Response Bus

•Assume same example from before

•all 3 cores request to access same cache line A

•Assume initially A is modified by C1 in its private cache

•our request under analysis is St(A) from C2t+8 t+12 t+16 t+108 t+208 t+308

EXAMPLE



Problem: Coherence effect on WC OBSERVATIONS
40

C0:
St(A)

C1: 
PutM(A)C

0
: S

t(
A

)

C
2

: S
t(

A
)

t t+4

C
1

: S
t(

A
)

A: IMad

A: M

A: IMad

t+8

C0:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)Service Queue

t+12 t+16

C1→Mem:
WB(A)

Mem→C0: 
Send(A)

t+8 t+58 t+208 t+308t+108

C0→Mem:
WB(A)

Mem→C1: 
Send(A)

C1→Mem:
WB(A)

Mem→C2: 
Send(A)

A: IMd

A: I

A: IMad

A: IMdI

A: IMd

A: IMad

A: IMdI

A: IMdI

A: IMd

A: M->I

A: IMdI

A: IMd

A: I

A: M->I

A: IMd

A: I

A: I

A: M

Request Bus

Response Bus

•Assume same example from before

•all 3 cores request to access same cache line A

•Assume initially A is modified by C1 in its private cache

•our request under analysis is St(A) from C2t+8 t+12 t+16 t+108 t+208 t+308

ReqBus Latency

ResBus Latency Acc L

EXAMPLE



Problem: Coherence effect on WC OBSERVATIONS
41

C0:
St(A)

C1: 
PutM(A)C

0
: S

t(
A

)

C
2

: S
t(

A
)

t t+4

C
1

: S
t(

A
)

A: IMad

A: M

A: IMad

t+8

C0:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)

C1:
St(A)

C0: 
PutM(A)

C2:
St(A)

C1: 
PutM(A)Service Queue

t+12 t+16

C1→Mem:
WB(A)

Mem→C0: 
Send(A)

t+8 t+58 t+208 t+308t+108

C0→Mem:
WB(A)

Mem→C1: 
Send(A)

C1→Mem:
WB(A)

Mem→C2: 
Send(A)

A: IMd

A: I

A: IMad

A: IMdI

A: IMd

A: IMad

A: IMdI

A: IMdI

A: IMd

A: M->I

A: IMdI

A: IMd

A: I

A: M->I

A: IMd

A: I

A: I

A: M

Request Bus

Response Bus

•Assume same example from before

•all 3 cores request to access same cache line A

•Assume initially A is modified by C1 in its private cache

•our request under analysis is St(A) from C2t+8 t+12 t+16 t+108 t+208 t+308

ReqBus Latency

ResBus Latency Acc L

Total Latency of 308 cycles compared to 
1150 for PMSI

Generally, improves coherence 
interference from α N2 to α N

EXAMPLE



TOPIC

Evaluation
https://gitlab.com/FanosLab/piscot-and-msi-split-bus 42

• Four-core system and figures are for 
SPLASH-3 and synthetics workloads.

• PISCOT shows more than 4×
improvement in both the analytical 
and observed WCL compared to 
PMSI

Predictability and Latency Bounds

EVALUATION

https://gitlab.com/FanosLab/piscot-and-msi-split-bus


TOPIC

43

• Four-core system (Fig is for Ocean BM)

• PISCOT is able to avoid the unpredictability/ 
variability behavior of conventional MSI

Predictability and Latency Bounds

Evaluation
https://gitlab.com/FanosLab/piscot-and-msi-split-bus

EVALUATION

https://gitlab.com/FanosLab/piscot-and-msi-split-bus


TOPIC

44

• Slowdown compared to conventional MSI
• PMSI’s slowdown is 2× on average (and up to 

4.3×) across all benchmarks.
• coupling of coherence and data transfer 

• PISCOT achieves comparable results with 
slowdown in the range of 1% − 4%

Average-Case Performance

Evaluation
https://gitlab.com/FanosLab/piscot-and-msi-split-bus

EVALUATION

https://gitlab.com/FanosLab/piscot-and-msi-split-bus


TOPIC

Summary
45

SUMMARY



TOPIC

Summary
46

SUMMARY



TOPIC

Summary
47

Comparable COTS Performance

SUMMARY



TOPIC

Summary
48

Comparable COTS Performance

While Avoiding 
its 

unpredictabilit
y

SUMMARY



TOPIC

Summary
49

Comparable COTS Performance And significantly improves coherence Latency Bounds

While Avoiding 
its 

unpredictabilit
y

SUMMARY


