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Data is a Key in all 
modern applications

MOTIVATION
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Common Approach Data Sharing

•Adopts an independent-task model → No communication 
amongst tasksIgnore

•Enforcing complete isolation between tasks. 

•At the shared cache: strict cache partitioning and coloring

•At the DRAM: bank privatization 
Prevent



Common Approach Data Sharing

• May result in a poor memory or cache 
utilization
• e.g.: a task has conflict misses, while 

other partitions may remain 
underutilized

• Does not scale with increasing number 
of cores
• e.g.: number of PEs ≤ number of 

DRAM banks

• Not viable in emerging systems due to 
increased functionality and massive 
data



Solution:
No caching of shared data
[Hardy et al., RTSS’09] 
[Lesage et al., RTNS’10]
[Bansal et al., arXiv’19]
[Chisholm et al., RTSS’16]



Solution:
No caching of shared data
[Hardy et al., RTSS’09] 
[Lesage et al., RTNS’10]
[Bansal et al., arXiv’19]
[Chisholm et al., RTSS’16]



Coherence is the norm in COTS platforms Data Sharing

The mainstream solution is to provide 
shared memory and prevent incoherence 
through a hardware cache coherence 
protocol, making caches functionally 
invisible to software. 



Coherence is the Industry’s Choice Data Sharing
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Coherence is A complex Machinery Data Sharing



State-of-the-art Data Sharing

Conventional COTS:
•High performance arbitration

•FCFS, Split-Tx, Priority-Based, ..

•Shared data is entirely supported through a
hardware cache coherence protocol

•Not Predictable

Traditional Real-Time:
• Predictable by design

• TDM, RR, WRR, HRR, …

• Does not support shared data, put aside
coherence
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Unpredictable
[RTAS’17 ] Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, 
“Predictable Cache Coherence for Multi-Core Real-Time Systems" 
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State-of-the-art

Data-Aware Arbitration:
•Builds on traditional arbitration

•Shared data is supported

•BUT requires coherence protocol modifications

•Coherence leads to good performance

•Also achives predictability, but with significant
latency bounds

•PMSI [RTAS’17], CARP [RTSS’19], HourGlass
[Arxiv’18], PENDULUM [RTSS’19]

Conventional COTS:
•High performance arbitration

•FCFS, Split-Tx, Priority-Based, ..

•Shared data is entirely supported through a
hardware cache coherence protocol

•Not Predictable

Traditional Real-Time:
• Predictable by design

• TDM, RR, WRR, HRR, …

• Does not support shared data, put aside
coherence

Predictable 
Coherence



Benefit of Coherence: Up to 3x performance
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“Predictable Cache Coherence for Multi-Core Real-Time Systems" 
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Problem: Coherence effect on WC Predictable 
Coherence
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•Assume same example from before

•But, let all 3 cores request to access same cache line A

•Assume initially A is modified by C1 in its private cache

•Let as before, our request under analysis is St(A) from C2

C0 cannot receive A from Mem,
it has to wait for C1 to WB first
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C0 cannot receive A
from Mem, it has to
wait for C1 to WB first

C1 and C2 has to wait
for C0 to conform to
the coherence order
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PISCOT Main Idea
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• Adopting Traditional Arbitration for coherence results in 
coupling coherence requests with responses
• This results in huge WCLs of PMSI
• It also requires the coherence modifications to 

conform to this arbitration, while maintaining 
predictable behavior

• Can we achieve predictable coherence without imposing 
coherence modifications?
• Yes→ by deploying a predictable split-Tx bus
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PISCOT vs. State-of-the-art PISCOT

Conventional COTS:
•High performance arbitration

•FCFS, Split-Tx, Priority-Based, ..

•Shared data is entirely supported through a
hardware cache coherence protocol

•Not Predictable

Traditional Real-Time:
• Predictable by design

• TDM, RR, WRR, HRR, …

• Does not support shared data, put aside
coherence

Data-Aware Arbitration:
•Builds on traditional arbitration

•Shared data is supported

•BUT requires coherence protocol modifications

•Coherence leads to good performance

•Also achives predictability, but with significant latency bounds

•PMSI [RTAS’17], CARP [RTSS’19], HourGlass [Arxiv’18],
PENDULUM [RTSS’19]

PISCOT
•Predictable split-transaction bus

•Shared data is supported

•With NO protocol modifications

•Achieves better performance than existing coherence
solutions

•Also achives predictability, with tight latency bounds



PISCOT High-Level Architecture
28

(1) PISCOT implements a split-
transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence 
messages initiating memory 
requests, while

• A Response Bus transfers data as a 
response to these requests.

• Both buses operate fully in parallel 
and synchronize using a Service 
Queue

Unlike COTS systems, the Request Bus 
Arbiter is a work-conserving TDM arbiter

PISCOT
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(1) Split-Bus
PISCOT implements a split-transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence messages 
initiating memory requests, while

• A Response Bus transfers data as a 
response to these requests.
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(1) Split-Bus
PISCOT implements a split-transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence messages 
initiating memory requests, while

• A Response Bus transfers data as a 
response to these requests.

(2) Request Arbiter
Unlike COTS systems, the Request 
Bus Arbiter is a work-conserving 
TDM arbiter
→ To achieve PREDICTABILITY
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(1) Split-Bus
PISCOT implements a split-transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence messages 
initiating memory requests, while

• A Response Bus transfers data as a 
response to these requests.

(2) Request Arbiter
Unlike COTS systems, the Request 
Bus Arbiter is a work-conserving 
TDM arbiter
→ To achieve PREDICTABILITY

(3) Response Arbiter
The Response Bus’s arbiter is FCFS:
• serves requests based on their arrival 

time on the Service Queue
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(1) Split-Bus
PISCOT implements a split-transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence messages 
initiating memory requests, while
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Unlike COTS systems, the Request 
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(1) Split-Bus
PISCOT implements a split-transaction bus:
• A Request Bus is responsible for 

broadcasting the coherence messages 
initiating memory requests, while

• A Response Bus transfers data as a 
response to these requests.

(2) Request Arbiter
Unlike COTS systems, the Request 
Bus Arbiter is a work-conserving 
TDM arbiter
→ To achieve PREDICTABILITY

(3) Response Arbiter
The Response Bus’s arbiter is FCFS:
• serves requests based on their arrival 

time on the Service Queue
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(4) Service Queue
Both buses operate fully in parallel 
and synchronize using a Service 
Queue

(5) Bounding Interference
• Allows cores to issue multiple 

outstanding requests. 
• However, to limit coherence 

interference, it only services at 
most one request from any given 
core at a time.

PISCOT
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Total Latency of 308 cycles compared to 
1150 for PMSI

Generally, improves coherence 
interference from α N2 to α N

EXAMPLE
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• Four-core system and figures are for 
SPLASH-3 and synthetics workloads.

• PISCOT shows more than 4×
improvement in both the analytical 
and observed WCL compared to 
PMSI

Predictability and Latency Bounds

EVALUATION

https://gitlab.com/FanosLab/piscot-and-msi-split-bus
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• Four-core system (Fig is for Ocean BM)

• PISCOT is able to avoid the unpredictability/ 
variability behavior of conventional MSI

Predictability and Latency Bounds

Evaluation
https://gitlab.com/FanosLab/piscot-and-msi-split-bus

EVALUATION

https://gitlab.com/FanosLab/piscot-and-msi-split-bus
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• Slowdown compared to conventional MSI
• PMSI’s slowdown is 2× on average (and up to 

4.3×) across all benchmarks.
• coupling of coherence and data transfer 

• PISCOT achieves comparable results with 
slowdown in the range of 1% − 4%

Average-Case Performance

Evaluation
https://gitlab.com/FanosLab/piscot-and-msi-split-bus

EVALUATION

https://gitlab.com/FanosLab/piscot-and-msi-split-bus
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Comparable COTS Performance

SUMMARY
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Comparable COTS Performance

While Avoiding 
its 

unpredictabilit
y

SUMMARY
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Comparable COTS Performance And significantly improves coherence Latency Bounds

While Avoiding 
its 

unpredictabilit
y

SUMMARY


