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Abstract—This article addresses the challenge of allowing simultaneous and predictable accesses to shared data on multi-core

systems. We propose a collection of predictable cache coherence protocols, which mandate the use of certain design invariants to

ensure predictability. In particular, we enforce these invariants by augmenting the classic modify-share-invalid (MSI) protocol and

modify-exclusive-share-invalid (MESI) protocol. This allows us to derive worst-case latency bounds on the resulting predictable MSI

(PMSI) and predictable MESI (PMESI) protocols. Our analysis shows that while the arbitration latency scales linearly, the coherence

latency scales quadratically with the number of cores, which emphasizes the importance of accounting for cache coherence effects

on latency bounds. We implement PMSI and PMESI in a detailed micro-architectural simulator, and execute SPLASH-2 and synthetic

workloads. Results show that our approach is always within the analytical worst-case latency bounds, and that PMSI and PMESI

improve average-case performance by up to 4� over cache bypassing mechanisms that disallow caching of shared data in the cores’

private caches. PMSI and PMESI have average slowdowns of 1.45� and 1.46� compared to conventional MSI and MESI protocols,

respectively.

Index Terms—Multi-core real time systems, cache coherence, predictability
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1 INTRODUCTION

IN HARD real-time systems, correctness depends on both
the functioning behavior, and on the timing of that behav-

ior [1]. Applications running on these systems have strict
requirements on meeting their execution time deadlines.
Missing a deadline in a hard real-time system may cause
catastrophic failures [2]. Therefore, ensuring that deadlines
are always met via static timing analysis is mandatory for
such systems. Timing analysis computes an upper bound
for the execution time of each running application on the
system by carefully accounting for hardware implementa-
tion details, and using sophisticated abstraction techniques.
The worst-case execution time (WCET) of any application
has to be less than or equal to this upper bound to achieve
predictability. As application demands continue to increase
from the avionics [3] and automotive [4] domains, there is
increasing attention in deploying multi-core platforms. This
is primarily due to the benefits multi-core platforms provide
in cost, and performance. However, multi-core platforms
pose new challenges towards guaranteeing temporal
requirements of running applications. Among these chal-
lenges, achieving predictable shared data accesses in real-

time applications has gained recent attention from the
research community [5], [6], [7], [8], [9]. Recent work has
showed clear evidence of data sharing between real-time
tasks in practical real-time domains deployed on multi-core
platforms [6], thereby making this an important challenge
and the main focus of this work.

One mechanism for managing shared data accesses that is
standard in existing multi-core platforms is cache coherence
[10], [11]. Cache coherence mechanism provides all cores in
the multi-core platform access to coherent data that may be
cached in their private caches [11]. Cache coherence is realized
by implementing a protocol that specifies a core’s activity
(read or write) on cached shared data based on the activity of
other cores on the same shared data. While cache coherence
can be implemented in software or hardware, modern multi-
core platforms implement the cache coherence protocol in
hardware [10]. This is so that software programmers do not
have to explicitly manage coherence of shared data in the
application. A recent work studied the effect of cache coher-
ence on execution time using different Intel and AMD pro-
cessors and coherence protocols [12]. The study compared
execution times between executing an application sequen-
tially and in parallel. It concluded that the interference from
cache coherence can severely reduce benefits gained frompar-
allelism. In fact, it can make parallel execution 3.87� slower
than sequential execution [12]. For real-time applications that
share data, this emphasizes the importance of considering
cache coherence effects when deriving WCET bounds. How-
ever, as observed by a recent survey [13], there is no existing
technique to account for the effects of cache coherence in static
timing analysis in real-time systems.

Current techniques, which do not use cache coherence,
enable coherent data sharing by enforcing restrictions on
shared data accesses. These techniques include (1) disabling
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caching of shared data [7], [9], (2) mapping tasks that share
data to execute on the same core [5], [14], [15], and (3) mark-
ing shared data accesses as critical sections such that they
are accessed by a single core at any time instance [16]. These
techniques enable predictable and coherent data sharing at
the expense of (1) severely degrading average-case perfor-
mance, (2) imposing task scheduling restrictions, and (3)
application and real-time operating system (RTOS) modifi-
cations. On the other hand, a predictable hardware cache
coherence mechanism can address these three limitations of
current techniques as it (1) allows shared data to reside in
the private caches of multiple cores simultaneously, (2)
does not impose task scheduling restrictions, and (3) does
not require application modifications.

In this work, we take the first steps towards using hard-
ware cache coherence for managing predictable shared data
accesses. A key contribution of this work is to show that a
simple combination of a conventional hardware cache
coherence protocol and a shared bus that deploys a predict-
able shared bus arbitration policy is insufficient to guarantee
predictable shared data accesses under cache coherence. We
address the problem of maintaining cache coherence in
multi-core real-time systems by analyzing and modifying
conventional hardware cache coherence protocols. The
resulting cache coherence protocols allow for predictable
and coherent data sharing in a manner amenable for timing
analysis [17]. We extend our previous work [17] by analyz-
ing the Modified-Exclusive-Shared-Invalidate (MESI) proto-
col, which offers additional average-case performance
benefits over the MSI protocol [11]. We then design the pre-
dictable MESI (PMESI) protocol, and extend the timing
analysis to derive the worst-case latency (WCL) of a mem-
ory request under PMESI. Our timing analysis shows that
although PMESI has additional performance benefits over
PMSI, the WCL of a memory request under PMSI and
PMESI are the same. We also identify opportunities to
improve the average-case performance of PMESI through
additional hardware modifications, which results in a new
protocol Opt-PMESI.

In summary, this work extends our previous work [17],
and makes the following contributions:

1) We analyze the conventional MESI coherence proto-
col, and highlight the unpredictable behaviors in this
protocol. We propose extensions to the MESI coher-
ence protocol to guarantee predictability resulting in
the predicable MESI protocol. The PMESI protocol
satisfies the design invariants for predictability (Sec-
tion 5) through protocol changes and architectural
extensions (Section 6). We also design the Opt-
PMESI protocol that improves average-case perfor-
mance over PMESI through hardware optimizations.

2) We provide a timing analysis for our proposed
coherence protocols and decompose the analysis to
highlight the contributions to latency due to arbitra-
tion logic and communication of coherence messages
between cores (Section 7).

3) We evaluate the proposed coherence protocol using
the gem5 simulator [18] (Section 8). Performance eval-
uation using synthetic and SPLASH-2 workloads
shows that PMSI, PMESI, and Opt-PMESI achieve up

to 4� speedup over competitive predictable
approaches for a quad-core systemwhile guaranteeing
predictability. Furthermore,Opt-PMESI improves per-
formance over PMSI and PMESI by up to 12 percent.

2 RELATED WORK

Prior research efforts investigated the access latency over-
head resulting from shared buses [2], caches [8], [19], [20],
and dynamic random access memories (DRAMs) [21], [22],
[23]. For shared caches, most of these efforts primarily
focused on preventing a task’s data accesses from affecting
another task’s data accesses. They used data isolation
between tasks by utilizing strict cache partitioning [8] or
locking mechanisms [19]. Authors in [20] promoted splitting
the data cache into multiple data regions that simplified the
analysis. However, they indicated that cache coherence is
still an issue that has to be addressed. Similarly, several pro-
posals for shared main memories deployed data isolation
that assigned a private memory bank per core [21], [22].
However, we find that data isolation suffers from three limi-
tations. The first limitation is that it disallows sharing of
data between tasks; thus, disabling any communication
across applications or threads of parallel tasks running on
different cores. The second limitation is that it may result in
poor memory or cache utilization. For instance, a task may
keep evicting its cache lines if it reaches the maximum of its
partition size, while other partitions may remain underutil-
ized. The third limitation is that it does not scale with
increasing number of cores. For example, the number of
cores in the system has to be less than or equal to the num-
ber of DRAM banks to be able to achieve isolation at DRAM.

Recent works [23], [24] recognized these limitations, and
offered solutions for sharing data. Authors in [23] shared
the whole memory space between tasks for main memory,
and [24] suggested a compromise that divided the memory
space into private and shared segments for caches. None-
theless, these approaches focused on the impact of sharing
memory on timing analysis, and they did not address the
problem of data correctness resulting from sharing memory.
Authors of [25] studied the overhead effects of co-running
applications on the timing behavior in the avionics domain,
where cache coherence was one of the overhead sources. A
recent survey [13] observed that there is no existing tech-
nique to include the effects of data coherence on timing
analysis for multi-core real-time systems.

However, there exist approaches that attempt to elimi-
nate unpredictable scenarios that arise from data sharing.
Authors in [14] proposed data sharing-aware scheduling
policies that avoided running tasks with shared data simul-
taneously. A similar approach proposed by [12], [15] rede-
signed the real-time operating system to include cache
partitioning, task scheduling, and feedback from the perfor-
mance counters to account for cache coherence in task
scheduling decisions. Such approaches rely on hardware
counters that feed the schedule with information about
memory requests. They also require modifications to exist-
ing task scheduling techniques. For example, the solution
in [14] is not adequate for partitioned scheduling mecha-
nisms. A different solution introduced in [16] applied
source-code modifications to mark instructions with shared
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data as critical sections. These critical sections were pro-
tected by locking mechanisms such that they were accessed
only by a single core at any time instance. This solution suf-
fers from two limitations. The first limitation is that the soft-
ware is responsible for maintaining cache coherence to
guarantee shared data correctness. As a result, additional
changes to the software are necessary in order to explicitly
manage cache coherence. The second limitation is that only
one core can access a cache line of shared data at a time.
Other cores requesting this data must wait until a core com-
pletes all operations on the shared data. In the worst case,
this is equivalent to sequential execution. On the other
hand, our proposed cache coherence protocols (PMSI and
PMESI) allow tasks to simultaneously access shared data,
which considerably improves performance. In addition,
PMSI and PMESI do not pose any requirements on task
scheduling techniques, and they do not require software
modifications.

3 CACHE COHERENCE BACKGROUND

The objective of cache coherence is to provide all cores read
access to the most recent write on shared data. Incoherent
sharing of data occurs when multiple cores read different
versions of the same data that is present in their private
cache hierarchies. A coherence protocol avoids data inco-
herence by deploying a set of rules to ensure that cores
access the correct version of data at all times. Typically, the
coherence protocol maintains data coherence at cache line
granularity, which is a fixed size collection of data. A state
machine implements these rules with a set of states repre-
senting read and write permissions on the cache line, and
transitions between states are triggered based on the activity
of cores on the shared data. The cache controller typically
implements the coherence protocol. General purpose pro-
cessors deploy different variants of coherence protocols.

Cache coherence protocols deployed in current multi-
core platforms consist of three fundamental stable states,
which establish the MSI protocol: modified (M), shared (S),
and invalid (I) [11]. A cache line in modified state means that
the current core has written to it and it did not propagate
the updated data to the shared memory yet. Only one core
can have a specific cache line in a modified state, and is
referred to as the owner. A cache line in shared state means
that the core has a valid, yet unmodified version of that line.
One or more cores can have versions of the same cache line
in shared state to allow for fast read accesses. Cores that

have the same cache line in the shared state are referred to
as sharers. This constraint of one owner for a cache line or
multiple cores sharing a cache line is referred to as the sin-
gle-writer multiple-reader (SWMR) invariant [11]. A cache line
in invalid state denotes the unavailability of that line in the
cache or that its data is outdated and no longer valid.

The MESI protocol introduces the exclusive (E) state to
the MSI protocol as shown in Fig. 1. The additional E state is
an optimization to the MSI protocol, and features in cache
coherence protocols deployed in current multi-core plat-
forms. A core that receives a line in E state from the shared
memory (E-Read in Fig. 1) guarantees that no other core has
the same line in a valid state (S or M states). To enable this
optimization, the shared memory keeps track of additional
states to identify (1) a read-only copy of the line present in
cores’ private cache (S state), (2) no copy of the line present
in any cores’ private cache (I state),1 and (3) an exclusive or
modified copy of the line is present in a core’s private cache
(E/M state). The E state allows for one performance optimi-
zation for store requests. A core that has a line in the E state
can complete a store request without issuing any coherence
messages on the bus. This is because a core that has a line in
the E state implies that there are no other cores that have
the same line in their private caches. Hence, no private cop-
ies of the line need to be invalidated. We refer to this perfor-
mance optimization as silent stores. On the other hand, in
MSI, a core performing a store operation on a line in S or I
state must issue coherence messages on the shared bus
before it can complete its store operation.2

A cache controller changes the state of the cache line by
observing the bus for coherence messages related to the
same cache line by other cores, known as bus snooping cache
coherence or receiving action messages from a centralized
shared cache controller, known as directory-based cache coher-
ence. In this work, we focus on bus snooping cache coher-
ence as it is typically implemented in multi-core platforms
with a small number of cores, which is the case in current
real-time systems. For example, bus snooping is adopted in
ARM chips such as [26]. For bus snooping protocols, we dis-
tinguish between two types of messages: coherence messages
and data messages. We define coherence messages as messages
that represent an action corresponding to a core’s activity
on the cache line, and data messages represent data sent or
received by a core as a consequence of a core’s activity.

We provide an example to illustrate cache coherence
using Fig. 1. Consider the following scenario: core c0 issues a
load to cache line Z, and c1 has Z in modified (M) state. The
load to Z first checks c0’s private cache for its existence. On
a private cache hit, the necessary data is supplied, and the
load is marked complete. Private cache hits do not generate
coherence activity. On a cache miss, the private cache con-
troller of c0 generates a coherence message of the form
GetðAÞ. If a core issues a load request to Z, its cache

Fig. 1. MESI coherence protocol and illustrative example.

1. Note that for MSI cache coherence protocol, the shared memory
combines these two states into one state (I state) [11].

2. In this work, we do not consider the MOESI and MESIF cache
coherence protocols. The owner (O) and forwarding (F) states are opti-
mizations when cores communicate with each other directly without
shared memory involvement. In this work, we consider multi-core con-
figurations where all communication between cores are through the
shared memory (Section 4).
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controller generates a GetSðZÞ message. If a core issues a
store request to Z, its cache controller generates a GetMðZÞ
message. In Fig. 1, c0 issues a GetSðZÞ at�1 . If Z is marked
for eviction, and is in M state, the core first generates a
PutMðZÞ message, and then writes Z to the shared memory.
This operation is called a write-back operation. If the core
has Z in a shared state and wants to modify it, it generates
an UpgðZÞ message. The cache controller then broadcasts the
GetSðZÞ/GetMðZÞ/PutMðZÞ/UpgðZÞ message on the
snoopy bus. c0 broadcasts itsGetSðZÞ on the snoopy bus at�2 .
A message is said to be ordered on the bus when all cores and
the shared memory observe the memory request on the bus.
A core observes its own messages on the bus as well as mes-
sages by other cores.We refer to the former asOwn, and to the
latter as Other. At �3 , c1 observes c0’s GetSðZÞ as an
OtherGetSðZÞ, and marks Z for write-back. At�4 , c1 broad-
casts aPutMðZÞ and completes thewrite-back ofZ. The shared
memory sends the updated Z to c0, and c0 completes its load
request toZ at�5 on receiving the requested data.

Transient states capture state changes to a core’s cache
line due to intervening events while the core’s memory
request to the cache line is pending [11]. A core with a pend-
ing memory request to a cache line can observe memory
requests to the same cache line from other cores due to non-
atomic reordering buses, which are standard in multi-core
platforms due to their performance benefits [11]. We catego-
rize the transient states into two categories:

Transient States for Coherence Messages.These transient
states denote that a core is waiting for its own coherence
message to be placed on the bus. A core’s own coherence
message may be delayed on the bus due to the presence of
other messages on the bus. For instance, when a core ci
issues a load request to an invalid line, it broadcasts a
GetSðÞ message. Because of the non-atomicity and reorder-
ing nature of the bus, ci might receive its requested data
before it observes its message on the bus as shown by [11].

Transient States for Data Messages.These states denote that
a core is waiting for data either from a core that has the data
in its private cache hierarchy or from the shared memory.

4 SYSTEM MODEL

We consider a multi-core system with N cores,
{c0,c1,...,cN�1}. Each core has a private cache, and all cores
have access to a shared memory. This shared memory can
be an on-chip last-level cache (LLC), an off-chip DRAM, or
both. Tasks running on cores share data. These tasks can
belong to a parallel application that is distributed across
cores, or different applications that communicate between
each other. Cores can share the whole shared memory space
similar to [23] or share part of the memory space similar
to [24]. We do not impose any restrictions on how the inter-
ference on the shared memory is resolved, whether it is the
LLC or the DRAM. Furthermore, we do not require any spe-
cial demands from the task scheduling mechanism. This
allows one to integrate the proposed solution to current task
scheduling techniques, and to various mechanisms that con-
trol accesses to shared memories in multi-core real-time sys-
tems. Cores share a common snooping bus that connects
private caches of cores to the shared memory. This shared
bus allows for cores to broadcast their memory requests to

other cores and the shared memory, and data transfers
between the shared memory and cores. The shared bus
also transfers coherence messages deployed by the coher-
ence protocol to ensure data correctness. Cores snoop the
bus to observe memory activity of other cores. The system
deploys a predictable arbitration on the shared bus. Note
that data transfers between private caches are only via the
shared memory (no cache-to-cache transfers). Although
some of the problems addressed in this paper may also
apply to systems supporting cache-to-cache transfer, those
systems are not the focus of this paper. The proposed solu-
tion is independent of the core architecture, and the pre-
dictable arbitration mechanism on the bus. However, the
analysis and experiments we present in this work consider
a system with in-order cores, and a time-division-multi-
plexing (TDM) bus as the base arbitration scheme. A TDM
slot width allows for one data transfer between shared
memory and the private cache including the overhead of
necessary coherence messages.

5 INVARIANTS FOR PREDICTABLE COHERENCE

A cache coherence protocol ensures correctness of shared
data across all cores in a multi-core platform. As we show
in this section, simply adopting a predictable arbiter in this
case does not necessarily mean that tasks will have predict-
able latencies upon accessing the shared memory. This is
because, as illustrated in Section 3, the latency suffered by
one core accessing a shared line is dependent on the coher-
ence state of that line in the private caches of other cores.
Two major contributions of this paper are (1) to identify
these unpredictable scenarios, and (2) to propose invariants
to address them. In this section, we describe these unpre-
dictable scenarios, and propose design invariants to
address these scenarios. Exact sources of unpredictability
in current multi-core platforms are dependent on the cache
coherence protocol and micro-architecture details of the
cache controllers, which are proprietary and are not pub-
licly available. The proposed invariants are general design
guidelines, which are independent of the adopted cache
coherence protocol implementation and the underlying
platform architecture.

An arbiter manages accesses to the shared bus such that
at any time instance it exclusively grants bus access to a sin-
gle core. A predictable arbiter guarantees that each request-
ing core is granted the bus eventually in a defined upper-
bound amount of time. Upon implementing a coherence
protocol, a core initiates memory requests by exchanging
coherence messages with other cores and the shared mem-
ory. Therefore, before investigating the potential sources of
unpredictability, we extend the predictable bus arbiter with
Invariant 1 such that it manages both data transfers and
coherence messages.

Invariant 1. A predictable bus arbiter must manage coherence
messages and data on the bus such that each core broadcasts a
coherence request or communicates data on the bus if and only
if it is granted an access slot to the bus.

Investigating the implications of a conventional coher-
ence protocol on the WCET, we find that there are fivemajor
sources that can lead to unpredictable behavior. We group
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these sources into two categories: inter-core interference and
intra-core interference. Figs. 2a, 2b, 2c, and 2d illustrate exam-
ple scenarios for these sources. The example scenarios con-
sider a system with three cores, c0, c1, and c2, and deploys a
TDM arbitration across cores. If the request type is not spec-
ified whether it is a load or store, that means the scenario is
agnostic to it. Each of Figs. 2a, 2b, 2c, and 2d separately
defines the initial system state and the core under analysis
for the corresponding scenario. We denote TDM slot i as�1 .
5.1 Inter-Core Coherence Interference

Inter-core interference arises due to memory activity across
different cores. We enumerate four unpredictable scenarios
that arise due to memory activity across different cores.
These scenarios differ based on (1) the memory activity
(loads/stores), and (2) the cache lines accessed by the cores.

5.1.1 Interference on Same Line

The first source of unpredictability arises frommultiple cores
reading the same modified cache line, say A. If a core
requests to modify A, it has to wait for the owner to write-
back A to the shared memory. In Fig. 2a, initially, c0 has a
modified version of A in its private cache. The core under
analysis is c2. At�1 , c2 broadcasts a load request to A. Since c0
has the modified version of A, it has to write-back the
updated A to the shared memory first. However, this is c2’s
slot; thus, c0 has to wait for its allocated slot to perform the
write-back. Hence, at�2 , c0 writes back A to the shared mem-
ory in its slot. At�3 , c1 broadcasts a store request to A. Since
the shared memory has the updated version of A, c1 is able to
obtain A and modify it. As a result, c2 re-broadcasts a load
request to A at�4 . This time c2 has to wait for c1 to write-back
A. From c2’s perspective, the events at�4 are a repetition of
the events at �1 ; c2 re-broadcasts its request to A and waits
for another core to write it back. Thus, this situation is repeat-
able and can result in unbounded memory latency. Although
c2 is granted access to the bus, it is unable to obtain the
requested data due to the coherence interference.

Invariant 2. The shared memory services requests to the same
line in the order of their arrival to the shared memory.

Proposed Solution. Invariant 2 requires memory to service
requests to the same cache line in their arrival order; thus, it

guarantees that a line being requested by a core will not be
invalidated before the core accesses it. In the above example,
the memory serviced requests based on the arbitration sched-
ule order, which is different from the arrival order resulting
in unbounded memory latency. Imposing Invariant 2 in
Fig. 2a, c2’s request to A arrives to the shared memory before
c1’s request; therefore, c1 has to wait for c2 to execute its oper-
ation before it gains an access to A. Note that in conventional
snooping bus-based coherence protocols, this invariant is real-
ized by ensuring that the shared memory responds to mem-
ory requests from cores based on their broadcasted order [11].

5.1.2 Interference on Different Lines

The second source of interference arises when multiple
cores request different cache lines that are modified by the
same core (owner). As a result, the owner has to write-back
the modified lines requested by the other cores to the shared
memory. For instance in Fig. 2b, c0 has modified versions of
lines A and B. The core under analysis is c1. c1 broadcasts a
request to A in �1 , and c2 broadcasts a request to B in �2 .
Accordingly, c0 has to write-back both A and B to the shared
memory. Since c0 can schedule one memory transfer in a
slot, it can write-back only one line to the shared memory. If
no predictable mechanism manages the write-backs, c0 can
pick any pending one. At�3 , c0 writes back B. Therefore, at�4 , c1 is stalled on A. This situation can repeat indefinitely.
While c1 is waiting for A, c2 can ask for another line, which
is also modified by c0 and the same situation can repeat.

Invariant 3. A core responds to coherence requests in the order of
their arrival to that core.

Proposed Solution. Invariant 3 imposes an order in servic-
ing coherence messages from other cores (write-backs, for
example). The right side of Fig. 2b deploys Invariant 3. Since
the request to A arrives before that to B, c0 has to write-back
A first (in �3 ) then B (in �6 ); thus, a predictable behavior is
guaranteed.

5.1.3 Writes to Non-Modified Lines

The third source is due to write hits in the private cache to
non-modified lines. Recall that the predictable bus arbiter
only controls accesses to the shared bus. As a result, a

Fig. 2. Unpredictability scenarios and corresponding invariants that fix the unpredictable scenarios.
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request that results in a hit in the private cache can proceed
without waiting for the corresponding core slot. However,
store requests to unmodified lines that hit in the private
cache can result in the following two unpredictable scenar-
ios described in Figs. 2c and 2d.

The first scenario arises when multiple cores update the
same line and one of the cores has the line in an unmodified
state in its private cache. For example, in Fig. 2c, c0 has a
version of A in its private cache that is not modified. At�1 ,
c2 broadcasts a load request to A, while simultaneously c0
has a write operation to A that results in a hit in its private
cache. Consider the scenario where c0’s write hit on A occurs
first. As a result, c2 has to wait until c0 writes back A. This
scenario is shown in Fig. 2c. After c0 writes back A in�2 , c0
again has another write hit to A in�3 . Again, c2 has to wait
for c0 to write-back A. Consequently, this situation is repeat-
able and can starve c2.

Invariant 4. A store request from ci that is a hit to a non-modi-
fied line in ci’s private cache has to wait for the arbiter to grant
ci an access to the bus.

Proposed Solution. Invariant 4 stalls a store request by a core,
which is a hit to a non-modified line until the arbiter grants an
access slot to that core. Thereby, it avoids the aforementioned
unpredictable consequences. It is worth noting that Invariant 4
aligns with Invariant 1 as follows. Invariant 1 mandates that a
core can initiate coherence messages into the bus only when it
is granted an access to it by the arbiter. Although a write hit to
a non-modified line does not need data from the shared mem-
ory, it still needs to send coherence messages on the bus. This
is necessary to invalidate local copies of the same line that
other cores have in their private caches. Accordingly, a write
hit to a non-modified line has to wait for a granted access by
the arbiter. Onmaintaining Invariant 4 in Fig. 2c, the following
behavior is guaranteed. Since�1 belongs to c2, and c0’s request
is a write hit to A, which is not modified, c0 must wait for its
slot to that request. c2 broadcasts its store request to A in�1 ,
and c0 invalidates its own local copy of A. Since no core has a
modified version of A, c2 obtains A from the shared memory
and performs the write operation.

Invariant 4 resolves the race situation between a request
generated by a core in its designated slot and write hits from
other cores. However, a second unpredictable scenario is pos-
sible that Invariant 4 does not manage. We describe this sce-
nario using Fig. 2d. Initially, c0 has a modified version of A, c2
has a modified version of B, and c1 has requested B. At�1 , c2
broadcasts a load request to A; thus, c0 updates the shared
memory with the modified value of A at�2 . Since c2’s request
is a load, c0 does not invalidate its local version of A. At�4 , c2
has twopending actions: fetchingA frommemory, andwriting
back B to the memory in response to c1’s request. Assume that
c2 chooses to write-back B. Therefore, its request toAwaits for
the next slot. At�5 , c0 has a write hit to A. Consequently, since
this is c0’s slot, it conforms with Invariant 4; thereby, it modi-
fies A. At�6 , c2 has to re-broadcast its request to A andwait for
c0 to write-backA tomemory again. From c2’s perspective, this
situation is similar to the situation at �1 . Similarly, in subse-
quent periods, after c0 writes back A, it can have a write hit to
A before c2 receives it from the memory. Clearly, this situation
is repeatable indefinitely, and creates unbounded memory
latency for c2.

Invariant 5. A store request from ci that is a hit to a non-modi-
fied line, say A, in ci’s private cache has to wait until all wait-
ing cores that previously requested A get an access to A.

Proposed Solution. Invariant 5 stalls a store request to a
non-modified line until all pending requests from previous
slots are completed. Thereby, it avoids the above unpredict-
able scenario. Maintaining Invariant 5 in the right side of
Fig. 2d, the following behavior is guaranteed. During c0’s
slot, it has a hit to A. Since A is non-modified by c0 and is
previously requested by c2, the write hit cannot be proc-
essed. Accordingly, c2 obtains A from the shared memory in
its next slot and performs its operation. c0’s request to A is
broadcasted afterwards in the corresponding slot.

5.2 Intra-Core Coherence Interference

Intra-core coherence interference arises due to multiple
memory activity from the same core such as a core’s own
pending request and its response to a request from another
core. This response is for example, a write-back to a line
that this core has in a modified state. For example, consider
a time instance where a core c0 has a pending request to A
and a pending write-back response on B due to another
core’s (c1) request on B. Both the pending request and
response requires access to the shared bus. In c0’s allocated
slot, c0 broadcasts the request to A. Hence, the write-back
response on A must wait for the next allocated slot. How-
ever, in the next allocated slot, c0 may broadcast a pending
request to a different cache line (C). In this way, the write-
back to A can indefinitely stall, which results in unbounded
latency for c1’s request.

Invariant 6. Each core has to deploy a predictable arbitration
between its own generated requests and its responses to requests
from other cores.

Proposed Solution. Invariant 6 states that any predictable
arbitration mechanism between coherence requests of a
core and responses from the same core is sufficient to
address the intra-core interference. Deciding the adequate
arbitration depends on the application. For the above exam-
ple, the predictable arbitration mechanism will eventually
allocate one slot to c0’s write-back operation of A, which
bounds the memory latency of c1’s request.

6 PREDICTABLE COHERENCE PROTOCOLS

We show the effectiveness of the proposed invariants by
applying them to the conventional MSI and MESI protocols.
This results in predictable MSI (PMSI) and predictable MESI
protocols for multi-core real-time systems. To ensure that the
invariants described in Section 5 are held, we propose archi-
tectural modifications and additional coherence states. The
architectural modifications apply to both PMSI and PMESI,
and the additional coherence states are protocol specific.

Invariants require either architectural modifications or a
combination of both architectural modifications and addi-
tional coherence states. For example, Invariants 1 and 2
require only architectural modifications and no changes to
the coherence protocols. On the other hand, Invariants 3, 4,
5, and 6 require modifications to both the architecture and
the coherence protocol. This is because Invariants 3 and 6
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regulate the write-back operation of cache lines. Since a core
has to wait for a designated write-back slot to write-back a
cache line A, it has to maintain A in a transient state to indi-
cate that A is waiting for write-back. Similarly, Invariants 4
and 5 regulate the store hit operation to non-modified lines.
A core has to wait for a designated slot to perform the store
hit operation to a cache line, say B. Accordingly, it has to
maintain B in a transient state indicating that it has a pend-
ing store to B.

In the following sections, we describe the architectural
modifications that are required for both PMSI and PMESI
coherence protocols (Section 6.1), and then describe the
PMSI and PMESI protocol modifications (Section 6.2.3).

6.1 Architectural Modifications

Fig. 3 depicts a multi-core system with a private cache for
each core and a shared memory connected to all cores via
a shared bus. A TDM bus arbiter manages accesses to the
shared memory. The proposed architecture changes are
highlighted in grey.

The TDM arbiter �1 manages the coherence requests such
that each core can issue a coherence request message only
when it is granted an access to the bus. This satisfies Invari-
ant 1. The sharedmemory uses a first-in-first-out (FIFO) arbitra-
tion between requests to the same cache line. We implement
this arbitration using a look-up table (LUT) �2 to queue pend-
ing requests (PR), denoted as PR LUT in Fig. 3. Each entry con-
sists of the address of the requested line, the identification of
the requesting core, and the coherence message. The PR LUT
queues requests by the order of their arrival. When the mem-
ory has the updated data of a cache line, it services the oldest
pending request for that line. Each core buffers the pending
write-back responses in a FIFO queue, which Fig. 3 denotes as
the pending write-back (PWB) FIFO �3 . This modification
cooperates with the proposed transient states to satisfy Invari-
ant 3. Each core deploys a work-conserving TDM arbitration
between the PR and PWB FIFOs �4 . This arbitration along
with the proposed transient states comply with Invariant 6.

These architectural changes, along with the coherence
protocol changes, also satisfy Invariants 4 and 5 as follows.
If a core ci has a store hit to a non-modified line A, it has to
broadcast an UpgðÞ coherence message on the bus. With �1 ,
the arbiter does not allow this UpgðÞ message on the bus
unless it is the TDM slot of the initiating core. In conse-
quence, the store hit to A is postponed to ci’s next slot,
which implements Invariant 4. Assume that during ci’s next
slot, there were one or more pending requests to A from
other cores that arrived before ci’s request. According to
Invariant 5, ci’s store hit to A has to wait until these pending

requests are serviced. Recall that PR LUT�2 queues pending
requests. If the store hit is to one of these lines, the arbiter
does not select the store hit to execute during this slot.
Accordingly, Invariant 5 is fulfilled.

Hardware Overhead. For aN-core system, the PR, PWB, and
PRLUT structures have N entries each as each core can only
have one pending request at any time instance. For an address
width of 64-bits, the hardware overheads of the per-core PR,
per-core PWB, and PRLUT buffers are 64�N-bits,
64�N-bits, and ð64þ log2N þ 2Þ �N-bits respectively; the
core ID and coherence message fields in the PRLUT are
log2N-bits and 2-bits wide respectively. Hence, for a 4-core, 8-
core, and 16-core system, the total hardware overheads are
290-bytes, 1093-bytes and 4236-bytes respectively.

6.2 Protocol Modifications

We discuss the protocol modifications to the MSI and MESI
protocols that work in tandem with the hardware structures
described earlier. The protocol modifications result in new
protocols: PMSI and PMESI protocols respectively. We also
describe an optimized variant of PMESI, Opt-PMESI, which
adds hardware and protocol extensions to improve the
average-case performance of PMESI. We first describe the
transient states that are removed and unmodified across all
the protocols (Sections 6.2.1 and 6.2.2), and then introduce
new transient states introduced for each protocol in Sec-
tions 6.2.3, 6.2.4, and 6.2.5. Table 1 shows the private caches’
coherence states for a cache line and the transitions between
these states for the PMSI protocol. We do not make changes
to the coherence states for the shared memory, and hence it
is not shown. Shaded cells represent transitions that are not
possible under correct operation. Cells marked with “-” rep-
resent situations where no transition occurs, and the coher-
ence state remains unchanged.

6.2.1 Removed Transient States

For a real-time system, transient states that indicate unavail-
ability of cache line in the private caches and waiting for
coherence messages to appear on the bus are not needed.
Examples of such transient states include IMa and ISa (Sec-
tion 3). On deploying a predictable bus arbitration, once a
core is granted access to the bus, no other core can issue a
coherence message during that slot. This is assured by
Invariant 1. Accordingly, during a core’s slot, its coherence
messages are not disrupted by messages from other cores.
By removing these transient states, PMSI, PMESI, and Opt-
PMESI has fewer states and transitions compared to their
respective conventional protocols [11].

6.2.2 Unmodified Transient States

Transient states that denote the waiting for data response
are retained. Examples of such transient states are ISd and
IMd that denote a core’s read or write request is waiting for
data respectively. This is because if ci issues a request to a
cache line that is modified by another core cj, ci must wait
until cj writes back that cache line to the shared memory.
Accordingly, ci has to move to a transient state indicating
that it is waiting for a data response from the memory. In
addition, there are three other unmodified transient states
such as ISdI, IMdI, and IMdS. These states indicate that the

Fig. 3. Architectural changes necessary for PMSI and PMESI.
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core has to take an action after receiving the data and per-
form the operation. For example, the transient state ISdI
indicates that a core waiting on data for a broadcasted load
operation observed a remote store operation. The core on
receiving the data completes the load operation, invalidates
its copy, and moves to the I state.

6.2.3 Predictable MSI Protocol (PMSI)

For PMSI protocol, we propose two additional transient
states that are necessary to guarantee that invariants are
upheld. States MIwb and MSwb manage the write-back opera-
tion for lines in the M state. These transient states convey
that: (1) a line has a pending write-back response (wb), and
(2) the final state the line transitions to after the core com-
pletes the write-back. A core that has a cache line in M
moves to MIwb or MSwb on observing a remote write or read
request to the same cache line respectively. In the core’s
write-back allocated slot, the core completes the write-back
and transitions to the I or S state respectively.

6.2.4 Predictable MESI Protocol (PMESI)

The PMESI protocol adds the exclusive (E) state to the PMSI
protocol. Table 1 shows the transition to E state. Adding the
E state introduces two new transient states: EIwb and ESwb

states. These transient states manage the write-back opera-
tions for lines in the E state. Similar to the MIwb and MSwb

states in PMSI, these states convey that a line has a pending
write-back, and the final state of the line after the write-back
is completed. The rationale behind these states is that when
the shared memory sends exclusive data for a requested
line to a core, the coherence state of this line in the shared
memory is recorded as M. This enables the silent stores opti-
mization in MESI/PMESI. Hence, the shared memory can-
not send data to subsequent requests to this line until the
core that has the line in E state performs a write-back of the
line. As a result, a core that has a line in E state, and

observes remote activity on the line must mark the line for
write-back.

6.2.5 Optimized PMESI (Opt-PMESI)

The presented PMESI protocol requires cores that have lines
in states E or M to issue write-back responses to the shared
memory on (1) observing remote memory activity to these
lines and (2) cache line replacements. On the other hand,
the PMSI protocol only performs write-back responses for
lines in M state. As a result, lines in PMESI are subjected to
more write-back responses compared to PMSI, which in
turn increases request latencies for certain types of memory
access patterns. This is because write-back responses and
pending demand requests contend for a core’s allocated
slots. As a result, this can offset the performance advantage
provided by silent stores in PMESI.

To address this performance limitation of PMESI, we add
hardware and protocol extensions to PMESI, resulting in a
new protocol that we refer to as Opt-PMESI. The key obser-
vation behind Opt-PMESI is that a line in E state has read-
only permissions, and hence, the data contents of a line in E
state are equal to that in the shared memory. As a result,
there is no need to write-back the data contents of a line in E
state to the shared memory. However, the shared memory
tracks this line in M state, and hence, the core must commu-
nicate to the shared memory that it did not update this line.
To facilitate this communication, we extend the shared bus
to allow for an additional wire per core that is asserted by
cores to communicate to the shared memory that a line in E
state is not modified. A core asserts a signal on this wire (1)
when it observes remote memory activity on a line that it
has in the E state, and changes state immediately to either S
or I based on the remote memory activity, and (2) on cache
line replacements. The action of asserting a signal on this
wire by a core is shown in Table 1 as Send NoData to memory.
The shared memory on observing this signal assertion

TABLE 1
Private Memory States for PMSI, PMESI, and Opt-PMESI

Issue msg/state means the core issues the message msg and move to state state. A core issues a load/store request. Once the cache line is available, the core
reads/writes it. A core needs to issue a replacement to write back a dirty block before eviction. Changes to conventional MSI and MESI are in bold red. Differ-
ing transitions between PMESI and Opt-PMESI are marked as (A) and (B), respectively.
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accordingly changes the state of the line, and responds to
pending memory requests to the same line. As a result,
states EIwb and ESwb are no longer needed.

7 LATENCY ANALYSIS

We derive the upper bound per-request latency that a core
suffers when it attempts to access the shared memory. The
considered system deploys one of the four predictable pro-
tocols: (1) PMSI, (2) PMESI, and (3) Opt-PMESI. Shared
memory accesses from multiple cores are handled by a
TDM bus arbitration scheme. We partition this latency into
four components and compute the WC value of each of
them. Definitions 1, 2, 3, 4, and 5 formally define these
latency components. We use ci as the core under analysis,
and denote a request generated by ci as reqi.

Definition 1. Arbitration latency, Larb
i , of a request reqi is

measured from the time stamp of its issuance until it is granted
access to the bus. Larb

i is due to the arbitration schedule that
allocates slots to cores.

Definition 2. Access latency is the time required to transfer the
requested data by ci between the shared memory and the private
cache of ci. We assume that this data transfer takes a fixed
latency, Lacc. This latency can be considered as the WC access
latency of the shared memory.

Definition 3. Coherence latency, Lcoh
i , of a request reqi is mea-

sured from the time stamp when ci is granted access to the bus
until it starts its data transfer. Lcoh

i is due to the deployed
coherence protocol. We divide the coherence latency into two
components: inter-core and intra-core coherence latency,
which we denote receptively as LinterCoh

i and LintraCoh
i .

Definition 4. Inter-core coherence latency, LinterCoh
i , of a

request reqi is measured from the time stamp when reqi is
granted access to the bus until the data is ready by the shared
memory for ci to receive in ci’s slot.

Definition 5. A request reqi suffers intra-core coherence
latency, LintraCoh

i , if it has to wait until ci issues a coherence
response to an earlier request by another core. ci is required to
issue a coherence response when another core requests a line,
say B, that ci has in a modified state. Therefore, ci needs to
write back B to the shared memory.

Lemma 1. The WC arbitration latency, WCLarb
i , of a request by

ci is calculated by Equation (1).

WCLarb
i ¼ N � S: (1)

Proof. Recall that the deployed TDM arbiter grants one slot
to each core per period. Thus, the period equals to N � S
cycles, where N is the number of cores and S is the TDM
slot width in cycles. The WC situation occurs when a
request reqi;r by ci arrives one cycle after the start of ci’s
slot. Consequently, reqi;r has to wait for one TDM period
until it is granted access by the bus, which equals to
N � S. tu

Lemma 2. For PMSI, the WC inter-core coherence latency,
WCLinterCoh

i , of a request by ci to A occurs when the remaining
N � 1 cores broadcast store requests to A before ci’s request.

Proof. In PMSI, the modified data copy in the owner’s
cache must first be written back to memory, and the
memory sends the updated data to the requesting core
(Table 1). According to Invariant 2, the shared memory
services multiple requests to the same line in order of
requests observed by the shared memory. Thus, in the
WC, ci has to wait until previously pending requests to
A complete and the shared memory has the updated
value of A before it receives A. As a result, ci suffers
WCLinterCoh

i when all other N � 1 cores in the system
requested to modify A before ci issued its request. There
are 3 cases. For each case, assume that each core con-
sumes T periods to obtain A, write to it, and update the
shared memory with the new value.

Case 1. Assume that core cj in the remaining ðN � 1Þ
cores broadcasts a read request to A before ci. When cj
receives A, it does not perform a write-back to shared
memory as it does not modify A. As a result, ci does not
incur T periods from cj’s access to A. Hence, the WCL of
ci is less than ðN � 1Þ � T cycles.

Case 2. Let ci’s write request to A be broadcasted
before cj’s request where cj is in the remaining ðN � 1Þ
cores. Invariants 2 and 3 mandate that both cores and the
shared memory respond to requests in the arrival order
of requests. Hence, ci’s request is serviced before cj, and
is not affected by cj’s request to A. As a result, inter-core
coherence latency of ci < ðN � 1Þ � T periods.

Case 3. Let N 0 < N � 1 cores broadcast write requests
to A before ci. As a result, ci incurs inter-core coherence
latency of N 0 � T cycles. This inter-core coherence
latency is less than ðN � 1Þ � T cycles, and hence, this
scenario cannot be the WC.

We refer the readers to [17] for an illustrative example
of the WC inter-core coherence scenario for a 3-core
system. tu

Lemma 3. For PMESI, the WC inter-core coherence latency,
WCLinterCoh

i , for a request by ci to A occurs in one of the follow-
ing scenarios (1) remaining N � 1 cores broadcast store
requests to A before ci’s request or (2) from the remaining N �
1 cores, a core broadcasts a load request to A, and then the
remaining N � 2 cores broadcast store requests to A before ci’s
request.

Proof. In PMESI, lines in E or M state must be written back
to shared memory on observing remote memory activity
on the same line (Table 1). Hence, two worst-case scenar-
ios exists for PMESI that result in the worst-case inter-
core coherence latency. The first worst-case scenario is
similar to PMSI (Lemma 2) where the remaining N � 1
cores broadcast store requests to the same line before ci’s
request. The second worst-case scenario occurs when
core cj in the remaining N � 1 cores first broadcasts a
load request, and then the remaining N � 2 cores broad-
cast store requests to A before ci’s request to A. In this sce-
nario, core cj receives A in E state as no other core has A
in their private caches. Recall from Section 3 that only one
core can have a line in E state. On observing remote store
requests from other cores, cj marks A for write-back, and
completes the write-back in the next allocated slot. Since
the remaining N � 2 cores perform store operations, each
of the N � 2 cores must first complete the store operation,
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and then write-back A. We omit a detailed proof regard-
ing this scenario as it is similar to the proof of Lemma 2. tu

Lemma 4. For Opt-PMESI, the WC inter-core coherence
latency, WCLinterCoh

i , for a request by ci to A occurs when the
remaining N � 1 cores broadcast store requests to A before ci’s
request.

Proof. Recall from Section 6.2.5, cores do not perform write-
back responses for lines in E state in Opt-PMESI. As a
result, only lines in M state trigger write-back responses
in Opt-PMESI on remote memory activity and cache line
replacements. Hence, the worst-case scenario for Opt-
PMESI is equivalent to PMSI, and the proof is similar to
that of Lemma 2. tu

Lemma 5. For PMSI, PMESI, and Opt-PMESI, WCLinterCoh
i is

calculated by Equation (2).

WCLinterCoh
i ¼ 2 �N � S � ðN � 1Þ þ N � S N > 2

0 N � 2

�
:

(2)

Proof. From Lemma 2, ci has to wait in WC for N � 1 cores
to obtain the line from the memory, perform the write
operation, and finally update the shared memory with
the new value. In WC, this procedure consumes two
TDM periods for each other core, which leads to a total of
2ðN � 1Þ TDM periods. This accounts for the first compo-
nent in Equation (2). Moreover, if N > 2, when the
shared memory has the updated version that is ready to
send to ci, ci might have missed its slot in the current
period. Therefore, it has to wait for an additional period
to be able to receive A from the shared memory. On the
other hand, if N � 2, the core is guaranteed to have a slot
in the same period as the data is ready at the memory.
This accounts for the second component in Equation (2).
Recall that each TDM period is N � S cycles. WCLinterCoh

i

is as calculated by Equation (2). tu
Lemma 6. For PMSI, PMESI, and Opt-PMESI, the WC intra-

core coherence latency is calculated by Equation (3).

WCLintraCoh
i ¼ 2 �N � S N > 2

N � S N � 2

�
: (3)

Proof. There exist two cases:
Case of N > 2. A request from ci implies two actions

from ci. First, issuing the request to the bus. Second,
receiving the data from the shared memory. As a result,
the worst-case intra-coherence latency occurs when each
of these actions is delayed by write back responses that ci
has to conduct. Since the system deploys a work-conserv-
ing TDM between responses and own requests. Each
action can encounter a maximum delay of one TDM
period. Accordingly, the WC intra-coherence latency is
two TDM periods or 2 �N � S.

Case of N � 2. Recall that each core can have at maxi-
mum one pending request at any instance. Hence, ci can-
not have two pending write back requests from the only
other core in the system, cj. In worst-case, ci requests a
line that is modified by cj. Thus, it has to wait for two
TDM periods because of inter-core coherence

interference as per Lemma 5. In addition, ci can have a
worst-case arbitration latency of one TDM period as per
Lemma 1. During this delay, which is three TDM periods
at worst, ci can have up to only one pending write back.
This is because of the TDM arbitration between write
backs and own requests.

We refer the readers to [17] for an illustrative example of
theWC intra-core coherence scenario for a 3-core system. tu

Theorem 1. The total WCL suffered by a core ci issuing a request
to a shared line A under PMSI, PMESI, and Opt-PMESI is
calculated as

WCLtot
i ¼ WCLarb

i þWCLinterCoh
i þWCLintraCoh

i þ Lacc:

(4)

Proof. The total WCL is the sum of the latency components:
arbitration, inter- and intra-coherence, and the access
latencies. tu
Computing Total WCET. Compositional timing analysis

[27] can use the derived WCL of a memory request under
predictable cache coherence protocols to compute the total
WCET of an real-time task. For a real-time task that makes k
memory requests, Equation (5) computes the total worst-
case memory latency of a task under the predictable cache
coherence protocols (WCLcoherence

total ), and Equation (6) com-
putes the total worst-case memory latency of a task under
alternative mechanisms for predictable shared data accesses
that do not use predictable cache coherence such as cache
bypassing and task scheduling (WCLalternative

total ). For the alter-
native data communications, the shared data are either dis-
allowed to be cached in the core’s private caches or
constrained such that shared data are cached in only one
core’s cache at any time instance. As a result, the WCL of a
memory request under these alternative mechanisms is the
sum of the arbitration latency and Lacc.

WCLcoherence
total ¼ k � ð2 �N � S � ðN þ 1Þ þ LaccÞ (5)

WCLalternative
total ¼ k � ðN � S þ LaccÞ: (6)

It is clear from the above equations that WCLcoherence
total is

higher than WCLalternative
total . For a 4-core multi-core platform

and a real-time application where all memory requests are
to shared data, WCLcoherence

total is 10.25� higher than
WCLalternative

total . However, our empirical evaluation shows
that even when all requests are to shared data, the total exe-
cution time is lower with predictable cache coherence com-
pared to alternative mechanisms. This is because not all
memory requests experience the worst-case scenario under
predictable cache coherence.

TheWCLcoherence
total can be made tighter by using the follow-

ing application information: (1) classification of memory
addresses that are either shared between cores or private to
cores, and (2) read/write access patterns on shared data.
Data identified as private to cores and shared data that are
only subjected to read requests cannot exhibit the worst-
case scenarios described in Lemmas 2, 3, and 4. Rather, the
worst-case scenario for a core’s access to the above identi-
fied data is when it is not present in the core’s private cache,
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and must be fetched from the shared memory. Hence, the
worst-case memory latency for such data accesses is N � S þ
Lacc. Equation (7) computes WCLcoherence

total with this applica-
tion information where j � k is the number of memory
requests that are either private to a core or marked as read
only throughout the application execution.

WCLcoherence
total ¼ j � ðN � S þ LaccÞ

þ ðk� jÞ � ð2 �N � S � ðN þ 1Þ þ LaccÞ:
(7)

Coverage of Unpredictability Sources. Section 5 listed five
unpredictability sources and their associated design invari-
ants. Missing an unpredictability source means that the
WCL bound is larger than the one the above analysis pro-
vides. We argue that we covered all possible unpredictabil-
ity sources.

Assume that there exists an unaccounted unpredictable
source. The worst-case scenario consists of memory requests
across cores to data that result in the WCL. To construct the
worst-case scenario, we categorize a core’s (ci) memory
request into three categories: (1) the memory request is a
cache hit, (2) the memory request is not a cache hit and the
requested data is neither simultaneously cached in other
cores’ caches nor simultaneously requested by other cores,
and (3) the memory request is not a cache hit and the
requested data is either simultaneously cached in at least
another core’s cache or simultaneously requested by at least
another core. Memory requests in (1) do not access the bus to
broadcast coherence messages or wait for the requested data.
Hence, the worst-case scenario cannot consist of memory
requests in (1). Memory requests in (2) access the bus to
broadcast coherence messages and wait for the requested
data. However, since other cores neither simultaneously
cache nor make requests to the same data, WCLinterCoh

i is 0.
Hence, the worst-case scenario cannot consist of memory
requests in (2). Memory requests in (3) also access the bus to
broadcast coherence messages and wait for the requested
data. Furthermore, the requested data is either simulta-
neously cached in another cores’ caches or simultaneously
requested by other cores. Hence, in the worst-case, ci must
wait for other cores’ to complete their requests and perform
any actions (write-backs) before receiving the requested data.
Therefore,WCLarb

i ,WCLinterCoh
i , andWCLintraCoh

i are 6¼ 0, and
the worst-case scenario must consist of memory requests in
(3). However, the scenarios described in the analysis in Sec-
tion 7 do indeed consist of memory requests that fall in (3).
Furthermore, these scenarios are the worst-case scenarios
that result in the WCL. Since the latency analysis are for pro-
tocols that satisfy the design invariants listed in Section 5, we
have covered all possible unpredictable scenarios.

8 EVALUATION

We integrate PMSI, PMESI, and Opt-PMESI into the gem5
simulator [18]. We use the Ruby memory model in gem5,
which is a cycle-accurate model with a detailed implemen-
tation of cache coherence events. We use a multi-core archi-
tecture that consists of in-order x86 cores running at 2GHz.
Each core has a private 16KB direct-mapped L1 cache, with
its access latency as 3 cycles. All cores share an 8-way set-
associative 1MB LLC cache. Since the focus of this work is
on coherence interference, we use a perfect LLC cache to
avoid extra delays from accessing off-chip DRAM. Conse-
quently, the access latency to the LLC is fixed, and equals to
50 cycles (Lacc ¼ 50 cycles). The DRAM access overheads
can be computed using other approaches such as [22], [23],
and they are additive [28] to the latencies derived in this
work. Both L1 and LLC have a cache line size of 64 bytes.
The interconnect bus uses TDM arbitration amongst cores.
The L1 cache controller uses work-conserving TDM arbitra-
tion between a core’s own requests and its responses to
other core requests. We do not run an operating system in
the simulator, and hence, all memory addresses generated
by the cores are physical memory addresses. We evaluate
PMSI, PMESI, and Opt-PMESI using the SPLASH-2 [29]
benchmark suite. In addition, we use synthetic workloads
to stress the WC behavior. We used the verification process
described in [17] to verify PMESI and Opt-PMESI protocols.
We also formally verified the correctness properties and
WCL bounds for the protocols using the formal models
developed in [30].

8.1 Observed Worst-Case Latencies

We study the effectiveness of PMSI, PMESI, and Opt-PMESI
to bound the delays resulting from coherence interference.
We also study the effects of violating each one of the invari-
ants on the memory latency. We use a 4-core system for our
experiments. For SPLASH-2, we launch each SPLASH-2
application as four threads using four single-threaded cores,
where only one application is used per experiment. Fig. 4
depicts our findings, and shows the total observed memory
latency. Since SPLASH-2 applications are optimized to min-
imize data sharing, they do not stress the coherence proto-
col. Therefore, to further stress the coherence protocol, we
execute synthetic experiments using 9 synthetically-gener-
ated workloads: Synth1 to Synth9 in Fig. 4. In each synthetic
experiment, we simultaneously run four identical instances
of one workload by assigning one instance on each core.
These experiments represent the maximum possible sharing
of data since each core generates the same sequence of
memory requests. The WC arbitration latency for bench-
marks in all experiments is N � S ¼ 200 cycles for N ¼ 4

Fig. 4. Total observed WC latencies. Unpredictable i corresponds to source i in Section 5. Analytical bound highlighted.
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cores and slot S ¼ Lacc ¼ 50 cycles; hence, not shown. Since
all three protocols have the same worst-case scenarios and
latencies (Section 7), we present results only for the PMSI
protocol. We verified that the below observations also apply
to PMESI and Opt-PMESI. Fig. 5 shows the violin plot distri-
butions of memory request latency under different predict-
able cache coherence protocols.

Observations. (1) Fig. 4 shows that for PMSI the total WC
latencies are within their analytical total WCL bounds. We
also observed that the individual latency components such as
the arbitration, inter-core, and intra-core coherence latency
components are within their respective analytical WCL
bounds derived in Section 7, and refer the readers to [17] for
these results. (2) On the other hand, violating any of the invar-
iants introduces a source of unpredictability, which results in
exceeding those bounds. Moreover, for source 1, one of the
cores is not able to obtain an access to a block that it requests
and the program never terminates. This is the reason that
Fig. 4 does not show Unpredictable 1. This shows that aug-
menting a conventional coherence protocol with a predictable
arbiter does not guarantee predictability. Note that violating
some of the invariants also results in exceeding the latency
bounds of the individual latency components. For example,
we observed that violating invariant 3 causes resulted in the
observed inter-core coherence latency to exceed the corre-
sponding analytical bound across all synthetic and SPLASH-2
benchmarks. We refer the readers to [17] that shows the
impact of violating the invariants on the individual latency
components. (3) For a quad-core system, the latency suffered
by a core due to coherence interference is 9� more than the
latency due to bus arbitration. The inter-core coherence inter-
ference solely contributes a latency up to 7� of the arbitration
latency, while the latency resulting from the intra-core coher-
ence interference is double the arbitration latency. This pro-
vides evidence of the importance of considering the
coherence latency when sharing data across multiple cores
for real-time applications. (4) From the violin plot distribu-
tions in Fig. 5, most memory requests to shared data under
PMSI, PMESI, and Opt-PMESI protocols benefit from caching,
and experience lower memory request latency. This high-
lights the key benefit of using predictable cache coherence
protocols compared to alternative predictable shared data
mechanisms that constrain private caching of shared data.
The maximum observed memory request latency across syn-
thetic benchmarks under PMSI, PMESI, and Opt-PMESI are
within the analytical WCL bound.

8.2 Comparison Against Prior Predictable
Approaches

We compare the overhead caused by four alternative pre-
dictable approaches to handle data sharing in multi-core

real-time systems: (1) not using private caches (uncache-all),
(2) not caching the shared data (uncache-shared), (3) the pro-
posed PMSI, PMESI, and Opt-PMESI protocols, and (4)
mapping all tasks that share data to the same core (single-
core). For the first three approaches, each application is dis-
tributed across four-cores. uncache-shared is an adaptation of
the approach by [7], [9], but for data instead of instructions.
single-core maps tasks with shared data to the same core to
eliminate incoherence due to shared data, which adopts the
idea of data-aware scheduling [14]. The overhead is calcu-
lated as the slowdown compared to the conventional MESI
protocol. Fig. 6 depicts our findings for the SPLASH-2 work-
loads. We focus more on the performance gains of PMESI
and Opt-PMESI, and refer the reader to [17] for a detailed
comparison.

Observations. (1) Across all benchmarks, the uncache-all has
the worst execution time with a geometric mean slowdown
of 32:66� compared to MESI, followed by single-core and unc-
ache-shared with geometric mean slowdowns of 2:67� and
2:11� respectively. The uncache-shared and single-core
approaches require additional hardware and software modi-
fications to the applications and RTOS to track cache lines
shared between cores. (2) On the other hand, PMSI, PMESI,
and Opt-PMESI protocols achieve better performance com-
pared to all other predictable approaches with no changes to
the application or RTOS. PMSI, PMESI, and Opt-PMESI
achieve improved performance of up to 4� the best competi-
tive approach, uncache-shared, with a geometric mean slow-
down of 1:46� , 1:59� , and 1:42� in performance
compared to MESI respectively. (3) For the synthetic bench-
marks, the single-core approach offers 2.9� average perfor-
mance speedup over uncache-shared approach. This is
because the uncache-shared approach disallows any caching of
memory addresses, and hence, no memory requests result in
cache hits. The PMSI, PMESI, and Opt-PMESI protocols offer
3.08�, 2.99�, and 3.12� average performance speedup over
uncache-shared respectively. Compared to single-core, PMSI,
PMESI, and Opt-PMESI exhibit performance speedups as
high as 16 percent without constraining core utilization.

8.3 Comparison of PMSI, PMESI, and Opt-PMESI

Figures 7a and 7b compare the average-case performance of
the PMSI, PMESI, and Opt-PMESI protocols for the syn-
thetic and SPLASH-2 benchmarks respectively against

Fig. 5. Memory request latency distribution under predictable cache coherence protocols for synthetic workloads.

Fig. 6. Execution time slowdown compared to MESI protocol.
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PMSI. While all the protocols have the same WCL bounds,
PMESI and Opt-PMESI have additional states and transi-
tions that enable average-case performance improvements
over PMSI.

Observations. (1) Across synthetic and SPLASH-2 bench-
marks, PMESI does not provide performance benefits over
PMSI. The key reason for this is the increased number of
write-backs in PMESI due to states E and M. In PMESI, a
core triggers a write-back for a line that it has in E or M
state. Recall from Section 6.1 that cores deploy a predict-
able arbitration scheme that services write-backs and
pending demand requests in a core’s allocated slot. As a
result, the increased number of write-backs in PMESI con-
tend for the allocated slots resulting in longer execution
time to complete cores’ demand requests. For the synthetic
benchmarks, we observed that PMESI experiences 24 per-
cent more write-backs on average than PMSI. For the
SPLASH-2 benchmarks, PMESI experiences 1.9� more
write-backs than PMSI. This is because the working data
set sizes of the SPLASH-2 benchmarks do not fit in the pri-
vate caches resulting in more cache line evictions due to
capacity misses. As a result, in PMESI, 44 percent of the
total write-backs in SPLASH-2 are due to cache line evic-
tions to lines in E state. Hence, PMESI does not improve
over PMSI (4 percent average performance degradation for
synthetic benchmarks and 9 percent average performance
degradation for SPLASH-2 benchmarks) due to the
increased number of write-back responses that contend for
allocated slots with demand requests. (2) The additional
hardware overhead in Opt-PMESI addresses this perfor-
mance limitation of PMESI, and improves over PMSI and
PMESI for both the synthetic and SPLASH-2 benchmarks.
For synthetic and SPLASH-2 benchmarks, Opt-PMESI
improves performance by 4 and 3 percent respectively.
The performance improvement is primarily due to silent
stores that allows cores to complete stores on lines in E
state without broadcasting on the bus.

9 CONCLUSION

We point out possible sources of unpredictable behavior in
conventional coherence protocols. To address this unpre-
dictability, we describe a set of invariants. These invariants
are general and can be applied to other coherence protocols.
We show how to deploy these invariants in the fundamental
MSI and MESI protocols. Towards this target, we propose a
set of novel transient states as well as minimal architecture
requirements resulting in predictable MSI and predictable
MESI protocols. Furthermore, we design Opt-PMESI, an
alternative protocol that addresses the performance limita-
tions of PMESI. We derive WCL bounds for all three proto-
cols, and experiment using the SPLASH-2 benchmark

suite and worst-case oriented synthetic workloads. Our
evaluation shows that (1) the invariants implemented in all
three protocols ensure that that the observed WC latencies
are within the derived analytical bounds, and (2) the aver-
age-case performance of our approaches offer significant
average-case performance over state-of-the-art predictable
approaches for shared data accesses.
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