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Abstract—Worst-case execution bounds for real-time programs
are profoundly impacted by the latency of accessing hardware
shared resources, such as off-chip DRAM. While many different
memory controller designs have been proposed in the literature,
there is a trade-off between average-case performance and pre-
dictable worst-case bounds, as techniques targeted at improving
the former can harm the latter and vice-versa. We find that
taking advantage of pipelining between different commands can
improve both, but incorporating pipelining effects in worst-case
analysis is challenging. In this work, we introduce a novel
DRAM controller that successfully balances performance and
predictability by employing a dynamic pipelining scheme. We
show that the schedule of DRAM commands is akin to a two-stage
two-mode pipeline, and hence, design an easily-implementable
admission rule that allows us to dynamically add requests to the
pipeline without hurting worst-case bounds.

I. INTRODUCTION

Nowadays, there has been headway in the demands for
data in embedded applications. The increasing interest in
leading-edge technologies such as unmanned drones, smart
hubs, immersive virtual reality, domed city, to name a few, has
determined a shift in the type of workload that exists in those
systems. Due to cost constraints, hardware resources such as
memory, bus, and cache are deployed as a shared resource
accessed by all Processing Elements (PEs) in the system. This
results in interference among different PEs that compete to
access those shared resources.

Such interference is problematic for real-time embedded
systems since they execute latency-sensitive tasks that require
guaranteed and predictable bounds on Worst-Case Execution
Time (WCET). Commercial-Of-The-Shelf (COTS) arbiters typ-
ically implement a variety of optimization schemes to improve
average-case access latencies; however, such optimizations
come at the cost of fairness and predictability, resulting in
increased WCET. For this reason, in recent years the real-time
community has proposed a variety of predictable hardware de-
signs for various components, including caches [1], buses [2, 3],
main memory [4], etc. Such designs provide improved worst-
case latency bounds by disabling certain optimizations and
relying on predictable arbitration schemes such as Round-
Robin (RR), but this affects the average performance. They
also often require extensive hardware redesign [5, 6, 7], which
can be undesirable.

A key complexity in predictable hardware design is pipelin-
ing: in general, processing a resource request requires executing
multiple actions, some of which can be performed in parallel
across different requests. To produce tight latency bounds, the

effect of pipelining must be taken into account, but this is often
challenging due to both inter-stage and intra-stage dependencies
in the pipeline.

In this work, we focus on Dynamic Random Access Memory
(DRAM) controllers as one instance of a shared resource
arbiter that has been well-studied in the real-time community.
DRAM has two key characteristics: (1) executing a request may
require issuing multiple commands of different types. As long
as they target different regions of a DRAM device, commands
of different types can be processed in parallel; however, there
are significant timing constraints between commands of the
same type; (2) such constraints are especially long when
switching between read and write requests. Hence, controllers
typically bundle requests based on their read/write direction.
The controller design in [6] achieves improved worst-case
latency bounds by pipelining commands in each bundle;
however, it constructs the pipeline statically. This means that
the controller does not allow dynamism in request arrival time
and as a consequence, has a low average-case performance
with respect to the other bundling real-time controller [8].

Our contribution to the state-of-the-art is DRAMbulism, a
novel memory controller that better balances the performance-
predictability trade-off. In particular, DRAMbulism achieves
this balance by employing a scheduler design that can pipeline
commands while dynamically accepting requests of different
directions as they arrive in the system. The main contributions
of this work are:
• On a theoretical side, we show that we can introduce

a set of conditions that guarantee that the pipeline is
maintained in each bundle of same-direction requests; this
is performed by preventing a newly arrived request from
executing in a bundle if doing so breaks the pipeline.

• On the practical side, we show that we can implement
the conditions with limited modifications to a standard
DRAM controller design.

• Finally, our evaluation shows that the resulting controller
provides comparable bounds to the most predictable real-
time controller [6] while delivering average performance
similar to the highest-performance real-time controller [8].

II. DRAM BACKGROUND

A DRAM device is organized hierarchically comprising one
or more ranks, which share an address and data bus. Each
rank contains multiple DRAM chips and multiple banks. Each



TABLE I
JEDEC DDR3 TIMING CONSTRAINTS FOR DIFFERENT SPEED BINS

Constraints 1066E 1333G 1600H 1866K 2133L

Inter-bank Constraints (cycle)
tRRD : ACT to ACT 4 4 5 5 5
tFAW : 4 ACT window 20 20 24 26 27
tRTW : read CAS to write CAS 6 7 7 8 8
tWTR: write data to read CAS 4 5 6 7 8
tWtoR: write CAS to read CAS 14 16 17 20 22
tCCD : CAS to CAS 4 4 4 4 4
tBus: data transfer length 4 4 4 4 4

Intra-bank Constraints (cycle)
tRL: read CAS to data 6 8 9 11 12
tWL: write CAS to data 6 7 8 9 10
tWR: write data to PRE 8 10 12 14 16
tRCD : ACT to CAS 6 8 9 11 12
tRP : PRE to ACT 6 8 9 11 12
tRTP : CAS to PRE 4 5 6 7 8
tRC : ACT to ACT 26 32 37 43 48
tRAS : ACT to PRE 20 24 28 32 36

bank is a two-dimensional array of DRAM cells consisting
of rows and columns. In each bank, a row buffer works as a
small cache holding the most recently accessed row in that
bank. The off-chip DRAM is connected to the system through
an on-chip memory controller via a command and a data bus.
DRAM Operation. The memory controller receives requests
from various PEs in the system. An address translator deter-
mines the target rank, bank, and row according to the request
address. Based on the request direction (read/write) and the
row state, the memory controller generates the corresponding
DRAM commands to execute that request. There are three basic
DRAM commands. Activation (ACT) fetches the requested
row from DRAM cells into the DRAM row buffer. Read/Write
(RD/WR) conducts read/write operation; RD and WR are jointly
referred to as CAS commands. Precharge (PRE) writes back
the row buffer to the row. A request is said to be open (row
hit) if it targets an already activated row; in this case, the
request consists of a CAS only. A close request (row miss)
targets a row that is not activated; in this case, a PRE command
might be needed to write back the row buffer, followed by an
ACT and CAS command. The memory controller also has to
periodically refresh DRAM cells to avoid data leakage.
Access Scheduling. Memory controllers deploy arbitration both
at the request level (using a request scheduler) and the command
level (using a command scheduler). The request scheduler
arbitrates among requests from different processing elements
(requestors). It picks a request, translates it to corresponding
commands (command generation) based on its type (open or
close), and send them to the targeted command queue. Finally,
the command scheduler arbitrates among commands to be
issued to the DRAM device; only one command per clock
cycle can be sent through the command bus.
DRAM timings. Due to the physical limitations of the DRAM,
the aforementioned commands have to adhere to specific timing
constraints, dictated by the JEDEC DRAM standard [9]. Table I
tabulates the most important timing constraints along with a
brief explanation and their values based on the device speed;
here data refers to the data bus transfer following a CAS
command. Intra-bank constraints apply between commands
issued to the same bank, while inter-bank constraints apply
between commands of the same type (ACT or CAS - PRE has
no such constraints) issued to any bank. We call a command

that satisfies its intra-bank constraints an intra-ready command,
while we refer to a command that satisfies its inter-bank
constraints as an inter-ready command. We say that a command
is ready if it satisfies all its timing constraints and thus, can be
issued to the DRAM device. Because inter-bank constraints are
applied between commands of the same type, DRAM operation
can be seen as a pipeline composed of two stages, ACT and
CAS; close requests require both stages, while open requests
only need the latter. Finally, note that the inter-bank CAS
constraints between requests of different directions are much
longer than the tCCD constraint between requests of the same
direction. For this reason, efficient DRAM controllers typically
group either requests or commands based on their direction
and issue them in bundles of the same direction.

III. RELATED WORK

Off-chip memory interference has a significant impact
on the predictability and performance of the system; thus,
it has been the focus of many recent research efforts in
the real-time community. We broadly classify these related
efforts into two main categories. The first category analyzes
COTS DRAM systems to upper bound the latency suffered
by any memory request [10, 11, 12]. These approaches
enable the re-use of already available high-performance COTS
platforms for real-time systems. However, we find the derived
bounds to be pessimistic since COTS memory controllers
aim mainly at increasing average-case performance while
sacrificing predictability. The second category proposes to
redesign the controller to deliver improved worst-case latency
bounds (e.g. [13, 14, 6, 15, 16, 17, 18, 8, 19, 20, 21]); a
recent survey of work in this category is presented in [4].
Based on the results in [4], and since we consider single-rank
memory devices, we focus our comparison on CMDBundle [8]
and REQBundle [6]. REQBundle bundles read/writes at the
request level: before starting a bundle, it collects all requests
of the corresponding direction, and then issues commands
based on a pre-constructed pipeline of ACTs and CASes. This
means that requests which arrive after the start of a bundle
of the same direction cannot be issued in that bundle. As we
show in Section VII, this results in a significant average-case
performance loss. CMDBundle instead, bundles read/writes
at the level of CAS commands. Average-case performance is
significantly better than REQBundle, but the worst-case latency
bound for close requests is higher: since the authors cannot
guarantee that ACT and CAS commands are pipelined, they
must add the worst latency of each command. Similarly to
REQBundle, DRAMbulism bundles read/writes at the request
level, and pipelines ACT and CAS so that the worst-case
latency depends on the largest inter-bank constraint for either
command, rather than on the sum of constraints. However,
contrarily to REQBundle, to improve average-case latency we
allow requests that arrive after the beginning of a bundle of
the corresponding direction to be issued in that bundle.

Our analysis is inspired by previous work on pipeline analysis
for real-time systems [22, 11], in particular in the way we
construct a chain over multiple pipeline stages in Section VI.



However, we point out that we cannot reuse previous work as
our goal is fundamentally different: the existing analyses are
focused on computing the worst-case delay that a request suffers
in a pipeline. On the other hand, the bundling requirement
means that we are essentially operating a two-mode pipeline,
where extra delay is incurred when switching between rounds of
different modes (e.g., flushing the pipeline). Hence, the problem
that we focus on is how to design a rule that allows requests to
be dynamically admitted to the current round without negatively
affecting the worst-case bound on the round length.

IV. CONTROLLER ARCHITECTURE

In this section, we elaborate on the architecture of our
proposed memory controller; in particular, we formalize the
command scheduling arbitration rules. We consider a DDR3
DRAM memory device with a single-rank. The controller
receives requests from multiple hardware requestors, which
may include cores executing real-time tasks, as well as co-
processors and DMA engines. We employ per-bank request
and command queues; the address translator enqueues each
incoming request in its corresponding bank request queue.
The controller behavior is independent of the specific address
mapping used by the translator; however, to provide latency
bounds for the requestor under analysis (rua) executing a real-
time task, we assume a bank partitioning scheme, where one
or more banks are exclusively assigned to the rua. This scheme
guarantees that requests of the rua only suffer from their own
intra-bank timing constraints, while other requestors can only
cause inter-bank interference. The partitioning scheme can be
implemented in either hardware or software, for example, via
the virtual page table [23]. We let b to denote the total number
of banks used by the controller. Due to bank partitioning,
request queues used by the rua do not contain any request
of other requestors. Similarly to related work [6, 20, 4], we
assume that requests of the rua are processed in order. We
make no assumption regarding the arbitration of requests in
banks that are not accessed by the rua, nor on the behavior of
other requestors.

A. Command Scheduler: High-Level Operation
We next detail the operation of the command scheduler,

which is the key element of our design. The controller keeps
track of intra-bank constraints for all b banks; once the
command at the head of a command queue becomes intra-
ready, it is moved to the corresponding command register. The
role of the command scheduler is then to arbitrate among
all intra-ready commands located in the command registers.
Note that an intra-ready PRE command can always be issued
since PRE has no associated inter-bank constraints; however,
an intra-ready ACT or CAS command could be blocked due
to inter-ready constraints. Therefore, the hardware maintains
two counters based on the value of inter-bank constraints:
CAStimer and ACTtimer. If a counter is greater than zero,
then it represents the number of cycles that must elapse before
the respective command can be issued.

The command scheduler is designed based on two key
principles: 1) ACT and CAS commands are scheduled jointly to

pipeline the corresponding inter-bank constraints. For simplicity
of description, we refer to the group of ACT and CAS
commands for a close request, or to the CAS only for an
open request, as the transaction for that request. A transaction
that has ACT and CAS is a close transaction, and a transaction
that has only CAS is an open transaction. We say that a
transaction is intra-ready if its first command is intra-ready.
2) To minimize the long RD to WR (tRTW ) and WR to RD
(tWtoR) switching time, transactions are grouped based on
their directions and issued in alternating read and write rounds.
A transaction must be accepted in a round before being issued.
An accepted transaction becomes pending, and remains so until
its CAS is issued. All transactions accepted in a round are
guaranteed to be issued within that round. To avoid unbounded
round length and starve transactions of the other type, in each
round we accept at most one transaction per bank; hence, no
more than b transactions are issued each round.

B. Command Scheduler: Illustrative Example

To illustrate the pipelining behavior of the command sched-
uler, in Figure 1 we provide a running example, which will be
used throughout the paper, depicting a set of transactions over
a single round. The example shows 8 transactions, of which
τ1, . . . , τ6 are accepted and issued within the round, while
τ7 and τ8 are not (their commands are drawn in red to show
when they would be issued had the transactions been accepted);
note that we index transactions based on the order in which
they issue their CAS commands and not the order in which
they become intra-ready. τ1, τ2, τ4, τ7 are open transactions,
while the rest are close. τ1 and τ7 belong to the same bank;
all other transactions target different banks. For a transaction
τi, we use τi.C, τi.A to denote its CAS and ACT commands
- note that τi.A exists only if the transaction is close - and
τi.C.t, τi.A.t for the times at which they are issued. We use ↑
to denote the time at which a transaction becomes intra-ready
and ↓ to denote the acceptance of that transaction. Similarly,
l means that the transaction becomes intra-ready and accepted
at the same time. The number that is attached to the arrow
represents the index of the transaction. We use one timeline
for ACT commands (corresponding to the ACT stage of the
pipeline), and one for CAS commands (CAS stage). There
are 3 relevant timing constraint 1: tRRD = 6 and tCCD = 4
represent the delay between two ACT and between two CAS
commands, respectively (the stage processing time), while
tRCD = 10 represents the delay between an ACT and its
corresponding CAS command (the inter-stage delay). Finally,
we define ACTtimerinit and CAStimerinit to be the values
of ACTtimer and CAStimer at the beginning of the round.
Note that the round starts at t = 0 and finishes after issuing
τ6.C, that is at τ6.C.t+ 1 = 27.

We make three key observations. First, for the depicted
scenario, the previous pipelining controller (REQBundle) would

1Note that to simplify the diagram, we have used an hypothetical device
with the stated values of timing constraints. Also, we do not consider the
tFAW constraint for 4 consecutive ACTs in the example because there are
not as many close transactions.
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Fig. 1. An illustrative example for a round in DRAMbulism. Yellow commands represent the chain S rooted at τ6.C; green commands represent the chain
S′ rooted at τ5.C; chains and the corresponding transactions τi, τj , τp′ will be used in Section VI.

only accept and issue τ1 and τ3, since they are the only
transactions to become intra-ready at the beginning of the
round; all other transactions that arrive during the round would
need to be delayed to a further round, significantly increasing
their latencies. Second, we do not accept τ7 because we already
accepted a transaction of the same bank; accepting it would
delay the other CASes and increase the round length. Third and
most important, our controller dynamically accepts intra-ready
transactions only if it can guarantee that they execute as part of a
chain. While we formally define such concept in Section VI, in-
tuitively a chain is composed by a sequence of ACT commands,
separated by ACT-to-ACT timing constraints, and a sequence of
CAS commands, separated by CAS-to-CAS timing constraints.
The figure depicts two chains, S = {τ5.A, τ6.A, τ6.C}, and
S ′ = {τ3.A, τ2.C, τ3.C, τ4.C, τ5.C}. Note that the inter-stage
distance between the last ACT and the first CAS in each chain
is at most tRCD, while the distance between the first ACT
of a chain and the last CAS of the previous chain (τ5.A to
τ5.C in the figure) is at least tRCD. Since the round length
is bounded by the length of the chains, as we will prove in
Section VI, this means that we can bound the length of the
round by adding ACTtimerinit, plus one inter-stage delay
tRCD (rather than one per chain), plus either an ACT constraint
tRRD or a CAS constraint tCCD per transaction, but not both,
as it would instead be required by a non-pipelined controller
(i.e., CMDBundle). Finally, note that τ8 cannot be accepted
because it arrives too late: specifically, accepting it would
“break the chain”, and excessively increase the round length
by 9 cycles, as neither its ACT nor its CAS follow the ACT
or CAS of the previous transaction.

C. Command Scheduler: Detailed Rules

We now formalize the operation of the controller; in partic-
ular, we show how to realize the dynamic acceptance decision
that maintains the pipeline and rejects τ8. The command
scheduler performs four operations in each clock cycle:

1) It determines whether to continue the current round (if
any is ongoing), or end the round and possibly start a
new one.

2) It accepts zero or more intra-ready transactions of the
same direction as the current round.

3) It issues at most one ready command.
4) Based on the issued command (if any), it updates the

CAStimer and ACTtimer counters.

We next describe the first three steps in details.

Round logic: The logic to end and start a round is dictated
by Rules 1 and 2, respectively.

Rule 1: (Round End) A round finishes once all pending
transactions in that round have been issued. This coincides with
the clock cycle after sending the CAS of the last transaction
in the round.

Rule 2: (Round Start) Once a round finishes, if there are
intra-ready transactions of the opposite direction of the previous
round, a new round with opposite direction starts. Otherwise,
if there are intra-ready transactions of the same direction, a
new round of the same direction is initiated. If there is no intra-
ready transaction when a round ends, then the next round will
start as soon as at least one transaction becomes intra-ready.
Rule 2 ensures that as long as there are transactions of both
directions, the controller switches between read and write
rounds, thus servicing each direction in a fair way.

Pending transactions: When a round begins, all intra-ready
transactions of the same direction as the current round are
accepted. In the example of Figure 1, once the round starts,
both τ1 and τ3 are accepted and become pending. Afterward,
Rule 3 is applied to accept other transactions of the same
direction that become intra-ready during the round.

Rule 3: (One Transaction per Bank.) After a round starts,
an intra-ready transaction can be accepted only if it has the
same direction as the round and no other transaction of the
same bank has been accepted in that round.
Rule 3 can be easily implemented via a service buffer [8, 19],
which tracks the banks that were accepted in the current round
and is cleared once the round ends. If an intra-ready transaction
of the same direction as the current round cannot be accepted
due to a previous transaction of the same bank, we say that it
suffers self-blocking(this is the case of τ7 in the example).

Pipeline enforcement: A transaction that is not blocked by
Rule 3 is accepted if it also satisfies the following Rule 4.

Rule 4: (Pipeline Blocking.) A close transaction that be-
comes intra-ready after the round starts and satisfies Rule 3
is accepted if at least one of the following conditions holds:
1) another ACT is issued in the current cycle; 2) ACTtimer
was greater than zero at the previous cycle; 3) CAStimer +
Nwait · tCCD − tRCD − 1 ≥ 0, where Nwait is the number
of transactions that are pending, plus the number of open
transactions that satisfy Rule 3 and become intra-ready in the
same cycle. A transaction that cannot be accepted because of
this rule is said to be pipe-blocked. Once a transaction becomes
pipe-blocked, no more transactions are accepted for the rest of
the round.
The rule ensures that if a close transaction is accepted, then its
ACT can be issued as soon as possible after the previous ACT
(condition 1 or 2 in the rule hold), or there are enough CASes to



“fill” the time until the CAS of the accepted command becomes
intra-ready (condition 3 holds); in essence, the transaction must
fill either the ACT or CAS stage of the pipeline. If this cannot
be guaranteed, we simply issue all pending requests and end
the current round. Consider time t = 10 in the example. τ3 is
pending, and τ4 becomes intra-ready; hence, when applying
Rule 4 to τ5 we have Nwait = 2. The third condition of Rule 4
thus evaluates to: 3+2×4−10−1 ≥ 0, and both τ4 and τ5 are
accepted. Consider next τ6 at t = 16: here condition 2 holds
(ACTtimer = 1 at cycle t = 15), hence the transaction is
accepted. Finally, none of the conditions hold for τ8 at t = 25,
hence τ8 is pipe-blocked and no more transactions are accepted
for the round.

Command issuing: In each clock cycle, the controller issues
at most one ready command based on Rule 5. The rule
prioritizes ACT commands as they have the longest inter-bank
constraints within each round, while PRE command has none.
If multiple commands of the same type (ACT, CAS or PRE)
can be sent, the command scheduler further applies Rule 6.

Rule 5: (Command Issuance) The command issuance is
determined based on the following priority order: 1) if
ACTtimer = 0 and there is a pending intra-ready ACT, one
such ACT is issued; 2) otherwise if CAStimer = 0 and
there is a pending intra-ready CAS, one such CAS is issued;
3) otherwise if there is an intra-ready PRE, one such PRE is
issued.

Based on Rule 5, in the rest of the paper we shall say that
a ready command (PRE or CAS) suffers a bus conflict if it
cannot be issued in a clock cycle due to a higher priority ACT
or CAS command. We also say that a given type of command
(PRE, ACT or CAS) is issuable in a cycle if the value of the
corresponding timer (for ACT and CAS) is zero and no higher
priority command (for PRE and CAS) is issued in that cycle.

Rule 6: (Bank Arbitration) If multiple commands of the
same type (ACT, CAS, or PRE) could be sent, the command
scheduler employs RR arbitration among command registers.
The controller maintains two separate RR priority lists, one
for PRE, and the other for ACT and CAS. For the latter, a
bank is en-queued at the back of the list when a transaction
of that bank becomes intra-ready, and it is removed from the
list when its CAS is issued. If multiple transactions become
intra-ready at the same time, we en-queue open transactions
before close ones.

Consider Figure 1. By Rule 6, τ1 is queued in front of τ3
when they are accepted at t = 0. However, both commands
become ready at t = 2, and thus a bus conflict occurs: despite
the fact that the RR priority of τ1 is higher than τ3, according
to Rule 5 τ3.A is issued while τ1.C is delayed by one cycle.

Finally, from an implementation perspective, notice that
the structure of DRAMbulism is similar to a COTS DRAM
controller. In fact, unifying ACT and CAS arbitration reduces
the overhead compared to related work. The conditions tested
in Rules 2, 3, 4 depend on at most one transaction per bank,
and are thus cheap to realize.

V. LATENCY ANALYSIS

In this section, we show how to derive an upper bound Lreq
to the latency of any request under analysis in DRAMbulism.

A CP

Data Data
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time
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Fig. 2. Request latency decomposition for close requests. ⇑ denotes the
arrival of the request.

Similar to related work [8, 4, 6], we assume that a request
arrives either when the request enters the command queue, or
when the data of the previous request of the same bank finishes
being transmitted, whichever happens last. We then compute
the latency as the time between the arrival of the request, and
when its data finishes being transmitted. For ease of exposition,
when indicating latency terms, in the rest of this section we will
use superscripts R,W to indicate the direction of the request
under analysis, O,C to indicate whether the request under
analysis is open or close, and pR, pW to indicate whether the
previous request of the same bank was a read or write; we
drop superscripts when the direction/type of the request is not
relevant or implicit from the context. We also use the notation
(x)+ to mean max(0, x) and a%b for a modulo b.

We consider an in-order core where memory requests are
produced by a write-back, write-allocate Last-Level Cache
(LLC). In this case, a fetch with write-back produces a write
request followed by a read request, while a fetch without write-
back produces only a read request. We then assume that by
measurement or static program analysis [24], the following can
be obtained: 1) the maximum number of fetches with write-back
produced by the task; since it is generally challenging to identify
the actual cache line being written-back, we conservatively
assume that both read and write requests are closed; 2) the
number of fetches without write-back, where the read can
be guaranteed to be open; 3) the number of fetches without
write-back where no such guarantee is possible.

In summary, we need to provide latency bounds for four
types of requests: 1) LCWpR

req for a close write, which must
be preceded by a read; 2) LCRpWreq , for a close read preceded
by a write; 3) LCRpRreq , for a close read preceded by a read;
and 4) LORpRreq for an open read, which must be preceded by a
read. Due to space limitations, we only detail the computation
for close read requests, which have the largest latency, but the
same techniques can be straightforwardly applied to obtain
the other three latency terms; we provide them in Appendix
(available at [25]), together with detailed proofs for lemmas in
this section.

A. Request Latency Decomposition

The request latency can be decomposed into multiple
components, corresponding to its different commands and
intra-bank constraints, as shown in Figures 2. Note that (⇑)
denotes the arrival of the request and (↑) determines when a
command becomes intra-ready. For a close request, the latency
can be obtained as the sum of the following components:
1) tα, the intra-bank constraints induced by the previous
request of the same bank; such constraints are maximized
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when the rua arrives just after the data of the previous one
finished being transferred; 2) the latency LPRE of the PRE
command, computed from the command becoming intra-ready
to when it is issued; 3) the tRP intra-bank constraint between
PRE and ACT; 4) the transaction latency Ltran, from the
transaction becoming intra-ready to the CAS being issued; 5)
the time to transmit the data, which is tRL + tBUS for a read
request and tWL + tBUS for a write request. We thus have:

LCRpRreq = tpRα + LPRE + tRP + LCRpRtran + tRL + tBUS , (1)

LCRpWreq = tpWα + LPRE + tRP + LCRpWtran + tRL + tBUS , (2)

where according to the intra-bank constraints, the tα compo-
nent can be obtained as:

tpRα = (tRAS − tRCD − tRL − tBUS)+, (3)

tpWα = tWR. (4)

We next provide a bound on LPRE for a PRE command under
analysis (cua). While PRE commands do not suffer from any
inter-bank constraint, they suffer command bus conflicts from
ACT and CAS commands due to Rule 5, and from other PRE
commands due to Rule 6; each command conflict causes one
clock cycle of delay.

Lemma 1: The fixed point of the iteration in Equation 5 is
an upper bound to the latency of any PRE command.
LPRE = max

k≤(b−1)
k +min(

⌈LPRE + 1

tRRD

⌉
,
⌈LPRE + 1− tRP

tRRD

⌉
+
⌈LPRE + 1− tRCD − tRTP

tRRD

⌉
+ b− 1− k)

+ min(
⌈LPRE + 1

tCCD

⌉
,
⌈LPRE + 1− tRTP

tCCD

⌉
+
⌈LPRE + 1− tRP − tRCD

tCCD

⌉
+ b− 1− k)

(5)

An illustrative example for Lemma 1 is provided in Figure 3.
We assume that out of the b− 1 banks that can conflict with
the cua, b − 1 − k banks conflict with ACT and CAS only,
while k banks also conflict with PRE, resulting in the first k
term in Equation 5. The following min term represents ACT
conflicts, while the final min term represents CAS conflicts;
the total number of conflicts is bounded based on ACT-to-ACT
and CAS-to-CAS constraints tRRD, tCCD, as well as based
on the minimal separation between either ACT or CAS and
PRE for the k banks that issue PRE commands.

B. Transaction Latency

Finally, we show how to determine the latency Ltran for a
close read transaction. We proceed by cases, based on when
the transaction under analysis (tua) becomes intra-ready. Note
that if no round was ongoing the cycle before the transaction
becomes intra-ready, then a round is immediately started based
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Fig. 4. Pipe-blocking and self-blocking scenarios.

on Rule 2. Hence, the tua can become intra-ready either 1)
during a write round; 2) or during a read round. Furthermore,
note that if a transaction is accepted in a round, it is issued in
that round; and an intra-ready transaction that is not accepted
in a round with the same direction must be blocked due to
either self-blocking or pipe-blocking according to Rules 3, 4.
Hence, Case 2) has three further sub-cases: 2a) the transaction
is issued in the round; 2b) the transaction is not issued due
to self-blocking; 2c) the transaction is not issued due to pipe-
blocking.

The worst-case scenario under Cases 2b) and 2c) is repre-
sented in Figure 4. The transaction becomes intra-ready in a
read round (Round 1), and is blocked for either Lself cycles
due to self-blocking or Lpipe cycles due to pipe-blocking; then,
a write round is executed (Round 2); finally, the transaction is
accepted and issued in the next read round. To maximize the
latency, we assume that during Round 2, each of the remaining
b−1 banks issue a transaction. On the other hand, it is easy to
see that Cases 1) and 2a) cannot lead to the worst-case latency:
under Case 1), the transaction would become intra-ready during
Round 2, and thus only suffer Round 2 and 3 latencies, but
not Round 1, while under Case 2a), the transaction would
become intra-ready and be directly issued in Round 1. In
summary, to determine the worst case for Ltran, it suffices to
consider Cases 2b) and 2c) only. Let us use LR3 to denote
the time required to issue the CAS of the tua in Round 3, and
Lround(N,CAStimerinit, ACTtimerinit) for the maximum
length of a round issuing N transactions with initial timer
values CAStimerinit, ACTtimerinit. We obtain:

LCRpWtran = Lpipe + Lround(b− 1, CAStimermax,W
init ,

ACTtimermax
init ) + LCRR3 , (6)

LCRpRtran = max(Lpipe, L
CR
self ) + Lround(b− 1,

CAStimermax,W
init , ACTtimermax

init ) + LCRR3 . (7)

Note that for LCRpWtran , we only consider the pipe-blocking Case
2c) because the self-blocking Case 2b) is not possible for a read
preceded by a write. In Equation 6, 7, the maximum values of
the timers CAStimermax,W

init , ACTtimermax
init are obtained as:

Lemma 2: The amount of time CAStimerinit that CAS
commands are not inter-ready at the beginning of a round is
bounded by CAStimermax,R

init for a read round:

CAStimerinit ≤ CAStimermax,R
init = max(tCCD−1, tWtoR−1), (8)

and CAStimermax,W
init for a write round:

CAStimerinit ≤ CAStimermax,W
init = max(tCCD − 1, tRTW − 1).

(9)
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Lemma 3: The amount of time ACTtimerinit that ACT
commands are not inter-ready at the beginning of the round is
bounded by ACTtimermax

init as follows:

ACTtimerinit ≤ ACTtimermax
init = (tFAW − 3 · tRRD − tRCD − 1)+.

(10)

Figure 5 depicts the worst-case timing CAStimermax,W
init ,

ACTtimermax
init , where four ACT commands are issued as late

as possible in the preceding read round to trigger the tFAW
constraint.

In the rest of this section, we compute bounds on LCRR3 , Lpipe
and Lself . The key pipelining theorem that bounds the round
length Lround is instead presented in the next section.

Lemma 4: The maximum time required to issue the CAS
command in Round 3 for close read transactions is:

LCRR3 = max(ACTtimermax
init + tRCD + tCCD,

CAStimermax,R
init + 1). (11)

Note that since we assumed that all b− 1 other banks issue a
request in Round 2, by Rule 6, the tua will have the highest
priority in Round 3. Intuitively, since the tua consists of both an
ACT and CAS command, its worst-case latency in Round 3 de-
pends on the value of both ACTtimerinit and CAStimerinit.
The case where ACTtimerinit is more restrictive, which
results in a latency LCRR3 = ACTtimermax

init + tRCD + tCCD,
is shown in Figure 4: here, the CAS of the tua is first delayed
by the CAS of a lower-priority bank arriving just before it is
intra-ready, and then by bus conflict caused by a lower-priority
ACT.

Lemma 5: The maximum amount of time that transactions
can be pipe-blocked in a round is:

Lpipe = max(tRCD − tCCD + 1, tRCD − tRRD). (12)

Figure 6 depicts the two cases for deriving Equation 12. In
Figure 6(a), the ACT of Bank0 arrives at the earliest time t that
violates condition 3 in Rule 4, that is, such that CAStimer +
Nwait · tCCD = tRCD; since the round ends after the CAS
of Bank1 is issued, the resulting blocking time is tRCD −
tCCD + 1. In Figure 6(b), the ACT of Bank0 arrives right
after the ACT-to-ACT constraint tRRD has elapsed, therefore
violating conditions 1, 2 in Rule 4; this results in a blocking
time of tRCD − tRRD.

Lemma 6: The maximum amount of time a close read
transaction can be self-blocked in a round is:

LCRself = Lround(b, 0, 0)− tpRα − LPRE − tRP − tRL − tBUS . (13)
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Fig. 6. Pipe-blocking scenarios in Round 1.

Proof: Note that the self-blocking time can be obtained as
the difference between the length of Round 1, and the time at
which the tua becomes intra-ready, which is tpRα +LPRE+tRP
after the data of the previous read request of the same bank
issued in Round 1 that causes self-blocking to the tua. Hence, to
maximize LCRself , we maximize the length of Round 1, assuming
that the previous request completes as soon as possible, which
is tRL + tBUS after the beginning of the round (assuming
CAStimerinit = 0). Note that when LCRself is used to obtain
LCRpRtran in Equation 7 and consequently LCRpRreq in Equation 1,
the terms tpRα and LPRE will be simplified away. Hence, their
actual values do not affect the final request latency.

VI. PIPELINE THEOREM

In this section, we formally prove that the length of a round
can be bounded according to the following theorem:

Theorem 1: The length of a round executing N transactions
with initial timer values CAStimerinit, ACTtimerinit is at
most:

Lround(N,CAStimerinit, ACTtimerinit) = max
(

ACTtimerinit + max
k=0...N−1

bk/4c · tFAW + (k%4) · tRRD

+ (N − 1− k) · (tCCD + 1) + tRCD + 1,

CAStimerinit + max
k=0...N−2

bk/4c · tFAW + (k%4) · tRRD

+ (N − 1− k) · (tCCD + 1) + 1
)
. (14)

In essence, Theorem 1 guarantees that each transaction
contributes either a CAS-to-CAS constraint (tCCD) or an ACT-
to-ACT constraint (tRRD or tFAW every four transactions) to
the length of the round, but not both. Note that the theorem
holds for both read and write rounds, as the aforementioned
constraints are the only inter-bank constraints that apply
between commands in the same round; the effects of inter-bank
constraints between CASes of different directions issued in
consecutive rounds is captured by the CAStimerinit term,
which can be obtained based on Lemma 2. Due to the its
complexity, we first summarize the key steps in the proof:
• We begin by formally capturing the concept of delay

between commands in the same round in Definitions 1, 2.
This is required because ACT commands can be delayed
by either tRRD or tFAW , based of the number and timing
of previous ACTs; while CAS commands can both be
delayed by tCCD and suffer command bus conflict from
ACT commands due to Rule 5.

• Next, in Lemma 7 we prove that for close transactions, the
order in which they issue ACTs is the same as the order
in which they issue CASes, which is also the order in
which transactions are indexed as defined in Section IV-B.

• Given any concrete schedule for a set of transactions in a
round (we shall use Figure 1 as an example), Definition 3



details the concept of a chain of commands, while
Lemma 8 proves that a chain can always be constructed
starting from any CAS command in the round. Then, in
Lemma 9 we bound the length of any chain based on the
indexes of transactions in the chain.

• Finally, using Lemma 10, we show that the schedule can
be constructed as a sequence of chains, starting from
the last CAS in the round τN .C, and going backward
until we reach a transaction that is delayed by either
ACTtimerinit or CAStimerinit. Specifically, we make
use of two key properties: 1) the minimum index of any
transaction in a chain is equal to the maximum index
of any transaction in the previous chain; this guarantees
that each transaction contributes to the length of only one
chain in the sequence; 2) there is a minimum separation
between the start of the chain and the end of the previous
one, which depends on the ACT-to-CAS constraint tRCD.
As mentioned in Section IV-B, this allows us to include
a single term tRCD in Equation 14, rather than one per
chain.

Definition 1 (ACT Delay): We say that τi.A is delayed by
the previous ACT command τi−1.A if ACTs are not issuable
between time τi−1.A.t and time τi.A.t because of the tRRD
constraint. We say that τi.A is delayed by the previous four
ACT commands τi−4.A . . . τi−1.A if ACTs are not issuable
between time τi−1.A.t and time τi.A.t because of the tFAW
constraint. We say that τi.A is delayed by ACTtimerinit if
τi.A.t = ACTtimerinit.

Definition 2 (CAS Delay): We say that τi.C is delayed by
the previous CAS command τi−1.C if CASes are not issuable
between time τi−1.C.t and time τi.C.t, either because of
the tCCD constraint, or because an ACT command is issued
instead due to Rule 5. We say that τi.C is pushed by a
previous command τj .C with j < i if either τj .C delays
τi.C or there is a sequence τj .C, τj+1.C, . . . , τi.C where
each command is delayed by the previous one (i.e., push
represents transitive delay). We say that τi.C is delayed by
CAStimerinit if it is issued at the earliest cycle at or after
CAStimerinit when no ACT command is issued.

Note that it is impossible to issue two ACTs in consecutive
clock cycles since tRRD ≥ 1; hence, if τi.C is delayed by
τi−1.C, either τi.C.t = τi−1.C.t+ tCCD or an ACT is issued
at τi−1.C.t + tCCD and τi.C.t = τi−1.C.t + tCCD + 1. In
other words, the worst-case CAS delay is tCCD + 1. For the
same reason, if τi.C is delayed by CAStimerinit, then in the
worst-case τi.C.t = CAStimerinit + 1.

Lemma 7 (ACT Ordering): Given two close transactions
τi, τj , if i < j then τi.A.t < τj .A.t.

Proof: By contradiction: since two commands cannot
be issued at the same time, assume τj .A.t < τi.A.t. Then
(1) τi.C cannot become intra-ready before τj .C, since both
transactions must obey the same ACT-to-CAS constraint tRCD.
Furthermore, since τj .A is issued first, at time τj .A.t either τi
is not intra-ready, or it has lower priority than τj in the RR
queue by Rule 6. Since a transaction is pushed to the back of
the RR once it arrives, this implies that (2) τi must also have
lower-priority than τj when its CAS becomes intra-ready. In
turn, (1) and (2) imply that τj .C is sent before τi.C, which

contradicts i < j.
Definition 3 (Command Chain): The chain S rooted at τi.C

is an ordered list of commands constructed by iteratively adding
commands to the head of the chain, which initially contains
τi.C only, based on three steps in sequence:
• Step 1: add to the chain the longest sequence of commands
τj .C, . . . , τi−1.C such that τj .C pushes τi.C.

• Step 2: let τj .C be the head of the chain after Step 1. If it
is delayed by CAStimerinit, then stop and skip Step 3.
Otherwise, add to the chain the ACT τp.A with smallest
index such that τp.A.t+ tRCD + 1 ≥ τj .C.t;

• Step 3: if the ACT at the head of the chain is delayed
by one or four previous ACT commands, add all such
commands to the chain and repeat Step 3 until the ACT
at the head is not delayed by previous ACTs.

We call τp (if any) the fulcrum of S; we use A, C as the sub-
lists of all ACTs, CASes in S; and S.m,S.M (and similarly
A.m,A.M, C.m, C.M ) to denote the minimum and maximum
index of any command in S (respectively, A and C; hence,
S.M = max(A.M, C.M) and S.m = min(A.m, C.m)).
Example: consider Figure 1. Since τ6.C is not delayed by
τ5.C, the chain rooted at τ6.C is S = {τ5.A, τ6.A, τ6.C};
τ6 is the fulcrum. The chain rooted at τ5.C is S ′ =
{τ3.A, τ2.C, τ3.C, τ4.C, τ5.C}, with τ3 as fulcrum.

We make a few observations. First note that by construction,
for any chain S its first CAS cannot be delayed by previous
CASes, and its first ACT cannot be delayed by previous ACTs.
Second, by indexing, the CASes in C must be ordered, meaning
that the first CAS is τC.m and the last CAS is τC.M (in fact,
since all transactions have a CAS, C contains all CASes from
τC.m to τC.M ). Similarly, because of Lemma 7, the first ACT
in A (if A 6= ∅) is τA.m and the last is τA.M . This implies that
at Step 2, j = C.m and for the fulcrum p = A.M . However,
we cannot prove properties on the order of commands between
A and C without further assumptions. In particular, the ACTs
in A do not necessarily have lower indexes that the CASes
in C. For S ′ in the example, we have A′ = {τ3.A}, C′ =
{τ2.C, τ3.C, τ4.C, τ5.C}, such that C′.m = 2 < A′.m = 3.
Instead, Lemma 10 will later derive properties on the indexes
when sequencing chains.

Lemma 8 (Chain Correctness): For any CAS command
τi.C, it is possible to build a chain according to Definition 3.
Furthermore, if the chain has a fulcrum τp and τp.A is not
delayed by either a previous ACT or ACTtimerinit, then it
must hold τp.A.t < τj .C.t, where j = C.m.

Proof: Steps 1 and 3 can always be carried out by defini-
tion. To prove that we can always build a chain, we have to show
that Step 2 can also be carried out. Specifically, we prove that if
τj .C is not delayed by CAStimerinit, then we can find τl.A
such that the condition τl.A.t+ tRCD +1 ≥ τj .C.t holds; this
implies that there must exist a fulcrum τp with τp.A.t ≤ τl.A.t
(possibly τl itself) for which the condition also holds. We then
show that if the second condition τp.A.t < τj .C.t does not
hold, then τp.A must be delayed.

Since τj .C = τC.m.C is the head of the chain after Step 1,
it follows that it is also not delayed by τj−1.C. We then have
two cases: (1) an ACT τl.A is issued at τj .C.t− 1; then both
conditions hold for that ACT. By τp.A.t ≤ τl.A.t, this also



implies τp.A.t < τj .C.t. (2) Otherwise, CASes are issuable
at τj .C.t− 1, but no CAS is actually issued. In this case, at
τj .C.t− 1 there must be at least one pending close transaction
τl (possibly τj itself), otherwise the round would have ended by
Rule 1. Since the ACT-to-CAS constraint is tRCD, then it must
be τl.A.t+ tRCD ≥ τj .C.t; otherwise, τj .C.t would have been
issued at τj .C.t − 1; this implies the first condition. Finally,
assume τp.A.t > τj .C.t. Since τp.A.t ≤ τl.C.t, this implies
τl.A.t > τj .C.t; but given that τl is pending at τj .C.t− 1, this
means that τl.A must be delayed. Now note that any transaction
that issues an ACT after τj .C.t satisfies the first condition; and
that any such transaction that issues an ACT before τl.A must
also be delayed. Hence, it follows that τp.A must be delayed
as well.

Lemma 9 (Chain Length): Let final = 1 if chain S is
rooted at τN .C, and final = 0 otherwise. Then if A 6= ∅, the
length of S can be bounded by:

τC.M .t− τA.m.t ≤ max
k=0...S.M−S.m

bk/4c · tFAW + (k%4) · tRRD

+(S.M − S.m− k) · (tCCD + 1) + tRCD + 1− final. (15)

while if A = ∅:
τC.M .t− τC.m.t ≤

(
(S.M − S.m) · (tCCD + 1)− final

)+
. (16)

Proof: Let τp, τj as in Step 2 of Definition 3. We first
show that the only transaction that can have both its ACT
and CAS in the chain is the fulcrum τp. As previously noted,
based on Lemma 7, for any other ACT τi.A in S it must hold
i < p; we show that τi.C cannot also belong to the chain. By
construction, if the fulcrum exists, τj .C is not delayed by either
CAStimerinit or τj−1.C; hence, CASes must be issuable at
either τj .C.t − 1, or τj .C.t − 2 (if an ACT was issued at
τj .C.t−1). By definition of τp, we obtain τi.A.t+tRCD+1 <
τj .C.t, which is equivalent to τi.A.t + tRCD ≤ τj .C.t − 2;
hence, τi.C is intra-ready no later than τj .C.t − 2, which
implies that it must be issued before τj .C since CASes are
issuable. Hence i < j by indexing definition; and since as
noted j = C.m, i cannot belong to the chain.

Since apart from τp, all other transactions have at most one
command in the chain, the number of commands in S is at
most S.M − S.m + 2 (the number of indexes in the range
S.m . . .S.M plus one) if A 6= ∅, or S.M −S.m+1 if A = ∅.
Since the first ACT and CAS are not delayed by a previous
ACTs/CASes, the total number of commands that are delayed is
equal to S.M−S.m. We can then bound the length of the chain
by summing the delay for k ACTs (with 0 ≤ k ≤ S.M−S.m),
which is at most bk/4c·tFAW+(k%4)·tRRD since tFAW /4 ≥
tRRD, the delay for S.M −S.m− k CASes, which is at most
(S.M − S.m − k) · (tCCD + 1), and the maximum distance
between τp.A.t and τj .C.t, which is tRCD+1 by construction;
except that if A = ∅, only the CAS delay must be counted.
Finally, note that τN .C cannot be delayed by an ACT due to
Rule 5; otherwise, it would not be the last CAS in the round.
Hence, if τN .C is delayed by τN−1.C, then the maximum delay
is tCCD rather than tCCD + 1; if not, we have C = {τN .C}
and (since CASes must be issuable at τN .C.t − 1) it must
be p = j = N with τN .A.t + tRCD = τN .C.t, meaning

that the distance between τp.A.t and τj .C.t is tRCD instead
of tRCD + 1. In either case, this results in one less clock
cycle if final = 1. Adding all terms together then yields
Equations 15, 16.

In essence, Lemma 9 shows that we can bound the length of
the chain (from the issue time of the first command in the chain
to the last one) by adding together a number of CAS or ACT
constraints equal to the maximum number of transactions in
the chain - 1, except that for chains containing ACTs, we pay
an additional price of tRCD + 1, which intuitively represents
the delay of moving between the ACT stage and the CAS stage
of the pipeline. The fundamental trick in our approach, which
we prove in the following lemma, is that thanks to Rule 4, we
can remove an equal term tRCD + 1 whenever we sequence
two chains together.

Lemma 10 (Chain Sequencing): Consider chain S with
A 6= ∅ and let τi.A = τA.m.A be the first ACT. If τi.A is
not delayed by ACTtimerinit, and furthermore C.M = S.M
(that is, the last CAS has the largest index in the chain), then:

1) τi.C − τi.A ≥ tRCD + 1;
2) i is the smallest index in the chain: i = S.m;
3) let S ′ be the chain rooted at τi.C, with CAS and ACT

sub-lists C′,A′. Then i = C′.M = S ′.M (that is, i is
the largest index in S ′);

4) and S ′ contains commands of at least two transactions.
Proof: We show each of the four statements (1)-(2)-(3)-(4)

of the lemma in sequence. Note that chains S,S ′ and indexes
i, j, p′ in Figure 1 match the ones in the proof; specifically,
the figure covers case (2b) below.
Part (1) By construction, τi.A cannot be delayed by previous
ACT commands. Since furthermore τi.A is not delayed by
ACTtimerinit either by assumption, then ACTtimer must
be 0 at τi.A.t − 1 and τi must become intra-ready and be
accepted at τi.A.t, after the beginning of the round; otherwise,
it would have been issued at an earlier cycle. Hence, the
third condition in Rule 4 must apply at τi.A.t, yielding (1a):
CAStimer + Nwait · tCCD ≥ tRCD + 1. Also by Rule 6,
τi is inserted at the back of the RR queue at τi.A.t, hence
all CASes in Nwait (both the waiting and the pending ones)
will be sent before τi.C. Since no CAS can be sent before
CAStimer, and each CAS triggers a tCCD delay, it follows
that τi.C.t ≥ τi.A.t+CAStimer+Nwait · tCCD; combining
this with (1a) yields (1). Also note that τi.C becomes intra-
ready at τi.A.t+tRCD and from τi.A.t+CAStimer+N

wait ·
tCCD > τi.A.t+ tRCD we know that τi.C must be pushed by
a previous CAS in Nwait if Nwait > 0; while if Nwait = 0,
it must be delayed by either CAStimerinit or a CAS issued
before τi.A.t.
Part (2) Since C.M = S.M , it holds i ≤ C.M . We now prove
that it must hold i < C.m; since i = A.m, (2) then follows.
By contradiction, assume C.m ≤ i ≤ C.M ; this means that
τi.C belongs to S . Let τj .C, with j ≤ i, be the CAS with the
smallest index that pushes τi.C, or τi.C itself if no such CAS
exists; since τi.C ∈ S , this means that τj .C is the first CAS in
S. By definition, τj .C cannot be delayed by τj−1.C. Hence,
we need to consider the following cases: (2a) it is delayed
by CAStimerinit; or not delayed, in which case we consider



either (2b) τj .C.t < τi.A.t or (2c) τj .C.t > τi.A.t. As noted
in Part (1), τi.C must be delayed; hence for cases (2b)-(2c)
we must have j < i.
Case (2a): by Step 2 in Definition 3, we have A = ∅, a
contradiction since τi.A belongs to the chain.
Case (2b): by τj .C.t < τi.A.t, τi.A meets the fulcrum
condition τi.A.t+ tRCD + 1 ≥ τj .C.t; hence, no ACT issued
after τi.A can be the fulcrum of S. However, τi.A cannot be
the fulcrum either: it is not delayed, hence Lemma 8 would
imply τi.A.t < τj .C.t, a contradiction. Hence, the chain must
have a fulcrum τp.C with p < i; but this contradicts the fact
that τi.A is the first ACT in S.
Case (2c): since τj .C.t > τi.A.t and τj .C is not delayed, then
τi.C cannot be delayed by a CAS issued before τi.A.t, nor
by CAStimerinit; therefore, based on the final observation
in Part (1), τi.C must be pushed by a CAS in Nwait. Let us
denote such CAS as τl, and note that it must be j ≤ l < i.
Since τj .C is not delayed and τj .C.t > τi.A.t, then τl must
be a close transaction: otherwise, τl.C would be intra-ready
at τi.A.t and it would be issued before τj .C.t. Since l < i,
we have τl.A.t < τi.A.t < τj .C.t. Furthermore, since τj .C
is not delayed, CASes must be issuable at either τj .C.t − 1
or τj .C.t− 2; hence it must be τl.A.t+ tRCD + 1 ≥ τj .C.t,
otherwise again τl.C would be issued before τj .C.t. This
implies that at Step 2 of Definition 3, τl meets the fulcrum
conditions; since l < i and the fulcrum is the transaction with
smallest index which meets the conditions, it follows that the
chain must have a fulcrum τp.C with p < i; as in (2b), this
contradicts the fact that τi.A is the first ACT in S.
Part (3) Since C′ is rooted at τi.C, we have i = C′.M by
definition. If A′ = ∅, we immediately have i = S ′.M . Next,
assume that S ′ contains one or more ACTs instead. As in
Part (2), we let τj .C to be the CAS with the smallest index
that pushes τi.C; by definition, τj .C is the first CAS in S ′ :
j = C′.m. We can then repeat the same cases (2a)-(2b)-(2c):
(2a) cannot apply since it implies A′ = ∅. For cases (2b),
(2c), we again find that S ′ has a fulcrum τp′ with: p′ < i.
Since the fulcrum is the last ACT in a chain, this implies
A′.M < C′.M = i; therefore, we have i = S ′.M .
Part (4) We again analyze cases (2a)-(2b)-(2c) for τj .C. For
(2b)-(2c), we have A′.M < C′.M ; hence, the chain must
contain at least two transactions with different indexes. Next,
consider (2a), for which A′ = ∅. By contradiction, assume
j = i, meaning that S ′ = {τi.C} and τi.C is delayed by
CAStimerinit. Hence, τi.C is the first CAS issued in the
round. But since τi.A is not intra-ready at the beginning of the
round, no other transaction can be accepted before it; otherwise,
by Rule 6 another CAS would be issued before τi.C. Hence,
no transaction can be intra-ready and accepted at the beginning
of the round, which means that the round would not start based
on Rule 2; a contradiction.

Based on Lemma 10, we can now bound the total length of
the round. Consider the chain S rooted at τN .C; then C.M =
S.M = N . Hence, if neither the first CAS nor the first ACT of
S is delayed by ACTtimerinit, CAStimerinit, we can apply
Lemma 10 to find another chain S ′. By Part (3) of the lemma,

we have C′.M = S ′.M ; hence, if S ′ is also not delayed by
either ACTtimerinit or CAStimerinit, we can recursively
apply Lemma 10 to S ′. Furthermore, by Part (2) and (3), we
have S ′.M = S.m, and by Part (4) it must be S ′.m < S ′.M ;
hence, we obtain S ′.m < S.m, which means that the minimum
index in the chain decreases by at least one every time we
apply Lemma 10. In summary, by induction we can always
find a sequence of Q ≥ 1 chains S1, . . .SQ such that SQ
is rooted at τN .C, S1 is delayed by either CAStimerinit
(in which case it is the only chain comprising only CASes)
or ACTtimerinit, and it holds: S1.m < S1.M = S2.m <
. . .SQ.M . Therefore, we can bound the length of the round by
adding together either CAStimerinit + 1 or ACTtimerinit,
plus the sum of the maximum lengths of all chains (using
Lemma 9), plus one cycle (since the round ends the cycle after
τN .C is issued), minus the sum of the minimum distances
between the first ACT of each chain and the last CAS of the
previous one; based on Part (1) of the lemma such distance
is at least tRCD + 1, hence we subtract (Q− 1) · (tRCD + 1).
Noting that

∑
i=1...Q Si.M−Si.m = SQ.M−S1.m ≤ N−1,

if S1 is delayed by ACTtimerinit this yields:

ACTtimerinit +
∑

i=1...Q

(
max

ki=0...Si.M−Si.m
bki/4c · tFAW

+ (ki%4) · tRRD + (Si.M − Si.m− ki) · (tCCD + 1)

+ tRCD + 1− final
)

+ 1− (Q− 1) · (tRCD + 1)

≤ ACTtimerinit + max
k=0...N−1

bk/4c · tFAW + (k%4) · tRRD

+ (N − 1− k) · (tCCD + 1) + tRCD + 1. (17)

Repeating the computation with CAStimerinit + 1 instead
of ACTtimerinit, using Equation 16 for S1 and noticing that
it must be k < N − 1 since S1 comprises at least two CASes
and no ACTs, then yields Equation 14, completing the proof.

VII. EVALUATION

In this section, we provide analytical and simulation com-
parison with two pre-art real-time memory controllers that
incorporate bundling in command level (CMDBundle [20]) and
request level (REQBundle [6]). It is important to note that the
analysis in [20] is derived under the assumption that a request
always arrives tRL/WL + tBUS after the previous request of
the same requestor issued its CAS command. However this is
true when requests arrive in a bursty manner, but in general, a
request can arrive at any time with respect to the previous one
of the same requestor. For this reason, we follow the analytical
modification for CMDBundle that was proven in [6]. Also, note
that REQBundle can be applied to mixed-criticality systems
by assigning some banks to soft requestors; however, since
DRAMbulism and CMDBundle do not have such capability,
and furthermore no analytical latency bounds are provided
for soft requestors in REQBundle, we decided to simply treat
all requestors as hard under REQBundle. As discussed in
Section V, we assume the rua to be an in-order core, while
other requestors can be out-of-order.
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Fig. 7. Analytical Worst-case latency
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0

50

100

150

200

250

300

1066E 1333G 1600H 1866K 2133L

W
or

st
 c

as
e 

m
is

s 
la

te
nc

y 
 (

ns
)

REQBundle CMDBundle DRAMbulism

Fig. 8. Analytical Worst-case latency
of close read request.

A. Analytical Evaluation

Per-request worst-case latency: Figure 7 and 8 depict
the worst-case latency of close read requests LCRreq =
max(LCRpRreq , LCRpWreq ), and open read requests LORpRreq , for
different DDR3 devices assuming a total of 8 requestors in
the system, which is the maximum number of available banks.
Compared to REQBundle, DRAMbulism shows similar, but
slightly improved bounds. Both controllers pipeline ACT and
CAS commands. REQBundle constructs the pipeline off-line,
thus restricting the time at which requests can be accepted
to the beginning of a round; on the other hand, DRAMbulism
can accept requests dynamically after the round has started
based on Rule 4. The latency for DRAMbulism is significantly
better than CMDBundle for close requests, since CMDBundle
does not pipeline ACT and CAS commands. However, the
latency of open requests is better in CMDBundle, especially
for faster devices: the faster the device, the larger the tRRD
and tFAW constraints become. Hence the length of a bundle
in CMDBundle, which includes only CAS commands, is
shorter than in DRAMbulism, where we bundle ACT and CAS
commands together and try to maintain a chain in the round.
Impact of hit ratio: The hit ratio is the ratio of open requests
(row hits) vs total requests for an application. For a hit ratio x,
we can compute the per-request read latency of an application as
x·LORpRreq +(1−x)·LCRreq . Based on this equation, we determine
the range of hit ratios for which CMDBundle provides lower
latency than DRAMbulism and viceversa. Considering the
fastest DDR3 2133L, CMDBundle results in lower latency for
applications with hit ratio of 67% or more; the ratio is higher
for slower devices for example for DDR3-1066E it is 83%. As
also shown by benchmarks in the next section, most programs
do not reach such high ratios.
Impact of requestor count: Figure 9 shows the worst-case
latencies of open and close reads when the number of requestors
increases from 4 to 162 on a DDR3 2133L device. Note that
for smaller number of requestors, the bound for open requests
under DRAMbulism is better than for close requests, while for
16 requestors, the bounds are equal. The reason is that for small
number of requestors, the worst-case latency corresponds to
pipe-blocking, while for a larger number, it corresponds to self-
blocking. As shown in Section V, the main difference between
close and open requests is the addition of LPRE ; however,

2Note the maximum number of banks in DDR3 devices is limited to 8;
however, we also compute the latency for the case of 16 requestors to show
the scalability of the analysis, and since DDR4 devices support up to 16 banks.
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such term is subtracted away in the self-blocking term for close
requests (Equation 13), resulting in similar latencies.

B. Performance Evaluation

Finally, we evaluate both the worst-case and average-case
performance of the controllers based on actual benchmarks. To
this end, we have implemented a cycle-accurate simulator
model [26] of CMDBundle and REQBundle as well as
DRAMbulism and connected it to MACsim, a cycle-level,
heterogeneous architecture simulator [27]. We configure the
system with 8 cores, where the rua uses an in-order x86 model,
while the other requestors are out-of-order cores to stress the
rua as much as possible. Note that, similar to related work
and for the sake of simplicity, we do not consider the DRAM
refresh into the cumulative latency [6, 4, 8].

We select the EEMBC 1.1 auto benchmark suite [28] as a
representative of actual real-time applications to run on the rua
and consider the fastest DDR3-2133L device. The simulation
stops when the last request from the rua finishes its data
transfer. We perform two sets of experiments by changing
the applications running on the other interfering cores. The
open case uses a program that performs continuous accesses
to the same row in its assigned bank; hence, generating open
requests at the maximum rate; the close case uses a program
that performs continuous accesses to different rows; hence,
generating close requests. In either case, all interfering cores
perform a mix of read and write accesses.
Impact of cache architecture: We simulated the system after
configuring MACsim with different cache architectures, using
a $L1 cache size of 64KB and a $L2 partition size of
256KB. To avoid conflicts among different cores, we assume
that a cache coloring technique is employed [29] such that
each core is assigned an isolated cache partition in shared
$L2 cache. This ensures that a core will not evict a cache
block that belongs to another core in the system. Table II
tabulates the hit ratio percentage of each application under
different cache configurations. It is essential to understand that
enabling/disabling various cache levels could either increase
or decrease the hit ratio of the application. Both scenarios
are possible, and indeed, it depends on the application itself
(for example, see cache compared to the others). Consider
two requests that row conflict in the main memory, yet since
both (or one of them) hit in the cache, such conflict does not
appear when there are caches which increases the hit ratio.
On the other hand, assume the same situation but for two
requests that target the same row in memory but hit in the
cache. Thus, such a hit does not exist in the main memory
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TABLE II
HIT RATIO(%) UNDER DIFFERENT CACHE ARCHITECTURES.

Benchmark No Cache $L1 and $L2 Bypass $L1
a2time 32 36 20
cache 33 27 17
basefp 35 40 26
irrflt 33 43 28
aifirt 32 44 29

tblook 33 45 30

anymore when employing caches, and this decreases the hit
ratio comparatively. Finally, the number of requests to the main
memory heavily depends on the cache architecture such that the
number of requests from no cache architecture is considerably
greater than the other configurations.
Latency results: Since we are interested in evaluating the
system under maximal stress, in Figure 10 we show results
for the no cache architecture. The stacked bars represent the
cumulative simulated DRAM latency of the rua for each setting.
The t-bars represent the cumulative analytical bound: we
obtain it by multiplying the number of open/close reads/writes
preceded by a read/write by either LCWpR

req , LCRpWreq , LCRpRreq or
LORpRreq , as detailed in Section V, and summing the four terms
together. Due to the composability of the analysis, the choice
of interfering program does not affect the analytical bounds.
It also does not affect the simulated latency for REQBundle,
since it employs close page policy.

Overall, DRAMbulism shows better analytical worst-case
latency than either CMDBundle or REQBundle; the number of
row hits is not high enough for CMDBundle to dominate, while
the analytical bounds of DRAMbulism are either similar or better
than REQBundle. Note that the analytical bounds are based on
the hit ratio measured from the simulation; if we had used the
guaranteed hit ratio from static analysis, the result would be
even more in favor of DRAMbulism. Regarding the simulated
latency, CMDBundle and DRAMbulism are significantly better
than REQBundle, since they can dynamically accept requests
at run-time as they arrive. We further note that when interfering
requests are open, DRAMbulism performs better than CMDBun-
dle, while the vice-versa is true for interfering close requests.
This counter-intuitive result is due to the round behavior: under
DRAMbulism, an ACT can only be issued during a round of
the same direction; hence, the round length for DRAMbulism
is affected more by close requests than open requests.

VIII. DISCUSSION: DDR AND REQUESTOR TECHNOLOGIES

While we focused on evaluating DRAMbulism on DDR3 to
compare with related work [6, 8, 21, 18, 17] which employed
the same standard, our proposed solution can be extended
to other DDR DRAM technologies. In particular, we discuss

DDR4 technology. The main unique aspect of DDR4 with
regard to the proposed approach is the introduction of bank
groups. Banks are classified into groups, where the timing
constraints (such as tCCD) when accessing two banks in the
same group (e.g., tCCD−L) are larger than accessing two
different groups (tCCD−S). The proposed solution is directly
applicable to DDR4. However, since the proposed controller
dynamically schedules commands, it is not known beforehand
whether successive commands will be accessing the same or
a different group. Accordingly, the larger timing constraints
(e.g., tCCD−L in case of tCCD) have to be considered in
the analysis. To consider the shorter constraint, a possible
optimization would be to extend the command schedule with
additional rounds: specifically, we could consider a number of
read rounds and write rounds equal to the number of banks in
each group, so that each round includes only one bank from
each group. A similar solution could be employed for multi-
rank devices, as timing constraints differ whether accessing
banks in the same or different ranks. As such extension would
not be trivial, we reserve it as future work.

Our analysis assumes that the rua is an in-order core; no
assumption is made on interfering requestors. Specifically, the
latency analysis in Section V computes the worst-case latency
that any request can suffer after arriving at the head of its
request queue. In other words, we do not consider queuing delay
in the request queue; note that an in-order core generating one
request at a time cannot suffer from queuing delay. Computing
queuing delay for an out-of-order core would require a static
analysis of the program based on the core architecture; for this
reason, we consider it out of scope of this paper.

Finally, note that our analysis can also be applied to compute
the total latency for a read block transfer by a processing
element such as DMA or an hardware accelerator, this modern
designs received more attention recently [30]. In this case, we
can simply add the latency of each individual read request in
the block, where the first request is close, and successive ones
targeting the same row are open.

IX. CONCLUSIONS

In this paper, we propose, analyze, and evaluate DRAMbulism,
a novel real-time memory controller that employs read/write
bundling. In particular, we implement a simple dynamic
acceptance rule that minimizes the length of the bundles by
guaranteeing that accepted transactions execute in a pipeline.
Our evaluation shows that DRAMbulism provides the tightest
worst-case latency bounds while achieving similar average
performance compared to the best existing real-time controller.
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