DRAMbulism: Balancing Performance and Predictability through Dynamic Pipelining

Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni

RTAS 2020 @ Sydney

Cyber Physical Systems

Multicore Processors

Memory

- Worst-case execution time are impacted by WCL
- SRAMs, predictable and fast, but inefficient; hence, we focus on DRAM
 - Cheap 🕄
 - Higher bandwidth 🕄
 - Lower power consumption (3)
 - High latency (\approx)
 - Timing variabilities (\approx)
 - Challenge is to provide tight worst-case bounds and good average-case performance

Motivation

Derive Upper WCL bound on COTS Controllers

Optimizations

Redesign controllers to tighten the WCL bounds

Work

Strict rules Focus of this •

REQBundle

McMaster

University

Lower average-case performance (\approx)

CMDBundle

Tight WCL (🖂

Pessimistic bounds

Sacrifice Performance

Performance

DRAMbulism

Predictability

DRAM Organization

Problems

Commands must follow constraints by JEDEC

Constraints 1333G 1600H 1066E Inter-bank Constraints (cycle) t_{RRD} : ACT to ACT t_{FAW} : 4 ACT window t_{RTW} : read CAS to write CAS t_{WTR} : write data to read CAS t_{WtoR} : write CAS to read CAS t_{CCD} : CAS to CAS t_{Bus} : data transfer length Δ Intra-bank Constraints (cycle) t_{RL} : read CAS to data t_{WL} : write CAS to data t_{WR} : write data to PRE t_{RCD} : ACT to CAS t_{RP} : PRE to ACT t_{RTP} : CAS to PRE t_{RC} : ACT to ACT t_{RAS} : ACT to PRE

JEDEC DDR3 TIMING CONSTRAINTS FOR DIFFERENT SPEED BINS					
onstraints	1066E	1333G	1600H	1866K	2133L
Inter-bank Constraints (cycle)					
RRD: ACT to ACT	4	4	5	5	5
FAW: 4 ACT window	20	20	24	26	27
RTW: read CAS to write CAS	6	7	7	8	8
WTR: write data to read CAS	4	5	6	7	8
WtoR: write CAS to read CAS	14	16	17	20	22
CCD: CAS to CAS	4	4	4	4	4
Bus: data transfer length	4	4	4	4	4
Intra-bank Constraints (cycle)					
RL: read CAS to data	6	8	9	11	12
WL: write CAS to data	6	7	8	9	10
WR: write data to PRE	8	10	12	14	16
RCD: ACT to CAS	6	8	9	11	12
RP: PRE to ACT	6	8	9	11	12
RTP: CAS to PRE	4	5	6	7	8
RC: ACT to ACT	26	32	37	43	48
RAS: ACT to PRE	20	24	28	32	36

Solutions

- Keep a row buffer open to leverage form open requests
- Private banks and dedicated queues \bullet
- **Bundle** the requests

REQBundle

Accept requests to service in round at snapshot Send all the requests as a close requests

9

CMDBundle

- Accept commands to service in round dynamically
- It leverage from open requests
- Separate round-robin for ACT, CAS, and PRE commands

Clock Cycle

DRAMBulism

- Proposed solution: Process requests in round dynamically while maintaining the pipeline
- Take the benefits of both REQBundle and CMDBundle
- Acceptance rules?

Clock Cycle

DRAMbulism Contd.

- DRAMbulism do not allow the pipeline to break!
- We are able to prove max round length is bounded by:

max(switch_time, t_{RCD}) + (N-1) . max(CAS-CAS, ACT-ACT)

- Based on these, we construct the worst cases as:
 - Self blocking \rightarrow Already serviced in round \bullet
 - Pipe blocking \rightarrow Blocked due to maintain pipeline

Evaluation

We have implemented all controllers in MCsim In order to evaluate the average-case performance, we hooked up MCsim to MACsim, a full system simulator

X86, 1GHz

EEMBC benchmark suite (a2time, cache, basefp, irrflt, aifirf, tblook), and synthetic tasks

8 Requestors, 1 as core under analysis, 7 interfering cores stressing the cua with open requests

Counterparts: REQBundle, CMDBundle

RTAS-BP'20. Mirosanlou, R., Guo, D., Hassan, M., and Pellizzoni, R. "MCsim: An Extensible Memory Controller Simulation Framework"¹³

Conclusion

- Some conditions guarantee the pipeline in each bundle of same-direction requests
- Evaluation demonstrates that DRAMbulism provides comparable bounds to the most predictable real-time controller while delivering average performance similar to the highest performance real-time controller Future work: Multi-rank DDR device with multi mode pipeline

THANKS FOR WATCHING WE'LL BE ANSWERING QUESTIONS rmirosan@uwaterloo.ca

