
Duetto: Latency Guarantees at
Minimal Performance Cost

Reza Mirosanlou†, Mohamed Hassan∗, and Rodolfo Pellizzoni†
†University of Waterloo, Canada, {rmirosan, rpellizz}@uwaterloo.ca

∗McMaster University, Canada, mohamed.hassan@mcmaster.ca

Abstract—The management of shared hardware resources in
multi-core platforms has been characterized by a fundamental
trade-off: high-performance arbiters typically employed in COTS
systems offer no worst-case guarantees, while dedicated real-time
controllers provide timing guarantees at the cost of significantly
degrading system performance. In this paper, we overcome this
trade-off by introducing Duetto, a novel hardware resource
management paradigm. Duetto pairs a real-time arbiter with a
high-performance arbiter and a latency estimator module. Based
on the observation that the resource is rarely overloaded, Duetto
executes the high-performance arbiter most of the time, switching
to the real-time arbiter only in the rare cases when the latency
estimator deems that timing guarantees risk being violated. We
demonstrate our approach on the case study of a multi-bank
memory. Our evaluation based on cycle-accurate simulations
shows that Duetto can provide the same latency guarantees as
the real-time arbiter with limited loss of performance compared
to the high-performance arbiter.

I. INTRODUCTION

The exigent performance, power, and area required from
modern real-time embedded systems motivate the demand to
deploy them using multi-core platforms. This led to a chal-
lenging task: predictably managing shared hardware resources
among cores such that the timing requirements of the system are
still honored. Shared buses, I/Os, caches, and main memories
are examples of these resources. Existing Commercial-Off-The-
Shelf (COTS) arbiters for these resources (e.g. FCFS, priority-
based [1], and reordering arbiters [2]) are designed to achieve
high average performance, which comes at the cost of losing
predictability guarantees.

To address this challenge, researchers have proposed so-
lutions to redesign the arbiters [3], [4] and controllers [5],
[6] for these resources such that they achieve predictability
by construction. In addition to the commonly used Time
Division Multiplexing (TDM) [3] and Round Robin (RR)
schemes, researchers also proposed Harmonic RR (HRR) [4],
and weighted [7] arbitration schemes. To the opposite extreme
of high-performance arbiters, these solutions provide strict
timing guarantees on maximum resource access latency at
the expense of significantly degrading systems performance.
The reason is that advanced optimizations employed by high-
performance arbiters typically induce pathological scenarios
that lead to extremely high latency in the worst case [8], and
must be disabled to provide tight latency bounds. Nonetheless,
such pathological scenarios rarely happen in practice.

In this work, we address the fundamental trade-off between
average performance and predictability by introducing the
Duetto reference model. We show that our reference model
can assist a hardware designer in creating an architecture
that provides latency guarantees with minimal loss of aver-

age performance. Specifically, we propose to pair a simple,
predictable Real-Time Arbiter (RTA) with a High-Performance
Arbiter (HPA), and to associate latency requirements to each
core/requestor in the system. At run-time, a dedicated estimator
component monitors the state of the system. Even under heavy
load, most of the time, the resource is not overloaded, and no
pathological case can be triggered; thus, the HPA is allowed
to arbitrate accesses at no risk and maintains high average
performance. Only in the rare cases when the resource is
overloaded, and the maximum latency of a request could be
violated, the architecture switches to the RTA to guarantee the
satisfaction of all latency requirements. More in details, we
make the following contributions. 1) We provide a conceptual
description and formalization of the Duetto reference model in
Section III. 2) We exemplify the usage of Duetto to design
a controller architecture in Section IV for the case study
of a system where cores share an interconnect to a shared
multi-bank memory. The interconnect deploys a separate read
and write bus connecting all cores to all memory banks and
memory bus, which resembles the commodity buses existing
in modern Systems-on-Chip (such as the ARM’s AXI [9]). 3)
Section V provides a detailed evaluation of the architecture in
the case study by implementing the aforementioned resource
and controller architecture in MacSim [10], a multi-core full-
system, cycle-accurate simulator. Our results show that the
derived architecture can achieve very close performance to
a conventional high-performance arbiter while providing tight
latency guarantees.

Duetto has been inspired by the Simplex reference
model [11]. Simplex prevents safety violations by pairing
a high-performance but unreliable component with a low-
performance but trustworthy component and using a run-time
checker to ensure that the unreliable component does not drive
the system to an unsafe state. However, the semantics of the two
models are not equivalent: our goal is to control the output of
high-speed hardware arbiters at the granularity of a clock cycle,
requiring a high level of parallelism in the execution model that
cannot be easily supported in the Simplex logic framework.

II. CASE STUDY

We begin by describing the multi-bank memory used in
our case study, so that we can use it as a running example
throughout the paper. We selected such resource since it allows
us to highlight the key steps in the proposed design method-
ology, especially concerning parallelism in the hardware; at
the same time, its behavior is not so complex as to prevent
us from fully detailing the latency analysis in the available
space. However, we have also validated the reference model on

1136978-3-9819263-5-4/DATE21/ c©2021 EDAA

tbus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tr + tbus

2

trr + tbusbus
tbus + twtwww

tr + tbus

0 1 6 7
Read operation Write operation

2 13
Cmd issued

R

0 1

22
R

W
1
2
1

tbus
R3

t
tbus

+ tbusbustrr +
tbus

R1

b1
b2
b3
RB
WB

tr + tbus

Fig. 1. An example schedule for 4 requests accessing different banks with
tbus = 4 and tr = tw = 3.

more complex memory models (specifically, Dynamic Random
Access Memories (DRAMs)).

We consider a memory comprising N independent banks
b1, ..., bN . All banks share one Read Bus (RB) and one Write
Bus (WB). Each bank can only process either one read opera-
tion or one write operation at a time. A read operation requires
tr clock cycles to access the data in the bank, followed by tbus
cycles to transfer the data on the read bus. A write operation
requires tbus cycles on the write bus, followed by tw clock
cycles to store the data in the bank. A memory controller
receives memory requests from cores, arbitrates among such
requests, and sends read/write commands to the banks to trigger
memory operations. The controller cannot issue a command to
a bank bj if the bank is busy processing a previous operation,
or if doing so would create a bus conflict with the operation
of a different bank. This implies that the controller can send at
most one read and one write command to two different banks at
the same time. Sending such commands takes one clock cycle.

An example schedule is shown in Figure 1. We assume that
the system is initially idle, then the following requests arrive at
the controller: two read requests for bank b1; one write request
for b2; and one read request for b3. At time 0, the controller
can send both a read command to b1 and a write command to
b2. The controller must then wait until t = 4 to send the read
command to b3, since sending it earlier would cause a read bus
conflict. Finally, to issue the second read command to b1, the
controller must wait until the latest of two events: the bank to
become idle and for the absence of read bus conflict, which
means the command is issued at t = 8.

III. REFERENCE MODEL

We introduce the Duetto reference model. Specifically, we
first decompose the system into a set of communicating con-
ceptual components as shown in Figure 2. Then, we detail the
execution model and discuss the provided latency guarantees.

A. Requestors and Requests

We assume that the system comprises M distinct requestors
{P1, ..., PM}, which issue requests for service to a shared
resource. Depending on the resource, requestors could be cores,
bus masters/DMA devices, or in general, any active hardware
component. Upon being issued, a request is first stored in a
request buffer; we call this the arrival time of the request.
An arbiter then mediates access to the resource based on the
stored requests. Finally, a request is removed from the request
buffer once it completes service at the resource; we call this the
finish time of the request. We assume that the requests of each
requestor Pi can be totally ordered based on their arrival time,
so that we can index them as ri,1, ..., ri,j , Each request has

DTracker

WCLator

RT Arbiter

HP Arbiter

.

.

.

HP cmd

RT cmd

State R

State S

State S

Req.finished

State A

Absolute
deadline

Is
su

ed
 c

m
d

Re
so

ur
ce

Req.finished

Re
qu

es
t b

uf
fe

r

State S

Fig. 2. Duetto reference model.

a type; function T (ri,j) returns the type of ri,j . We use R to
denote the set of outstanding requests (requests that arrived and
have not yet finished) at any one point in time; conceptually,
this represents the state of the buffer.

Example: in our case study, requestors are out-of-order cores.
The type of a request is either read or write. Each core can
issue multiple concurrent requests to any subset of banks. The
considered arbiter resemble those in COTS by increasing par-
allelism through allowing to service requests out of order [2],
[12]. For simplicity, we assume that a request finishes after the
arbiter sends its read/write command; if the designer wishes to
instead consider the time at which the bus transfer is completed,
we can add either tr + tbus (for read) or tbus (for write) to the
computed latency.

B. Request Latency and DTracker

The goal of Duetto is to provide worst-case guarantees on
the latency of each request. Since a requestor can have multiple
outstanding requests, and requests do not need to be serviced
in the same order they arrive, it is necessary to precisely define
the concept of latency. Following related work [12], [13], we
use the following definition:

Definition 1 (Queuing and Processing Latency). Let tai,j be

the arrival time of request ri,j , let tfi,j be its finish time, and

let tri,j = tfi,k be the latest time at which a previously arrived
request ri,k, k < j of the same requestor finishes (or time 0
if no such request exists). Then the queuing latency of ri,j is

max
(
0,min(tfi,j , t

r
i,j) − tai,j

)
, while the processing latency is

max
(
0, tfi,j −max(tri,j , t

a
i,j)

)
.

Figure 3 shows an example with three requests. Note that
since tri,j < tai,j , the queuing latency of ri,j is zero. As
in all related work, our methodology bounds the processing
latency only. The key reason is that whenever a requestor issues
multiple requests and stalls until they complete, the stall time
is upper bounded by the sum of the processing delay of the
requests. In particular, as discussed in [5], this means that the
delay suffered by a real-time task executed on a core accessing
a shared resource can be bounded by the sum of the processing
delay of the requests issued by the task. For this reason, the

Design, Automation and Test in Europe Conference 1137

ri,j
ri,j+1
ri,j+2

Processingi,j
Queueingi,j+1

Processingi,j+2
time

tai,j
t ai,j+1

tai,j+2

t fi,j
t ri,j+1
t ri,j+2

t fi,j+1
Queueingi,j+2 t fi,j+2

Fig. 3. Queuing and processing latency example. Assume that all previous
requests ri,k with k < j finish before tai,j . We use ↑ for the arrival time tai,j
of each request, ↓ for its finish time tfi,j , and ↑ for the start of processing:
max(tri,j , t

a
i,j).

processing latency of ri,j+1, which is covered by the processing
time of ri,j , is set to zero.

Based on the above discussion, latency requirements in our
reference model are expressed by associating each requestor Pi

and each type of request with a relative deadline Di

(
T (ri,j)

)
,

which represents the maximum allowable processing latency
for each request of that requestor and type. Consequently, the
finishing time of every request ri,j must be no later than
its absolute deadline di,j = max(tri,j , t

a
i,j) + Di

(
T (ri,j)

)
.

The Deadline Tracker (DTracker in Figure 2) component
is responsible for maintaining such information. Note that
it suffices to maintain a single absolute deadline for each
requestor Pi, associated with its oldest outstanding request
ri,j : this is because subsequent requests of Pi cannot have an
absolute deadline earlier than the finish time of ri,j . To simplify
exposition, in the rest of the paper we will thus use the term
“oldest request” to denote any request that is the oldest for its
requestor (rather than the oldest among all requestors).

C. Commands and Resource Interface

An arbiter controls the resource to service requests by issuing
one command every clock cycle. Like requests, every command
is characterized by a type. A “no-operation” NOP command
is used whenever the resource is idle.
Example: based on the discussion in Section II, the resource
accepts four types of commands: NOP , RD, WR, and
RD/WR. Note that while in this case a request is serviced
by a single command, depending on the resource, additional
commands might be required. For example, a DRAM request
might require a PRE, ACT and CAS commands [14].

We assume that the command semantic is defined by an
automata, which we call the resource interface. Essentially, the
interface defines the “contract” between the resource and the
arbiter; in this sense, it does not need to model the low-level
internal state of the resource, but rather only those details that
are relevant in terms of the behavior of the commands. For
many resource types, the interface is defined by a standard,
e.g. JEDEC for DRAM [14]. Let S to denote the current state
of the resource interface; we say that a command is valid
in S if the resource can accept that command. We further
say that a command is legal if it is valid and satisfies an
outstanding request in R, and use L(S,R) to denote the set
of legal commands. Note that a command might be valid but
not legal: for example, a requestor might issue a read request
to a memory resource, and an erroneous arbiter might then
generate a valid but incorrect write command for that request.
Example: the behavior of the resource interface can be defined
using N + 2 timers: cr, cw for the read and write bus, and
cbj for each bank bj . cr (cw) is set to tbus every time a RD
(WR) command or RD/WR command is issued. Whenever a

2

Read operation Write operation Cmd issued
2W1

tbustbusbusbubusbusbbbusbusbb
R2

ttt
R 2

b1
b2
RB
WB

R2RR
tbus

RR
tbus

W1 W1
2

tbus + tw tbus + tw tbus + twtr+tbus tr+tbus tr+tbus tbus tbus tbus

Fig. 4. Unbounded latency. A read request to b1 is never ready, since the read
bus is occupied whenever b1 becomes idle.

command is sent to bank bj , cbj is set to either tr + tbus (for
a read operation) or tbus + tw (for a write). A command is
valid only if all relevant bank and bus timers are zero. We say
that a request is ready if it can be serviced by issuing a legal
command in the current clock cycle.

D. High-Performance and Real-Time Arbiter

The reference model comprises two arbiters: a High-
Performance Arbiter (HPA), which we assume to be optimized
for maximum average performance, and a Real-Time Arbiter
(RTA), optimized for tight latency bounds. Since this paper
focuses on timing requirements, and not functional verification,
for simplicity, we will assume that the HPA is correct, in
the sense that it always issues legal commands 1. However,
we do not make any further assumptions on the way that
requests and their corresponding commands are scheduled by
the HPA. This ensures that the latency guarantees provided by
our methodology are completely independent of the HPA. On
the other hand, the behavior and internal state of the RTA,
which we denote as A, must be explicitly modeled.
Example: for our evaluation in Section V, we employ a First-
Ready, First-Come-First-Serve (FR-FCFS) arbiter as the HPA.
At each clock cycle, this arbiter selects among ready requests,
and gives priority to requests based on their arrival time. We
choose this arbiter because, as shown in literature [2], it tends
to maximize performance in terms of the overall Instructions
Per Cycle (IPC) of the system by favoring applications with
high IPC that can issue multiple concurrent memory requests.
However, note that this arbiter does not provide any latency
guarantee. In particular, as shown in Figure 4, we can construct
a pattern of memory accesses where a read request to bank b1
can be stalled for any amount of time by a sequence of write
requests to b1 and read requests to other banks. We discuss the
design of the RTA in Section IV.

E. Execution Model and Latency Guarantees

Finally, we discuss the execution model and how latency
requirements are guaranteed by the Worst-Case Latency esti-
mator (WCLator) component, which is the core of our refer-
ence model. As Figure 2 illustrates, the two arbiters operate
independently and in parallel. Every clock cycle, each arbiter
selects one command (possibly NOP) based on its internal
state, as well as the states S,R of the resource interface and
request buffer. In parallel, the WCLator selects between the two
arbiters; the command of the selected arbiter is then issued to
the resource through the multiplexer in the figure. Since the
command issued in a clock cycle might be different from the
one selected by an arbiter, we require that each arbiter updates

1If the correctness of the HPA cannot be verified, the methodology can
be extended with an additional checker module that checks the legality of the
commands based on the states S,R of the resource interface and request buffer.

1138 Design, Automation and Test in Europe Conference

its internal state based on the actual issued command, rather
than the one it selects. It is essential to note that because we
are targeting high-speed hardware implementation, we assume
that the WCLator must make its decision without knowing
which commands are selected by the two arbiters: otherwise,
the WCLator logic would have to be placed in series with the
arbiters, which could greatly slow down the clock speed.

To decide between the arbiters, at each clock cycle and for
each requestor Pi with one or more outstanding requests, the
WCLator computes an upper bound to the finish time tfi,j of
its oldest request ri,j , under the assumption that any legal
command can be sent in the current cycle, while the RTA
is selected in all future cycles. If for each such requestor,
the computed finish time is less than or equal to the deadline
di,j , then the WCLator selects the HPA. Otherwise, it selects
the RTA. The intuition for this decision is that if the computed
finish time is no larger than the deadline, then it is safe to
continue with the (legal) command that is selected by the HPA.
Note that the WCLator’s estimation can be based on the current
states S,R and A of the resource interface, request buffer
and RTA. We next formally prove that the system meets all
deadlines, as long as the latency requirements are not set to a
smaller value than the latency guarantees provided by the RTA.

Definition 2 (Static Worst-Case Latency (WCL) Bound). For
every requestor Pi and request type, let Δi

(
T (ri,j)

)
to be an

upper bound to the processing latency of ri,j assuming any
possible state of the resource interface S, request buffer R and
RTA A at time max(tri,j , t

a
i,j), and that the WCLator always

selects the RTA from max(tri,j , t
a
i,j) onward.

Theorem 3. No request misses its deadline if for all requestors
and request types it holds: Di

(
T (ri,j)

)
≥ Δi

(
T (ri,j)

)
.

Proof. By contradiction, assume there exists a request ri,j
that misses its deadline at di,j . Since di,j = max(tri,j , t

a
i,j) +

Di

(
T (ri,j)

)
and no older request of Pi can finish after tri,j ,

it follows that ri,j is the oldest request of Pi in the interval
[max(tri,j , t

a
i,j), di,j]. We consider two cases: (1) the WCLator

always sends commands of RTA in [max(tri,j , t
a
i,j), di,j − 1];

(2) or the WCLator sends at least one command of HPA during
such interval; in which case let t be the latest time at which an
HPA command is sent.

Case (1): by Definition 2 and since the RTA is always
selected, ri,j must finish by max(tri,j , t

a
i,j) + Δi

(
T (ri,j)

)
≤

max
(
tri,j , t

a
i,j +Di

(
T (ri,j)

))
= di,j ; a contradiction.

Case (2): since the WCLator selects the HPA at time t,
while the RTA is selected for all following cycles until di,j ,
and because by assumption the HPA is correct, it follows that
tfi,j ≤ di,j , again a contradiction.

The key intuition behind Duetto is that using run-time
information on the state of the system typically allows the
WCLator estimation to be much tighter than any possible static
WCL bound. Hence, unless the system becomes fully loaded,
the WCLator can keep selecting the HPA and avoid loss of
average performance.

IV. ARCHITECTURE DESIGN

We next show how to employ the reference model to de-
sign a concrete architecture. We consider a use-case where

the resource, HPA and request buffer have already been de-
signed/implemented, and the designer wishes to add support
for latency requirements using Duetto. The detailed DTracker
design depends on the request buffer, but we argue that it is
generally straightforward 2. Therefore, we focus on the design
of the RTA and WCLator. We do not claim that an automated
process is possible; however, we believe that the design can
proceed through a sequence of four conceptual steps, which
we illustrate based on our case study.

Step (A): RTA design. We design a dynamic RR arbiter, which
provides the same latency guarantees to every requestor without
unduly limiting bank parallelism. A requestor is removed from
the RR queue when its oldest request finishes, and enqueued
at the back of the RR queue if it has any outstanding request.
For a requestor Pi, we use hpi to denote the set of higher
priority requestors, i.e. the requestors that are ahead of Pi in
the RR queue. We say that a request of Pi to bank bk is
blocked if there is a non-ready oldest request of a requestor
in hpi that also targets bk. The RTA arbitrates between non-
blocked ready requests based on a two-level arbitration scheme:
in the first level, it gives priority to oldest requests over non-
oldest requests; at the second level, it uses the RR order of
requestors. This means that if, for example, the oldest request
of the highest priority requestor is non-ready because its bank
is busy, the controller can still service a lower priority request
to another bank. However, if the highest priority request is non-
ready because its data bus is busy, the controller cannot service
a lower priority request of the opposite type (read to write or
vice versa) to the same bank, since this could result in the
pattern in Figure 4.

Step (B): Dynamic RTA Latency Analysis. We compute an
upper bound to the remaining latency (i.e., the time to finish)
of the oldest request ri,j of Pi assuming that the RTA is
always selected. We encode the states S,R and A into a small
set of analysis parameters used to derive latency equations.
Due to space limitations, we only consider the case of a read
request, but the write case is similar. Let bk be the bank
targeted by ri,j . We use kbank,r, kbank,w to denote the number
of read/write oldest requests of requestors in hpi that target
bk, and kbus,r, kbus,w to denote the number of oldest requests
of requestors in hpi that target another bank; note that such
parameters can be easily derived at run-time based on the state
of the request buffer R and RR queue in the RTA (A).

Theorem 4. If the oldest request of Pi at time t is read request
ri,j targeting bk, and the RTA is always selected from t onward,

its remaining latency tfi,j − t is bounded by:

if kbank,w = 0 : cinit,r + kbank,r · (tr + 2 · tbus − 1) +

kbus,r · tbus + 1, (1)

if kbank,w > 0 : cinit,rw + kbank,r · (tr + 2 · tbus − 1) +

kbank,w · (tw + 2 · tbus − 1) +

(kbus,r + kbus,w) · tbus + 1, (2)

2To simplify implementation, it is preferable to store the number of cycles
remaining until the absolute deadline, rather than the absolute deadline itself.

Design, Automation and Test in Europe Conference 1139

where:

if cr ≥ cbk : cinit,r = cr, (3)

if cr < cbk : cinit,r = cbk + tbus − 1, (4)

if cr ≥ cbk ∧ cw ≥ cbk : cinit,rw = max(cr, cw), (5)

if cr < cbk ∨ cw < cbk : cinit,rw = cbk + tbus − 1. (6)

Proof. Since oldest ready requests are arbitrated in RR order,
and requests to bk are blocked if there is a higher priority non-
ready request, it follows that the RTA will service a sequence of
exactly kbank,r+kbank,w requests to bk followed by ri,j itself.
Furthermore, after a request in the sequence becomes ready and
non-blocked, it can still be delayed by higher priority requests
targeting the same bus but a different bank; if kbank,w > 0, then
conflicts can happen over both the read and write bus; hence
we consider kbus,r + kbus,w conflicting requests, otherwise
(kbank,w = 0), we only consider the kbus,r read requests. Then,
the remaining latency of ri,j can be obtained by summing:
(1) the time until the first request in the sequence to bk first
becomes ready; we call this either cinit,r (if kbank,w = 0) or
cinit,rw (if kbank,w > 0). (2) The latency between issuing the
command for one request in the sequence, and the time the next
request in the sequence becomes ready. Each request in the se-
quence occupies bk for either tr+tbus (read) or tbus+tw (write)
cycles; furthermore, a lower priority request could be serviced
the cycle before the bank becomes idle, adding an extra tbus−1
cycles of delay. Hence, the overall latency over the sequence is
equal to: kbank,r ·(tr+2 ·tbus−1)+kbank,w ·(tw+2 ·tbus−1).
(3) The delay of higher priority requests targeting a different
bank; as argued, this is (kbus,r + kbus,w) · tbus if kbank,w > 0,
and kbus,r · tbus otherwise. (4) One clock cycle to issue a RD
or RD/WR command to service ri,j . Summing the four terms
yields Equations 1, 2.

Finally, we consider cinit,r, cinit,rw. As shown in Equa-
tions 3-6, the two cases differ only in which bus timers we
need to consider, based on the type of requests in the sequence
to bk. If at time t, the relevant bus timer(s) is larger or equal
than the bank timer cbk, then the first request in the sequence
will become ready when the bus timer(s) expire. Otherwise, it
is again possible for a lower priority request to be serviced one
cycle before bk becomes idle, resulting in an initial delay of
cbk + tbus − 1. This concludes the proof.

Step (C): Static WCL Bound. The static WCL bound
Δi

(
T (ri,j)

)
is obtained by maximizing the remaining latency

in Equations 1-6 over all possible values of the parameters.
Specifically, we set cbk to its maximum value max(tr, tw) +
tbus − 1 (a request was issued to bk the previous cycle), and
set kbank,r+kbank,w = M−1, kbus,r = kbus,w = 0 (requests to
bank bk generate larger delay, and there can only be one oldest
request for each of the M − 1 other requestors), yielding:

Δi(read) = M ·
(
max(tr, tw) + 2 · tbus − 1

)
. (7)

Repeating the analysis for a write request yields the same
bound. Hence, in our example, all request types have the
same static WCL bound; and since we treat all requestors
equally, the bound does not depend on the requestor either.
However, more complex arbitration schemes could differentiate
between request types [8], [15] or requestors [3], [7] based on
criticalities. The obtained bound is predictable, in the sense

that it is linear in the number of requestors; each requestor
contributes a latency term max(tr, tw)+ tbus, which represents
the worst-case intra-bank time, plus a blocking term tbus − 1,
which represents the price for allowing inter-bank parallelism.
Step (D): WCLator design. Consider again the oldest request
ri,j of Pi targeting bank bk at time t. To estimate its finish time

tfi,j , we enumerate a set of cases based on which request(s) (at
most one read and one write) could be serviced by a legal
command issued at time t. For each case, we compute a bound
to the remaining latency of ri,j , so that we can obtain tfi,j by
summing the remaining latency with t.
• (1) If ri,j is serviced, then its remaining latency is 1 cycle.
• (2) Otherwise, the remaining latency is computed by using

Equations 1-6 but with a modified value of some parame-
ters, as detailed in the sub-cases below, to account for the
command sent at t; this is possible because by definition the
WCLator computes tfi,j assuming that the RTA is selected
from t+ 1 onward.

• (2.1) If a request to bk is serviced, set cbk = tr + tbus or
cbk = tbus+tw, depending on the type of request; and subtract
one from kbank,r or kbank,w if it is the oldest request of a
requestor in hpi.

• (2.2) If a request to another bank is serviced, set either cr =
tbus or cw = tbus, depending on the type of request; and
subtract one from kbus,r or kbus,w if it is the oldest request
of a requestor in hpi.

• (2.3) If neither sub-case (2.1) or (2.2) apply, then a NOP
is issued. In this case, no change is needed if the value of
cinit,r in Equation 1, or the value of cinit,rw in Equation 2, is
greater than zero; otherwise, add one to the latency computed
by the equation to account for the cycle wasted by issuing
the NOP .

At run-time and for each requestor Pi, the WCLator then uses
the set of legal commands L(S,R) to determine which cases
can apply; and takes tfi,j as the maximum over all such cases.

Here, sub-case (2.1) can be excluded if cbk > 0, or there is
no request targeting bk apart from ri,j in the request buffer;
combining such information with the state of the RR queue in
the RTA allows the WCLator to also determine whether kbank,r

or kbank,w should be decreased or not (note that if possible, the
latter case must be considered since it leads to higher latency).
Similar considerations hold for sub-case (2.2). The presented
design is well-suited for hardware implementation, because
each case for every requestor can be computed in parallel 3, and
the resulting tfi,j compared against di,j to determine if the HPA
can be selected. Hence, the complexity of the implementation
depends on the latency equations. As shown by Equations 1-2,
we argue that most analysis for predictable arbiters [4], [7], [8],
[12], [15] yield equations that involve adding terms, where each
term depends on an analysis parameter. This can be computed
efficiently in hardware by using one look-up table for each term,
and then cascading the results through a sequence of adders.

V. EVALUATION

We use MacSim [10], an x86 multi-processor architectural
simulator, to model the requestors in our evaluation. We incor-
porate eight 8-wide superscalars (i.e. it can process multiple

3To reduce area, an optimized implementation can merge cases that have
similar bounds and remove those with provably smaller latency.

1140 Design, Automation and Test in Europe Conference

Fig. 5. Request latency of HPA, RTA, and Duetto.

instructions per cycle) cores clocked at 1GHz and implement
the case study in the open-source MCsim memory controller
simulator [16]. All cores share a bus connected to the multi-
banked memory, as explained in the case-study throughout
the paper. We employ two types of synthetic benchmarks:
latency-sensitive and bandwidth-oriented from IsolBench [17].
We run the non memory-intensive benchmark on the foreground
core and memory-intensive benchmarks on the background
cores. Memory requests are interleaved among all banks at the
granularity of a cache line (64 bytes).

Figure 5 delineates the processing latency of each request
under HPA, RTA and Duetto when all requestors contend for
access to N = 8 banks with a bus time tbus = 10 cycles
and processing time tr = tw = 30. For visualization reasons,
the figure only incorporates requests with latency longer than
150 cycles. The red line represents the static WCL bound. For
HPA, we observe large latency spikes throughout the execution.
This is because HPA prioritizes requests that target a ready
bank, which can starve (theoretically) or delay for a long time
(practically) requests targeting busy banks. RTA guarantees the
latency bound for all requests as expected. However, none
of the requests come close to the static WCL bound (392
cycles): this is because the static analysis must assume that
all requestors access the same bank at the same time, which is
unlikely in practice. Finally, for Duetto we used the minimum
possible relative deadline Di

(
T (ri,j)

)
= Δi

(
T (ri,j)

)
for each

requestor. Duetto stretches the latency of requests towards the
relative deadline (red line), allowing it to keep selecting the
HPA as long as possible.

We use the aggregate IPC of the workload over 8 cores as
a measure of performance. Figures 6 and 7 show the IPC of
RTA, HPA and Duetto normalized by the IPC of RTA, when
setting either tr = tw = 0 or tr = tw = 30. Notice that,
tr = tw = 0 implies the requestors only compete to access the
read/write buses, i.e. there is no bank parallelism. For Duetto
we first set all deadlines to the minimum possible value, and
then progressively increase them up to 3×Δi (200% increase).
From the figures, the performance of Duetto is already close to
HPA with the strictest latency requirements, and relaxing such
requirements further increases its performance until it matches
the HPA. Furthermore, bank parallelism improves the relative
performance of Duetto, as it increases the difference between
the static WCL bound and the dynamic bound. We have also
experimented by changing the number of banks and the way
that requests are interleaved, but due to space limitations we
omit such results as they show little variations in terms of the
relative performance between HPA, RTA, and Duetto.

Deadline Increment Steps(%)
0 50 100 150 200

N
or

m
al

iz
ed

 IP
C

1

1.1

1.2

1.3

HPA
Duetto
RTA

Fig. 6. IPC (tr = tw = 0).

Deadline Increment Steps(%)
0 50 100 150 200

N
or

m
al

iz
ed

 IP
C

1

1.1

1.2

1.3

HPA
Duetto
RTA

Fig. 7. IPC (tr = tw = 30).

VI. CONCLUSION AND FUTURE WORK

We introduced the Duetto reference model, a novel paradigm
for shared hardware resource management in real-time em-
bedded systems. By pairing a high-performance COTS arbiter
with a predictable real-time arbiter and dynamically switching
between the two at run-time, Duetto is able to overcome the
traditional trade-off between average case performance and
predictability. We believe that Duetto can be demonstrated on a
broad spectrum of resources, including DRAM and bus/cache.

REFERENCES

[1] W. Bain Jr and S. Ahuja, “Performance analysis of high-speed digital
buses for multiprocessing systems,” in ACM Annual symposium on
Computer Architecture (ISCA), 1981.

[2] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” ACM SIGARCH Computer Architecture
News, 2000.

[3] F. Hebbache, M. Jan, F. Brandner, and L. Pautet, “Shedding the shackles
of time-division multiplexing,” in IEEE Real-Time Systems Symposium
(RTSS), 2018.

[4] M.-K. Yoon, J.-E. Kim, and L. Sha, “Optimizing tunable wcet with shared
resource allocation and arbitration in hard real-time multicore systems,”
in IEEE Real-Time Systems Symposium (RTSS), 2011.

[5] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst case analysis of dram
latency in multi-requestor systems,” in 2013 IEEE 34th Real-Time Systems
Symposium (RTSS), 2013.

[6] R. Mirosanlou, M. Hassan, and R. Pellizzoni, “Drambulism: Balancing
performance and predictability through dynamic pipelining,” in 2020
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2020.

[7] M. Hassan and H. Patel, “Criticality-and requirement-aware bus arbitra-
tion for multi-core mixed criticality systems,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2016.

[8] M. Hassan and R. Pellizzoni, “Bounding dram interference in cots
heterogeneous mpsocs for mixed criticality systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2018.

[9] ARM, “Amba axi protocol specification v2. 0,” ARM Holdings, 2010.
[10] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,

“Macsim: A cpu-gpu heterogeneous simulation framework user guide,”
Georgia Institute of Technology, 2012.

[11] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. Kumar, “The
simplex reference model: Limiting fault-propagation due to unreliable
components in cyber-physical system architectures,” in IEEE Interna-
tional Real-Time Systems Symposium (RTSS), 2007.

[12] H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar,
“Bounding memory interference delay in cots-based multi-core systems,”
in IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2014.

[13] R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo, “Wcet derivation
under single core equivalence with explicit memory budget assignment,”
in Euromicro Conference on Real-Time Systems (ECRTS), 2017.

[14] D. S. Standard, “Jedec jesd79-3,” 2007.
[15] H. Yun, R. Pellizzon, and P. K. Valsan, “Parallelism-aware memory

interference delay analysis for cots multicore systems,” in Euromicro
Conference on Real-Time Systems (ECRTS), 2015.

[16] R. Mirosanlou, D. Guo, M. Hassan, and R. Pellizzoni, “Mcsim: An ex-
tensible dram memory controller simulator,” IEEE Computer Architecture
Letters (CAL), 2020.

[17] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to
improve isolation in multicore real-time systems,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2016.

Design, Automation and Test in Europe Conference 1141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

