
Parallelism-Aware High-Performance
Cache Coherence with Tight Latency Bounds
Reza Mirosanlou #

University of Waterloo, Canada

Mohamed Hassan #

McMaster University, Hamilton, Canada

Rodolfo Pellizzoni #

University of Waterloo, Canada

Abstract
In Commercial-Off-The-Shelf (COTS) systems-on-chip, processing elements communicate data
through a shared memory hierarchy, and a coherent high-performance interconnect, where the de
facto standard to handle shared data is through a coherence protocol. Driven by the extraordinary
demands from modern real-time embedded system applications to generate, process, and communicate
massive amounts of data, recent efforts aim to ensure timing predictability while integrating cache
coherence in multi-core real-time systems. However, we observe that most of these efforts compromise
system average performance upon offering predictability guarantees. Motivated by this observation,
this work proposes an arbiter aimed at providing a predictable, coherent shared cache hierarchy
solution, yet with a negligible performance degradation compared to COTS solutions. We achieve
this goal by adopting a high-performance-driven architecture including a split-transaction bus
and bankized shared cache. In addition, all accesses are arbitrated through a global ordering
mechanism. Our proposed arbiter operates alongside conventional coherence protocols without
requiring any protocol modifications. Furthermore, we leverage the Duetto reference model by
pairing the proposed arbiter and a high-performance arbiter. We evaluate our solution based
on both synthetic and SPLASH-3 benchmarks, showing that we can significantly outperform the
state-of-the-art in predictable cache coherence, while offering a COTS-level performance.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture;
Computer systems organization → Embedded hardware

Keywords and phrases Predictability, Cache, COTS, Arbitration, Real-time system

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.16

Acknowledgements We would like to thank the anonymous reviewers for their valuable feedback, and
our shepherd for helping to significantly improve this paper. This work has been supported in part by
NSERC, CMC Microsystems, and TII. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views of the
sponsors.

1 Introduction

Enabling data sharing is imperative in modern embedded systems—automotive, Unmanned
Air Vehicles (UAVs), and Internet-of-Things (IoT) to name a few. In these systems, massive
amounts of data have to be collected (sensor fusion, cameras, etc), communicated through
interconnect(s), and processed by various processing elements. As a result, recent efforts
have been proposed to shift away from the independent task model, where tasks do not
share data to a more-practical model that embraces data sharing and enables inter-core
communication [5, 4, 21, 10, 33, 6, 34, 17]. Among these solutions, we find those leveraging
cache-coherent interconnects to be promising due to their performance benefits as well as
transparency to the software stack. In addition, cache coherence is already the standard de
facto in Commercial-Off-The-Shelf (COTS) multi-core platforms.

© Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 16; pp. 16:1–16:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rmirosan@uwaterloo.ca
mailto:mohamed.hassan@mcmaster.ca
mailto:rpellizz@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECRTS.2022.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

However, real-time embedded systems impose their own unique challenges, which do not
exist in these performance-oriented COTS platforms. Predictability comes at the top of the
list of these challenges; the architecture has to be predictable by-design to facilitate the timing
analysis, which is necessary to provide timing guarantees to tasks running on the system.
Originally designed with performance as the main goal, COTS cache coherent interconnects
deploy several re-orderings and optimizations that hinder their predictability. It has been
shown that even deploying a simple COTS coherence protocol such as the Modified-Shared-
Invalid (MSI) protocol on top of a Time Division Multiplexing (TDM)-based interconnect
revokes the system predictability [10, 16].

1.1 Related Work: Predictable Cache Coherence
To address this problem, recently the community has proposed several works that aim at
implementing predictable cache coherence solutions. However, most existing solutions impose
both coherence protocol as well as architectural modifications [10, 37, 18, 16, 17] or at the
very least require specific hardware support [9]. These changes have led in early works to
a quadratic increase in the worst-case memory latency (WCL) [10, 37, 18] (Problem 1).
Moreover, mandating coherence protocol modifications discourages a real adoption of these
solutions from the industry since adoption and verification of a new coherence protocol is
known to be one of the most complex architectural tasks [36, 30] (Problem 2). PISCOT [15]
addresses these problems by deploying of COTS coherence protocols on split-transaction
interconnects. It also reduces the quadratic worst-case coherence latency to be linear in the
number of cores. Nonetheless, PISCOT achieves this tight WCL by deploying two techniques
that limit the overall memory performance compared to COTS solutions. The first is a
TDM-based request bus, which is needed to enforce predictability, and the second is limiting
the number of requests that each core can issue to the interconnect to one, which is needed
to achieve the aforementioned tight latency (Problem 3). Additionally, similar to all
existing work, PISCOT models the data bus and the last-level cache (LLC) as a single shared
resource, and hence, no parallelism is possible in accessing the LLC (Problem 4). In COTS
platforms, since bank processing times are much longer than the data transfer on the bus,
LLC is usually a bankized memory, where different banks can process requests in parallel to
improve system’s performance [2].

1.2 Contributions
Motivated by these limitations, this paper makes the following contributions: 1) We propose
DUEPCO: a novel real-time arbitration scheme for managing memory accesses in the cache
hierarchy. This arbiter models the cache hierarchy as independent and parallel resources: the
request (control) bus, the response (data) bus, while each LLC’s bank is a resource of its own.
This is key to leverage parallelism among these components to improve average performance,
while tightening memory latency bounds (addressing 1 and 4). More details about this
arbiter are in Section 4. 2) Our proposed arbiter operates alongside conventional coherence
protocols without requiring any protocol modifications (addressing 2). 3) In Section 5, we
provide a timing analysis that ensures predictability by statically bounding the worst-case
latency suffered by any memory request. Unlike the solutions in [10, 16, 18, 37], and similar
to [15, 9, 17], this bound is linear in the number of cores (addressing 1). 4) To further
address the performance-predictability trade-off, in Section 6 we show how to extend the
Duetto reference model [25, 26] to our cache architecture. This is achieved by integrating two
arbiters: a High-performance Arbiter (HPA) offers the system a COTS-level performance

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:3

most of the time, while the proposed Real-time Arbiter (RTA) runs in parallel and is only
utilized when necessary to meet timing guarantees (addressing 3). 5) Finally, in Section 7
we evaluate the proposed arbiter against the state-of-the-art predictable coherency solution
as well as a baseline COTS solution using both synthetic and SPLASH-3 [31] benchmarks.
Our evaluation shows that our arbiter outperforms state-of-the-art predictable solutions
in terms of average memory latency by an average of 1.74×, while providing comparable
worst-case latency bounds to the best predictable mechanism. Employing Duetto can further
improve system throughput by up to 6.4× at the cost of some degradation in latency bounds.

2 Background

2.1 Hardware Cache Coherence
Cache coherence is ubiquitous in shared memory multiprocessors since it enables shared data
communication between cores while ensuring the system maintains data correctness. Data
correctness is achieved when all cores consume (upon request by load/store instructions) the
most recent copy of data. Coherence protocols employed in current Commercial-off-the-Shelf
(COTS) systems are extensions of the basic Modified-Shared-Invalid (MSI) protocol [36].
MSI consists of three fundamental stable states: 1) Modified (M): corresponds to memory
blocks that have been modified (dirty) by a write in a private/shared cache; hence, the
core/LLC is the owner of this cache line; 2) Shared (S): corresponds to the blocks that are
unmodified (clean) and held by one or more cores; 3) Invalid (I): contains potentially stale
and incoherent datum and both loads and stores will miss when accessing invalid blocks.
Note that the protocol allows multiple cores to have a cache line in the S state, while only
one core could have a cache line in the M state. According to the observed memory activity,
the state of the cache line copies will be changed in the cache controllers. There exist two
types of hardware cache coherence mechanisms based on how cores and the shared memory
perceive the memory activity: 1) snooping bus-based cache coherence [36] in which all cores
broadcast all the memory activities on the bus; 2) directory-based cache coherence [38] in
which every activity will be communicated through a centralized directory that tracks the
information regarding the cache lines among all cores. In this work, we employ snooping
bus-based coherence as they are normally deployed in multi-core systems with up to 16
cores [32, 3, 27] and also deployed in state-of-the-art efforts [15, 10, 17, 18].

2.2 Arbitration
Simultaneous access to physical shared resources such as shared bus have a significant effect
on the execution time of the applications. Therefore, having an arbiter is necessary when
multiple cores try to access the shared resource simultaneously. Similar to the other shared
resources in the system, different arbitration schemes lead to different timing characterizations
of the system [7, 28, 11, 40, 17, 15, 10, 8, 7, 24, 29, 23]. The memory bus in multicore systems
is one of the primary sources of interference. Therefore, a predictable arbiter guarantees that
each requesting core is granted the bus eventually in a defined upper-bound amount of time.
In COTS platforms, a high-performance arbiter is commonly used to maximize the overall
performance. First-Come-First-Serve (FCFS) [19] is one example in this context that does
not provide any latency guarantee for the shared memory accesses (assuming that there is
no bound on reordering requests) and favors the cores that generate more requests to the
shared resource and operate faster than the other cores in the system. On the other hand,

ECRTS 2022

16:4 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

Figure 1 Architecture model.

this could potentially lead to a case where a request from a slower core takes a very long
time to get service. Another approach is to assign a fixed priority to a certain processor but
this type of arbitration policy cannot provide a guarantee to lower priority requests.

The level of complexity of the coherence protocols heavily relies on the underlying deployed
interconnect network architecture. For instance, atomic/unified buses significantly simplify
the protocol implementation; however, the performance of the system will be significantly
degraded as all the cores are required to wait until the granted core finishes its interconnect
usage; hence, serializing the accesses. In COTS platforms such as ARM Corelink CCI550
and Intel’s QPI, the shared bus is usually implemented as a split-transaction interconnect
in order to improve system performance. This is achieved by concurrently managing both
coherent messages and data responses [35] such that the request bus and response bus will be
separated. This architecture allows pipelining operation for the requests and responses on the
bus and increases the flexibility in terms of the arbitration. In detail, a split-transaction bus
can provide responses in an order different from the request bus depending on the arbitration
on request and response buses.

3 System Model

In this section, we first detail the hardware architecture considered in this paper along
with the coherency assumptions. Then, we explain how requests generated by the cores are
processed by the proposed hardware architecture and how the latency for each request is
constructed.

3.1 Architecture and Coherency
An overview of the proposed hardware architectural model is delineated in Figure 1. We
consider a multi-core system with M Out-Of-Order (OOO) requestors1 including processing
cores, P1, ..., Pi, ..., PM where each requestor has exclusive access to a private cache. All
cores have also access to a shared memory that we assume is an on-chip Last-Level Cache
(LLC). We assume that tasks running on the cores can share data among each other; hence,
a coherency protocol must be employed in the system to allow coherent actions among cores
and LLC. We consider both data transfers between a private cache and the LLC, as well
as direct Cache-to-Cache (C2C) transfers between private caches, which exhibit improved
average-case performance. In this paper, we adopt the MSI coherency protocol that includes
three fundamental stable states as discussed in Section 2. Notice that we use the MSI as an

1 We use cores and requestors interchangeably throughout the paper.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:5

exemplar protocol; however, the proposed solution can work in tandem with other protocols.
This is because we do not modify the coherency protocol by any means and all proposed
elements of the design are independent of the details of the implemented protocol. This also
simplifies the verification efforts compared to the approaches that alter protocols.

Instead of a unified interconnect commonly deployed in real-time architectures, we consider
a split-transaction bus in which all communications between cores and LLC is done using two
separate buses: 1) request bus, which is responsible for broadcasting the coherency messages;
2) response bus, which is a dedicated interconnect to transfer the data responses from/to
cores. These two buses operate in parallel to improve the performance of the system. The
request bus and response bus take a certain amount of time to transfer message packet and
data response, which we represent with tREQ and tRESP , respectively. In order to maximize
the parallelism in the system, we propose to bankize the LLC such that multiple requests
can be processed simultaneously. Bankizing LLC is a common approach in COTS platforms
to increase system’s performance such as in Intel’s architecture [2]. Therefore, we assume
that the LLC consists of N independent banks, b1, ..., bi, ..., bN where each bank consumes a
certain amount of time tBANK to process writing data to (or retrieving data from) the cache
data array inside each bank. In addition, LLC banks could be shared among all cores [12]
or partially shared similar to [22]. In our model, we assume the former. Similar to existing
related works [40, 17, 15, 10, 8], in this paper, we only focus on the interference suffered by
the L1-LLC traffic due to coherence, shared cache(s), and shared interconnects and do not
model the extra interference occurring in off-chip memory due to LLC misses. This latter
can be bounded using other existing orthogonal approaches such as [39, 12, 13, 7].

We assume that each cache entity (private and LLC) has its own set of interconnect
buffers: TxMsg, RxMsg, TxResp, and RxResp to register the incoming/outgoing messages and
data responses. RxMsg contains the incoming message packets from the request bus. We
assume that every message will be decoded immediately in the private cache and each LLC
bank even if the bank is busy writing/retrieving data from its data array. TxMsg contains
the outgoing message packets from any core/bank that must snoop on the request bus. For
instance, if a core asks to modify a cache line that it is not in possession of, the core must
inform other cores by a coherency message (GetM) and push it in its own TxMsg buffer to
be propagated on the request bus. This allows other cores/LLC to be aware of this action.
RxResp contains the data responses coming from the response bus. RxResp at each core
includes data response that the bank provides or data response due to a cache-to-cache
transfer. RxResp at LLC bank includes the data response supplied by the cores in case of
write-back. Notice that unlike RxResp buffers of each core, the data responses placed in
LLC RxResp must be processed in the bank which takes tBANK to process. Finally, TxResp
includes the responses that need to be transferred on the response bus. The request bus,
response bus, and LLC banks act as independent shared resources which conduct their
own independent arbitration policies. In detail, the request bus arbiter is responsible to
arbitrate the messages residing in TxMsg and the data responses inside TxResp buffers are
arbitrated through the response bus arbiter. Similarly, each arbiter at LLC bank arbitrates
the message/responses in RxMsg and RxResp buffers.

3.2 Request Processing and Order of Arbitration
From the perspective of the coherency architecture, a requestor issues requests to the system
based on the following activities in L1 cache: 1) load miss requests; 2) store miss requests,
including stores to a cache line in S state; 3) replacement requests due to a write-back to
shared memory or caused by an eviction. As mentioned earlier in this section, the proposed

ECRTS 2022

16:6 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

(a) P1 executes load to A owned by P0. (b) P1 executes store/load to A owned by LLC bank.

(c) P1 replace A to LLC bank. (d) P1 executes store to A owned by P0.

Figure 2 The sequence of arbitration based on the request type.

architecture applies the arbitration schemes at all different resources including request bus,
response bus, and each bank in LLC. Requests can experience different sequences of services
on the arbitration resources. In detail, we consider three different types T of requests,
depending on the sequence of arbitration: 1) REQ:RESP:BANK meaning that it first needs to
broadcast on the request bus, then the data response will be propagated on the response
bus and finally the data response should be processed at LLC bank; 2) REQ:BANK:RESP
representing requests that need to first broadcast on the request bus, then the shared bank
must process and fetch the data response and finally this data response must be propagated
over the response bus; 3) REQ:RESP: the last category is related to cache-to-cache transfers.
In such a scenario, after broadcasting the message on the request bus, the response will be
supplied by the owner core on the response bus.

Figure 2 depicts all possible cases in which a request can be processed based on its type
and coherency status. Figure 2a represents a scenario where core P1 aims to load cache line
A; therefore, it first needs to broadcast its action by sending the required coherency message
on the request bus. Here, the owner of A is P0 and the cache line A is in M coherency
state; hence, according to MSI coherency protocol, P0 must send A to both core P1 and
the LLC bank by pushing the response data into RxResp buffer of P1 and the bank. Then,
P1 receives its data response; however, the data still needs to be processed inside the bank
which requires tBANK time. Note that all of these actions are eligible to execute after their
corresponding arbitration issue them the grant to access the resource. Hence, the sequence
of arbitration for this request follows REQ:RESP:BANK.

In Figure 2b a load/store request from P1 targets cache line A which is owned by the
shared bank. Therefore, the bank is responsible to process the request, and then it can
be returned to the core through the response bus. Hence, the sequence of arbitration for
this request follows REQ:BANK:RESP. For the replacement request shown in Figure 2c, after
broadcasting the message, the core needs to transfer the data to the LLC bank by sending
it to the RxResp buffer of bank. Hence, the sequence of arbitration for this request follows
REQ:RESP:BANK. Finally, Figure 2d shows a scenario where P1 tries to store to cache line A

while the line is owned by P0. According to the MSI coherency protocol, the LLC bank
is not required to acknowledge this action; therefore, sending the response from P0 to P1
suffices the store request and the sequence of arbitration for this request follows REQ:RESP.

Finally, to maintain the correctness of execution, the service order for requests to the same
cache line must respect the order in which the requests are issued on the request bus. Once
a request starts being issued on the request bus, we say that it depends on previous requests
to the same cache line which have already been issued on the request bus but not completed
yet. Since requests are issued one at a time on the request bus, this means that requests

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:7

Figure 3 The lower priority request from P1 depends on the higher priority request of P0 to the
same cache line A.

to the same cache line form a chain of dependencies, where requests are ordered based on
when they are issued on the request bus. Due to dependencies, requests must complete in
the same order in which they are issued on the request bus. In addition, some requests
might not move to the next resource even though their process is finished at the current
resource. Specifically, we say that a request is ready on a resource if it can be considered
for arbitration at that resource. A request becomes ready on REQ when it arrives. For a
RESP or BANK resource, a request becomes ready when it finishes processing at its previous
resource, or when the previous request in the chain of dependencies finishes on that resource
(if such previous request exists and uses the resource), whichever happens later. Figure 3
shows an example with two requests of different types targeting the same cache line A: the
request of P0 follows the scenario in Figure 2b while P1 follows Figure 2a. Since the request
of P0 is issued on the request bus first, the request of P1 depends on it and, to maintain
consistency, it cannot start service on the response bus until P0 finishes receiving the data
from the response bus.

3.3 Latency Model
Now, we are able to precisely define the request latency from the core perspective. We
assume that the requests of each core Pi can be ordered based on their arrival time. Hence,
we can index them as ri,1, ..., ri,j , Each request has a type T according to its sequence.
Since OOO cores might issue multiple requests simultaneously and the LLC contains many
independent banks, they can serve multiple requests simultaneously. It is thus important to
formally define the finish time and processing time of a request.

▶ Definition 1 (Arrival and Finish Time). Let ta
i,j be the arrival time of request ri,j, that is,

the time at which ri,j is queued in TxMsg. The finish time tf
i,j of ri,j is the time at which the

last action in its sequence is completed. This includes writing to the shared bank if the type
of sequence is REQ:RESP:BANK or receiving the response from the response bus if the type of
sequence is REQ:BANK:RESP and REQ:RESP. We say a request is outstanding if it has already
arrived but is not finished yet. We say a request is pending if it is outstanding and it has
already started or completed being issued on the request bus.

Note that while the concept of a pending request is not used in this section, it will be
relevant when defining the arbiter behavior in Section 4 because, as previously explained,
requests to the same cache line become dependent on each other once they become pending.

▶ Definition 2 (Processing Latency). For any request ri,j , let precj be the index of the request
ri,precj

of Pi with latest finish time among those that arrived before ri,j (i.e., such that
precj < j). Then the processing latency of ri,j is max

(
0, tf

i,j − max(tf
i,precj

, ta
i,j)

)
.

ECRTS 2022

16:8 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

ri,j

ri,j+1

ri,j+2

Processing of ri,j

time

t
a
i,j

ta
i,j+1

ta
i,j+2

t f
i,j

t
f

i,j+1

t
f
i,j+2

Processing of ri,j+2

Figure 4 Processing latency example. Assume that all previous requests ri,l with l < j finish
before ta

i,j . We use ↑ for the arrival time ta
i,j of each request and ↓ for its finish time tf

i,j .

▶ Definition 3 (Oldest Request). At any time t, the oldest request of a requestor (if any) is
the earliest arrived request of that requestor that is still outstanding at t.

Figure 4 delineates a clarifying example, borrowed from [25], where three requests arrive
from the same core such that precj+1 = precj+2 = j. ri,j becomes the oldest request as soon
as it arrives at ta

i,j . Initially, both ri,j+1 and ri,j+2 are non-oldest requests. Similar to related
work, we are interested in bounding the processing latency of requests. This is due to the fact
that when a requestor issues multiple requests and stalls until they finish, the stall time is
upper bounded by the sum of the processing latencies of the requests. In detail, as discussed
in [20, 39], the latency suffered by a real-time task running on a core accessing a shared
resource can be bounded by the sum of the processing latency of the requests issued by the
task. For this reason, the processing latency of ri,j+1, which is covered by the processing
time of ri,j , is set to zero. Notice that a non-oldest request might or might not become the
oldest request of its requestor. As shown in the example, ri,j+2 becomes oldest once ri,j

finishes, while ri,j+1 never became oldest and its processing time is zero. For this reason, we
only need to consider the processing latency of oldest requests. Finally, if a request becomes
oldest, by definition it does so at time max(tf

i,precj
, ta

i,j) when its processing latency starts.

3.4 Task Analysis
In Section 5, we will derive a bound on the processing latency for each of the three types of
request defined in Section 3.2. The total access latency for a task can then be determined by
summing the product of the number of requests of each type issued by the task by the WCL
for that type [14].

We assume that a portion of accesses by the task targets data shared with other cores,
while some accesses are to non-shared data. For each case, we need to retrieve the number
of load miss requests, store miss requests, and the number of replacements from the task.
For non-shared data, approaches based on either profiling or static analysis can be used to
extract the number of requests. For shared data, to the best of our knowledge, no general
method exists to determine which cache lines exists in the cache of the other cores at any
point of time. A safe assumption can be adopted where every load request on shared data is
considered a load miss, and every store request on shared data is considered a store miss [15].
However, if better assumptions can be made based on code analysis, our framework can take
advantage of them by deriving different latency bounds for each type of request.

Note that based on Figure 2, for shared data, load misses can be of type REQ:RESP:BANK
or REQ:BANK:RESP, as shown in Figures 2a and 2b, while store misses can be either
REQ:BANK:RESP or REQ:RESP. For non-shared data, load and store misses can only be of type
REQ:BANK:RESP. Replacements can only follow REQ:RESP:BANK as shown in Figure 2c. If we
cannot determine the specific type of a request based on task analysis, we simply consider
the largest latency among the types to which the request might belong.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:9

4 Proposed Arbiter

This section describes the behavioral details of the proposed arbiter. The proposed arbiter
considers the realistic hardware architecture introduced in Section 3 and maintains pre-
dictability by design while maximizing average-case performance. Based on the hardware
architecture, there exist three distinct types of resources in the system. Formally, we capture
the behavior of the proposed arbiter by a set of rules. In order to predictably manage
interference among different cores, the arbiter maintains a unified Global Round-Robin
(GRR) order of requestors across all resources. A requestor is removed from the GRR queue
after the oldest request of that requestor completes at its last resource, and it is inserted at
the back of the queue either immediately when it has any other request or when its next
request arrives. At any point in time, the Global Request Queue shown in Figure 1 contains
all outstanding requests in the system as well as their state in terms of their next resource
that they need to get processed on. In addition, a work-conserving approach is used at each
resource to increase overall system performance. Specifically, the proposed arbiter deploys a
two-level arbitration mechanism: 1) oldest requests over non-oldest per core; 2) GRR order
among the oldest requests; if no oldest request is ready, GRR over non-oldest requests.

Rule 1. (Global Round-Robin Ordering) The arbiter maintains a Global Round-Robin
order of requestors across all resources. Each request is associated with a GRR priority as
follows: given two outstanding requests rp,q, ri,j , rp,q has higher GRR priority than ri,j if:
(1) rp,q is oldest and ri,j is not oldest; or (2) rp,q and ri,j are both oldest or both non-oldest,
and Pp is ahead of Pi in the GRR order of requestors.

Note that GRR priorities for oldest requests are static, in the sense that they never
change while an oldest request is outstanding: this is because the relative requestor order
in the GRR queue is fixed once the request becomes oldest. However, GRR priorities for
non-oldest requests are not static: specifically, a non-oldest request rp,q might have higher
GRR priority than a non-oldest request ri,j at time t, but its GRR priority might become
lower than ri,j at some later time t′ once an oldest request of Pp completes, forcing Pp to be
enqueued at the back of the GRR queue (assuming that rp,q does not become oldest at t′).

The arbiter manages each resource independently, selecting the highest priority request
that is ready on each resource. Since requests that are ready on the request bus do not
depend on other requests, the arbiter manages the request bus according to strict GRR
priorities. However, requests that are ready on a bank or the response bus might depend
on each other. To correctly arbitrate in the presence of dependant requests, we further
introduce a priority inheritance mechanism, where a lower-priority pending request inherits
the priority of a higher-priority request that depends on it. Note a further complexity: a
lower-priority pending request might target the same cache line as a higher-priority request,
but the higher-priority request does not depend on it if the higher-priority request has not yet
started being issued on the request bus. However, the higher-priority request will eventually
become pending and thus depend on the lower-priority one. To capture such behavior, we
extend the concept of dependency to the one of eventual dependency to include both requests
that are currently dependent, but also requests that will be dependent in the future once
they become pending. Based on this concept, we can define dynamic priorities that are used
to arbitrate on each bank and the response bus.

Rule 2. (Priority Inheritance) The dynamic priority of a request is equal to the highest
priority between its own GRR priority and (if the request is pending) the GRR priority of
any other request that eventually depends on it.

ECRTS 2022

16:10 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

Rule 3. (Resource Arbitration) The arbiter manages all three resources, including request
bus, response bus, and each LLC banks, independently. On the request bus, the arbiter
selects the ready request with the highest GRR priority. On the response bus and each
bank, the arbiter selects the request that is ready on the corresponding resource and has the
highest dynamic priority.

As before, eventually dependent requests form an eventual chain of dependencies, based
on the order in which they either already became or will become pending. Note that since
the request bus follows strict GRR priorities, an oldest request that is not pending yet will
be preceded in the eventual chain of dependency by all already pending requests to the same
cache line, as well as by all other oldest requests to the same cache line that are not pending
yet and have higher GRR priority.

The proposed arbiter supports out-of-order execution, allowing processing cores to issue
multiple requests simultaneously. Based on Rule 3, it is clear that if the arbiter allows many
non-oldest requests to the same cache line to be sent, then an oldest request could arrive
and suffer priority inversion on all those non-oldest requests. Therefore, to limit the amount
of priority inversion in the system, we set a parameter kceil ≥ 0, that controls the possibility
of sending non-oldest requests ahead of a possible oldest request to the same cache line.

Rule 4. (Request Blocking) When applying Rule 3 on the request bus, the arbiter does not
consider a non-oldest request ri,j if there are already other kceil pending non-oldest requests
to the same cache line.

5 Latency Analysis

In this section, we detail the latency analysis for the proposed arbiter. Specifically, consider
an oldest request under analysis rua of type T targeting a bank bk, and let ta

ua, tf
ua, tf

precua

be its arrival, finish time, and the finish time of the request with latest finish time among
those that arrived before rua and belong to the same core. We first show how to compute an
upper bound to the remaining latency (time to finish) tf

ua − tnow of rua at time tnow, based
on the current state of the resource - following related work [25], we call this the dynamic
bound. Then, we obtain the static worst-case bound ∆(T , kceil), i.e. an upper bound to the
processing latency of any request of type T for a given value of kceil, by maximizing the
dynamic bound over all possible states of the system at time tnow = max(tf

precua
, ta

ua) when
rua becomes oldest.

5.1 Dynamic Latency Analysis

Depending on its type T and its current state at time tnow, rua will need to be serviced on
one or more resources; in analogy to processor scheduling, we say that rua must execute
on those resources. As in Section 3.2, we use REQ to denote the request bus, RESP for the
response bus, and BANK for bank bk.

We start by proving a fundamental property of the proposed arbitration scheme; namely,
the fact that, despite the priority inheritance mechanism in arbitration Rule 2, a lower-priority
request ri,j cannot increase its dynamic priority above rua after time tnow.

▶ Lemma 4. Consider any request ri,j other than rua. If ri,j has lower dynamic priority
than rua at tnow, or has not arrived in the system yet, then its dynamic priority cannot
become higher than rua at any time t > tnow while both requests are outstanding.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:11

Proof. We first show that the dynamic priority of rua cannot decrease after tnow. By
arbitration Rule 2, the dynamic priority of rua at tnow is equal to either its GRR priority,
or the GRR priority of a higher-priority request rp,q that eventually depends on rua. Since
rua is oldest, such GRR priorities are static and cannot decrease. Furthermore, as noted in
Section 3.2, the coherency protocol forces requests to finish in dependency order. Hence, if
rua inherits the GRR priority of rp,q at tnow, then rp,q cannot finish before rua, and thus the
dynamic priority of rua cannot decrease below the GRR priority of rp,q.

Next, we show that the GRR priority of ri,j cannot become higher than the dynamic
priority of rua: (1a) if ri,j is already oldest at time tnow, then its GRR priority is static and
thus cannot increase; (1b) otherwise, the GRR priority of ri,j increases when it becomes
oldest after tnow, but it must still be lower than the one of rua since GRR priorities for oldest
requests are based on when they become oldest (which is when their core is pushed to the
back of the GRR queue).

In summary, we have shown that the dynamic priority of rua cannot decrease after tnow,
and the GRR priority of ri,j cannot increase past it. Therefore, ri,j can only acquire a higher
dynamic priority than rua based on Rule 2 if it inherits the GRR priority of an oldest request
rp,q such that: (A) rp,q is either rua or has a higher GRR priority than rua; (B) at time tnow,
ri,j has either not arrived yet, or does not inherit the priority of rp,q; (C) at some time t

after tnow, ri,j is inheriting the priority of rp,q. We now show that this is impossible.
Since by (A) the static GRR priority of rp,q must be equal to or higher than rua, it

follows that rp,q must already be outstanding and oldest at tnow. We next consider two
possible cases: (2a) rp,q is pending at tnow; (2b) not pending. In case (2a), note that the set
of requests that rp,q depends upon are fixed when rp,q becomes pending; hence (B) and (C)
cannot simultaneously hold. In case (2b), for (B) and (C) to be satisfied, ri,j must target the
same cache line as rp,q and become pending after tnow and before rp,q. However, this is again
impossible: since the GRR priority of ri,j is lower than rua and thus rp,q, it follows that by
Rule 3, ri,j cannot be serviced on the request bus and become pending before rp,q. ◀

Based on Lemma 4, we can evaluate at time tnow which requests have higher priority
than rua and can thus interfere with it. In details, let RREQ (RBANK , RRESP) be the set
of outstanding requests with GRR (respectively, dynamic) priority higher than or equal
to rua at time tnow, including rua itself, and which have not yet started executing on REQ
(respectively, BANK or RESP) 2. Since GRR priorities for oldest requests are static, no request
that is not included in RREQ can become higher GRR priority than rua, and thus interfere
with it on REQ, at any time t > tnow; and by Lemma 4, the same holds for RBANK , RRESP

on BANK and RESP.
Next, we formalize the dependencies among requests that target the same cache line as

rua. We do so by constructing a DAG, where each node represents the execution of one
request in the eventual chain of dependencies on a resource.

▶ Definition 5 (Dependency DAG). The dependency DAG for rua at time tnow is a directed
acyclic graph G = (V, E) where: (1) V is a set of nodes; each node is of the form {ri,j , res},
where ri,j is either rua or one of the requests that targets the same cache line as rua and
precedes it in the eventual chain of dependencies, while res is one of the resources on which
ri,j has not yet finished executing at tnow; (2) E is a set of edges of two types: (2a) for

2 Note that the sets comprise only requests that have yet to start executing on a resource because in
Lemma 7 we will account for the interference of requests that have already started executing on each
resource in a different manner

ECRTS 2022

16:12 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

Figure 5 Example dependency DAG. The eventual chain of dependencies comprises requests
(rp,q, ri,j , rua).

each request ri,j, E includes an edge {ri,j , res′} → {ri,j , res} if the two nodes exist in the
graph and ri,j executes on res′ before res; (2b) for each pair of consecutive requests rp,q, ri,j

in the eventual chain of dependencies, E includes edges {rp,q, RESP} → {ri,j , RESP} and
{rp,q, BANK} → {ri,j , BANK} if the corresponding nodes exist in the graph.

Example: assume that at time tnow, there are three outstanding requests targeting the
same cache line: rp,q of type REQ:BANK:RESP became pending first, and has already executed
on BANK but not yet finished on RESP; ri,j , also of type REQ:BANK:RESP, became pending
after rp,q and has completed executing on REQ but not yet finished on BANK; and rua is of
type T = REQ:RESP:BANK and not yet pending. Then, the eventual chain of dependencies is
(rp,q, ri,j , rua), and the dependency DAG is depicted in Figure 5.

Note that by definition and based on Section 3.2, the dependency DAG contains an
edge between two nodes whenever the second node cannot become ready before the first
one finishes executing. Therefore, if a node {ri,j , res} in the dependency DAG has no
predecessors, then it must be ready on res at tnow. Otherwise, it becomes ready once all
predecessor nodes finish executing. We can then define the latency for a node as follows. The
latency window for a node {ri,j , res} with one or two immediate predecessors spans from
the time it becomes ready on res, until the time it finishes executing on res, and its latency
is the difference between the two times. If {ri,j , res} has no predecessor, then its latency
window spans from tnow until the time it finishes executing given that we do not want to
account for latency before tnow. The latency for a (directed) path through G is simply the
sum of the latencies of the constituent nodes. Finally, note that as pointed out in Section 4,
requests in the eventual chain of dependencies for rua, and thus the dependency graph, are
either already pending or are oldest. Therefore, arbitration Rule 4 cannot block any such
request, and thus we do not need to consider it when determining the latency of a path.

We can now derive the remaining latency for rua. In details, in Lemma 6 we first show
that its remaining latency must be equal to the latency of a critical path in the dependency
DAG, that is, a path that starts from a node with no precedessors and finishes with the
last node of rua. Then, in Lemma 7, we show that the latency of a critical path is upper
bounded by Equation 1. Therefore, the remaining latency of rua can be computed by taking
the maximum of Equation 1 over every potential critical path in the DAG.

▶ Lemma 6. The remaining latency tf
ua − tnow for rua at time tnow is equal to the latency of

some path P in its dependency DAG whose last node is {rua, res} and res is the last resource
on which rua executes. In such critical path, each node becomes ready when the previous one
finishes executing, except for the first node which has no predecessor and is ready at tnow.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:13

Proof. We iteratively construct the critical path P as follows. We first start from the path
that contains only node {rua, res}. Note that by definition, such node finishes executing at
tf
ua. We then have two possible cases: (1) the node has no precedessor; (2) it has one or two

immediate precedessors. In case (1), rua is ready on res at tnow. Therefore, the latency of
the node, which is equal to the latency of P , is tf

ua − tnow and the lemma follows. In case (2),
rua becomes ready on res, and thus the latency window for the node starts, when one of its
immediate predecessor nodes finishes executing. Let {ri,j , res′} be such node. We can then
add it to the beginning of P and repeat the same reasoning: if the node has no predecessor,
then ri,j must be ready on res′ at tnow and thus its latency window spans from tnow to the
beginning of the latency window for {rua, res}. Therefore, again the latency of P is equal
to tf

ua − tnow. If instead {ri,j , res′} has one or two immediate precedessors, we continue
the iteration by adding one such node to the path. But since the graph is by definition a
DAG (hence has no cycles) and the number of nodes is finite, the iteration must eventually
terminate. The lemma follows. ◀

▶ Lemma 7. The latency of a critical path P is upper bounded by:

cres +
∑

res∈SP

|Rres| · tres + KBANK(P) · (tBANK − 1) + KRESP (P) · (tRESP − 1), (1)

where res is the resource on which the first node in P executes, cres is the remaining time
to finish executing the current executing request on res at tnow (if any, otherwise 0), SP is
the set of all resources on which nodes in P execute (with the exception of the first note if
it already started executing on res at tnow), and KBANK(P) (KRESP (P)) is the number of
nodes in P that executes on BANK (respectively, RESP) and are preceded in P by a node that
does not execute on BANK (respectively, RESP).

Proof. We first consider the case in which the first node in P has not yet started executing
on res. For each res ∈ SP , we consider the total latency of nodes in P that execute on res.
Since latencies are computed during time windows when a request in P is ready on res, it
follows that the only executions that can contribute to the total latency are: (1) for each
node {ri,j , res}, at most one request that is already executing on res at the beginning of
its window. For the first node in P, by definition the length of such execution is cres. For
every other node, since the request is already executing, it can be bound as tres − 1. (2)
Requests in P that have not yet started executing on res (since otherwise they would be
included in the previous category). (3) Other requests that have not yet started executing
on res and have higher GRR priority (if res is REQ) or higher dynamic priority (if res is
BANK or RESP) than some request in P that has not yet started executing on res. Note that
lower priority requests can only be included in category (1). Also, as noted in Section 4,
requests that precede rua in the extended chain of dependencies, and can thus be included
in P, must either be pending (and hence have higher or equal dynamic priority than rua)
or be non-pending and have higher GRR priority than rua. Hence, requests in category (2)
are included in Rres; and since no request that is not included in Rres can acquire higher
priority than rua after tnow, requests in category (3) must also be included in Rres. Therefore,
|Rres| · tres upper bounds the contributions on requests in categories (2) and (3).

It remains to determine the number of requests in (1). Note that if a node executing
on res is preceded in P by a node executing on the same resource (either RESP or BANK),
then no request can be executing at the beginning of its window, since it corresponds to the
time at which the preceding node finishes executing on res. Hence, the number of requests
can be bounded by the number of nodes that are preceded by another node executing on a

ECRTS 2022

16:14 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

Figure 6 Example paths with maximal number of RESP → BANK and BANK → RESP edges for a rua of
type T = REQ:RESP:BANK. The eventual chain of dependencies comprises requests (..., r4, r3, r2, rua).

different resource, plus possibly the first node in the path. By definition, this adds a latency
of cres + KBANK(P) · (tBANK − 1) + KRESP (P) · (tRESP − 1). Adding the contribution of
categories (2) and (3) to the one of (1) yields Equation 1.

Finally, we consider the case in which the first node in P is already executing on res at
time tnow. In this case, the latency of the first node is simply cres, and no other request can
execute in its latency window. The same reasoning as above can then be applied to the other
nodes in P , given that SP does not account for the first node. This again results in a latency of
|Rres|·tres for (2) and (3) and a latency of KBANK(P)·(tBANK −1)+KRESP (P)·(tRESP −1)
for (1), which added to cres for the first node yields Equation 1. ◀

Example. consider the example in Figure 5. The three possible critical paths are
P ′ = {rp,q, RESP} → {ri,j , RESP} → {rua, RESP} → {rua, BANK}, P ′′ = {ri,j , BANK} →
{ri,j , RESP} → {rua, RESP} → {rua, BANK}, and P ′′′ = {rua, REQ} → {rua, RESP} →
{ri,j , BANK}. Note that no critical path can include edge {ri,j , BANK} → {rua, BANK}, as
the DAG includes the longer path P ′′ between {ri,j , BANK} and {rua, BANK}, and thus
{rua, BANK} must become ready once {rua, RESP} finishes. Further note that for P ′′ we
have res = BANK, SP = {BANK, RESP}, KBANK(P ′′) = 1, KRESP (P ′′) = 1. Its latency can
be upper bounded by summing: the remaining time cBANK to finish executing the current
executing request on BANK (if any); plus the maximum time tRESP − 1 to finish executing
a request once ri,j becomes ready on RESP; plus the maximum time tBANK − 1 to finish
executing a request once rua becomes ready on BANK; plus the time |RBANK | · tBANK to
execute requests with higher or equal priority (including the ones in the DAG) that have
not yet started executing on BANK; plus the time |RRESP | · tRESP to execute requests with
higher or equal priority that have not yet started executing on RESP.

Lemmas 6 and 7 provide a way to estimate the remaining latency for rua. However, they
require constructing the dependency DAG and all possible critical paths. As it will become
clear in Section 6, to apply the Duetto reference model we need to estimate the remaining
latency online in hardware at every clock cycle. Therefore, we next derive a simpler, albeit
conservative, way to determine the remaining latency. Specifically, we replace KBANK(P)
and KRESP (P) with upper bounds KBANK(C) and KRESP (C) which depend only on the
number C of requests in the dependency DAG; this ensures that at run-time, we only need
to maintain the list of requests in the eventual chain of dependencies and which resources
they need to execute upon, but not the detailed DAG structure.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:15

▶ Lemma 8. For C ≥ 1, define:

KBANK(T , C) =

⌊(C + 1)/2⌋ if T = REQ:BANK:RESP
⌈(C + 1)/2⌉ if T = REQ:RESP:BANK
⌈(C − 1)/2⌉ if T = REQ:RESP

(2)

KRESP (T , C) =

⌈(C + 1)/2⌉ if T = REQ:BANK:RESP
⌊(C + 1)/2⌋ if T = REQ:RESP:BANK
⌊(C + 1)/2⌋ if T = REQ:RESP

(3)

For a rua of type T and any critical path P comprising nodes of C requests, it holds:
(1) KBANK(P) ≤ KBANK(C)−1 if the first node in P executes on BANK, and KBANK(P) ≤
KBANK(C) otherwise; (2) KRESP (P) ≤ KRESP (C) − 1 if the first node in P executes on
RESP, and KRESP (P) ≤ KRESP (C) otherwise.

Proof. First note that by construction, only the first node in P can execute on REQ; all
other nodes must execute on either BANK or RESP. Therefore, KBANK(P) and KRESP (P)
are maximized when P comprises the maximum number of edges from a node executing on
RESP to a node on BANK (an edge RESP → BANK), and from a node on BANK to a node on
RESP (an edge BANK → RESP). Note that if two consecutive requests in the eventual chain of
dependencies are of the same type (for example, REQ:RESP:BANK), then any path over BANK
and RESP nodes belonging to those two requests can have only one such edge (in this example,
the two possible paths are RESP → BANK → BANK and RESP → RESP → BANK); on the other
hand, if two consecutive requests are one of type REQ:RESP:BANK and the other of type
REQ:BANK:RESP, then the path can have one edge RESP → BANK and one BANK → RESP. Hence,
KBANK(P), KRESP (P) are maximized when requests in the eventual chain of dependencies
switch between the two types.

Next consider T = REQ:RESP:BANK. Figure 6 shows the resulting DAG when requests
in the chain switch types, together with two possible critical paths with C = 4 (even) and
C = 3 (odd) requests, where the first node executes on REQ. By construction, the path
comprises an edge RESP → BANK for rua, and for every second request before it; hence,
the number of such edges is ⌈C/2⌉. In addition, if C is even, there is a REQ → BANK
edge for the first request. Hence, the maximum value of KBANK(P) can be computed as
KBANK(REQ:RESP:BANK, C) = ⌈(C + 1)/2⌉; except that if P starts with a node on BANK,
then that node is not preceded by any other node, hence the maximum value of KBANK(P) is
KBANK(REQ:RESP:BANK, C) − 1. Similarly for KRESP (P), we note that the path comprises
an edge BANK → RESP for the request before rua, and for every second request before it; plus
an edge REQ → RESP if C is odd. Hence, the maximum value of KRESP (P) can be computed
as KRESP (REQ:RESP:BANK, C) = ⌊(C + 1)/2⌋, or KRESP (REQ:RESP:BANK, C) − 1 if the first
node in P is on RESP. This concludes the proof for T = REQ:RESP:BANK.

For brevity, we omit the proof for T = REQ:RESP and T = REQ:BANK:RESP, since the deriv-
ation is equivalent; in particular, note that KRESP (REQ:RESP, C) = KRESP (REQ:RESP:BANK,

C) but KBANK(REQ:RESP, C) = KBANK(REQ:RESP:BANK, C) − 1, since with T = REQ:RESP
we miss the RESP → BANK edge for rua; while for T = REQ:BANK:RESP we have KRESP (REQ:
BANK:RESP, C) = KBANK(REQ:RESP:BANK, C) and KBANK(REQ:BANK:RESP, C) =
KRESP (REQ:RESP:BANK, C) since the two cases are specular. ◀

▶ Theorem 9. The remaining latency tf
ua − tnow for a rua of type T at time tnow is upper

bounded by:

cinit +
∑

res∈Sua

|Rres| · tres + KBANK(T , C) · (tBANK − 1)+ KRESP (T , C) · (tRESP − 1), (4)

ECRTS 2022

16:16 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

where Sua is the set of all resources on which the C requests for nodes in the dependency
DAG have not yet started executing, and cinit = cREQ if any node in the DAG executes on
REQ, cinit = 0 otherwise.

Proof. By Lemma 6, the remaining latency of rua is equal to the latency of a critical path
P, which is upper bounded by Equation 1. Note that by definition, only the first node in
P might have already started executing at tnow. Hence, it holds: SP ⊆ Sua, which implies∑

res∈SP
|Rres| · tres ≤

∑
res∈Sua

|Rres| · tres. Let C ′ be the number of requests for nodes in
P; by definition, C ′ ≤ C. By cases on the resource on which the first node in P executes.

REQ: by definition we have cinit = cREQ = cres and by Lemma 8 and since KBANK(T , C),
KRESP (T , C) are monothonic in C it holds KBANK(P) ≤ KBANK(T , C ′) ≤ KBANK(T , C),
KRESP (P) ≤ KRESP (T , C ′) ≤ KRESP (T , C). Hence, the latency of P in Equation 1 is
upper bounded by Equation 4.

RESP: we have cinit = 0, cres = cRESP and by Lemma 8 and monotonicity it holds
KRESP (P) ≤ KRESP (T , C) − 1, KBANK(P) ≤ KBANK(T , C). Hence starting from Equa-
tion 1 and noting that by definition it must hold cRESP ≤ tRESP − 1, we obtain:

cRESP +
∑

res∈SP

|Rres| · tres + KBANK(P) · (tBANK − 1) + KRESP (P) · (tRESP − 1)

≤ cRESP − (tRESP − 1) +
∑

res∈SP

|Rres| · tres + KBANK(T , C) · (tBANK − 1) +

+KRESP (T , C) · (tRESP − 1)
≤

∑
res∈Sua

|Rres| · tres + KBANK(T , C) · (tBANK − 1) + KRESP (T , C) · (tRESP − 1),(5)

hence the latency is again upper bounded by Equation 4.
BANK: we have cinit = 0, cres = cBANK and by Lemma 8 and monotonicity it holds

KBANK(P) ≤ KBANK(T , C)−1, KRESP (P) ≤ KRESP (T , C); repeating the same derivation
as for the RESP case, we again find that Equation 1 is upper bounded by Equation 4. ◀

5.2 Static Analysis

We compute the static worst-case latency ∆(T , kceil) by maximizing Equation 4 over all
possible values of the parameters. The resulting bounds in Theorem 10 depend on kceil and
M : by definition, there are at most M oldest request at any point in time, meaning that at
most M − 1 requests can have higher GRR priority than rua. The theorem computes two
separate bounds for kceil = 0 and kceil > 0: for the former, in the worst-case all M oldest
requests target the same cache line, while for the latter, each oldest request targets a different
cache line and suffers interference from kceil non-oldest requests based on arbitration Rule 4.

▶ Theorem 10. The static latency for any request of type T is upper bounded by:

∆(T , 0) = tREQ − 1 + M · tREQ + M · tBANK + M · tRESP

+KBANK(T , M) · (tBANK − 1) + KRESP (T , M) · (tRESP − 1) (6)

if kceil = 0, while if kceil > 0 it is upper bounded by:

∆(T , kceil) = tREQ − 1 + M · tREQ + M · (kceil + 1) · tBANK + M · (kceil + 1) · tRESP

+KBANK(T , kceil + 1) · (tBANK − 1) + KRESP (T , kceil + 1) · (tRESP − 1). (7)

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:17

Proof. By definition, the static latency is equal to the maximum remaining latency of any
request rua of type T that becomes oldest at time tnow. By Theorem 9, such latency is upper
bounded by Equation 4; hence, we can upper bound ∆(T , kceil) by maximizing Equation 4.

Note that the equation is maximized by using the maximum value cinit = cREQ = tREQ−1,
and latency contributions on all three resources such that Sua = {REQ,BANK,RESP}. By
definition, the set RREQ can comprise at most rua itself and one oldest request for each
other core; hence, we have at most |RREQ| = M .

We next consider the number of requests C for nodes in the dependency DAG of rua,
which comprise rua and requests that precede rua in its eventual chain of dependencies,
as well as the number of requests |RBANK |, |RRESP |. Let H be the number of oldest
requests that precede rua in the eventual chain of dependencies. By Rule 4, the number of
non-oldest requests that precede rua in the chain is bounded by kceil. Hence, the maximum
number of requests in the dependency DAG is C = kceil + H + 1. Since requests in
RBANK , RRESP must have higher dynamic priority than rua, the only requests that can be
included are: (1) the C requests in the DAG; (2) the remaining M − H − 1 oldest requests;
(3) non-oldest requests that inherit the priority of such M − H − 1 oldest requests; again by
Rule 4, their number is bounded by (M − H − 1) · kceil. Summing over (1)-(3), we obtain:
|RRESP | = |RBANK | = M · (kceil + 1) − H · kceil. If kceil = 0, then the cardinality of the
sets is constant in H, while C, and thus the values of KRESP (T , C) and KRESP (T , C), are
non-decreasing in H; hence, Equation 4 is maximized when H = M − 1, yielding Equation 6.

Finally, consider the case of kceil > 0. Note that based on Equation 3, 2 and independently
from T , it holds: KRESP (T , kceil + 1 + H) ≤ KRESP (T , kceil + 1) + H, and similarly
KBANK(T , kceil + 1 + H) ≤ KBANK(T , kceil + 1) + H. Substituting the values of the
parameters in Equation 4 we thus obtain:

tREQ − 1 + M · tREQ + M · (kceil + 1) · tBANK − H · kceil · tBANK

+M · (kceil + 1) · tRESP − H · kceil · tRESP

+KBANK(T , kceil + 1 + H) · (tBANK − 1) + KRESP (T , kceil + 1 + H) · (tRESP − 1)
≤ tREQ − 1 + M · tREQ + M · (kceil + 1) · tBANK − H · kceil · tBANK

+M · (kceil + 1) · tRESP − H · kceil · tRESP

+KBANK(T , kceil + 1) · (tBANK − 1) + H · (tBANK − 1) +
+KRESP (T , kceil + 1) · (tRESP − 1) + H · (tRESP − 1)

≤ tREQ − 1 + M · tREQ + M · (kceil + 1) · tBANK + M · (kceil + 1) · tRESP

+KBANK(T , kceil + 1) · (tBANK − 1) + KRESP (T , kceil + 1) · (tRESP − 1), (8)

which is the expression in Equation 7. ◀

6 Applying Duetto to Cache Coherence Design

In this section, we first briefly review the Duetto reference model introduced in [25] to address
the average performance and predictability trade-off in shared resource management in
multi-core systems. We then discuss how the reference model must be extended to account
for the peculiarities of our cache system and form the DUEPCO architecture.

6.1 Background: Duetto Reference Model
The key idea behind Duetto is that it augments a COTS High-Performance Arbiter (HPA)
with a Real-time Arbiter (RTA) such that both arbiters operate in parallel. The RTA is
analyzable in the sense that it provides strict latency bounds on requests; specifically, we

ECRTS 2022

16:18 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

use the arbiter described in Section 4. The HPA is designed to maximize average-case
performance. In our implementation, the HPA uses commodity FCFS at all resources but
respects the dependencies among requests to the same cache line. Arbiters control resources
by issuing commands—for our cache resource, the command dictates which requests, if any,
should start executing on each resource. Every clock cycle, Duetto selects either the command
from the HPA or the command from the RTA and issues it to the resources. Ideally, the
system utilizes the HPA most of the time, hence benefiting from its performance gains, and
only switches to the RTA if there is a risk that a latency guarantee will be missed. Note
that the global request queue is shared by the HPA and RTA. Since both arbiters make
decisions based on the requests stored in the queue, a request is removed from the queue
only after it finishes based on the actual commands issued by Duetto. Given that both
arbiters can process requests out-of-order, this does not add extra complexity to the queue
implementation.

In more details, for each requestor Pi and each request type T , Duetto associates a
relative deadline Di(T) which represents the maximum tolerable processing latency for any
oldest request of that type and requestor. Such deadline can be configured by the system
designer (for example, by writing to memory-mapped registers exposed by the hardware),
and must be used in place of the static WCL when performing task analysis. Higher deadline
values increase the worst-case resource access latency for a task, but can enable Duetto to
remain in HPA mode longer. A DTracker module is responsible for tracking the absolute
deadline of each oldest request based on its associated relative deadline and the time it
becomes oldest. As long as Di(T) ≥ ∆(T , kceil) for all requestors and types, Duetto formally
guarantees that all absolute deadlines will be met. This is achieved by using a Worst-case
Latency Estimator (WCLator) module to estimate the remaining processing latency of each
outstanding request at run-time, assuming that Duetto selects the HPA in the current clock
cycle and then switches to the RTA in all future cycles. If for every requestor, the estimated
finish time of its oldest request from WCLator is lower than or equal to its absolute deadline,
then Duetto selects the HPA. Otherwise, it selects the RTA. The key observation is that
using online information on the state of the system (resources, state of the RTA arbiter, and
queued requests) allows us to greatly reduce the pessimism inherent in the static latency
computation; hence, unless the system becomes overloaded, Duetto can keep selecting the
HPA. Note that in [25], the model is demonstrated on a simple resource. However, in [26],
Duetto has been applied to the design of a more complex DRAM controller where, similarly
to our cache system, each request requires multiple commands to be serviced.

6.2 Model Extensions
Compared to the approach in [25, 26], we must extend the reference model in two fundamental
ways to apply it to our cache design. First of all, it is important to notice that for the Duetto
deadline guarantee to hold, the static worst-case latency must be computed assuming any
valid state of the resource at the time t when the request under analysis becomes oldest; this
is because the HPA might be selected at any time before t. However, when we computed
the static latency in Theorem 10, we bounded the cardinality of sets RBANK and RRESP

assuming that arbitration Rule 4 always applies, as this ensures that no more than kceil

non-oldest requests can inherit the priority of an oldest request. Unfortunately, the HPA
does not need to satisfy such rule, and can instead execute any number of requests to the
same cache line on the REQ bus before an oldest request to that line arrives and its latency is
considered by the WCLator; at which point it is too late to switch to the RTA.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:19

To address this issue, we make a conceptual change to the model of the resource. Specific-
ally, we declare that all states where there are more than kceil pending non-oldest requests
to the same cache line are invalid. This ensures that the derived static bound is correct, but
does not solve the underline problem as now the HPA might be issuing invalid commands.
In [25], we suggest that when the HPA cannot be guaranteed to work correctly, a checker
module can be added to check the validity of the commands issued by the HPA. Therefore,
we add an additional checker component that works as follows: every clock cycle, the checker
receives from the RTA information on the number of pending requests per cache line, which
the RTA maintains to enforce Rule 4. If cREQ = 0 and the global request queue contains at
least one non-oldest request that must execute on the REQ bus and targets a cache line for
which there are kceil pending non-oldest requests, the HPA might issue such request on REQ
and reach an invalid resource state. Hence, in this case the checker overrides the WCLator to
forcibly select the RTA. While this approach solves the unbounded priority inversion problem,
it has a downside: for low values of kceil and/or heavy data sharing among requestors, the
checker might be forced to continuously select the RTA, resulting in performance loss. We
explore this behavior in more details in the evaluation Section 7.

The second extension is related to the request type. Both [25] and [26] assume that the
type of a request is known when the request becomes oldest. However, in our system, the
sequence of resources accessed by a request, and thus its type, is only known after the request
is executed on the REQ bus and the owner of the corresponding cache line is determined. For
this reason, before an oldest request finishes executing on REQ, the WCLator must use the
smallest among all deadlines for the possible types for the request. Once the request type is
known, the WCLator switches to using the deadline for that type.

6.3 WCLator Design
We designed the WCLator following the methodology outlined in [25]. For each oldest
request and given the state of the resource and global request queue, we first enumerate all
commands that the HPA could issue in this clock cycle. For each command, we then use the
dynamic analysis of Theorem 9 (possibly with modified value of the parameters) to compute
the remaining latency for the request. The WCLator then compares the largest computed
latency against the deadline for the request to determine whether the HPA can be selected.
As noted in Section 6.2, in our implementation we do not know the type of a request until
it finishes executing on REQ. Hence, to safely account for the values of Sua, RBANK and
RRESP in Equation 4, we assume that all outstanding requests that have not yet finished
executing on REQ must access both BANK and RESP.

Consider an oldest request rua. To illustrate the behavior of the WCLator, we enumerate
the cases assuming that cinit = cREQ (the case for cinit = 0 is similar but easier, since the
chain of dependencies for rua cannot be affected):
1. If cREQ > 0, then no command can be issued on REQ in this clock cycle, and no estimation

is required. Note that if cBANK = 0 or cRESP = 0, the HPA could start executing a
request on BANK or RESP in this clock cycle; however, because Equation 4 always assumes
the worst case where the maximum blocking time is suffered on successive resources,
it follows that the bound is still safe no matter the command issued by HPA on BANK
and/or RESP. Therefore, for the remaining cases, we assume cREQ = 0 and consider the
command issued on REQ.

2. No command: the HPA might be non-work conserving and decide to issue no command
in the current cycle. In this case, the bound is equal to Equation 4 plus one, to account
for the wasted clock cycle.

ECRTS 2022

16:20 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

3. rua: since rua will start executing, we would need to apply Equation 4 after removing
it from RREQ, but setting cREQ = tREQ to account for the rua execution. In addition,
if there are higher-priority requests to the same cache line as rua which have not yet
executed on REQ, we would need to remove such requests from RBANK , RRESP and
adjust KBANK(T , C), KRESP (T , C). Note that the obtained bound will always be lower
than case 2); therefore, in practice the WCLator does not need to consider this case.

4. A lower-priority request ri,j , which does not inherit a higher priority than rua after
becoming pending: we use Equation 4 with cREQ = tREQ.

5. A lower-priority request ri,j that inherits a higher priority than rua: in addition to the
previous case, we need to include the request in RBANK , RRESP . Furthermore, if ri,j

targets the same cache line as rua, KBANK(T , C), KRESP (T , C) must be adjusted.
6. A higher-priority request rp,q to either the same or a different cache line than rua: we

use Equation 4 with no change to parameters. Since this bound is always lower than 2),
again we do not need to consider it.

In this work, our goal is to evaluate the performance of the proposed system architecture
and arbitration scheme based on cycle-accurate simulation; a full system implementation
is deferred to future work. Nonetheless, given its potential complexity, we briefly comment
on the WCLator implementation. Since the WCLator is a hardware component, all the
cases above can be estimated in parallel for each request under analysis, and each result
compared against the request deadline. Hence, the hardware latency is dominated by the
computation of Equation 4. The value of cREQ can be maintained by a simple counter.
Similarly, the value of |Rres| can be maintained in separate counters for each rua and each
resource based on the state of the GRR arbitration. Multiplications can be avoided by
storing the corresponding values in look-up tables indexed by the corresponding parameter.
Another counter can be used to keep track of the number of requests C in the eventual
chain of dependencies for each rua, and index a look-up table that returns the value of
KBANK(T , C) · (tBANK − 1) + KRESP (T , C) · (tRESP − 1). The final computation is then
obtained by adding at most 5 terms together, which can be performed with cascaded adders
of width at most 11 bits for M = 8 requestors. In summary, we do not expect the WCLator
implementation to constrain the clock speed.

7 Evaluation Results

We employed the open-source, cycle-accurate architectural simulation framework provided
by [15] to evaluate the performance of the proposed mechanisms and compare them with
other solutions. We emulate quad- and octa-core systems clocked at 2.5 GHz. Each system
has a 32 KB 4-way set-associative per-core private L1 data cache (similar to ARM Cortex
A53 [1]), and a 4 MB 8-ways set-associative L2 shared cache consisting of multiple separated
banks. The cores are OOO and can issue up to 10 memory requests in parallel. Both L1 and
LLC have a cache line size of 64 bytes. Each core/LLC bank is equipped with a dedicated
cache controller that implements the MSI coherence state machine. We compare results for
the proposed arbiter described in Section 4, which we denote as RTA, against state-of-the-art
approaches including PMSI [10], PMSI* [17] and PISCOT [15] which also provide analytical
WCL bounds and present the best average-case performance. PMSI employs unified bus
architecture and provides relative high-performance gains compared to other approaches
such as shared data-aware scheduling and private cache bypassing through deploying cache
coherence modifications and accessing the shared data. However, its WCL is quadratic in the
number of cores in the system. PMSI* follows a systematic approach that achieves the same

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:21

Figure 7 Per-request worst-case latency.

0

2

4

6

8

Synth 1 Synth 2 Synth 3

E
x
e

cu
ti

o
n

 T
im

e
 [

M
il

 C
y

cl
e

s]

PISCOT-C2C τ1=10:40 τ2=20:30

τ3=30:20 τ4=40:10 τ5=50:0

Figure 8 Sensitivity test for RTA against
PISCOT-C2C.

static WCL as bypassing the shared cache and provides a tighter WCL bound compared to
PMSI. However, both of these techniques rely on many coherency modifications and expose
performance loss compared to other approaches. On the other hand, PISCOT decouples the
request and response bus and leverages the split-transaction interconnect to achieve a tighter
WCL compared to PMSI and considerable performance gains. We also compare against the
COTS HPA as described in Section 6.1, which aims to achieve high average-case performance.

Request bus latency is configured to 4 cycles (tREQ = 4). The response bus latency
in PISCOT is comparable to the TDM slot size in PMSI as well as PMSI* and we set
them to 50 cycles in our evaluation similar to [15]. However, for RTA, the latency of all
resources is configurable. Throughout this section, unless otherwise specified, we configure
RTA with tRESP = 10 cycles, 8 banks that consume tBANK = 40 cycles to process requests
and parameter kceil = 1. Similar to existing works [18, 10, 15], we assume that accesses that
hit in the L1 cache take a single clock cycle and, as discussed in Section 3.1, LLC is a perfect
cache (all LLC accesses are hits) to avoid extra delay from accessing the off-chip memory
subsystem.

We employ SPLASH-3 [31] benchmark suite as it is a representative of multi-threaded
applications with data sharing. In addition, we craft a wide set of synthetic benchmarks that
stresses the implemented solutions. All contain mixed read and write requests to the LLC
and we engineered the requests’ addresses such that all requests miss in the L1 cache; hence,
stress on the bus and the shared cache banks will be maximized. Different benchmarks in
this set exhibit different sharing percentage as well. Due to space limitation, we show the
results of three of these benchmarks (Synth 1, Synth 2, Synth 3) that show unique insights.
There is no data-sharing among the cores in Synth 1 while Synth 2 and Synth 3 exhibit
10% and 20% data-sharing respectively. In all benchmarks, the foreground core represents a
high load core that bursts requests to bus/LLC, and the background cores are accessing the
shared bus/LLC less frequently. Interleaving across the banks is handled using address bits
themselves such that a core could access all banks as much as possible. In detail, we use bit
6th (bits zero to 5th are for the cache line offset) towards the MSB in the address bits of the
request to determine which LLC bank it needs to be processed in.

ECRTS 2022

16:22 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

7.1 Per-Request Worst-Case Latency

Figure 7 shows the static WCL bounds for requests generated by the cores and misses in L1
caches (see Section 5) from REQ:RESP:BANK type which represents the largest static WCL
among the three types. We compare PMSI, PMSI*, PISCOT and PISCOT-C2C (with core
to core transfers), and the proposed RTA mechanism with different values of the configurable
parameter kceil. From this experiment, we can make the following observations: 1) PMSI
shows a significantly higher latency bound compared to the other approaches, and the latency
bound increases quadratically with scaling the number of cores. The significant added latency
is due to the coherence interference on the shared data. PMSI* on the other hand presents
tight static WCL bound but at the cost of performance degradation [15, 17]; 2) PISCOT
shows looser bound compared to both PISCOT-C2C and PMSI* but similar to RTA since
core to core transfers enable the arbiters to bypass the LLC when an owner core must respond
to other cores; 3) RTA with kceil = 1 shows up to 1.18× looser bound compared to PISCOT
but significantly tighter bound compared to PMSI. Notice that this extra amount in latency
bound is due to the scheduling decisions that are made in RTA which allow one non-oldest
request to process in LLC banks. This gives the system a significant advantage in terms
of average performance as we will show in the next sections. It is worthwhile to stress the
existing trade-off between RTA with different values of kceil and PISCOT-C2C. RTA with
kceil = 0 represents a configuration that forces the ordering of processing such that requests
are only processed if they are oldest (no non-oldest request is allowed to process in the shared
banks). This improves the WCL bound such that it becomes tighter and very similar to
PISCOT-C2C. However, Duetto does not work with this configuration of RTA (kceil = 0)
since this prevents the system from reasonably leveraging the performance of the HPA; the
checker module is forced to select the RTA if there is any non-oldest request needing to be
serviced on the request bus.

7.2 RTA Sensitivity Test

The underlying architecture proposed in Section 3 is fully configurable to resemble the
conventional high-performance bus/LLC designs. In this section, we conduct a sensitivity test
on the RTA using synthetic benchmarks to justify the most efficient (and the worst) design that
is aligned with commercial architectures and compare it against PISCOT-C2C. We configured
a quad-core system with tREQ = 4 and then gradually varied tBANK and tRESP latencies. In
order to run a fair comparison, the parameters are determined such that tRESP +tBANK = 50,
the response bus latency for PISCOT-C2C. Assuming τ = tRESP : tBANK represents a
configuration of RTA in which the latency of shared banks in LLC is tBANK and the latency of
response bus equals tRESP , Figure 8 shows the execution time of the foreground core running
each of the three synthetic benchmarks. As discussed, RTA increases the parallelism through
bankized LLC. Therefore, as we increase tBANK in LLC and coincidentally decrease tRESP ,
we observe that the system performance improves by finishing the task under analysis faster.
In other words, by reducing the response bus latency, a significant amount of arbitration
stress will be transferred to the banks rather than the response bus; hence, the system’s
overall performance increases by allowing more transactions to be serviced simultaneously.
In detail, the core under analysis in RTA, τ1 running Synth 1 outperforms PISCOT-C2C
by 4.58× in terms of overall throughput of the system. Note that in τ5 where there is no
parallelism in RTA, we observe a negligible performance loss compared to PISCOT-C2C
(maximum 1% in overall throughput) since response bus arbiter in PISCOT-C2C is FCFS
while RTA employs a fair round-robin mechanism through GRR. Going forward, we chose τ1

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:23

Figure 9 Total observed memory latency of Splash-3. Values in y-axis are in log scale.

(a) RTA. (b) HPA. (c) DUEPCO.

Figure 10 Observed latencies under different arbitration schemes.

as it resembles the configuration with a higher level of parallelism resembling a more realistic
architecture. For example, Intel’s architectures utilize a bankized shared cache to hide the
shared bank processing time, which is higher than the data transfer on the bus [2].

7.3 Average Performance: SPLASH-3
We next evaluate the average performance of RTA against PISCOT-C2C based on SPLASH-3
benchmarks. Figure 9 shows the cumulative processing latency of all memory requests
generated by a quad-core system. Overall, RTA shows an average latency reduction of 1.74×
compared to PISCOT-C2C for kceil = 0, and of 2.1× for kceil = 1. This shows that even for
realistic benchmarks, bankizing L2 leads to a significant improvement in the performance
of the memory subsystem. Processing non-oldest requests leads to further performance
improvements, but as previously noted based on Figure 7, this comes at the cost of increased
WCL bounds.

7.4 Observed Request Latency
In the last two sets of experiments, we focus on the behavior of our Duetto design, which
we call DUEPCO, compared to the RTA and HPA. Note that we configure the relative
deadline for each type of request to be equal to its static WCL bound. Figures 10a, 10b,
and 10c delineate the observed latency in number of cycles suffered by oldest miss requests
of type REQ:BANK:RESP generated by a quad-core system. We show request latencies greater
than 80 cycles for better visibility and run the experiment with Synth 3 benchmark (other
benchmarks/request types show similar behavior). The RTA latency bound for this setup is

ECRTS 2022

16:24 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

0

1

2

3

4

5

6

7

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

G
eo

 M
ea

n

PISCOT-C2C RTA-kceil=0 RTA-kceil=1 DUEPCO HPA

(a)

4

4.5

5

5.5

6

6.5
DUEPCO HPA

(b)

Figure 11 Total throughput of the system.

476 cycles based on the derived WCL analysis in Section 5 which is shown as a red bar in
the figures. In HPA, we observe large latency spikes throughout the execution up to 3420
cycles since HPA favors requests from the cores that generate the highest number of requests,
are faster, and target the banks that are idle which can starve (theoretically) or delay for a
long time (practically) requests targeting busy banks. Figure 10a shows that RTA respects
the latency bound for all requests from every core and the latencies are always below the
WCL bound. However, there is a gap between the latencies and the static WCL bound since
static analysis conducted in Section 5 must assume that the oldest requests of all cores access
the same bank at the same time in addition to the non-oldest requests, which is unlikely in
practice. Finally, Figure 10c shows that DUEPCO stretches the latency of requests towards
the latency bound, but the bound is never violated. This allows the system to continue
selecting the HPA as long as possible.

7.5 Average Performance: Synthetic Benchmarks

To measure the average performance of DUEPCO, we use the total throughput of the
system based on synthetic benchmarks to stress the system. Figure 11a shows the geometric
mean of throughput across all cores for RTA, HPA and DUEPCO normalized to the overall
throughput of PISCOT-C2C. The figure represents the results for four different setups:
1) a quad-core system running Synth 1; 2) a quad-core system running Synth 3; 3) an
octa-core system running Synth 1; 4) an octa-core system running Synth 3. We make the
following observations: 1) RTA, HPA, and DUEPCO outperform the single-bank architecture
approach deployed in PISCOT-C2C significantly, by up to 6.4×; 2) DUEPCO shows very
small slowdown compared to HPA in synth 1 and synth 3 - 4 core (at most 2%); 3) in
an octa-core system and synth 3 benchmark, we observe a slowdown of 11%. Following the
discussion in Section 6, since DUEPCO employs RTA with kceil = 1, it has to exclude the
invalid states from the HPA by switching to RTA. Recall that Synth 3 benchmark exposes
20% data-sharing among the cores, and this leads to the case that multiple cores compete
to access the same cache line in a particular bank. Therefore, DUEPCO selects the RTA
regardless of the WCLator estimation according to the checker logic. However, by increasing
the number of allowed requests to the same cache line (kceil), we expect that DUEPCO
selects the HPA more often. As shown in Figure 11b, DUEPCO that employs RTA with
kceil = 3 exhibits only 1% slowdown compared to HPA. Notice that relaxing the parameter
kceil forces us to use a higher value for the static WCL bound for each oldest request as
shown in Figure 7. Therefore, we do not consider higher values for the parameter.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:25

8 Conclusions

Employing shared memory in multi-core platforms improves programmer productivity and
degrades the obstacle to using such platforms in real-time systems. Hardware cache coherence
can accommodate such shared memory and extend the advantages of on-chip caching to
all system memory. However, extending hardware cache coherence throughout traditional
schemes such as coherency protocol modifications to provide predictability hurts the perform-
ance of the system. In this work, we demonstrate that by employing the COTS interconnect
architecture along with proposing to bankize the on-chip cache, DUEPCO is able to pair a
clever global arbitration mechanism with Duetto to significantly improve the performance of
the system while providing predictability. Notice that while we propose DUEPCO with simple
buses, potentially the same arbitration scheme could be added to other bus architectures
such as AXI in ARM platforms. However, the fundamental constraint to consider is that the
arbiter must have exclusive visibility into the queues of each requestor.

References
1 Arm cortex-a53 mpcore processor technical reference manual r0p3. https://developer.arm.

com/documentation/ddi0500/e/level-1-memory-system/about-the-l1-memory-system.
Accessed: 2022-01-23.

2 Intel® 64 and ia-32 architectures optimization reference manual. https://www.intel.com
/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
optimization-manual.pdf. Accessed: 2021-07-20.

3 ARM. Arm® cortex®-r8 mpcore processor. https://developer.arm.com/documentation/
100400/0001/xdc1471434436160, 2019.

4 Matthias Becker, Dakshina Dasari, Borislav Nikolic, Benny Akesson, Vincent Nélis, and Thomas
Nolte. Contention-free execution of automotive applications on a clustered many-core platform.
In 28th Euromicro Conference on Real-Time Systems, ECRTS 2016, Toulouse, France, July
5-8, 2016, pages 14–24. IEEE Computer Society, 2016. doi:10.1109/ECRTS.2016.14.

5 Micaiah Chisholm, Namhoon Kim, Bryan C Ward, Nathan Otterness, James H Anderson,
and F Donelson Smith. Reconciling the tension between hardware isolation and data sharing
in mixed-criticality, multicore systems. In 2016 IEEE Real-Time Systems Symposium (RTSS),
pages 57–68. IEEE, 2016. doi:10.1109/RTSS.2016.015.

6 Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pellizzoni,
and Marco Caccamo. Designing Mixed Criticality Applications on Modern Heterogeneous
MPSoC Platforms. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019),
pages 27:1–27:25, Dagstuhl, Germany, 2019.

7 Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A comparative study
of predictable dram controllers. ACM Trans. Embed. Comput. Syst., 17(2), February 2018.
doi:10.1145/3158208.

8 Mohamed Hassan. Heterogeneous mpsocs for mixed-criticality systems: Challenges and
opportunities. IEEE Design & Test, 35(4):47–55, 2017.

9 Mohamed Hassan. Discriminative coherence: Balancing performance and latency bounds
in data-sharing multi-core real-time systems. In 32nd Euromicro Conference on Real-Time
Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

10 Mohamed Hassan, Anirudh M Kaushik, and Hiren Patel. Predictable cache coherence for multi-
core real-time systems. In 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 235–246. IEEE, 2017.

11 Mohamed Hassan and Hiren Patel. Criticality- and requirement-aware bus arbitration for
multi-core mixed criticality systems. In 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 1–11, 2016. doi:10.1109/RTAS.2016.7461327.

ECRTS 2022

https://developer.arm.com/documentation/ddi0500/e/level-1-memory-system/about-the-l1-memory-system
https://developer.arm.com/documentation/ddi0500/e/level-1-memory-system/about-the-l1-memory-system
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://developer.arm.com/documentation/100400/0001/xdc1471434436160
https://developer.arm.com/documentation/100400/0001/xdc1471434436160
https://doi.org/10.1109/ECRTS.2016.14
https://doi.org/10.1109/RTSS.2016.015
https://doi.org/10.1145/3158208
https://doi.org/10.1109/RTAS.2016.7461327

16:26 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

12 Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. A framework for scheduling dram
memory accesses for multi-core mixed-time critical systems. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 307–316. IEEE, 2015.

13 Mohamed Hassan and Rodolfo Pellizzoni. Bounding dram interference in cots heterogeneous
mpsocs for mixed criticality systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2323–2336, 2018. doi:10.1109/TCAD.2018.2857379.

14 Mohamed Hassan and Rodolfo Pellizzoni. Analysis of memory-contention in heterogeneous
cots mpsocs. In Euromicro Conference on Real-Time Systems, 2020.

15 Salah Hessien and Mohamed Hassan. The best of all worlds: Improving predictability at the
performance of conventional coherence with no protocol modifications. In 2020 IEEE Real-Time
Systems Symposium (RTSS), pages 218–230, 2020. doi:10.1109/RTSS49844.2020.00029.

16 Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel. Designing predictable cache
coherence protocols for multi-core real-time systems. IEEE Transactions on Computers,
70(12):2098–2111, 2021. doi:10.1109/TC.2020.3037747.

17 Anirudh Mohan Kaushik and Hiren Patel. A systematic approach to achieving tight worst-
case latency and high-performance under predictable cache coherence. In 2021 IEEE 27th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 105–117,
2021. doi:10.1109/RTAS52030.2021.00017.

18 Anirudh Mohan Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel. Carp: A data
communication mechanism for multi-core mixed-criticality systems. In 2019 IEEE Real-Time
Systems Symposium (RTSS), pages 419–432, 2019. doi:10.1109/RTSS46320.2019.00044.

19 Manpreet S Khaira. Fast first-come first served arbitration method, November 12 1996. US
Patent 5,574,867.

20 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan
Rajkumar. Bounding memory interference delay in cots-based multi-core systems. In 2014
IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
145–154, 2014. doi:10.1109/RTAS.2014.6925998.

21 Namhoon Kim, Micaiah Chisholm, Nathan Otterness, James H. Anderson, and F. Donelson
Smith. Allowing shared libraries while supporting hardware isolation in multicore real-time
systems. In 2017 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 223–234, 2017. doi:10.1109/RTAS.2017.14.

22 Benjamin Lesage, Isabelle Puaut, and André Seznec. Preti: Partitioned real-time shared cache
for mixed-criticality real-time systems. In Proceedings of the 20th International Conference on
Real-Time and Network Systems, pages 171–180, 2012.

23 Reza Mirosanlou, Danlu Guo, Mohamed Hassan, and Rodolfo Pellizzoni. Mcsim: An extensible
dram memory controller simulator. IEEE Computer Architecture Letters, 19(2):105–109, 2020.
doi:10.1109/LCA.2020.3008288.

24 Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. Drambulism: Balancing
performance and predictability through dynamic pipelining. In 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 82–94, 2020. doi:
10.1109/RTAS48715.2020.00-15.

25 Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. Duetto: Latency guarantees at
minimal performance cost. In 2021 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1136–1141, 2021. doi:10.23919/DATE51398.2021.9474062.

26 Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. DuoMC: Tight DRAM Latency
Bounds with Shared Banks and Near-COTS Performance. In ACM International Symposium
on Memory Systems (MEMSYS), pages 1–14, 2021.

27 NXP. Qorlq® t4240, t4160 and t4080 multicore processors, 2018.
28 Marco Paolieri, Eduardo Quiñones, Francisco J Cazorla, Guillem Bernat, and Mateo Valero.

Hardware support for wcet analysis of hard real-time multicore systems. ACM SIGARCH
Computer Architecture News, 37(3), 2009.

https://doi.org/10.1109/TCAD.2018.2857379
https://doi.org/10.1109/RTSS49844.2020.00029
https://doi.org/10.1109/TC.2020.3037747
https://doi.org/10.1109/RTAS52030.2021.00017
https://doi.org/10.1109/RTSS46320.2019.00044
https://doi.org/10.1109/RTAS.2014.6925998
https://doi.org/10.1109/RTAS.2017.14
https://doi.org/10.1109/LCA.2020.3008288
https://doi.org/10.1109/RTAS48715.2020.00-15
https://doi.org/10.1109/RTAS48715.2020.00-15
https://doi.org/10.23919/DATE51398.2021.9474062

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:27

29 Rodolfo Pellizzoni, Bach D. Bui, Marco Caccamo, and Lui Sha. Coscheduling of cpu and i/o
transactions in cots-based embedded systems. In 2008 Real-Time Systems Symposium, pages
221–231, 2008. doi:10.1109/RTSS.2008.42.

30 Fong Pong and Michel Dubois. A new approach for the verification of cache coherence protocols.
IEEE Transactions on Parallel and Distributed Systems, 6(8):773–787, 1995.

31 Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. Splash-3: A properly
synchronized benchmark suite for contemporary research. In 2016 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pages 101–111. IEEE,
2016.

32 Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso, Jamie
Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, et al. T-crest:
Time-predictable multi-core architecture for embedded systems. Journal of Systems Architec-
ture, 61(9):449–471, 2015.

33 Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. Modeling cache coherence to expose
interference (artifact). In Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

34 Nathanal Sensfelder, Julien Brunel, and Claire Pagetti. On how to identify cache coherence:
Case of the nxp qoriq t4240. In 32nd Euromicro Conference on Real-Time Systems (ECRTS
2020). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2020.

35 Ashok Singhal, Bjorn Liencres, Jeff Price, Frederick M Cerauskis, David Broniarczyk, Gerald
Cheung, Erik Hagersten, and Nalini Agarwal. Implementing snooping on a split-transaction
computer system bus, November 2 1999. US Patent 5,978,874.

36 Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency and cache
coherence. Synthesis lectures on computer architecture, 6(3):1–212, 2011.

37 Nivedita Sritharan, Anirudh Kaushik, Mohamed Hassan, and Hiren Patel. Enabling predictable,
simultaneous and coherent data sharing in mixed criticality systems. In 2019 IEEE Real-Time
Systems Symposium (RTSS), pages 433–445, 2019. doi:10.1109/RTSS46320.2019.00045.

38 Calvin K Tang. Cache system design in the tightly coupled multiprocessor system. In
Proceedings of the June 7-10, 1976, national computer conference and exposition, pages
749–753, 1976.

39 Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni. Worst case analysis of dram latency in
multi-requestor systems. In 2013 IEEE 34th Real-Time Systems Symposium, pages 372–383,
2013. doi:10.1109/RTSS.2013.44.

40 Zhuanhao Wu, Anirudh Mohan Kaushik, Paulos Tegegn, and Hiren Patel. A hardware platform
for exploring predictable cache coherence protocols for real-time multicores. In 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 92–104,
2021. doi:10.1109/RTAS52030.2021.00016.

ECRTS 2022

https://doi.org/10.1109/RTSS.2008.42
https://doi.org/10.1109/RTSS46320.2019.00045
https://doi.org/10.1109/RTSS.2013.44
https://doi.org/10.1109/RTAS52030.2021.00016

	1 Introduction
	1.1 Related Work: Predictable Cache Coherence
	1.2 Contributions

	2 Background
	2.1 Hardware Cache Coherence
	2.2 Arbitration

	3 System Model
	3.1 Architecture and Coherency
	3.2 Request Processing and Order of Arbitration
	3.3 Latency Model
	3.4 Task Analysis

	4 Proposed Arbiter
	5 Latency Analysis
	5.1 Dynamic Latency Analysis
	5.2 Static Analysis

	6 Applying Duetto to Cache Coherence Design
	6.1 Background: Duetto Reference Model
	6.2 Model Extensions
	6.3 WCLator Design

	7 Evaluation Results
	7.1 Per-Request Worst-Case Latency
	7.2 RTA Sensitivity Test
	7.3 Average Performance: SPLASH-3
	7.4 Observed Request Latency
	7.5 Average Performance: Synthetic Benchmarks

	8 Conclusions

