
1556-6056 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2020.3008288, IEEE Computer
Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTERS 1

MCsim: An Extensible DRAM Memory Controller Simulator
Reza Mirosanlou, Danlu Guo, Mohamed Hassan, and Rodolfo Pellizzoni

Abstract—Numerous proposals for memory controller (MC) designs have been exposed to the research community. Interest has since been
growing in the area of computer architecture and real-time systems to improve the throughput of the system and/or guarantee timing
requirements through novel scheduling algorithms. Consequently, comprehensive simulators are highly demanded since they provide an
infrastructure for development of new ideas effectively without re-implementing the other parts of the hardware. Although there has been several
proposals for off-chip memory device simulators, there is a shortage in their MC counterparts. In this article, we propose MCsim, an extensible
and cycle-accurate MC simulator. Designed as an integrable environment, MCsim is able to run as a trace-based simulator as well as provide an
interface to connect with external CPU and memory device simulators.

Index Terms—Memory control and access, DRAM, Simulation

F

1 INTRODUCTION

W ITH the emergence of chip multiprocessors, the shared off-
chip Dynamic Random Access Memory (DRAM) represents

a significant bottleneck for many parallel workloads. Due to the
complex internal behavior of DRAM devices, the performance of
the main memory subsystem is highly dependant on the arbitration
scheme employed by the Memory Controller (MC). For this reason,
there is significant past and on-going interest in optimizing the
MC design. In particular, the high-performance community has
proposed several designs [1], [2], [3] that attempt to balance the
inherent trade-off between DRAM throughput and fairness with
respect to multiple memory requestors (cores and I/O devices). At
the same time, a large number of predictable MC designs for safety-
critical systems [4], [5] have been recently proposed to provide tight
bounds on worst-case memory access latency.

Most proposed scheduling techniques at the MC in the litera-
ture are evaluated using an in-house simulator implemented from
scratch, which involves enormous efforts while hindering repro-
ducibility. Available standalone DRAM simulators [6], [7], [8], [9]
tend to lack modularity and extensibility and support neither recent
controller designs nor new memory standards. In particular, we note
that proposed predictable MCs present a large variability in their
designs, which is ill-captured by the aforementioned simulators.
Existing device simulators also do not provide the capability to
differentiate service to different requestors (or cores). Commonly
used full-system simulators [10], [11] include a DRAM subsystem;
however, for simulation speed, they rely on a fast but simplified/i-
naccurate model of the DRAM [12], e.g., using fixed-latency [13], or
non-cycle accurate models [14]. Finally, Ramulator [15] is a modular
and extensible DRAM simulator, but it was designed to explicitly
model the structure and behavior of DRAM devices, while the
underlying DRAM MC is still a relatively simplified model.

Designing an MC simulator from scratch increases the time
required to test and validate new ideas and complicates the pro-
cess of comparing competing designs. To address such issues, we
contribute MCsim: a modular, extensible, and cycle-accurate object-
oriented simulation framework for DRAM MCs. Specifically, we
focus on rapid implementation, testing, and evaluation of new
memory scheduling policies.

Every novel policy optimizes a specific module of the MC to meet
a certain design goal such as delivering a higher performance or
providing a tighter latency bound. These optimizations can manifest
in one or more of the MC modules: command generation schemes,
request scheduling mechanisms, command scheduling policies, and
different requestor criticalities. In addition, a specific policy’s de-
sign choice represents a dependency among various MC’s modules

which results in an involved analysis and development process.
This complexity further motivates us to design MCsim such that
it provides a modular and configurable architecture, which enables
the designer to develop, test, and analyze a specific module of the
MC design without affecting the other entities, and hence, eases
the modeling of new MC policies. MCsim is designed based on the
observation that even though different MCs employ widely different
scheduling schemes, they still process memory requests by a set of
common functions that are used to implement standard hardware
blocks and processing flows. These functions tend to contribute the
majority of the code in any simulator, and thus, can be reused across
different designs.

We prove the extensibility of MCsim by successfully implement-
ing multiple commercial-of-the-shelf (COTS), high-performance,
and predictable MCs. Note that the average Lines-of-Code (LOC)
required to develop 14 MCs in MCsim is only 133 per controller,
demonstrating minimal effort towards implementing new policies.
MCsim can be built on any platform supporting C++11, and it can
be integrated with any detailed DRAM device model. We integrate
MCsim with Ramulator as an example of a validated and open-
source device simulator.

TABLE 1
Comparison of capabilities between device simulators and MCsim.

Capability DRAMsim2 [6] Ramulator [15] MCsim
Modular structure 7 7 X

Queuing configurability Partial 7 X
Device specific simulator X X 7
Trace-based simulation X X X
Full-system integration X X X

Supported MCs 4 4 14

Table 1 shows the capabilities of MCsim compared to DRAM
device simulators. Notice that, in addition to the trace-based execu-
tion mode in MCsim, the interfaces facilitate the ability to connect
MCsim to CPU simulator such as gem5 [10] and MacSim [11]
through the provided library. The simulator code is available at [16].

In the rest of the paper, we describe the overall and detailed
design of MCsim, focusing on how we streamline the design of new
policies by capturing the generality among existing MC designs.

2 ARCHITECTURAL DESIGN

MCsim employs a modular, expansible, configurable, and integrable
design; Figure 1 illustrates the major hardware blocks implemented
in the framework. MCsim consists of an address translator (ad-
dress mapping), which maps requests to physical memory cells, a
command generator that converts requests into access commands,
and request and command schedulers which determine the order of
request/command execution.

Authorized licensed use limited to: McMaster University. Downloaded on July 13,2020 at 18:59:58 UTC from IEEE Xplore. Restrictions apply.

1556-6056 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2020.3008288, IEEE Computer
Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTERS 2

Requestor
0

Requestor
1

Requestor
N-1

Si
m

u
la

ti
o

n
 E

n
gi

n
e

A
d

d
re

ss
 M

ap
p

in
g

Request
Queue 0

Request
Queue 1

Request
Queue RQ-1

Command
Queue 0

Command
Queue 1

Command
Queue CQ-1

R
eq

u
es

t
Sc

h
e

d
u

le
r

C
o

m
m

an
d

 G
en

e
ra

to
r

C
o

m
m

an
d

 S
ch

e
d

u
le

r

D
R

A
M

 D
ev

ic
e

Data
Bus

DRAM Memory Controller Simulator
System

Simulator

MCsim

DRAM
Simulator

Cmd
Bus

Fig. 1. Generalized MC architecture and major blocks.

Modularity: each block is constructed independently, and the
encapsulated data is accessed through a simple interface. In this
manner, changes to the behavior of a particular block do not impact
the other blocks in the system. The specific algorithms implemented
by these blocks must be customized based on the MC design.
Expansibility: MCsim exploits the benefits of inheritance and poly-
morphism by providing virtual function interfaces, which minimize
the amount of code required to extend the functionality of each
block. Configurability: an MC simulator must include queues to
connect the hardware blocks and temporarily store requests and
commands. Rather than fixing the structure of the queues as in
most other MC simulators, MCsim provides an easy to configure
and modular queue structure. Since DRAM devices are organized
in hierarchy levels (e.g., channels, ranks, bank groups, banks), the
configurable queue structure allows the designer to construct them
according to any DRAM level. Integrability: as shown in Figure 1,
MCsim employs a generalized interface that can be accessed by any
external system simulator to send memory requests and employs
an abstract DRAM interface for the DRAM device model, so that
the framework is not tied to any specific memory device type. For
the device interface, we currently connect MCsim to Ramulator as
the preferred device simulator since it supports a wide variety of
DRAM standards. Note that a researcher can even implement his
own device model and interface it directly to MCsim as far as
it adheres to the MCsim interface. For the CPU system interface,
MCsim can run as a trace-based simulator. It also provides an
interface to connect two of the commonly used simulators, namely
gem5 [10] and MacSim [11].

3 CONFIGURATION AND SIMULATION ENGINE

A specific MC is built by a configuration file (.ini) to define the
structure of the queues as well as the operation of each hardware
block. As an example in Pseudo Code 1, we show the configuration
for the ORP controller [4], which requires per-requestor buffers and
applies DIRECT request arbitration, OPEN command generation and
a specific ORP command scheduling policy. MCsim also enables
to configure the address mapping based on all possible different
permutations of the DRAM device hierarchy, which allows the user
to assign the mapping schemes flexibly. Each digit represents the
corresponding hierarchy level, and the permutation determines the
order of decoding. The permutation of the address bits can change
the performance of a task based on how the data is allocated.

1 // Rank [0] , BankGroup [1] , Bank [2] , SubArray [3] ,Row[4] , Col [5]
2 AddressMapping=012345 // order of address t r a n s l a t i o n
3 RequestBuffer =0000 // request queue per−l e v e l
4 ReqPerREQ=1 // request queue per−requestor
5 WriteBuffer =0 // dedicated queue f o r wri te reques ts
6 CommandBuffer=0000 // command queue per−l e v e l
7 CmdPerREQ=1 // command queue per−requestor
8 // scheduler Based on Keys
9 RequestScheduler= ’DIRECT ’// employ ”DIRECT” request scheduler

10 CommandGenerator= ’OPEN ’ // employ ”OPEN” command generator
11 CommandScheduler= ’ORP ’ // employ ”ORP” command scheduler
12 // queue s t r u c t u r e scheme : 0000 −−> Channel , 1000 −−> Rank
13 // 0100 −−> BankGroup , 0010 −−> Bank , 0001 −−> SubArray

Pseudo Code 1. Configuration Parameters for ORP

The request and command queues are constructed based on the
selected DRAM hierarchy level. The bits value for each DRAM level
is shown in lines 12 and 13 of Pseudo Code 1. These schemes are
used to build the configured number of queues and also provide
a flexible hardware structure to support most predictable DRAM
scheduling policies. The structure of request and command queues
is depicted in Figure 2. There are three separate buffers for request
queues: first, a general buffer is used to store any incoming request;
second, a set of buffers can be configured using the ReqPerREQ
parameter to separate requests by individual requestors; and last,
a write buffer can be enabled via the WriteBuffer parameter
to separate write requests of any requestor from read requests.
By providing these configurations, MCsim can support request
schedulers that arbitrate among DRAM hierarchies, requestor IDs,
type of requests, or all of the above. For example, some MCs
schedulers arbitrate among requestors (cores) regardless of the
DRAM location of a request [4]. Therefore, an individual buffer
is created for each requestor. Other MCs arbitrate among DRAM
banks rather than requestors and require a per-bank queue [4], [17].
The request arbitration can also be performed on two levels. For
instance, DCmc requires a request queue per bank and performs
round-robin (RR) among requestors in each bank. Typical high-
performance arbiters employing First-Ready First-Come-First-Serve
(FR-FCFS) arbitration in addition to a separate arbitration between
read and write requests. The command queue shown in Figure 2
is similar to the request queue and can be configured based on
two parameters. CmdPerREQ is used to separate commands for

WriteBuffer

Requestor N
Buffer

Requestor M

Buffer

General Buffer

Write Buffer

ReqPerREQ

Request Queue

Request

Criticality

Requestor N
Buffer

Requestor M

Buffer

General Buffer

Low-Priority Buffer

CmdPerREQ

Command Queue

Command

Fig. 2. Request and command queue structures per resource level.

different requestors. Rather than having separate buffers for read
and write requests, the command queue has separate command
buffers for commands with different criticalities. Criticality reflects
the priority of requests. Assigning different priorities for requests
is a common theme both in predictable systems as well as COTS
platforms. In a case of an MC with two priorities (for instance criti-
cal vs. non-critical requests), General Buffer is only employed
for high requestors, while the Low-Priority Buffer stores
lower-priority commands. The sub-classes of RequestScheduler,
CommandGenerator, and CommandScheduler are selected based
on their names. The string name of a subclass must be defined
in schedulerRegister.h to notify which subclass will be used
according to the names.

4 DETAILED SYSTEM DESIGN

Throughout this section, we explain the detailed functionality and
implementation of hardware blocks as well as their interactions
according to the MCsim class diagram in Figure 3.

4.1 Top-Level Memory Controller

The top-level MemoryController is responsible for controlling the
interaction between each internal hardware block and managing
the requests and data flow between external memory requests and
memory devices. In order to differentiate the requirements of each
requestor in a system, we consider a requestor to be either a critical
(high priority) or non-critical (low priority). Thus, a requestorCriti-
calTable can be configured by the user to indicate the criticality of
each requestor. Then, the table can be used by any hardware blocks

Authorized licensed use limited to: McMaster University. Downloaded on July 13,2020 at 18:59:58 UTC from IEEE Xplore. Restrictions apply.

1556-6056 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2020.3008288, IEEE Computer
Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTERS 3

MemoryController

-requestorCriticalTable

-requestQueue

-commandQueue

+setRequestor()

+addRequest()

-enqueueCommand()

-sendData()

-receiveData()

-callback()

+update()

AddressMapping

+addressMapping()

RequestQueue

-requestorBuffer

-generalBuffer

-writeBuffer

CommandQueue

-requestorBuffer

-hrtBuffer

-srtBuffer

CommandScheduler

+requestorCriticalTable

<<virtual>>+commandSchedule()

#isReady()

#isIssueable()

#sendCommand()

#getTiming()

+step()

RefreshMAchine

+refreshing()

RequestScheduler

#bankTable

<<virtual>>+requestSchedule()

<<virtual>>#isSheduleable()

#isRowHit()

#updateRowTable()

+step()

CommandGenerator

<<virtual>>+commandGenerate()

+removeCommand()

Open CloseHybrid

RTmem

ORP

MAG

ROC

MAG

CMD
Bundle

REQ
Bundle

FCFS

DIRECT

RR

TDM

MemoryDevice

<<virtual>>+receiveFromBus()

<<virtual>>+get_constraints()

<<virtual>>+command_check()

+update()

FR-FCFS

BLISS

FCFS

PARBS

DCmc

MCMC

MCMC

MEDUSA

PMC

Rank
ReOrder

D
if

fe
re

n
t

M
C

 r
eq

u
es

t
sc

h
ed

u
le

r
m

ec
h

an
is

m
s

D
if

fe
re

n
t

M
C

 c
o

m
m

an
d

 s
ch

ed
u

le
r

im
p

le
m

en
ta

ti
o

n

#commandBuffer

Fig. 3. MCsim class diagram representing the main functional blocks in the simulator.

to make scheduling decisions among requests or commands based
on the criticality of the requestors.

MemoryController receives new memory requests from re-
questors through addRequest(ID, Address, Type, Size,
Data) and sends complete requests back to the requestors through
callback(Request) provided by the simulation engine. Mem-
oryController is also responsible for inserting requests and com-
mands into their corresponding queues. Once there are avail-
able data that can be transmitted through the data bus, Mem-
oryController communicates with the DRAM device through
receiveData(Data) and sendData(Data) functions.

The step() function triggers the proceeding of each of
the internal hardware blocks. According to Figure 3, the
requestSchedule() function of RequestScheduler is first called
to select requests that can be converted into commands. All
commands generated by the CommandGenerator are en-queued
into back-end command queues. Finally, the commandSchedule()
function of CommandScheduler is called to issue an available com-
mand to the DRAM device. Since the data bus and the command
bus are separated, available data can be sent or received in parallel
with the command.

4.2 Functional Hardware Blocks

4.2.1 AddressMapping

The interface addressMapping(request) takes an incoming re-
quest and assigns a physical memory location to the request. The
location of a request is determined by shifting the memory level bits
in the order of the mapping scheme used in the configuration file.

4.2.2 RequestScheduler

The request scheduler is connected with both request and command
queues because the arbitration may not only depend on the available
requests in a request queue, but also on the status of corresponding
command queues. For example, RTMem only allows a new request
to be scheduled if there is no activate command in any of the
command queues.

A bankTable is used to track the currently active row in the
row buffer of each bank. It determines if a selected request is
targeting an open or close row. The bankTable is accessed by
isRowHit(Request) before a request is sent to command gen-
erator and updated by updateRowTable(Rank,Bank,Row) once
the request is converted into commands.

4.2.3 CommandGenerator

The abstract class CommandGenerator has a virtual interface
commandGenerate(Request, isOpen) which is called by re-
questScheduler to decode a request into a set of DRAM commands.
This procedure is done based on the status of the row and generation
pattern, including open, close, or hybrid page policies. All generated
commands in one cycle are temporally stored in a command buffer,
which is later accessed by the top-level memory controller. We
separate requestScheduler and commandGenerator to allow devel-
opment of each of those components separately.

4.2.4 CommandScheduler

The command scheduler is connected to the command
queues and the DRAM device interface. It contains a
requestorCriticalTable for each command queue to record
the criticality of each requestor. cmdQueueTimer tracks the
minimum number of clock cycles that any commands must wait
before being issued. The table is updated once a command is
issued to DRAM devices, and the counter for each command
decremented every clock cycle. As an example, we show ORP
scheduling mechanism in Pseudo Code 2. Ready commands from
each requestor command buffer are first pushed to a FIFO buffer
according to their criticality. When there is a CAS command in
the critical FIFO that cannot be issued to the device, the CAS
command will block all the other CAS commands (by CASBlock)
in the FIFO, but not the commands of other types. If there is no
command issueable from the high-priority FIFO, the scheduler tries
to schedule a command from the low-priority FIFO.

4.2.5 MemorySystem

To support a broad range of DRAM standards, MCsim has a gen-
eral interface to access DRAM information provided by the user
through three virtual functions: 1) GET_CONSTRAINT(name): the
MC retrieves the timing constraint values for a selected DRAM
device from the device simulator. 2) CHECK_COMMAND(Cmd): once a
command is selected from command scheduler, this function is used
to determine whether the command can be issued in the current
clock; 3) RECEIVE_COMMAND(Cmd): behaves as an interface to the
command bus; it is called by sendCommand(Cmd) in command-
Scheduler to issue a command through the command bus. Notice
that, if the implementation of a certain MC design requires changes
in the device itself, some modifications also need to be done in
MCsim which would be straightforward due to the modularity of
the simulator.

Authorized licensed use limited to: McMaster University. Downloaded on July 13,2020 at 18:59:58 UTC from IEEE Xplore. Restrictions apply.

1556-6056 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2020.3008288, IEEE Computer
Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTERS 4

1 Function scheduleCommand ORP ()
2 f o r (’ each r e q u e s t o r B u f f e r in a channel commandQueue ’)
3 i f (’ r e q u e s t o r B u f f e r i s not empty ’)
4 get f r o n t Cmd from the r e q u e s t o r B u f f e r ;
5 i f (’ isReady (Cmd) ’)
6 i f (’HRT requestor ’)
7 push Cmd i n t o FIFO ;
8 e l s e
9 push Cmd i n t o SRT−FIFO ;

10 CASblock = f a l s e ;
11 f o r (’ every Cmd in FIFO from the f r o n t of the queue ’)
12 i f (’ CASblock i s t rue and Cmd i s CAS ’)
13 continue ;
14 i f (’ i s s I s s u e a b l e (Cmd) ’)
15 sendCommand (Cmd) ;
16 re turn Cmd;
17 e l s e i f (’Cmd i s CAS ’)
18 CASblock = true ;
19 f o r (’ every Cmd in the SRT−FIFO from f r o n t of the queue ’)
20 i f (’ i s I s s u e a b l e (Cmd) ’)
21 sendCommand(Cmd) ;
22 re turn Cmd;
23 re turn NULL;

Pseudo Code 2. ORP Command Scheduler

5 EVALUATION AND VALIDATION

1) Lines-of-Code (LOC): To show the effectiveness of MCsim we
implement 10 different MC scheduling techniques at the request-
level and 11 ones at the command-level as Figure 3 illustrates. We
observe that the maximum amount of controller-specific code in
MCsim is less than 11%, and the largest amount of code required
to implement any controller is 432. In Table 2, we report the LOC
required to implement each MC. In addition, we also implemented
a device based refresh mechanism (per-bank refresh [18]) that only
adds 65 LOC to MCsim.

TABLE 2
Simulation time (sec) of MCs for different simulators. Xrepresents the ability

to distinguish among different requestors in each MC.

Controller REQ Simulator LOC RunTimeseq RunTimerand

FR-FCFS

7 MCsim 32 3.91 8.7
7 Ramulator# 309 18.97 31.01
7 Ramulator 243 6.04 9.12
7 DRAMsim2 356 3.28 8.28

BLISS X MCsim 78 32.01 75.71
X Ramulator# 335 293.32 422.52

PARBS X MCsim 138 46.95 115.66
X Ramulator# 424 172.62 372.21

ORP X MCsim 93 44.80 74.83
X Standalone 542 103.76 726.31

RTMem X MCsim 96 86.69 98.16
X Standalone 1910 50.12 51.24

MEDUSA X MCsim 123 33.78 98.30
CMDBundle X MCsim 169 37.95 73.27
REQBundle X MCsim 432 52.27 57.49

MAG X MCsim 94 40.31 71.16
MCMC X MCsim 182 63.61 66.95
DCmc X MCsim 85 42.81 71.35
AMC X MCsim 98 81.90 92.38
PMC X MCsim 65 93.97 105.52
ROC X MCsim 175 40.38 72.54

2) Simulation Time (RunTime): We compare MCsim with existing
DRAM and MC simulators, which are open-sourced and can run
as a standalone package with inputs trace, making it viable to
provide a fair and reproducible comparison. We employ two syn-
thetic memory traces containing one million requests each, including
90% read and 10% write requests since reads are more critical in
general. The seq trace is constructed such that it accesses rows
consecutively, which tends to access open rows in the device. The
rand trace is created with completely randomized address locations
in order to stress the controllers with close requests. Since DDR3
device is supported in all the simulators, we run each simulator on
our host (Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 16GB RAM,
and the Linux kernel is 4.15) with DDR3 1600H device with the

same DRAM structures and timing constraints and make sure each
simulator has the same system parameters. We configured all device
simulators to employ FR-FCFS scheduling. The simulation time are
shown in Table 2. Regarding FR-FCFS, the run time is presented,
such that each simulator finishes all the requests in the trace. For
the rest of the controllers that are concerned about fairness, we
duplicate the trace into eight such that each requestor accesses its
own trace, which consists of 1 million requests as used previously.
We conclude that MCsim provides comparable simulation time
to the device simulators, as well as the greatest extensibility that
enables us to develop new controllers. Notice that the extra lines of
code for implementing a new controller is small; however, on the
downside, the generalization feature of MCsim might slow down
the simulation speed (specifically, this is the case for RTMem).
3) Behavioral Validation: We validate MCsim using the regression
test suite provided by the DRAM subsystem validation tool, MCX-
plore [19]. This regression suite covers a wide range of controller
parameters such as hit ratio, read/write ratio, and interleaving. We
validate the correctness of MCsim by comparing the issuing times
of commands with the JEDEC standard’s dictated constraints. We
also compare each policy with its counterpart in a publicly available
simulator as Table 2 shows. Results confirm that MCsim conforms
to the standard and the behavior of each policy matches that of the
corresponding simulator.
6 CONCLUSION

In this paper, we introduce MCsim, an extensible cycle-accurate
simulator for MC designs. MCsim provide flexibility such that it can
run in a trace-based mode or integrate to an external system simu-
lator with the provided libraries. We expect MCsim to significantly
accelerate the design and testing of novel MCs.

REFERENCES
[1] L. Subramanian et al., “Bliss: Balancing performance, fairness and com-

plexity in memory access schedyuling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, pp. 3071–3087, 2016.

[2] S. Rixner et al., “Memory access scheduling,” in ACM SIGARCH Computer
Architecture News, vol. 28, no. 2. ACM, 2000, pp. 128–138.

[3] O. Mutlu et al., “Parallelism-aware batch scheduling: Enhancing both
performance and fairness of shared dram systems,” in ACM SIGARCH
Computer Architecture News. IEEE Computer Society, 2008.

[4] D. Guo et al., “A comparative study of predictable DRAM controllers,”
ACM Transactions on Embedded Computing Systems (TECS), 2018.

[5] R. Mirosanlou et al., “Drambulism: Balancing performance and pre-
dictability through dynamic pipelining,” in 2020 IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), 2020, pp. 82–94.

[6] P. Rosenfeld et al., “Dramsim2: A cycle accurate memory system simula-
tor,” IEEE computer architecture letters, vol. 10, no. 1, pp. 16–19, 2011.

[7] N. Chatterjee et al., “Usimm: the utah simulated memory module,” Uni-
versity of Utah, Tech. Rep, 2012.

[8] M. K. Jeong et al., “Drsim: A platform for flexible dram system research,”
Accessed in: http://lph. ece. utexas. edu/public/DrSim, 2012.

[9] M. Poremba and Y. Xie, “Nvmain: An architectural-level main memory
simulator for emerging non-volatile memories,” in 2012 IEEE Computer
Society Annual Symposium on VLSI. IEEE, 2012, pp. 392–397.

[10] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer Archi-
tecture News, vol. 39, no. 2, pp. 1–7, 2011.

[11] H. Kim et al., “Macsim: Simulator for heterogeneous architecture,” 2012.
[12] S. Li et al., “Rethinking cycle accurate dram simulation,” in Proceedings of

the International Symposium on Memory Systems, 2019, pp. 184–191.
[13] S. Srinivasan et al., “Cmp memory modeling: How much does accuracy

matter?” in Citeseer, 2009.
[14] A. Hansson et al., “Simulating dram controllers for future system archi-

tecture exploration,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2014, pp. 201–210.

[15] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” CAL,
2015.

[16] “Mcsim: An extensible dram memory controller simulator,”
https://github.com/uwuser/MCsim.

[17] B. Jacob et al., Memory systems: cache, DRAM, disk. Morgan Kaufmann,
2010.

[18] K. K.-W. Chang et al., “Improving dram performance by parallelizing
refreshes with accesses,” in 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2014, pp. 356–367.

[19] M. Hassan and H. Patel, “Mcxplore: Automating the validation process
of dram memory controller designs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 5, pp. 1050–1063, 2017.

Authorized licensed use limited to: McMaster University. Downloaded on July 13,2020 at 18:59:58 UTC from IEEE Xplore. Restrictions apply.

