
tinyCare: A tinyML-based Low-Cost Continuous
Blood Pressure Estimation on the Extreme Edge

Khaled Ahmed
McMaster University, Canada

ahmedk1@mcmaster.ca

Mohamed Hassan
McMaster University, Canada

mohamed.hassan@mcmaster.ca

Abstract—We propose a solution that deploys Machine Learn-
ing (ML) techniques on resource-constrained edge devices
(tinyML) for the healthcare domain. In particular, we construct
a complete end-to-end prototyped system that conducts ML
inference with various ML techniques on microcontroller unit
(MCU)-powered edge devices to predict blood-pressure-related
vital metrics such as systolic (SBP), diastolic (DBP), and mean
arterial (MAP) blood pressures using electrocardiogram (ECG)
and photoplethysmogram (PPG) sensors. The proposed solution is
trained and tested using over 500 hours of 12,000 real intensive
care unit data instances. Despite running on an extremely limited
computation, power and memory budget, the proposed solution
achieves comparable results to server-based state-of-the-art so-
lutions. Furthermore, it meets the British Hypertension Society
(BHS) standard for grade B (C in extremely-constrained devices).
This is achieved by careful investigation of the correlation be-
tween a wide-set of ECG and PPG features and BP. Afterwards,
we compress the ML inference models by only incorporating the
minimal features that meet i) the edge constraints from one side,
and ii) the standard’s acceptable accuracy from the other side.
Unlike existing solutions, the inference is entirely conducted on
MCU-based edge devices without depending on any cloud-based
infrastructure. Hence, the proposed solution improves robustness,
accessibility, reliability, security, as well as data privacy.

Index Terms—blood pressure, machine learning, tinyML, edge,
monitoring, regression,BP, DBP, SBP, ECG, PPG

I. INTRODUCTION

Healthcare sector is at the forefront of the domains that are
envisioned to witness significant transformations by utilizing
Machine Learning (ML), Internet-of-Things (IoT), and Cyber-
Physical Systems (CPS) technologies [1], [2], with potential
benefits spanning technological, economic, and social dimen-
sions [3]. To enable these transformations, several solutions
were proposed in the past few years to utilize the afore-
mentioned technologies in a vast multitude of health sectors
both from industry [4] and academic researchers [5]–[11].
This includes healthcare epidemiology [5], data analysis of
Electronic Health Records (EHRs) [6], drug management [7]
and discovery [12], Ambient-Assisted Living (AAL) [8], and
healthcare monitoring [9]–[11].

One observation about most of these works is that they
depend on traditional ML infrastructure, which are resource
demanding and require powerful computation and memory
capabilities as well as a theoretically unlimited power budget.
Advances in cloud computing infrastructure is a key enabler
towards the utilization of traditional ML for applications with
non-safety and non-real-time requirements (e.g. the analysis

of EHRs [6] and drug discovery research [12] from the
healthcare domain). However, cloud-based solutions are ill-
suited for applications associated with life-critical and time-
sensitive conditions. Examples of these applications form
the healthcare domain are AAL and healthcare monitoring.
Robustness, service accessibility and response-time require-
ments of these applications along with security and privacy
concerns entail the sole dependence on network connectivity
to access the cloud a non-ideal solution that might lead to
severe consequences [13]. Recent efforts in edge computing
aim at mitigating these concerns by moving the required
computations to the embedded systems that have a close
proximity to the sensors and the controlled environment. The
computing elements in these systems are usually referred to
as edge devices. By doing so, continuous connectivity to
the cloud is no longer required, which in turn mitigates the
aforementioned concerns. As a result, the edge computing
market is envisioned to reach 1.12 trillion dollars by 2023 [14].

Only recently, the deployment of ML inference on severely-
constrained embedded edge devices has gained a considerable
attention [15]–[18]. Unlike mobile phones and other relatively-
larger edge hardware, these severely-constrained devices are
mainly microcontroller (MCU)-based with significantly less
computation and memory capabilities and smaller batteries
(hence they have to run in ultra-low power). These stringent
constraints motivated the field of embedded ML or tinyML,
which explores solutions to empower these embedded edge
devices by ML inference capabilities. Healthcare is identified
as one of the sectors that will have the greatest growth potential
when adopting tinyML [18].

In this paper, we propose tinyCare: a solution that leverages
tinyML techniques to enable continuous health-care monitor-
ing on the extreme edge; i.e., with the close proximity to the
sensors attached to the patient body without any dependency
on network connectivity or cloud infrastructure. In particular,
we make the following contributions. We propose an end-
to-end solution for estimating vital signals (namely, systolic
(SBP), diastolic (DBP) blood pressures, and mean arterial
pressure (MAP)) using only electrocardiogram (ECG) and
photoplethysmogram (PPG) sensors. More discussion about
the background and importance of this problem in health-
care domain is provided in Section II. Six ML algorithms
are considered in our case-study: Linear Regression (LR),
Support Vector Machine (SVM), Polynomial Regression (PR),



Decision Tree (DT), Random Forest (RF), and Ada Boost
(AB). The ML training phase is conducted offline on a desktop
machine (or cloud-based servers) using the Physionet’s multi-
parameter Intelligent Monitoring in Intensive Care (MIMIC)
dataset, which is a widely-accepted massive database com-
prising real collected records of patients admitted to critical
care units [19]–[21]. The inference phase, unlike existing
BP estimation solutions, is entirely conduced on a severely-
constrained MCU-based embedded edge devices without de-
pending on any cloud-based infrastructure. Hence, the pro-
posed solution improves robustness, accessibility, reliability,
security, as well as data privacy. Section IV covers the details
of the proposed solution. The solution is prototyped and tested
using medical grade sensors and several MCUs as discussed
in Section V. The proposed solution is trained and tested
using over 500 hours of 12, 000 real intensive care unit data
instances from the MIMIC dataset. Despite running on an
extremely limited computation, power and memory budget, the
proposed solution achieves comparable results to server-based
state-of-the-art solutions. Furthermore, it meets the British
Hypertension Society (BHS) standard grades.

II. BACKGROUND

One of the major causes of early deaths is the elevated
blood pressure. It has no warnings nor symptoms until it
damages organs. Unfortunately it is quite common as it hits
1 in 4 men and 1 in 5 women according to the the world
health organization. Therefore, there is a desperate need for
monitoring people with hypertension to report any anomalies
and signs of risk to the healthcare facilities. Continuous and
remote monitoring of BP not only mitigates risks of sudden
health conditions, but also allows for better diagnosis by
continuously collecting data which is practically impossible
in normal daily life.

Mercury sphygmomanometer has been used for over a
century to measure blood pressure. The process of measuring
BP using a mercury sphygmomanometer starts with wrapping
a rubber cuff around the arm, inflating the cuff to apply enough
pressure to stop the flow of the blood in artery. Then, slowly
deflating the cuff and observing a pounding sound. BP values
when the sound starts and ends are named systolic SBP and
diastolic DBP respectively. While this being the most accurate
noninvasive BP measurement device, it is uncomfortable and
not practical for continuous BP monitoring. Therefore, there
has been a growing interest in finding noninvasive cuff-less
BP estimation.

As an alternative to the traditional way of measuring BP,
researchers have been working on estimating BP from other
quantities. In order to derive a mathematical expression for the
BP value, the heart can be thought of as a pump displacing
blood through the the vascular system which is modeled as
a set of tubes. The laws of fluid mechanics can then model
the relationship between BP and other parameters that may be
easier to capture. The pulse transit time (PTT) is one of the
quantities that have been extensively used in the literature to
estimate BP. It is defined as the time elapsed between a heart

R-Peak

PATp

PATf

SBP

DBP

P
A

Fig. 1: ECG, PPG, and ABP signals.

beat and the arrival of that beat to a body peripheral. Using
fluid mechanics, it can be shown that PTT is related to the
pressure (P) in the artery as [22]:

PTT = l

√√√√√ ρAm

πAP1

[
1 +

(
P−P0

P1

)2
] (1)

where ρ is blood density, P0, P1, A, and Am are all person-
dependent values, and l is the length of the artery considered
for measuring PTT. Therefore, all parameters in Equation 1
depend on the person for whom PTT gets measured and
BP gets estimated. Hence, this method of modelling BP as
a function of PTT requires per-person calibration which is
not approved by the medical standards. While Equation 1
over-simplifies the relation between PTT and BP and gives
a person-specific model, it is still useful to declare a possible
underlying relationship between PTT and BP while the gen-
eralization of this assumption is the unfinished work. For that
kind of problems where data can be collected and a relation be-
tween some inputs and outputs is probable but mathematically
intractable, machine learning is a very promising solution.
The collected data can be fed to a model that explores the
underlying relationship between inputs (features), and outputs
(predictions).

An alternative to the PTT is the pulse arrival time (PAT)
which is the time elapsed between the electrical pulse initiating
the heart beat, instead of the heart beat itself as in PTT, and the
arrival of the heart beat to a body peripheral. PAT is longer than
PTT since it includes an extra interval between the electrical
activation of the heart and the heart beat. Therefore, it is
considered an approximation to the PTT that simplifies the
measurement process. In order to capture PAT, 2 vital signals
are required; the ECG and the PPG, Figure 1. The ECG signal
is measured by placing a number of electrodes on the person’s
skin. It mainly shows the electrical activity of the heart and,
therefore, used as a reference signal to obtain the PAT. The
peak value, ECG spikes in Figure 1, is called the R-peaks



and the interval between two successive peaks indicate the
time between one heart beat to another. Thus, the heart rate
(HR) is the inverse of that interval. The PPG signal is usually
measured by placing a clip on the person’s finger tip. It uses
light to indicate a change in the blood flow in the vessels.
Therefore, it can capture when a heart beat’s pressure reaches
that finger tip. Several features can be crafted from the relative
position of ECG and PPG maximums, minimums, inflection
point, maximum slope, etc [23], [24]. We discuss the main
features we adopt in our solution in Section IV-B. Moreover, in
order to have a ground truth dataset to train machine learning
models, the actual BP values have to be extracted. The BP
metrics can be evaluated from the arterial blood pressure signal
(ABP). Three important BP metrics are: 1) the SBP which is
the peak value of the ABP. 2) the DBP which is the minimum
value of the ABP. 3) the mean arterial pressure (MAP) which
is the average of the ABP signal over a complete cycle.

III. RELATED WORK

Due to the inconvenience of the traditional cuff-based blood
pressure measurement technique as well as its inapplicability
for continuous monitoring, there has been a significant recent
attention in the research community to devise cuffless BP
measurement methods [22], [24]–[34]. Early works [25]–[27]
use non-ML mathematical formulas to calculate BP from
pulse wave velocity (PWV) and Pulse transit time (PTT).
Subsequent works deploy a preliminary fitting [28] or interpo-
lation [29] approaches to empirically construct a mathematical
function that fits the data of PWV/PPT and SBP. On the
other hand, [22], [34] deploy machine learning algorithms to
predict SBP, DBP, and MAP from pulse arrival time (PAT).
In addition to PTT, [32] proposes utilizing the PPG intensity
ratio (PIR) for better accuracy of BP estimation. These ML-
based solutions assume that both training and inference are
conducted on a powerful machine (e.g. cloud servers), and
hence, require the ECG and PPG signals collected from
sensors attached to the patient to be transmitted to the cloud
to determine the corresponding BP values. In contrast, we
propose a tinyML methodology to conduct the BP estimation
entirely on edge.

tinyML is one of the fastest growing subfields of machine
learning technologies [15], [16]. It aims at bringing ML
capabilities to extremely resource-limited MCUs at Several
solutions leverage tinyML in real-world use-cases. While most
of these solutions focus on audio [35]–[37] and vision [38],
[39] applications, some recent efforts leverages tinyML in
domains such as autonomous vehicles [40], gaming [41], smart
agriculture [42], and even offering tinyML solutions as-a-
service [43]. This work to the best of our knowledge, is the
first to apply tinyML techniques in a real-use case from the
healthcare domain using a massive real dataset.

IV. PROPOSED METHODOLOGY

In this section, we introduce the flow of the proposed
methodology to enable real-time machine learning inference
on resource-constrained edge devices, which we delineate in

Figure 2. As the figure illustrates, the proposed methodology
consists of two phases; the training phase, and the inference
phase. The training phase is usually conducted offline on
a powerful computing machine or a cloud server. The main
purpose of this phase is to use the training labeled data (that
has both the input variables and their corresponding ground-
truth outputs) to build an inference model that can be later
used in the inference phase. The inference phase utilizes
the learned inference model to predict the output from online
”unlabeled” input data. Unlike the training phase, the inference
phase has real-time requirements since it usually operates on
a stream of incoming data. Additionally, as aforementioned,
inference is desirable to be deployed on edge devices with
both computational, memory, and power constraints. We now
discuss in details the stages of both phases with a focus on
the implications resulting from adopting resource-constrained
edge devices for online inference.

A. Preprocessing

ECG and PPG vital signs normally have different kinds of
artifacts caused by the patient, such as muscle movements
and respiration, or due to the measuring devices and sensors
that add noise and unwanted harmonics to the signals. During
training, a well-known problem in the used MIMIC dataset
is that PPG and ECG signals are not synchronized. Accord-
ingly, we needed to synchronize both signals as part of the
preprocessing to be able to capture the inter-signal features
between them (Step 2 in Figure 2). In our prototype on the
other hand, since the pre-processing has to be conducted on
the resource-constrained edge devices, we use medical grade-
sensors that are equipped with noise mitigation capabilities
to reduce the required on-edge processing power. In addition,
the used sensor synchronizes both PPG and ECG capturing to
avoid the aforementioned issue.

B. Feature Extraction

It is important to extract the relevant features to train the
model (and conduct the inference) to achieve the best possible
learning outcomes. In addition, feature extraction helps in
reducing the size of the data fed to the model, which can
significantly contribute to saving processing power on edge
devices. To ease the required processing by the edge devices,
and to reduce the complexity and size of the tinyML models,
we considered the features that can be detected from maximum
and minimum points only. Therefore, the edge-devices can
save the processing power required for detecting the inflection
points and the maximum slope. Furthermore, by doing so,
we reduced the number of extracted features to 4 features as
follows (visualized in step 3 in Figure 2).

1) Heart Rate (HR): Measured using the time interval be-
tween two successive R-Peaks in the ECG signal.

2) PAT Peak (PATp): The time interval between an R-peak,
and the successive PPG maximum.

3) PAT Foot (PATf): The time interval between an R-peak,
and the successive PPG minimum.

4) PPG Amplitude: The amplitude of the PPG systolic peak.



A
B

P
P
P
G

E
C

G

P
re

p
ro

ce
ss

in
g 

&
 D

at
a 

C
le

an
si

n
g

P
P

G
E

C
G

P
A

PATp

PATf

R-Peak

Feature Extraction

A
B

P

SBP

DBP

MAP Model Design, Tuning 
and Training

Model 
Conversion

Model Evaluation 
on target

Real-Time On-
Edge Inference

SBP

DBP

MAP

Deployment

Inference Phase

Training Phase

1 2
3

4 5
6

7

Fig. 2: Block diagram of training and edge-inference of cuffless blood pressure estimation.

For the prediction side, SBP, DBP, and MAP are extracted
from the ABP signal which, again, depend only on the systolic
and diastolic peaks. The effect of feature reduction will be
revisited in the results in Section V. To increase reliability,
the extracted values are averaged over a window of 8 seconds
to reduce noise and possible preprocessing miss-detection of
minimums and maximums.

C. Model Training and Testing

Usually adopting a ML algorithm involves several trade-
offs such as the desired accuracy of the model, the real-
time requirements on the inference time, the training speed,
the available computation resources for training, and the
dependency of the algorithm on the size of the training data.
Therefore, we explore different types of ML algorithms and
discuss their associated trade-offs. One of the simplest models
is to assume a linear relationship between the features and the
corresponding output values. Examples of these models are LR
(Figure 3a) and SVM (Figure 3b). The resulting linear model
is a linear combination of the input features and, therefore,
its complexity grows only with the number of features. Linear
models are simple with relatively few inputs, and hence, are
attractive for resource-constrained edge devices and are almost
deployable in any MCU-based device. On the other hand, a
linear relationship can be an oversimplification for the problem
under consideration, which leads to accuracy degradation.
For the later, more complicated models can capture the non-
linearity of the problem, which in turn comes at the cost of the
added computational complexity. Examples of these models
are PR, DT, RF, and AB, which are shown in Figures 3c–3f,
respectively. For comprehensiveness, we explore both linear
and non-linear algorithms for estimating BP on the edge
(Step 4 in Figure 2).

Linear Regression and Support Vector Machine. Firstly,
assuming a linear model, we consider LR and SVM with a
linear kernel. LR models the output as a linear combination
of the inputs. This can be illustrated, as shown in Figure 3a,
by assuming a single input and drawing a line that best-

represents the instances and, therefore, minimizes the predic-
tion error. The SVM algorithm models the linear relationship
in a different way. One way to visualize it, is to draw a
street that includes as much instances as possible with limited
violations. Since SVM allows some instances to be outside the
modelled street, it handles outliers more efficiently than linear
regression. Therefore, both LR and SVM consume the same
memory and inference time Tinf , while the SVM has higher
accuracy (i.e. less MAE) due to its immunity to outliers. This
comparison is shown in Figure 4 where the memory and Tinf

coincide while the SVM shows less MAE.
Polynomial Regression. PR can be thought of a LR of the

polynomial generated from the inputs. Thus, it consider differ-
ent inputs raised to different powers, as well as combinations
and multiplications of those inputs. This behaviour is useful
not only for modelling non-linearity (Figure 3c), but also to
create new features that are the mixtures of the original ones
raised to different powers. The complexity of PR increases
with the number of features as well as the polynomial degree.
Notice that the multiplication process, and raising a number to
a certain power, are both resource-hungry arithmetic processes.
Therefore, it is worth using on the edge only if its accuracy
pays for the added computational cost. Further discussion
about its performance is included in Section V.

Decision Tree. Another powerful algorithm that can model
complex relations between inputs and outputs is DT. The
DT algorithm is mainly a series of comparisons shaped as
a tree as Figure 3d illustrates. At each node, one feature
is checked and, based on the comparison, it goes to the
right or the left branch and eliminates the other. Due to
this structure, DT has four particular advantages that are
essential for edge devices. 1) It is based on comparison which
is very fast and simple arithmetic process. 2) It does not
require any scaling to the inputs since the comparisons can
be done with respect to the non-scaled inputs directly. This
advantage reduces the required preprocessing significantly. 3)
At each comparison, half of the tree is eliminated. Therefore,
the maximum number of comparisons to make a prediction in



Y

X

(a) LR

Y

X

(b) SVM

Y

X

(c) PR

F0<0.2

F1<0.01 F2<0.8

F3<1 F4<712082

93 77 110 85

(d) DT

Y1 Y2 Y3

Y

(e) RF

Y1 Y2 Y3

Y

Predictor1 Predictor2 Predictor3

Sequential Training

(f) AB

Fig. 3: Illustrations of machine learning algorithms: LR, SVM, PR, DT, RF, AB.

Tinf

M
A
E

Me
mo
ry

Fig. 4: Memory, MAE, and Tinf evaluation of DBP estimation
using LR, SVM, and DT on PyBadge board.

a tree of N nodes is log(N). 4) The memory requirements
can be easily controlled by tuning its hyper-parameters; the
number of leaf nodes and/or the maximum depth. On the other
hand, DT is sensitive to input data and changing the training
data leads to a completely different tree. Additionally, the tree
is built in a stochastic way with random features checked
at each node. Therefore, unless a pre-defined random seed
is given, the same training data may result into a different

DT model at every run. In conclusion, the DT has lots of
advantages especially for the edge-related applications, but it
requires further tuning to overcome its drawbacks.

Ensemble Algorithms: Decision Tree and AdaBoost.
Ensemble algorithms are strong predictors that are based on a
group of weaker predictors. They can boost the performance
of the sub-predictors by collecting their estimates and mak-
ing a final prediction out of them. Therefore, we consider
two ensemble algorithms based on DTs to improve the DT
performance and tackle its challenges. First, we consider RF,
which is a group of DTs, each making a prediction, and the
final prediction is the average of all of them (Figure 3e). The
averaging step reduces noise, improves the stability of DT, and
reduces its dependency on the training data. Second, we use
AB, which is also a set of DTs similar to RF but learns the
model differently. It uses sequential learning in which every
predictor learns to correct its predecessor as if each DT is
focusing on one aspect of the data and trying to master it.
Figure 3f delineates this behavior. While both RF and AB
improve the performance, their memory requirements increase
with the number of DTs and the size of each tree. Figure 4
visualizes the different trade-offs of ML models by plotting
the Mean Absolute Error (MAE), inference time Tinf , and the
memory requirements for LR, SVM, and DT. Tinf is measured
in micro-seconds and the memory axis represents the occupied
percentage of the available memory. The results in Figure 4 are
collected from our setup using the PyBadge MCU estimating
the DBP using three different algorithms; LR, SVM, and DT.
More details about the setup are provided in Section V.



D. Feature Scaling

Another important stage to reconsider for real-time edge
inference is feature scaling. ML algorithms generally can
learn faster when the input data is scaled, i.e. all data has
the same scale. On the other hand, since the same pipeline
shall be executed in the inference stage, this will be a burden
for a resource-constrained edge device. This is because scal-
ing requires shifting and normalizing the inputs, which is a
subtraction operation followed by a division. The processing
power required for those operations can be more than the
one required for the prediction stage itself (e.g. in linear
models). Moreover, the scaling factors are data dependent. For
instance, standardization, which is one of the most commonly
used scaling approaches [44] requires to calculate the mean
and standard deviation of the input data to use them for
scaling, which requires a frequent re-evaluation. Therefore, a
reasonable decision for real-time edge inference is to feed the
data to the model with no scaling. This may result in spending
more time in the training process, but it reduces the required
processing on the edge dramatically.

E. Model Conversion

The outcome from the training phase is a trained and tested
model. Since we are targeting embedded MCU-based devices,
the generated models need to be converted to their equivalent
C codes to fit the micro-controllers. This is shown in Figure 2
as Step 5 . For tinyCare, we use the m2cgen [45] since it
supports the models we are using and it can convert them to
the equivalent C codes. Additionally, we use the converted
C models on the PC as a baseline to compare the edge
performance against, and to help in quick evaluation of the
generated Models to decide their applicability to the target
device’s resources as well as their need for further tuning.

F. Model Assessment and Tuning

As discussed in Section IV-C, the size of the produced
model may vary depending on the given model parameters.
As a result, depending on the edge memory constraints, the
generated model needs to be tested to check that it can fit on
the target edge device (Step 6 in Figure 2). This check needs
to be done before the deployment phase and if the models do
not fit within the edge constraints (e.g. they are bigger than the
available memory), different model parameters may be used
to produce smaller models that may fit. This is represented by
the feedback path to Step 4 in Figure 2. Clearly, this comes
at the cost of compromised accuracy and Section V discusses.

In our healthcare use-case, and as we will discuss in more
details in Section V, LR, SVM, and DT for instance fit in all
considered devices, RF fits only on one of the edge devices
and does not fit on the other two due to memory constraints,
while AB did not fit in any of the target devices. Moreover,
model parameter tuning is required for DT to determine the
number of nodes that represents the best compromise between
the memory footprint and the desired accuracy. In addition,
RF required further parameter tuning to determine the best

number of ensembles (i.e. parallel DTs) to address the same
memory-accuracy trade-off.

G. Inference Phase on Edge Devices

The inference phase on edge devices as shown in Figure 2
also has the same Steps 2 (preprocessing) and 3 (feature
extraction) as in the training phase. Therefore, the discussion
in Sections IV-A and Section IV-B applies. The main differ-
ence of those blocks in the training-versus-inference is that
the ground truth for the target (values to be predicted) appears
only in the training phase. On contrary, in the inference phase
those predictions are the output and should not appear at any
of the inputs. Therefore, in our use-case, the inputs to the
preprocessing block are the ECG and PPG only, excluding
the ABP. Consequently, as shown in Figure 2, the extracted
features do not include SBP, DBP, nor MAP in the inference
phase. Those three appear as outputs (predictions) of the edge
device instead. Step 7 in Figure 2 contains the trained models
after being converted to the proper language that the edge
device can understand. For a complete implementation, both
preprocessing and feature extraction should be deployed on the
edge device, as a complete end-to-end pipleline. The whole
pipeline needs to fulfill the constraints enforced by both the
application (e.g. maximum latency) and the implementation
(e.g. memory constraints).

Finally, a verification step is necessary to complete the
evaluation of the whole system. This can be done by closing
the loop by collecting the predicted values from the edge
device, compare it with the ground truth (i.e. original features-
to-target values), and evaluate the accuracy of the edge device
and compare it with the accuracy obtained on the PC. A lower
accuracy is expected at the far end of the system. This degra-
dation is an unavoidable result of all the compromises being
done to match the edge constraints. Whether this was done by
simplifying the preprocessing block, sacrificing some features,
tuning models to fit, or quantizing variables on extremely-
constrained MCUs compared to powerful server machines
usually used for ML. Those limitations trigger several new
trade-offs that are problem-specific and open the door for a
new research direction to address them. We elaborate more on
the discussion of these trade-offs and introduce several insights
from the healthcare use-case we consider to address them in
our evaluation in Section V.

V. EVALUATION

We now evaluate the proposed methodology by applying
it to the tinyML healthcare usecase and discuss the different
trade-offs affecting the results upon deploying real-time infer-
ence on resource-constrained edge devices.

A. Experimental Setup

Dataset. We use the MIMIC database, which is a publicly
available medical database provided by PhysioNet [19]–[21].
The latest version of the MIMIC database, MIMIC-IV [21],
has critical care data for more than 40,000 de-identified pa-
tients that were admitted to intensive care units. The collected



MCU processor cores width Program Storage SRAM Clock
Arduino uno ATmega328P 1 8 bit 32KB/31.5KB 2KB/2KB 16MHz
ESP32 Xtensa LX6 2 32 bit 4MB/1.25MB 520KB/320KB 80-240MHz
PyBadge ATSAMD51 1 32-bit 512KB/ 496KB 192KB/NA 120MHz

TABLE I: Technical Specifications of Edge Devices.

data includes various vital signs, laboratory measurements,
clinical information, medical diagnoses, and other personal
information. The variety of the recorded information, the
large size, and its public availability make it an excellent
option for a practical, reliable, and reproducible model. Our
proposed model for BP estimation requires only three vital
signs from the MIMIC database namely; ECG, PPG, and ABP.
We extract the features from the ECG and PPG signals, while
the ABP provides us with the corresponding SBP, DBP, and
MAP values. Therefore, we find the MIMIC database to be
an excellent choice for training our models with enormous
amounts of data from thousands of patients over hundreds of
hours, which is one of the distinguishing elements for this
work compared to the state-of-the-art tinyML works, which
generally use small data for training and/or testing.

Edge Devices. As discussed in Section IV, the constraints
of edge devices impact all stages in the pipeline, from
dataset selection all the way to model deployment (Figure 2).
Therefore, we implement our tinyML models on three edge
devices with different specifications; namely Arduino uno,
ESP32 Wrover Board, and AdaFruit PyBadge. Each of those
devices introduces a different set of constraints on memory
and clock frequency (hence inference time), which in return
dictates the deployable models and the resulting accuracy.
Table I shows the specifications of those edge devices in terms
of flash memory, SRAM, and clock frequency. The training
phase is always conducted on a PC machine with a quad-
core Intel Core i7-9700 processor running on a 3 GHz clock
and equipped with a 64 GB DRAM. The inference phase is
conducted on all the three edge devices. We also run the
inference on the aforementioned PC machine and use it as
a baseline for comparison purposes only. The accuracy is
quantified in terms of different metrics such as mean absolute
error (MAE), mean error (ME), and standard deviation (Std).
We also compute the cumulative distribution function (CDF) of
prediction errors for each scenario to compare against the BHS
standard and categorize the performance into BHS grades.

Machine Learning Algorithms. The experiments we ran
on different devices are as follows. We use in total six
machine learning algorithms (LR, SVM, PR, DT, RF, AB) to
predict SBP, DBP, and MAP, on the PC using the Scikit-learn
framework [46]. Then, we convert the resulting model out of
the training phase to C. The rational behind this conversion
is that 1) we want to assess and tune the resulting models for
edge devices (which are programmed in C) as we discuss later
in Section V-C, and 2) we want to use the inference on PC as
a baseline to compare the edge performance against.

Dataset. We use over 500 hours of the MIMIC dataset for
the training and testing process on both the PC and the edge

devices. More than 12,000 signals are processed to extract
the features (HR, PATp, PATf, PA) and the corresponding BP
metrics.

B. Data Preparation and Feature Extraction

The preprocessed data is fed to the feature extraction block
in the training stage. Extracting the features starts with the
detection of the ECG, PPG, and ABP peaks (minimums and
maximums). Then, the HR is evaluated as the inverse of the
interval between two successive R-peaks from the ECG signal.
PATp, PATf, and PA are then determined based on peak values
and their relative locations as discussed in Section II. Similarly,
the SBP, DBP, and MAP are extracted from the ABP signal
as a ground truth for our predictions.

As a further data cleansing step, all extracted features and
BP values are averaged over a window of 8 seconds to tolerate
possible peak misdetection. Additionally, we remove outliers
by dropping the extreme values of BP and HR that are far from
normal physiological records. In particular, we consider 80 ≤
SBP ≤ 180 mmHg, 60 ≤ DBP ≤ 130 mmHg, and 54.4 ≤
HR ≤ 155.8 bpm. The distributions of HR, SBP, DBP, and
MAP after cleansing are shown in Figures 5a–5d, respectively.
After removing outliers, we shuffle the resulting dataset to
include different samples from different patients’ instances.
Shuffling data exposes the model to samples from a variety of
patients with different conditions which leads to more general
models and reduces over-fitting. Finally, the shuffled dataset
is then divided into training and testing datasets with a ratio
of 80%-20%, respectively.

C. Model Assessment and Tuning

After obtaining the inference model, we assess its applica-
bility to the specific edge device constraints and whether the
model parameters can be tuned to address the trade-offs of
this device (e.g. performance vs memory vs accuracy). For the
considered six algorithms, LR and SVM fit on all edge devices
and do not require any parameter tuning. This was expected
since the resulting inference model is a simple linear equation.
For PR, despite fitting in all devices and having a slightly
better accuracy, this comes at the cost of model complexity.
For PR to achieve this slightly better accuracy (Results for PR
on PC are in Table III), we had to use a polynomial of order
10. Therefore, PR was deemed non beneficial for the usecase.
DT shows significant improvement in performance; however,
it is an example of a model that requires parameter tuning.
In order to select the DT’s parameters (maximum number of
leaf nodes, minimum number of leaf samples), we conduct a
grid search to the performance change with these parameters.
Figure 6a shows how MAE decreases while increasing the



(a) HR (b) SBP

(c) DBP (d) MAP

Fig. 5: Distribution histograms after data cleansing

maximum number of nodes until it almost saturates. For MAE
to keep decreasing while increasing the model complexity,
number of nodes in this case, proper regularization needs to
be applied to prevent the model from overfitting the training
data during the training phase. This is done by increasing
the number of minimum samples per node. After this tuning
stage, DT fits in all edge devices and achieves the maximum
possible accuracy with the minimum memory footprint. For
RF, since it is naturally composed of several DTs, we use the
DT with the obtained parameters to construct the RF model,
whom the preliminary performance analysis on PC shows
that it achieves better performance than DT. In addition to
the DT parameters tuning, another RF parameter that can be
tuned is the number of estimators (i.e. DTs). As Figure 6b
shows, this parameter affects both the model performance
(accuracy) and its complexity (memory footprint). Finally, AB
boosts the performance by sequentially training DTs to correct
predictions errors. With that technique, it reaches BHS grade B
for DBP estimation. For AB to achieve grade B requirements,
1024 DTs were deployed and the resulting model size was
over 1 GB of memory. Therefore, it is more practical to be
run on the cloud rather than on the edge.

D. Performance of ML Algorithms

We compare predictions (SBP, DBP, MAP) from the trained
models to the ground truth values, and calculate the MAE, ME,
and Std values for accuracy evaluation.

Meeting Medical Grades for BHS Standard. Furthermore,
CDF of those errors are numerically calculated and plotted to
judge which of those algorithms belong to which BHS medical
grades. Figure 7 shows the CDFs of DBP prediction errors of
various algorithms on Python, C, and on edge devices. A set
of markers are added to the graph to specify different BHS
grades (A, B, C) where grade D classifies anything worse than
C. For a CDF graph to match a certain grade, it has to be
higher than all of the 3 markers defining that grade. This is
equivalent to having probability of BP estimation error of 5,
10, and 15 mmHg within the acceptable limits of that grade as
shown in Table II. As discussed in Section IV-C, we carefully
chose a diverse set of algorithms starting from a simple LR
and boosting the performance using more complicated models
up to AB. Hence, as shown in Figure 7, those algorithms
achieved a wide range of BHS grades, from grade B, and
approaching grade A, to grade D. We now detail a complete
comparison between ML and tinyML algorithms on PC and
edge devices for DBP estimation. LR was not able to capture
the input-output relationship precisely enough to achieve any



0

10

20

30

40

50

6.8

7

7.2

7.4

7.6

7.8

1 2 3 4 5 6 7 8 9 10 11 12

M
em

o
ry

[K
B

]

M
A

E

log2(Nodes)

MAE Model Size

(a) DT accuracy and model size versus number of leaf nodes.

0

1000

2000

3000

4000

5000

6.84

6.86

6.88

6.9

6.92

6.94

6.96

1 2 3 4 5 6 7 8

M
em

o
ry

[K
B

]

M
A

E

log2(Estimators)

MAE Model Size

(b) RF accuracy and model size versus number of estimators.

Fig. 6: The effect of model tuning for DT and RF

Cumulative Error[mmHg]
≤ 5 ≤ 10 ≤ 15

Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%
Grade D worse than C

TABLE II: BHS grades and associated error percentages.

of the top three grades and, therefore, is categorized as grade
D. SVM, same inference complexity (linear equation) but with
more complicated training, managed to reach grade C. This is
an important advantage especially for edge applications since
the training complexity is done on powerful machines while
the inference complexity matters the most. While PR, DT,
and RF come at the same level, grade C, as SVM, their
performance differs in terms of MAE and Std as shown in
Table III. Lastly, AB built on the top of 1024 DTs achieved
grade B and approached grade A. Despite achieving different
grades, it is remarkable that CDFs of prediction errors from
different algorithms, on PC and edge devices, are relatively
close to each other and our trained models are still satisfying
medical grades on the edge.

Inference Accuracy on Edge: MAE. While BHS medical
grades provide a standardized method to judge the accuracy,
they do not differentiate between models belonging to the same
grade. For a higher-resolution comparison, MAE is used to
quantify the accuracy and reflect the superiority of models over
each other. Table III shows the MAE of different algorithms
implemented on PC and the edge devices. The two linear
algorithms, LR and SVM, come at the tail of the list. Notice
that, due to the stochastic nature of training SVM, sometimes
its produced models can perform worse than LR. This can
be addressed by repeatedly training SVM models and saving
them, then picking the one with the best performance. As
highlighted earlier, PR is slightly better than LR and SVM but
this comes at the cost of model complexity and, therefore, is
excluded from the models deployed on edge for this usecase.
DT, RF, and AB show significant improvement in accuracy.
Reported results for DT and RF are after the parameter tuning,

Grade A
Grade B
Grade C

Fig. 7: CDFs and BHS grades for DBP estimation on PC and
edge device (AdaFruit PyBadge).

PC Edge
DBP MAP SBP DBP MAP SBP

LR 7.59 9.66 16.7 7.59 9.66 16.7
SVM 7.38 10.98 16.92 7.38 10.98 16.92
PR 7.35 9.04 15.35 NA NA NA
DT 6.98 8.51 14.49 6.98 8.51 14.49
RF 6.85 8.34 14.08 6.85 8.34 14.08
AB 6.06 7.49 12.69 NA NA NA

TABLE III: MAE for DBP, MAP, SBP estimation

while AB has no edge results since it did not fit on any of the
edge devices.

E. Comparison with Server-Based Solutions

For edge consideration and in order to match the device
constraints, we had to make trade-offs at each step in our
proposed methodology in Figure 2. Thus, those compromises
affected the performance and the edge-feasibility of the ML
and tinyML algorithms. 1) By reducing the number of features



6

6.5

7

7.5

8

Arduino ESP32 PyBadge PC

MAE

LR SVM DT RF

(a) MAE

1

10

100

1000

Arduino uno ESP32 AdaFruit
PyBadge

Memory[KB]

LR SVM DT RF

(b) Memory

1

10

100

1000

Arduino ESP32 PyBadge PC

Inference Time[µsec]

RF DT SVM LR

(c) Inference time

Fig. 8: DBP estimation results

to less than half of those in the literature, we simplified the fea-
ture extraction step and reduced the complexity of algorithms
that use those features to make predictions. However, this came
at the cost of the accuracy of the models. Table IV shows a
comparison between our work, on PC and edge devices, and
the work in the literature. Comparing the MAE and Std values,
we can see, with the proposed feature reduction, the accuracy
of our models are among the accuracy of those in [47] and
[23]. For instance, our work on PC achieves lower MAE for
DBP and MAP estimation compared with [47]. On the other
hand, due to sacrificing more than half of the features, the work
in [23] outperforms ours. However, our reduced-complexity
models, both on PC and on edge devices, still satisfy BHS
medical grades as aforementioned.

2) Due to the memory constraints, some algorithms do
not fit on the edge devices. Figure 8b shows the required
memory of different trained models on Arduino, ESP32,
and the PyBadge. For the considered MCUs, AB did not
fit on any of them, and RF fits on the PyBadge only. On
the contrary, LR, SVM, and DT (with certain parameters)
matched the requirements of all MCUs. Therefore, the best on-
edge performance for the selected devices and the considered
algorithms was obtained using RF. This is also reflected in
Table IV as for the same number of features, MAE is higher on
edge devices since our best model, i.e. AB, does not match the
device constraints. MAE of DBP prediction using the selected
tinyML algorithms (LR, SVM, DT, RF) on edge devices is
shown in Figure 8a.

3) The memory requirements of edge devices not only
filtered out some algorithms, but also limited the range of
parameters of other algorithms. More specifically, for DT
and RF, where the complexity and model size are dependent
on the pre-defined model parameters. DT’s size increases
with the number of nodes which can be limited by defining
the maximum number of leaf nodes which impacts accuracy
in return as shown in Figure 6a. By looking at the graph,
Figure 6a, we can decide the range of number of nodes that
satisfies the device constraints and, hence, the best achievable
MAE accordingly. RF’s size and accuracy are affected by both
the number of DTs, its building blocks, and the size of those
DTs. A grid search can be made to change both parameters and
observe the corresponding MAE and memory requirements.
However, for simplicity of the design process, we used the

DBP MAP SBP
MAE Std MAE Std MAE Std

[23] 5.35 6.14 5.92 5.38 11.17 10.09
[47] 6.34 8.45 7.52 9.54 12.38 16.17

this work, PC 6.06 8.95 7.49 10.42 12.69 17.31
this work, edge 6.85 9.16 8.34 10.75 14.08 17.82

TABLE IV: Comparison with other work.

obtained DT structure from the previous step, and tuned the
number of DTs in the RF to optimize for MAE and memory
of the whole structure.

4) Since most of on-the-edge applications require real-time
analyses, it is essential to investigate the inference time of
different algorithms on different devices. The timing require-
ments are enforced by the application which, in our use-case,
is BP estimation. Normally, BP is monitored on a scale of
minutes which gives the edge devices plenty of time to produce
their predictions. However, to generalize our outcomes, we
evaluated the inference times on different devices and found
it to be, by most, in µseconds as shown in Figure 8c. By
comparing different algorithms on the same device, Figure 8c
shows that LR and SVM have the same inference time while
DT works faster. This is due to the similarity, computational-
wise, between the linear equation used in both LR and SVM.
On the other hand, the comparisons in DT are evaluated much
efficiently that a tree with 128 nodes is traversed faster than
a linear equation in LR and SVM. Figure 8c gives more
insights by comparing the inference time of the same algorithm
on different devices in which the architecture, number of
cores, and clock frequency are the main factors affecting the
inference time of that algorithm on different devices.

F. Prototype

In addition to the massive testing of the proposed ap-
proach using the MIMIC dataset on the MCUs, we also
built a complete prototype that captures lively ECG and PPG
signals from subjects and estimates the BP metrics, which
we depict in Figure 9. It is important to emphasize that
the proposed solution is not limited to the specific modules
used in the prototype. Other sensors, MCUs, or displaying
components than the deployed ones can be used. First the
sensor captures ECG and PPG signals. In this prototype, we
use the MAX86150, a medical-grade sensor with low-noise



Display/Terminal

LC
D

LC
D

U
A

R
T

U
A

R
T

W
if

i
W

if
i

MCU-based Edge

A
rd

u
in

o
 

u
n

o
A

rd
u

in
o

 
u

n
o

ES
P

3
2

ES
P

3
2

A
d

af
ru

it
 

Py
B

ad
ge

A
d

af
ru

it
 

Py
B

ad
ge

max

sensors

MAX
86150
MAX

86150

Fig. 9: Use-case prototype setup

(a) ECG signal

(b) PPG signal

Fig. 10: Captured signals from the MAX86150 sensor for one
of the subjects

and ambient light rejection features for accuracy. It integrates
both the PPG and ECG sensing modules into the same chip.
The PPG is optically captured by measuring the changes in
the volume of blood over the skin tissue. ECG sensor on
the other hand detects the electrical activity of the heart.
We leverage this capability to simultaneously sample ECG
and PPG signals such that we get synchronised ECG and
PPG values for better PTT feature extraction. We use the
MikroElektronika ECG 6 to connect the electrodes to the
sensor and to connect the sensor to the MCU through the
standard I2C bus protocol. We experimented on 10 different
subjects varying on age and health conditions. We justify the
limited number of subjects by 1) the constraints imposed by
the pandemic and 2) the extensive testing done using the real
MIMIC dataset. Figures 10a and 10b delineates an example
of the sensed raw ECG and PPG signals respectively for one
of the subjects. We observe that the ECG of this subject has
a negative QRS Complex Polarity (sometimes referred to as
rS complex), which in our case was due to the placement
of the electrodes by the subject. This has no effect on BP
estimation since peaks are still easily detectable. For the
raw PPG signal, as the figure illustrates, it is horizontally
mirrored/flipped. This is because the PPG sensor’s LED emits

an infrared light, which penetrates the skin and blood vessels.
Afterwards, a photodectector captures the reflected light to
measure the blood stream. This captured light is the mirror of
the PPG signal. This mirroring again does not affect the feature
extraction process, and hence the algorithms of predicting BP
values. The inference is conducted entirely on the edge and
the resulting predicted metrics are displayed either through an
LCD or sent to a PC station through serial communication or
WiFi.

VI. CONCLUSION

We propose a general methodology to systematically deploy
real-time ML inference on extremely resource-constrained
edge devices. In this methodology, we reconsider the full ML
pipeline from the perspective of edge-related trade-offs. As
a showcase for the methodology, we use it to propose an
end-to-end solution for estimating blood pressure metrics from
electrocardiogram (ECG) and photoplethysmogram (PPG) sen-
sors. The proposed solution is prototyped and tested using a
massive amount of data from real patients. Despite running the
inference entirely on edge, the performance is comparative to
server-based solutions and meets medical standard grades.

VII. ACKNOWLEDGMENT

This work has been partially supported by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
and the McMaster University Engineering Life Event Fund
(ELEF).

REFERENCES

[1] T. B. Murdoch and A. S. Detsky, “The inevitable application of big data
to health care,” Jama, vol. 309, no. 13, pp. 1351–1352, 2013.

[2] R. Bhardwaj, A. R. Nambiar, and D. Dutta, “A study of machine
learning in healthcare,” in 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), vol. 2. IEEE, 2017, pp.
236–241.

[3] S. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak, “The
internet of things for health care: a comprehensive survey,” IEEE access,
vol. 3, pp. 678–708, 2015.

[4] C. Insights, “From virtual nurses to drug discovery: 65+ artificial
intelligence startups in healthcare,” CB Insights, 2016.

[5] J. Wiens and E. S. Shenoy, “Machine learning for healthcare: on the
verge of a major shift in healthcare epidemiology,” Clinical Infectious
Diseases, vol. 66, no. 1, pp. 149–153, 2018.

[6] B. Norgeot, B. S. Glicksberg, and A. J. Butte, “A call for deep-learning
healthcare,” Nature medicine, vol. 25, no. 1, pp. 14–15, 2019.



[7] D. S. A. Minaam and M. Abd-Elfattah, “Smart drugs: Improving
healthcare using smart pill box for medicine reminder and monitoring
system,” Future Computing and Informatics Journal, vol. 3, no. 2, pp.
443–456, 2018.

[8] A. Vijayalakshmi and D. V. Jose, “Internet of things for ambient-assisted
living—an overview,” Internet of Things Use Cases for the Healthcare
Industry, pp. 221–239, 2020.

[9] K. N. Swaroop, K. Chandu, R. Gorrepotu, and S. Deb, “A health
monitoring system for vital signs using iot,” Internet of Things, vol. 5,
pp. 116–129, 2019.

[10] P. Gupta, D. Agrawal, J. Chhabra, and P. K. Dhir, “Iot based smart
healthcare kit,” in 2016 International Conference on Computational
Techniques in Information and Communication Technologies (ICCTICT).
IEEE, 2016, pp. 237–242.

[11] M. R. Ma’arif, A. Priyanto, C. B. Setiawan, and P. W. Cahyo, “The
design of cost efficient health monitoring system based on internet of
things and big data,” in 2018 International Conference on Information
and Communication Technology Convergence (ICTC). IEEE, 2018, pp.
52–57.

[12] H. Bohr, “Drug discovery and molecular modeling using artificial
intelligence,” in Artificial Intelligence in Healthcare. Elsevier, 2020,
pp. 61–83.

[13] I. Azimi, A. Anzanpour, A. M. Rahmani, T. Pahikkala, M. Levorato,
P. Liljeberg, and N. Dutt, “Hich: Hierarchical fog-assisted computing
architecture for healthcare iot,” ACM Transactions on Embedded Com-
puting Systems (TECS), vol. 16, no. 5s, pp. 1–20, 2017.

[14] C. MacGillivray and M. Torchia, “Internet of Things: Spending trends
and outlook,” 2019. [Online]. Available: https://www.idc.com/getdoc.
jsp?containerId=US45161419

[15] tinyML, “tinyml foundation,” 2021. [Online]. Available: https://www.
tinyML.org

[16] P. Warden and D. Situnayake, Tinyml: Machine learning with tensorflow
lite on arduino and ultra-low-power microcontrollers. O’Reilly Media,
2019.

[17] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,
X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov et al., “Bench-
marking tinyml systems: Challenges and direction,” arXiv preprint
arXiv:2003.04821, 2020.

[18] R. Sanchez-Iborra and A. F. Skarmeta, “Tinyml-enabled frugal smart
objects: Challenges and opportunities,” IEEE Circuits and Systems
Magazine, vol. 20, no. 3, pp. 4–18, 2020.

[19] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet: components of a
new research resource for complex physiologic signals,” circulation, vol.
101, no. 23, pp. e215–e220, 2000.

[20] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii,
a freely accessible critical care database,” Scientific data, vol. 3, no. 1,
pp. 1–9, 2016.

[21] A. Johnson, L. Bulgarelli, T. Pollard, S. Horng, L. A. Celi, and R. Mark,
“Mimic-iv,” circulation, 2020.

[22] M. Kachuee, M. M. Kiani, H. Mohammadzade, and M. Shabany, “Cuf-
fless blood pressure estimation algorithms for continuous health-care
monitoring,” IEEE Transactions on Biomedical Engineering, vol. 64,
no. 4, pp. 859–869, 2016.

[23] ——, “Cuffless blood pressure estimation algorithms for continuous
health-care monitoring,” IEEE Transactions on Biomedical Engineering,
vol. 64, no. 4, pp. 859–869, 2016.

[24] A. Gaurav, M. Maheedhar, V. N. Tiwari, and R. Narayanan, “Cuff-less
ppg based continuous blood pressure monitoring — a smartphone based
approach,” in 2016 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), 2016, pp. 607–
610.

[25] C. Poon and Y. Zhang, “Cuff-less and noninvasive measurements of
arterial blood pressure by pulse transit time,” in 2005 IEEE engineering
in medicine and biology 27th annual conference. IEEE, 2006, pp.
5877–5880.

[26] D. B. McCombie, A. T. Reisner, and H. H. Asada, “Adaptive blood
pressure estimation from wearable ppg sensors using peripheral artery
pulse wave velocity measurements and multi-channel blind identification
of local arterial dynamics,” in 2006 International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE, 2006, pp. 3521–
3524.

[27] M. Y.-M. Wong, C. C.-Y. Poon, and Y.-T. Zhang, “An evaluation
of the cuffless blood pressure estimation based on pulse transit time
technique: a half year study on normotensive subjects,” Cardiovascular
Engineering, vol. 9, no. 1, pp. 32–38, 2009.

[28] H. Gesche, D. Grosskurth, G. Küchler, and A. Patzak, “Continuous blood
pressure measurement by using the pulse transit time: comparison to a
cuff-based method,” European journal of applied physiology, vol. 112,
no. 1, pp. 309–315, 2012.

[29] S. Ahmad, S. Chen, K. Soueidan, I. Batkin, M. Bolic, H. Dajani, and
V. Groza, “Electrocardiogram-assisted blood pressure estimation,” IEEE
Transactions on Biomedical Engineering, vol. 59, no. 3, pp. 608–618,
2012.

[30] L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive
and continuous blood pressure monitoring: Pulse transit time method is
promising?” Irbm, vol. 35, no. 5, pp. 271–282, 2014.

[31] R. Mukkamala, J.-O. Hahn, O. T. Inan, L. K. Mestha, C.-S. Kim,
H. Töreyin, and S. Kyal, “Toward ubiquitous blood pressure monitoring
via pulse transit time: theory and practice,” IEEE Transactions on
Biomedical Engineering, vol. 62, no. 8, pp. 1879–1901, 2015.

[32] X. Ding, B. P. Yan, Y.-T. Zhang, J. Liu, N. Zhao, and H. K. Tsang,
“Pulse transit time based continuous cuffless blood pressure estimation:
A new extension and a comprehensive evaluation,” Scientific reports,
vol. 7, no. 1, pp. 1–11, 2017.

[33] J. Solà and R. Delgado-Gonzalo, The Handbook of Cuffless Blood
Pressure Monitoring. Springer, 2019.

[34] E. Monte-Moreno, “Non-invasive estimate of blood glucose and blood
pressure from a photoplethysmograph by means of machine learning
techniques,” Artificial intelligence in medicine, vol. 53, no. 2, pp. 127–
138, 2011.

[35] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C.
Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and human-
labeled dataset for audio events,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017,
pp. 776–780.

[36] Y. Vaizman, K. Ellis, and G. Lanckriet, “Recognizing detailed human
context in the wild from smartphones and smartwatches,” IEEE perva-
sive computing, vol. 16, no. 4, pp. 62–74, 2017.

[37] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

[38] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and R. Rhodes, “Visual
wake words dataset,” arXiv preprint arXiv:1906.05721, 2019.

[39] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low
power, fully event-based gesture recognition system,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 7243–7252.

[40] M. de Prado, M. Rusci, A. Capotondi, R. Donze, L. Benini, and N. Pa-
zos, “Robustifying the deployment of tinyml models for autonomous
mini-vehicles,” Sensors, vol. 21, no. 4, p. 1339, 2021.

[41] S. Lobov, N. Krilova, I. Kastalskiy, V. Kazantsev, and V. A. Makarov,
“Latent factors limiting the performance of semg-interfaces,” Sensors,
vol. 18, no. 4, p. 1122, 2018.

[42] C. Vuppalapati, A. Ilapakurti, K. Chillara, S. Kedari, and V. Mamidi,
“Automating tiny ml intelligent sensors devops using microsoft azure,”
in 2020 IEEE International Conference on Big Data (Big Data). IEEE,
2020, pp. 2375–2384.

[43] H. Doyu, R. Morabito, and J. Höller, “Bringing machine learning to the
deepest iot edge with tinyml as-a-service,” IEEE IoT Newsl, 2020.

[44] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems.
O’Reilly Media, 2019.

[45] m2cgen, “Model 2 Code Generator,” Mar. 2021. [Online]. Available:
https://github.com/BayesWitnesses/m2cgen

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[47] M. Kachuee, M. M. Kiani, H. Mohammadzade, and M. Shabany, “Cuff-
less high-accuracy calibration-free blood pressure estimation using pulse
transit time,” in 2015 IEEE International Symposium on Circuits and
Systems (ISCAS), 2015.


