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Optical Intensity-Modulated Direct Detection
Channels: Signal Space and Lattice Codes
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Abstract—Traditional approaches to constructing constellations
for electrical channels cannot be applied directly to the optical in-
tensity channel. This work presents a structured signal space model
for optical intensity channels where the nonnegativity and average
amplitude constraints are represented geometrically. Lattice codes
satisfying channel constraints are defined and coding and shaping
gain relative to a baseline are computed. An effective signal space
dimension is defined to represent the precise impact of coding and
shaping on bandwidth. Average optical power minimizing shaping
regions are derived in some special cases. Example lattice codes are
constructed and their performance on an idealized point-to-point
wireless optical link is computed. Bandwidth-efficient schemes are
shown to have promise for high data-rate applications, but require
greater average optical power.

Index Terms—Free-space optical communications, lattice codes,
optical intensity modulation, signal space, wireless infrared
channel.

I. INTRODUCTION

T HE free-space, direct detection, optical intensity-modu-
lated channel offers the modem designer interesting new

challenges. Most practical wireless optical channels use light-
emitting diodes as transmitters and photodiodes as detectors,
as shown in Fig. 1. These devices modulate and detect solely
the intensity of the carrier, not its phase, which implies that all
transmitted signal intensities are nonnegative. Furthermore, bi-
ological safety considerations constrain the average radiated op-
tical power, thereby constraining the average signal amplitude.
Both multipath distortion in signal propagation and the limited
response times of the optoelectronics create sharp constraints
on the channel bandwidth. Conventional signal–space models
and coded modulation techniques for electrical channels cannot
be applied directly to this channel, since they do not take the
signal amplitude constraints into consideration. Conventional
transmission techniques optimized for broad-band optical chan-
nels (e.g., optical fibers) are not generally bandwidth efficient.

Historically, optical intensity channels have been modeled as
Poisson counting channels. In the absence of background noise,
the capacity of such channels is infinite [1], [2], and-ary
pulse-position modulation (PPM) can achieve arbitrarily small
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Fig. 1. A simplified block diagram of an optical intensity direct detection
communications system.

probability of error for any transmission rate [2], [3]. Under a
peak optical power constraint, the capacity is finite and achieved
with two-level modulation schemes [4], [5]. These schemes do
not consider bandwidth efficiency; indeed, schemes based on
photon counting in discrete intervals require an exponential in-
crease in bandwidth as a function of the rate to achieve reli-
able communication [3]. In the more practical case of pulse-am-
plitude modulated (PAM) signals confined to discrete time in-
tervals of length and with a given peak and average optical
power, Shamai showed that the capacity-achieving input dis-
tribution is discrete with a finite number of levels increasing
with [6]. For high-bandwidth cases the binary level
techniques found earlier are capacity achieving, however, lower
bandwidth schemes require a larger number of levels.

There has been much work in the design of signal sets for
use in optical intensity channels under a variety of optimality
criteria; see, e.g., [7]–[11]. The most prominent modulation
formats for wireless optical links are binary level PPM and
on–off keying (OOK). For example, low-cost point-to-point
wireless infrared infrared data association (IrDA) modems
utilize 4-PPM modulation [12]. Spectrally efficient variations
have been considered [13], [14], but these two-level schemes
offer relatively limited improvement in bandwidth efficiency.
The results of Shamai [6] show that nonbinary modulation is
required to achieve capacity in bandwidth-limited channels.
Subcarrier modulation [15] has been suggested as one possible
multilevel scheme to achieve high bandwidth efficiency. Shiu
and Kahn developed lattice codes for free-space optical inten-
sity channels by constructing higher dimensional modulation
schemes from a series of one-dimensional constituent OOK
constellations [16].

In this paper, we present a signal–space model for the
optical intensity channel using time-disjoint symbols, and
define coding and shaping gain measures that are relevant in
this framework. Unlike previous work, no assumptions are
made about the underlying pulse shape, only that independent,
time-disjoint symbols are employed. Previous work then ap-
pears as a special case of this work. A more accurate bandwidth
measure is adopted which allows for the effect of shaping on
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the bandwidth of the scheme to be represented as an effective
dimension parameter. We suggest techniques for achieving
coding and shaping gain using multidimensional lattices, and
we compare the bandwidth efficiency of conventional PPM
schemes with a new raised-quadrature amplitude modulation
(QAM) scheme, and suggest that such schemes may be advan-
tageous for high-rate short-distance optical communication.

The remainder of this paper is organized as follows. Section II
gives background on the wireless optical channel and presents
the communications model used in the remainder of the work.
Section III presents a signal space model suited to the inten-
sity-modulated channel and presents theorems regarding the set
of signals satisfying the channel constraints. Lattice codes for
the optical intensity channel are defined in Section IV and the
gain is presented versus a PAM baseline. New expressions for
the shaping and coding gain of these schemes are presented. Op-
timal shaping regions that minimize the average optical power
are derived subject to certain conditions. The peak transmitted
optical amplitude is taken as a design constraint and represented
in the signal space. Section V presents example schemes and
compares them versus a baseline. Design guidelines are given
for the design of modulation schemes for this channel. Finally,
in Section VI, the results of this work are summarized and gen-
eral conclusions drawn.

II. COMMUNICATIONS SYSTEM MODEL

A. Channel Model

The optical intensityof a source is defined as the optical
power emitted per solid angle. Wireless optical links transmit
information by modulating the instantaneous optical intensity

in response to an input electrical current signal . This
conversion can be modeled as , where is the op-
tical gain of the device in units of W/(Am ). The photodiode
detector is said to performdirect-detectionof the incident op-
tical intensity signal since it produces an output electrical pho-
tocurrent proportional to the received optical intensity. The
channel response from to in Fig. 1 is well approxi-
mated as

(1)

where denotes convolution andis the detector sensitivity in
units of A m /W, is the noise process, and is the
channel response [14], [18]–[20]. Substituting
into (1) gives

where the product is unitless. Without loss of generality, set
, to simplify analysis. In this manner, the free-space

optical channel is represented by a baseband electrical model.
Throughout the remainder of this paper, unless explicitly stated,
all signals are electrical.

The additive noise arises due to the high-intensity shot
noise created as a result of ambient illumination. By the central
limit theorem, this high-intensity shot noise is closely approx-
imated as being Gaussian distributed. The noise is modeled as

additive, signal-independent, white, Gaussian with zero mean
and variance [14].

The channel response has low-pass frequency response
which introduces intersymbol interference. The low-pass
channel response arises in two ways: i) front-end photodiode
capacitance and ii) multipath distortion. The use of large pho-
todiodes with high capacitances in free-space optical channels
limits the bandwidth of the link. The achievable bandwidth
in inexpensive systems, such as the point-to-point IrDA fast
infrared (IR) standard [12] is on the order of 10–12 MHz which
is approximately three orders of magnitude smaller than in
wired fiber-optic systems. Multipath distortion gives rise to a
linear, low-pass response which limits the bandwidth of some
experimental links to approximately 10–50 MHz depending on
room layout and link configuration [14], [18].

In this work, it is assumed that if a signaling scheme is “essen-
tially band limited” to the frequency range hertz,
in the sense defined in Section IV-D, that the channel is nondis-
torting. Consequently, the received electrical signal can be
written as

The physical characteristics of the optical intensity channel
impose constraints on the amplitude of which can equiva-
lently be viewed as constraints on . Since the physical quan-
tity modulated is a normalized power, this constrains all trans-
mitted amplitudes to be nonnegative

(2)

The optical power transmitted is also limited by the biolog-
ical impact that this radiation has on eye safety and thermal
skin damage. Although limits are placed on both the average
and peak optical power transmitted, in the case of most prac-
tical modulated optical sources, it is the average optical power
constraint that dominates [17]. As a result, the average ampli-
tude (i.e., average optical power)

(3)

must be bounded. This is in marked contrast to conventional
electrical channels in which the energy transmitted depends on
the squared amplitude of transmitted signal.

Note that this channel model applies not only to free-space
optical channels but also to fiber-optic links with negligible dis-
persion and signal independent, additive, white, Gaussian noise.

B. Time-Disjoint Signaling

Let be a finite index set and let
: be a set of optical intensity signals satisfying

for for some positive symbol
period . In the case where such time-disjoint symbols are sent
independently, the optical intensity signal can be formed as

(4)
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where is an independent and identically distributed (i.i.d.)
process over . Since the symbols do not overlap in time, (2) is
equivalent to

(5)

The average optical power calculation in (3) can also simplified
in the time-disjoint case as

which, by the strong law of large numbers, gives

(6)

with probability one, where is the probability of trans-
mitting . Thus, the average optical powerof a scheme
is the expected value of the average amplitude of .

III. SIGNAL SPACE OFOPTICAL INTENSITY SIGNALS

This section presents a signal space model which, unlike con-
ventional models, represents the nonnegativity constraint and
the average optical power cost of schemes directly. The proper-
ties of the signal space are then explored and related to the set
of transmittable points and to the peak optical power of signal
points.

A. Signal Space Model

Let be a finite index set, ,
and let : be a set of real or-
thonormal functions time-limited to such that

. Each is represented by the vector
with respect to the basis set

and the signal constellation is defined as : .
The nonnegativity constraint in (5) implies that the average

amplitude value of the signals transmitted is nonnegative. It is
possible to set the function

(7)

where

otherwise

as a basis function for every intensity modulation scheme. Note
that by assigning , the upper bound on the dimensionality
of the signal space is increased by a single dimension to be

. Due to the orthogonality of the other basis functions

(8)

The basis function contains the average amplitude of each
symbol, and, as a result, represents the average optical power of
each symbol. In this manner, the average optical power require-
ment is represented in a single dimension. The average optical

power of an intensity signaling set can then be computed from
(6) as

(9)

where is defined as

The term can be interpreted as the component ofwhich
depends solely on the constellation geometry.

Note that unlike the case of the electrical channel where the
energy cost of a scheme is completely contained in the geometry
of the constellation, the average optical power of an intensity
signaling scheme depends on the symbol period as well. This
is due to the fact that in (7) is set to have unitelectrical
energy since detection is done in the electrical domain. As a
result, the average amplitude and hence average optical power
must depend on .

B. Admissible Region

Not all linear combinations of the elements ofsatisfy the
nonnegativity constraint (5). Define theadmissible region of
an optical intensity-modulation scheme as the set of all points
satisfying the nonnegativity criterion. In terms of the signal
space

(10)

where for , : is defined as

The set is closed, contains the origin, and is convex. This claim
can be justified since for any and any ,

since it describes a nonnegative signal.
It is instructive to characterize in terms of its cross section

for a given value or, equivalently, in terms of points of equal
average optical power. Define the set

as the set of all signal points with a fixed average optical power
of . Each forms an equivalence class orshellof trans-
mittable symbols. This is analogous to spherical shells of equal
energy in the conventional case [21]. As a result, the admissible
region can be written in terms of this partition as

(11)

The set of signals represented in eachcan further be analyzed
in the absence of their common component by defining the
projectionmap : that maps
to . The important properties of are sum-
marized in Theorem 1.

Theorem 1: Let denote the admissible region of points de-
fined in (10).

1) For , .
2) .
3) is closed, convex and bounded.
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4) Let denote the set of boundary points of. Then

i) and
ii) : .

5) is the convex hull of a generalized-cone with vertex
at the origin, opening about the -axis and limited to

.
Proof:

Property 1. The set is a set of pulses with average
optical power . Therefore, . Similarly,

which implies that .
Property 2. Follows directly from (11) and Property 1.
Property 3. The set is closed by definition of in (10).

The convexity of arises since for any and any
the average optical amplitude value of the signal

represented by is . Hence,
implies is convex.

Recall that a set in is said to beboundedif it is contained
in an -ball of finite radius. The region is

Every represents a signal with zero average
amplitude in and . Furthermore,

is closed and contains the origin. Take some point
such that for some . If no

such point exists, then is contained in a ball of ra-
dius since convex. Otherwise, for

is contained in an -ball of radius greater
than . The union of all such -balls for all

contains implying that is
bounded. Since the coordinate of all points in is the same,

bounded implies is bounded.
Property 4. Since is closed, let be the set of

boundary points of . Note that an -ball of some
radius of points in exists about the origin.
If this were not the case, it would imply that a signal point

, , were either nonnegative or nonpositive,
which is impossible due to the construction of the signal space
in (8). Therefore, .

From Property 3, for , ,
for . The boundary points of the set
arise when is maximized. The set is then the set
of these extremal points with minimum amplitude equal to

. Applying the inverse map, is then the set of
points in with minimum amplitude equal to zero.

Property 5. Recall that a generalized-cone is a surface in
that can be parameterized as , where

is a fixed vector called the vertex of the cone and is a curve
in [22]. Using Properties 1 and 2, can be parameterized
in terms of the coordinate value as , for .
Thus, is a generalized cone with vertex at the origin opening
about the -axis. Since is the convex hull of (by trivial
extension of [23, Theorem 8.1.3]) and using Property 2,is
then the convex hull of a generalized cone limited to the half-
space .

Fig. 2. Three-dimensional (3-D) admissible region� for the raised-QAM
example in Section V.

Fig. 2 illustrates a portion of the three-dimensional (3-D) ad-
missible region for the raised-QAM basis functions described in
Section V. Notice that the region forms a 3-D cone with circular
cross sections in , satisfying the properties of Theorem 1.

C. Peak Optical Power Bounding Region

Although the communications model of Section II does not
constrain the peak amplitude of , in any practical system
device limitations limit the peak optical power transmitted.

Thepeak optical power bounding region is defined as
the set of points in the signal space which correspond to sig-
nals which have amplitudes bounded from above by . For-
mally, for some

(12)

where, for , : is defined as

Not surprisingly, and are closely related and their ex-
plicit relation is illustrated in the following.

Theorem 2: The peak optical power bounding region
can be written as , where is a unit vector
in the direction.

Proof: According to the definition in (10), contains the
set of all transmittable points, that is, the set of signals with
nonnegative amplitudes. The set is the set of signals for
which the maximum possible amplitude is zero. Since is
constant in a symbol period, the addition of , , to
each signal in yields the set of signals with maximum at
most . The region is then given as
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Since differs from by an affine transform, by Property
5 of Theorem 1, is the convex hull of an -dimensional
generalized cone with vertex at and opening
about the negative -axis.

D. Peak Optical Power per Symbol

The region is a set of points which satisfy the peak con-
straint, however, it does not reveal the maximum amplitudes
of the signals within. Indeed, it would be useful to have some
knowledge of which points have high optical peak values in the
construction of modulation schemes. This section demonstrates
how the peak value of every signal in the constellation can be
determined from the geometry of.

As justified in Property 2 of Theorem 1, the regioncan be
completely characterized by looking at a single cross section.
Therefore, determining the peak values of signals represented in

will give the peak values of all points in through scaling.
Additionally, the peak of only those points in need be con-
sidered since, as shown in the proof of Property 4 ii) of The-
orem 1, arises by maximizing so that for
some . This maximization over implies that rep-
resents signal points of maximum amplitude in.

Take some . As shown in Property 4 i) of
Theorem 1, . Note that the signal has

and . Form the vector
such that

(13)

for some unique . Now, since implies that
, however, . There-

fore,

(14)

Using (13) the preceding formula can be simplified to

(15)

which exists since by Property 4 i) of Theorem 1.
Note that (14) implies that . Fig. 3 graphi-
cally illustrates the scenario in (15) for the 3-D PAM basis con-
sidered in Section V. In the figure it is possible to deduce that

and that
by observing the relative magnitudes of the illustrated vectors.
Since the region is convex, the peak optical power
values for all signals in differ from those represented
in (15) by a scaling factor in the interval .

Finally, the peak optical power of the constellation points in
can be represented as

(16)

The peak-to-average optical power ratio (PAR), can be com-
puted for all using (15) and (16) is

PAR (17)

Fig. 3. Determination of peak amplitude value of elements in (@� ) for
3-D PAM bases.

with as defined in (13). Again, maximization is done over
points in since the signal with the largest peak value
must be contained in this set.

The peak optical power of all other transmittable points in
can then be found by scaling the peak values found for .
The PAR of points in will be the same as (17) since both the
average and peak optical power scale by a factor of.

IV. OPTICAL INTENSITY LATTICE CODES

The use of lattice codes over bandwidth-limited electrical
channels has been explored extensively in the literature [21],
[24]–[30]. Typically, optical channels are considered as being
power limited rather than bandwidth limited. The case of sig-
naling over bandwidth-limited optical channels, such as some
wireless optical links, has not received much attention.

Early work in the development of signaling schemes for the
optical intensity channel noted that unlike the conventional
channel, where the electrical energy of the signals determines
performance, the shape of the pulses used in transmission as
well as the electrical energy determine the performance of an
optical intensity scheme [8].

This section employs the signal space model of Section III to
define lattice codes suited to the optical intensity channel. Fig-
ures of merit are defined and optical power gain with respect to a
baseline are computed. Optimal shaping regions in the sense of
minimum average optical power are derived and optical power
gain is derived. The impact of a peak optical power constraint
is investigated and gains computed.

A. Definition of Lattice Codes

Lattice codes satisfying the constraints of the optical intensity
channel can be defined for a givenusing the regions defined
in Section III-A. Theshaping region is defined as a closed set
so that is bounded.

A finite -dimensional lattice constellation is formed
through the intersection of an -dimensional lattice translate

and the bounded region to give

(18)



1390 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 2003

It is assumed in this work that the modulator selects symbols
independently and equiprobably from symbol period to

symbol period. A modulation scheme is then described by the
pair , which defines the set of signals transmitted.

In what follows, the performance of lattice codes so defined
is related to the properties of, and .

B. Constellation Figure of Merit, Gain

In conventional channels, theconstellation figure of merit
(CFM) is a popular measure of the energy efficiency of a sig-
naling scheme [26]. An analogous measure for optical intensity
channels which quantifies theoptical power efficiency of the
scheme is [11], [16]

CFM (19)

where is the minimum Euclidean distance between
constellation points and is average optical power (9).
The CFM in (19) is invariant to scaling of the constellation
as in the case of the CFM for electrical channels [26]. The
optical CFM is unaffected by -fold Cartesian product of

so long as the symbol period also increases-fold, that
is, CFM CFM . In conventional channels
the CFM is invariant under orthogonal transformations of

[31], whereas CFM is invariant under a subset of
orthogonal transformations which leave the coordinate
unaffected. Additionally, the CFM in (19) is not unitless, since
the average symbol amplitude depends onvia (9) while
is independent of the symbol interval.

The optical power gain of one scheme versus another can be
computed via the CFM. The probability of a symbol error can
be approximated for a given by the relation

CFM

where is the error coefficient related to the number of
nearest neighbors to each constellation point and

Using the same analysis as in the case of electrical channels, the
asymptotic optical power gain of over , in the
limit as , can be shown to be

which is independent of the error coefficients and noise variance
[21].

C. Baseline Constellation

A rectangular pulse, -PAM constellation, is taken as
the baseline. This constellation can be formed as in (18) where

, , , and .
The resulting modulation scheme can be written as
where the single basis function of has symbol period .
Since all constellation points are chosen equiprobably the base-
line CFM is

CFM

In dimensions, the constellation is formed through the
-fold Cartesian product of with itself and can be real-

ized by transmitting a series of symbols of each of fixed
symbol period . In this case, since

CFM CFM

and there is no asymptotic optical power gain.
The asymptotic optical power gain of over this base-

line can then be computed as

CFM
CFM

(20)

D. Spectral Considerations

In order to have a fair comparison between two signaling
schemes, the spectral properties of each must be taken into ac-
count. Two schemes are compared on the basis of having equal
bandwidth efficiencies , where is
the bit rate of the data source in bits per second andis a mea-
sure of the bandwidth support required by the scheme.

In systems employing time-disjoint symbols, the definition of
the bandwidth of is nontrivial. In previous work, the first
spectral null of the power spectral density was used as a band-
width measure [13], [14], [16]. In this work, the bandwidth of
schemes is measured using the100 K%-fractional power band-
width , defined as

(21)

where is the continuous portion of the power spectral
density of and is fixed to some value, typi-
cally or . This is a superior measure of signal band-
width since it is defined as the extent of frequencies where the
majority of the signal power is contained as opposed to arbi-
trarily denoting the position of a particular spectral feature as
the bandwidth.

The channel model of Section II-A assumes that the fre-
quency response of the channel is flat and that signals are
limited to a bandwidth of . To a first approxima-
tion, if is chosen large enough, the energy outside of this
band lies below the noise floor of the channel and neglecting
it introduces little error. In this sense, is considered as
being “essentially” band limited to the channel bandwidth. Sub-
section B of the Appendix contains the expressions for
under the conditions of independent and equiprobable signaling
and further justifies the use of this bandwidth measure.

As in the conventional case, to compare versus
their bandwidth efficiencies must be equal. How-

ever, in the case of optical intensity schemes, the average
optical power depends directly on the choice of, as shown in
(9). Changes in the symbol period will leave the constellation
geometry unaffected because the basis functions are scaled to
have unit electrical energy independent of. Therefore, for
the optical intensity-modulation scheme , the geometry
of the constellation doesnot completely represent the average
optical power of the scheme. Thus, to make a fair comparison it
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is necessary to fix both the bandwidth and the bit rate of
and . Equating the rate of two schemes gives

(22)

Define for and define ,
where is the fractional power bandwidth of the base-
line scheme. Writing and in terms of and and
equating them defines

(23)

Combining the results of (22) and (23) gives

(24)

The term can be viewed as the “essential” dimension of the
set of signals time-limited in the range with fractional
power bandwidth . This definition is analogous to the use
of the orthonormal family of prolate spheroidal wave functions
as a basis for essentially band-limited functions [33]–[35].
These functions have the maximum energy in bandwidth

of all time-limited, unit energy functions in
[33], [34]. The set of functions time-limited to and with

%-fractional energy bandwidth are approximately
spanned by prolate spheroidal wave functions with an
error which tends to zero as .

Interpreting the effective dimension of , the parameter
in (23) can then be thought of as the effective number of dimen-
sions of with respect to the baseline . Equa-
tion (24) can then be interpreted as theeffective normalized rate
in units of bits per effective baseline dimension. This is anal-
ogous to the conventional expression of normalized bit rate in
[26]. Since, in general, constellation shaping has an impact on
the power spectrum of a scheme,must be determined for each
choice of and .

E. Gain Versus a Baseline Constellation

The optical power gain in (20) can be simplified by substi-
tuting the effective dimension (23) and the effective normal-
ized rate (24) to yield

(25)

Note that by specifying the spectral constraints as in Sec-
tion IV-D, the gain is independent of the value ofand ,
as in the conventional case. However, in this case, the gain
depends on the effective dimension of the signal spaces through

as opposed to the dimension of the Euclidean spaceas in
the conventional case.

For large constellations, or more precisely, for a large effec-
tive normalized rates, the term and can be
neglected.

F. Continuous Approximation to Optical Power Gain

The continuous approximation[26] allows for the replace-
ment of a discrete sum of a function evaluated at every
by a normalized integral of the function over the region .

Specifically, for a function which is Riemann-inte-
grable over

(26)

where is the fundamental volume of the lattice[21].
This approximation is good when , where
the notation evaluates to the volume of the region. In prac-
tical terms, this condition occurs when the scheme in question
is operating at a high effective normalized rate.

Applying the continuous approximation, (9) is a func-
tion of the region and takes the form

(27)

Similarly, can be approximated as

Since the conditions of the continuous approximation assume
that is large, in (25) the term .

Substituting these approximations, along with the fact that
, into (25) yields

(28)

where thecoding gainis given as

(29)

and theshaping gainis

(30)

G. Coding Gain

In the electrical case, the coding gain is a normalized lattice-
packing density known asHermite’s parameter [36], and
is given as

This electrical coding gain is a purely geometric property of the
lattice selected. The coding gain for the optical intensity channel
(29) can be written in terms of as

(31)

Through the effective dimension, the optical coding gain de-
pends on , , and . Thus, the densest lattice in di-
mensions, as measured by , may not maximize the optical
coding gain in (29).

In the case of transmission at high effective normalized rates,
however, Subsection C of the Appendix demonstrates that the
continuous approximation can be used to yield an estimate of
the effective dimension , independent of . For a given
and , substituting in (31) leaves as the only term
dependent on the lattice chosen. As a result, the densest lattice
in dimensions which maximizes also maximizes the
optical coding gain at high effective normalized rates.



1392 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 2003

H. Optimal Shaping Regions

Shaping is done to reduce the average optical power require-
ment of a scheme at a given rate. In the conventional case, the
shaping gain depends solely on the geometry of the constella-
tion. As is the case with , the shaping gain for the op-
tical intensity channel (30) is a function of the region as
well as the effective dimension of the scheme. In general, the
selection of which maximizes is difficult to find
since it depends on the specific basis functions selected.

In certain cases,can be assumed to be independent of .
If the have %-fractional energy bandwidths which
are all approximately the same and , then every symbol
occupies essentially the same bandwidth. In this case,and
hence , will be independent of . Section V illustrates
some practical situations when this approximation holds.

Under the assumption thatis independent of , the rate
of a scheme is then dependent on the volume . The op-
timal choice of , in the sense of average optical power, is one
which for a given volume, or rate, minimizes the average op-
tical power . The optimum shaping region which maximizes
shaping gain is the half-space

(32)

for some fixed so that the desired volume is achieved.
This assertion can be justified by noting that all points with
equal components in the dimension, have the same average
optical power. For a given volume and, the optimal shaping
region can be formed by successively adjoining points of the
smallest possible average optical power until the volume is
achieved. Clearly, the region in (32) will result. This is much
different than the case of the conventional channel where the

-sphere is the optimal shaping region in an average energy
sense.

In practice, the set of signals transmitted are peak limited as
well as average optical power limited. For a given, peak op-
tical power and volume, the optimum region which max-
imizes shaping gain is

for (32) and as defined in (12). The form of this
region can be justified in an identical manner as (32), except
that here the points selected to form the given volume are taken
from the set which satisfy both the nonnegativity and
the peak optical power constraints. Fig. 4 presents an example
of such a region for raised-QAM defined in Section V.

I. Shaping Gain

Suppose that . The shaping gain in (30)
can be simplified in this case by exploiting the symmetries of

. By Property 1 of Theorem 1, the are directly similar and
scale linearly in . As a result, the volume of each of the must
scale as for an -dimensional signal space. Formally

(33)

Fig. 4. The region� \	 (r ; p) in the case of raised-QAM forr =
(3=4)p.

The volume of can then be computed simply as
, which evaluates to

(34)

Exploiting the symmetry of the region in the dimension,
the average optical power expression in (27) can be computed
as an integral with respect to the only. Noting that

and substituting (33) and (34) into (27)
gives

which simplifies to

(35)

The expression for the shaping gain is computed from,
defined in Subsection C of the Appendix, and by substituting
(34) and (35) into (30) to yield

In contrast to the conventional electrical case, where shaping
gain is invariant to scaling of the region,
depends on since the dimension of the defined signal space
is not equal to the effective dimension of .

J. Peak-Symmetric Signaling Schemes

A modulation scheme is termedpeak symmetricif
is closed under inversion. From the point of view of

signal amplitudes, using (13) and (15) of Section III-D, this
condition implies that for , and

and, hence, the term peak sym-
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metric. Furthermore, for a peak-symmetric scheme using (16)
for

(36)

As discussed in Section III-D, this maximum amplitude is
achieved for . Note that the 3-D PAM scheme in Fig. 3
is not peak symmetric. Section V-B presents examples of the

of 3-D peak-symmetric schemes.
Peak-symmetric schemes are desirable in the sense that the

maximum amplitude value in is achieved by all points in
. Maximization over all points in is not required

in the calculation of the PAR (17) since it is satisfied at every
point. Thus, peak-symmetric signaling schemes minimize the
variation in the PAR over , which may be beneficial in the
design of transmit and receive electronics.

K. Shaping Gain: Peak-Symmetric Schemes

Theorem 2 demonstrates that is the inversion of with
some constant shift in the -axis. In the case of peak-symmetric
schemes, since is closed under inversion, is
a -shifted reflectionof in the hyperplane . As a
result of this additional degree of symmetry, the cross sections
of and in the -axis coincide for . In other
words, the cross sections of for a given
value are all directly similar to . Fig. 4 presents the region

for a peak-symmetric, raised-QAM example
defined in Section V.

Note that in the peak-symmetric case, for

The peak symmetry of the scheme requires that all points in
have a maximum amplitude of by (36).

Thus, for , all points in have a peak
less than .

The volume and of the resulting region can be computed
for as

(37)

and

(38)

Substituting these expressions into (30) yields the shaping gain
for these peak-constrained regions. Note also that peak optical
power in the case of these regions is and gives a PAR of

PAR

which is independent of the symbol interval.

L. Opportunistic Secondary Channels

In the case of optical intensity lattice codes defined in Sec-
tion IV, an opportunistic secondary channel[26] exists which

can be exploited without a cost in average optical power. Using
the shaping region , the shell is gener-
ally unfilled. All lattice points in are equivalent from
an average optical power cost and the additional points in this
shell can be selected without impact on the optical power of
the scheme. This degree of freedom in selecting constellation
points can be used to transmit additional data, introduce spec-
tral shaping, or add a tone to the transmit spectrum for timing
recovery purposes.

V. EXAMPLES

This section presents examples of the signal space model de-
fined in Section III-A and defines lattice codes using the tech-
niques of Section IV. The gain versus the baseline is then com-
puted. Design guidelines are presented based on the observed
results.

A. Definition of Example Schemes

As noted in Section IV and in [8], the performance of op-
tical intensity modulation techniques depends not only on the
electrical energy of the pulses (i.e., the geometry of the signal
space), but also on the pulse shapes chosen to define the space.
This section defines the basis functions used to form signals in
the example schemes considered. Note that all symbols are lim-
ited to the interval and is specified as in (7).

QAM is a familiar modulation scheme in wireless commu-
nications. In the case of optical intensity channels, to satisfy
the nonnegativity requirement, we define araised-QAMscheme
with defined as before and

Adaptively biased QAM (AB-QAM) [11], [37] is a 3-D mod-
ulation scheme which is defined using the basis functions

More generally, these functions areWalsh functions. This char-
acterization is especially useful in light of the signal space def-
inition in Section III-A, since the basis functions of AB-QAM
are scaled and shifted versions of the first three Walsh functions
[38].

A 3-D PAM scheme can be constructed by transmitting three
constituent one-dimensional symbols from . This
construction is analogous to the techniques used in conven-
tional lattice coding literature [26] and is the case considered in
earlier optical lattice coding work [16]. The basis functions for
this 3-D scheme, according to the signal space model defined
in Section III-A, are
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Fig. 5. Example cross sections of 3-D admissible regions, (� ), for (a) raised-QAM, (b) AB-QAM, (c) 3-D PAM scheme.

Note that the results derived for this case will differ from those in
[16] due to the definition of bandwidth and the fact that unlike
previous work, the precise impact of shaping on bandwidth is
considered here.

A popular signaling scheme in optical communications is
PPM. For -PPM, the symbol interval is divided into a series
of subintervals. A symbol is formed by transmitting an op-
tical intensity in only one of the subintervals while the optical
intensity is set to zero in the other subintervals. These schemes
were originally conceived for the photon-counting channel and
achieve high power efficiency at the expense of bandwidth effi-
ciency [3]. Note that a PPM modulation scheme can be thought
of as a coded version of the 3-D PAM scheme discussed earlier.

B. Geometric Properties

Fig. 5 contains plots of the regions of the example
bases defined in Section V-A. Consistent with Property 3 of
Theorem 1, the regions are all closed, convex, and bounded.

In the case of raised-QAM, every point in is a si-
nusoid time limited to with amplitude determined by the
squared distance from the origin. Since sinusoids of the same
energy have the same amplitude, regardless of phase, all points
equidistant from the origin have the same amplitude. As a re-
sult, a two–dimensional (2-D) disc naturally results as the region

. In the case of 3-D PAM, is an equilateral
triangle with sides of length . It is easy to show that the sig-
nals corresponding to a 3-PPM scheme are represented by the
vertices of the triangle. In this manner, PPM can be seen as a
special case of the 3-D PAM scheme.

Note that the raised-QAM and AB-QAM scheme, (a) and
(b) in Fig. 5, both represent peak-symmetric signaling schemes.
While the regions for these two modulation schemes
are different, the peak-to-average amplitude value of the signals
represented is in both cases as given in (36). The 3-D PAM
scheme is not peak symmetric. The largest peak values occur
for the points at the vertices of the triangle (in Fig. 3) to give
a PAR of for .

Fig. 6. Gain over baseline versus bandwidth efficiency. Note that points
indicated with and� represent discrete PPM and raised-QAM constellations,
respectively, while the solid lines represent results using the continuous
approximation.

C. Gain of Example Lattice Codes

The optical power gain over the baseline versus the bandwidth
efficiency is plotted for a variety of PPM and raised-QAM mod-
ulation schemes in Fig. 6.

Ten discrete raised-QAM constellations were formed as
by selecting the appropriate to have

each carrying from 1 to 10 bits per symbol. The power spec-
tral density of each scheme was computed symbolically via
(40) using a symbolic mathematics software package [39] and
integrated numerically to determine and for a
given . These results were then combined to find thefor
each . The power spectral density of the baseline scheme
is trivial to compute, and was integrated numerically to give

for and for . The ef-
fective dimension of the constellations considered are presented
in Table I. The same procedure was repeated for discrete PPM
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TABLE I
EFFECTIVE DIMENSION FOR OPTIMALLY SHAPED, DISCRETE

RAISED-QAM CONSTELLATIONS

TABLE II
EFFECTIVE DIMENSION FORDISCRETEPPM CONSTELLATIONS

constellations of size through . Table II presents the values
computed for these constellations.

In both the raised-QAM and PPM examples, the effective di-
mension in Tables I and II are essentially independent of the
value of in . This suggests that is not sensitive to the
choice of fraction of total power used to compute bandwidth
for values of near . Note also that for the PPM constel-
lations increases as since each signal point is orthogonal to
all others. In the case of raised-QAM, the effective dimension
remains approximately constant asincreases.

The gain of the raised-QAM and PPM examples was com-
puted via (25) using the derived from the and plotted in
Fig. 6. Note that the raised-QAM schemes provide large optical
power gain over the baseline scheme while operating at high
bandwidth efficiencies, while the PPM schemes provide small
gain at low bandwidth efficiencies.

Care must be taken when using the optical power gain as a
figure of merit since it depends on the baseline scheme chosen.
Since the raised-QAM and PPM examples operate at different
bandwidth efficiencies, a direct comparison of their perfor-
mance is not possible using this measure. Indeed, this plot
suggests that PPM and raised-QAM are suited for operation
under highly different channel conditions. Section V-D presents
a comparison technique based on an idealized point-to-point
link which illustrates the conditions under which PPM or
raised-QAM are appropriate.

Direct computation of the power spectral density to findis a
time-consuming process. In order to verify the asymptotic accu-
racy of the continuous approximation to the optical power gain

(28), the parameter was computed for the raised-QAM exam-
ples. The continuous approximation to the power spectral den-
sity was computed symbolically using (41) and integrated nu-
merically to get an estimate of , which is presented in Table I.
The results are plotted in Fig. 6 and show that the continuous ap-
proximation to the optical power gain approaches the discrete
case for large constellations.

The continuous approximation of gain for the 3-D PAM case
was computed in an identical fashion to give a and
is also plotted in Fig. 6. The baseline scheme is more power ef-
ficient than the 3-D PAM scheme in spite of the fact that the
3-D PAM constellation arises as a shaped version of the base-
line using . This is a consequence of the fact that the

depends on . The effective dimension for the shaped
case is larger than the baseline value ofwhich eliminates any
shaping gain. In the case of 3-D PAM, the approximation that the
bandwidth of each symbol is approximately constant no longer
holds, and as a result, the interpretation of as optimal
in average optical power at a given rate is not true.

A 24-dimensional example was constructed by specifying
symbols consisting of blocks of eight consecutive symbols of
the raised-QAM scheme. The resultingwas intersected with
the Leech lattice, , to form the constellation. The optical
power gain was calculated using the continuous approximation.
As in the 3-D case, the effective dimension was approximated
by integrating over the 24-dimensional region symbolically to
give . The optical gain was then plotted in Fig. 6
for comparison. The use of over gives a coding gain
of approximately 3 dB in optical power. This is less than the
6-dB electrical coding gain that arises in conventional channels,
since, as alluded to in (31), the optical coding gain depends on
the square root of Hermite’s parameter. Qualitatively, an elec-
trical coding gain corresponds to a reduction in the mean square
value of the signal while an optical coding gain corresponds to
the reduction in the mean value of the signal.

D. Idealized Point-to-Point Link

The gain over a baseline is highly dependent on the base-
line scheme that is chosen. In order to have a more concrete
comparison between PPM and raised-QAM schemes, the op-
tical power efficiency was measured by the distance that each
scheme could transmit over an eye-safe, point-to-point wireless
optical channel operating at a given symbol error rate and data
rate. The receiver and transmitter are assumed to be aligned and
a distance centimeters apart. The average transmitter inten-
sity is limited to 104 mW/sr, which is the eye-safety limit
of a commercially available wireless infrared transceiver [40].
The detector sensitivity is taken to be 25 A m /mW over
an active area of 1 cmand the channel noise standard deviation

11.5 10 W/Hz, both of which have been reported
for a similar experimental link [41]. The symbol error rate in all
cases was set to 10, which corresponds to the IrDA fast IR
specification [12]. Assuming operation in the far-field case, the
transmission distance under these constraints is

where , which is set by the symbol error rate.
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Fig. 7. Idealized point-to-point link length versus bandwidth for the discrete
uncoded PPM ( ) and raised-QAM (�) constellations of Fig. 6 with SER�
10 .

Fig. 7 presents the link distance versus bandwidth for the
discrete uncoded examples presented in Section V-C with a
fixed symbol error rate and for a variety of data rates. For a
given con-stellation, the data rate is varied by varying. In
both schemes, an increase in the rate for the same constella-
tion causes a reduction in transmission distance. This is because,
through (9), is inversely proportional to . An increase
in the symbol rate for a given constellation then increases the
optical power required to achieve the given symbol error rate
and, hence, reduces transmission range. As discussed in Sec-
tion III-A, this is due to the unit energy normalization of basis
functions in the signal space.

PPM schemes provide long-range transmission at the price of
bandwidth while raised-QAM schemes provide high data rates
at the expense of short link range. Longer range links are limited
by the amount of power which can be collected at the receiver.
As a result, the power-efficient PPM scheme must be employed
at the cost of bandwidth expansion or equivalently rate loss. As
the link distance becomes smaller, the amount of power col-
lected increases. In this case, bandwidth-efficient raised-QAM
techniques can be employed to increase the link data rate. There
is, thus, a rate versus link distance tradeoff in the design of
point-to-point wireless optical links.

Fig. 7 provides a design guide for the construction of mod-
ulation schemes for a point-to-point link. Suppose that an in-
dustry standard IrDA fast IR link using 4-PPM and operating at
at 4 Mb/s is taken as the operating point. In the bandwidth mea-
sure defined, the optoelectronics of this link limit the bandwidth
to 100 MHz. This link is able to support a 4-Mb/s data rate at
the specified 10 symbol error rate. If the same physical link
is required to transmit at 125 cm, a-raised-QAM scheme can
be used to achieve rates of 8 Mb/s. If the distance is reduced to
75 cm, rates of up to 16 Mb/s are possible using-raised-QAM.
Data rates of 32 Mb/s over 60 cm and 64 Mb/s over 40 cm are
also possible using -raised-QAM and -raised-QAM con-
stellations, respectively. Thus, for a given set of optoelectronics,
which set the channel bandwidth, the data rate can be optimized

TABLE III
EFFECTIVE DIMENSION FOR RAISED-QAM CONSTELLATIONS

SHAPED BY 	 (r )

by the proper selection of modulation scheme. Power-efficient
schemes operate at low data rates over long-range links and
bandwidth-efficient schemes offer high data rates over shorter
distances.

Note that in Fig. 6 the gain of raised-QAM schemes increases
as while in Fig. 7 the link distance decreases with. This is
due to the fact that the optical power requirement of the baseline
scheme increases more rapidly than raised-QAM at high band-
width efficiencies. The use of link distance is a more practical
measure of optical power and permits the direct comparison of
schemes.

E. Peak Optical Power

In the preceding examples, the peak optical power of the
schemes in question was not discussed. In this subsection, the
impact of shaping with on fractional power band-
width and on average optical power are investigated.

Table III presents the values for raised-QAM constella-
tions shaped with . For a given and , scaling
of does not alter and so the set of regions can be
parameterized by . In this case, since the symbols
are all nearly band limited in the sense of Section IV-H, the ef-
fective dimension is approximated as being nearly independent
of . Thus, for the raised-QAM example, and

are optimal in the average optical power sense.
At a given rate, the shaping region provides

a reduction in the peak optical power of a scheme at the
cost of increasing the average optical power over the case
using . Using the raised-QAM bases, consider
forming two constellations and

, for some fixed and
for . Under the assumption thatis

unaffected by , fixing

defined in (34) and (37), fixes the rates of the schemes to be
equal. The peak constraint causes an excess average optical
power penalty, , which
can be computed via (35) and (38). The normalized peak optical
power of with respect to is defined as , where
the peak optical power of is defined in (36).
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Fig. 8. Peak optical power versus excess average optical power (at same rate).
Solid line represents a case where� is assumed independent of	, and points�
indicate values for which� , in Table III, was explicitly computed.

Fig. 8 presents the tradeoff between the peak and average op-
tical power at a given rate for the uncoded raised-QAM example.
The figure illustrates the independence ofand and shows
that the peak value of the constellation can be reduced by ap-
proximately 1 dB over the case of at a cost of less
than 0.25-dB increase in average optical power. This tradeoff is
important to note since a scheme with high peak optical ampli-
tudes is more vulnerable to channel nonlinearities and requires
more complex modulation circuitry.

VI. CONCLUDING REMARKS

Modem design for the free-space optical intensity channel
is significantly different than for the conventional electrical
channel. Whereas in electrical channels the constraint is
typically on the mean-square value of the transmitted signal,
the optical-intensity channel imposes the constraint that all
signals are nonnegative and that the average signal amplitude
is limited. In this work, we impose a further constraint on the
bandwidth of the channel since wireless optical channels are
typically bandwidth constrained due to the multipath distortion
and optoelectronic capacitance. The practical constraint of peak
optical power is also addressed in this work and the tradeoff
between average and peak optical power is quantified.

This work has shown that popular PPM schemes provide a
means to trade off optical power efficiency for bandwidth effi-
ciency. In point-to-point links, this translates to a tradeoff be-
tween transmission distance and data rate. Bandwidth-efficient
schemes, such as raised-QAM introduced in this paper, provide
much higher data rates at the expense of a greater required op-
tical power. In comparison to PPM point-to-point links, modems
based on raised-QAM provide far higher data rates at lower
transmission distances.

This paper has further demonstrated that coding alone, al-
though necessary to approach capacity, provides relatively lim-
ited optical power gain. The optical coding gain is shown to be
proportional to the square root of the electrical coding gain. In

the design of modems for such a channel, physical improve-
ments to improve the optical power efficiency should first be
exploited before complex coding schemes are considered.

There exist a variety of physical techniques which can be
employed to improve the optical power efficiency of the free-
space optical channel. Optical concentrators, such as mirrors
and lenses, can be used to increase the receive power at the price
of higher implementation cost [42], [43]. Multiple spatially sep-
arated light emitters can be used to form a distributed source,
thereby increasing the amount of optical power transmitted. At
longer wavelengths (in the 1.3- and 1.5-m range) the human
eye is nearly opaque. As a result, an order of magnitude increase
in the optical power transmitted can be realized at the price of
costlier optoelectronics [14].

Through the use of such techniques it is possible to engineer
an optical channel which for a given distance offers a signifi-
cantly improved optical power at the receiver. Bandwidth-effi-
cient raised-QAM-type modulation can then be applied in this
new channel to provide improved data rates over the given trans-
mission distance. Thus, these physical techniques increase the
range of transmission distances in which high-rate, bandwidth-
efficient modulation is appropriate.

APPENDIX

This appendix will briefly outline how the power spectral
density is calculated for the examples in Section V and present
an approximation of the power spectral density based on the
continuous approximation (26).

A. Definitions

The power spectral density of , , can be written
as the sum of two terms, the discrete spectrum and the
continuous spectrum . The fractional power bandwidth
measure in (21) is defined using only the continuous portion
of the power spectral density. Discrete spectral components are
typically undesirable since they do not carry any information but
require electrical energy to be transmitted. In the optical channel
model, the discrete spectral component at represents the
average optical power of while all other discrete com-
ponents of the spectrum represent zero average optical power.
These discrete components, except at , can be eliminated
through the prudent construction of. Thus, the frequency ex-
tent of can then be considered as being set by .

It should be noted that is notequal to the
optical power cost of the scheme. The power spectrum is the dis-
tribution of electrical energy in the received photocurrent
in Fig. 1, while the average optical power is the average pho-
tocurrent amplitude. As discussed in Section II-A, the optical
channel can be modeled as a baseband electrical system with
constraints on the amplitude of signals transmitted. As a result,
the use of the bandwidth of the electrical photocurrent signal is
appropriate.

B. Calculation of Power Spectral Density

For digital modulation schemes, where the signal transmitted
can be described as in (4) and the correlation from symbol to
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symbol can be described by a Markovian model, the power spec-
tral density can be shown to be [44]

where

is the Fourier transform of signal , is the
steady-state probability of transmitting symbol , and
is the -step conditional probability of transmitting symbol

given the current symbol is . The power spectral den-
sity depends on two factors: the pulse shapes, through the,
and on the correlation between symbols. Consider the case when
all of the are strictly band limited to hertz. It is clear
that the resulting must necessarily be band limited to
hertz, independent of coding or shaping. This is the condition
under which classical lattice coding results are derived for the
electrical channel [26].

Under the conditions of independent and equally likely sig-
naling, as in Section IV, the term can be simplified as

where is the Kronecker delta function. The power spectral
density in (39) can be simplified to yield

(40)

C. Continuous Approximation of Power Spectral Density

The summation in the expression of can be simplified
using the continuous approximation (26). The resulting contin-
uous approximation to power spectral density can be
written in terms of the Fourier transforms of the basis functions,

, , as

(41)

where denotes conjugation and

Fig. 9. Plot of power spectral density of uncoded, discrete raised-QAM
constellations versus the continuous approximation for the power spectral
density in those cases (T = 1 in all cases).

Thus, to calculate the continuous approximation for the power
spectral density, the first- and all second-order moments of the

-dimensional random vector uniformly distributed over
must be determined.

Fig. 9 shows plotted on the same axis as the power
spectral density calculated via (40) for various sizes of discrete,
optimally shaped, uncoded, raised-QAM examples presented in
Section V. Notice that approaches the true power spec-
tral density (40) for high rates.

The effective dimension in (23) can be approximated by
estimating the fractional power bandwidth of a scheme via nu-
merical integration of (41) to yield . As verified in Fig. 9,
the accuracy of this approximation improves as the rate of the
scheme increases.
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