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Capacity-Achieving Probability Measure
for Conditionally Gaussian Channels

With Bounded Inputs
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Abstract—A conditionally Gaussian channel is a vector channel
in which the channel output, given the channel input, has a
Gaussian distribution with (well-behaved) input-dependent
mean and covariance. We study the capacity-achieving proba-
bility measure for conditionally Gaussian channels subject to
bounded-input constraints and average cost constraints. Many
practical communication systems, including additive Gaussian
noise channels, certain optical channels, fading channels, and
interference channels fall within this framework. Subject to
bounded-input constraint (and average cost constraints), we show
that the channel capacity is achievable and we derive a necessary
and sufficient condition for a probability measure to be capacity
achieving. Under certain conditions, the capacity-achieving mea-
sure is proved to be discrete.

Index Terms—Bounded-input constraint, capacity-achieving
measure, conditionally Gaussian channel, optical channel,
Rayleigh-fading channel.

I. INTRODUCTION

WE STUDY the capacity-achieving probability mea-
sure under boundedness constraint for conditionally

Gaussian channels, a class of vector channels whose condi-
tional output distribution, given the channel input, is Gaussian
with input-dependent mean and, in general, input-dependent
covariance. Classical additive white Gaussian noise channels,
multiple-input multiple-output (MIMO) Rayleigh-fading chan-
nels, certain interference channels, and certain optical channels
with signal-dependent noise are examples of communication
channel models that fall within this framework.

Of course, determining the capacity of a channel subject to
various input constraints is a classical problem of information
theory. Shannon demonstrated that in the case of a scalar addi-
tive Gaussian noise channel subject to an average power con-
straint, the capacity-achieving distribution is Gaussian. In prac-
tice, however, this source distribution is not realizable due to its
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unbounded amplitude. A limit on the peak amplitude, as well
as on the average power, is necessary to more accurately reflect
the physical limitations present in most practical communica-
tion systems.

In [1], Smith studied the capacity of a scalar Gaussian channel
subject both to an average power constraint and to a peak power
constraint. The capacity-achieving distribution was shown to
be discrete, with a finite number of probability mass points.
Using a similar approach, Shamai and his colleagues [2]–[5]
showed that the capacity-achieving measures are also discrete
for many other channels, including Poisson channels, quadra-
ture Gaussian channels, Rayleigh-fading channels and so on. In
particular, since the publication of [4], there has been a wide in-
terest in this area, and many channels have been found to have
discrete capacity-achieving measures. In Table I, we list some
channel models that we are aware of having been shown to have
discrete capacity-achieving measures.

In this paper, we extend the work of Smith and Shamai
to study the capacity-achieving measure for conditionally
Gaussian channels. We have organized the paper as follows. In
Section II, we present the channel model and we specify the
channel input constraints. In Section III, we provide the main
results of this paper. Subject to a bounded-input constraint and
average cost constraints, we show that the channel capacity is
achievable, and derive a necessary and sufficient condition for
a probability measure to be capacity achieving. Using this nec-
essary and sufficient condition, we propose an algorithm to find
the capacity-achieving measure of a signal-dependent optical
channel, which is traditionally difficult to analyze. Using an
approach similar to that of [1], we prove that, under suitable cri-
teria, the capacity-achieving measure is discrete. In the special
case when the conditionally Gaussian channel is constant, we
further prove that the capacity-achieving measures approach a
Gaussian distribution if the bounded-input constraint is relaxed.
The proofs for our main results rely on a collection of inter-
mediate propositions and lemmas, which are stated and proved
in Appendix B. In Section IV, we apply our results to analyze
several practical channels, including certain optical channels,
fading channels, interference channels, and parallel Gaussian
channels. Finally, we provide some conclusions in Section V.

II. SYSTEM MODEL

A. Notation

In this paper, we adopt the following notation. For positive
integers , , and , let , ,
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TABLE I
A LIST OF CHANNELS WITH DISCRETE CAPACITY-ACHIEVING MEASURES

PP and AP stand for “peak power” and “average power” respectively.
A higher moment constraint is an average cost constraint whose cost func-

tion is in the form: x �  where � > 2.
This is a name we gave to the channel described in [12]. Here, UIUO

stands for “Unbounded-Input Unbounded-Output.” A UIUO channel is a scalar
channel such that for any c > 0, lim Pr(jY j < cjX = x) = 0whereX
and Y are channel input and output, respectively. In other words, if the channel
input goes to infinity, the probability that the channel output is contained in a
given bounded subset of goes to zero.

and be index sets. The transpose, the determi-
nant and the trace of a matrix are denoted by , , and

, respectively. An identity matrix of size is denoted by
. The real part and imaginary part of a complex matrix are

denoted by and , respectively. Let be the imag-
inary number . Then for any complex matrix , we have

.
For any , its amplitude is de-

fined as and we say its phase1 is the normalized vector
. Let be the ball in of radius , i.e.,

Then, the phase of a vector is defined on the “surface” of
the unit ball . Clearly, is uniquely determined by its

1To follow the similar terminology defined in previous work, the way we use
the term “phase” in this paper is slightly different from the traditional usage in
which it refers to the special case when N = 2 and the normalized vector is
represented by an angle.

amplitude and its phase. If , then is a scalar and is
simply denoted by .

Let be a random variable defined on and be its prob-
ability measure. Then is called discrete in amplitude and
uniform in phase (DAUP) [11] if the probability distribution of

is discrete with a finite number of probability mass points,
and the phase of is uniformly distributed on the surface of

.

B. Channel Model

Consider a discrete-time memoryless channel whose input is
a real-valued -tuple subject to input con-
straints to be defined and whose output is a real-valued -tuple

. In a practical communication system, due to
various physical restrictions imposed on the system, not every
channel input can be generated by the transmitter. For
example, all amplifiers have a limitation on their maximum al-
lowable input and output amplitudes. A channel input is said
to be admissible if it can be produced by the transmitter. We will
denote the set of admissible channel input vectors by , and we
will assume that is a closed and bounded subset of , unless
specified explicitly. We refer to this channel input constraint as
the bounded-input constraint. If the probability measure of
is , then the bounded-input constraint means that .
For example, under a peak total power constraint in dimen-
sions of , we have .

We call a channel conditionally Gaussian (CG) if the condi-
tional probability distribution of the channel output is Gaussian
distributed. In particular, for a given input , the condi-
tional expectation vector and the conditional covariance matrix
of the channel output are denoted by and . Thus, the
conditional probability density function of given

is given by

(1)

where is the matrix inverse of .
In this paper, the following assumptions are made: 1) for all

, the covariance matrix is positive-definite (hence,
), and 2) the entries in and are well be-

haved, in the sense that they can be extended holomorphically
over and are real over . For clarity, when the functions
are extended over , a complex variable is used instead of

to denote the function argument. Since is assumed to be
closed and bounded, the continuity of and implies that
there exist such that for all , all eigenvalues
of are within the interval and . Hence,

.
We also introduce cost constraints, as some channel inputs

require more “effort” by the transmitter to generate than others.
In this paper, we consider a set of cost measures in-
dexed by . The th average cost constraint is characterized
by the inequality , where
and the expectation is taken with respect to the input proba-
bility measure . For instance, the commonly used constraint
that the average signal power should not exceed is expressed
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as . Again, we assume that the cost func-
tions are all well behaved.

For simplicity, we use the tuple
to denote a CG channel subject to the above bounded-input con-
straint and average cost constraints.

We call a CG channel quadratic if its input and output are
related by the equation , where 1) is a random

channel matrix whose entries are Gaussian distributed,
and 2) is an additive Gaussian noise
that is independent of and . For the special case that
is deterministic, we call the channel constant quadratic, or
simply constant.

Clearly, for a quadratic CG channel, ,
and

If the channel is constant, then and

Thus, is constant for all and will simply be denoted by .
The following are some communication system channel

models that fall within our framework.
1) A Scalar Additive White Gaussian Channel: Subject to

peak and average power constraints, the channel is characterized
by the tuple

The discreteness of the capacity-achieving measure for this
channel was first shown in [1]. It is obvious that a scalar addi-
tive Gaussian channel is a constant CG channel whose channel
“matrix” is equal to .

2) A System of Parallel Independent Gaussian Channels:
Subject to peak and average total power constraints, the channel
is characterized by the tuple

This is a generalization of the scalar-Gaussian channel. The spe-
cial case when was studied in [3], and it was shown that
the capacity-achieving measure is DAUP.

3) An Optical Intensity Modulated/Direct Detected Channel
(Using Raised Quadrature Amplitude Modulation (QAM) Basis
Functions [14]): Under the assumption that the noise is dom-
inated by the background illumination, subject to peak and av-
erage power constraints, the channel is a constant CG channel
and is characterized by the tuple

where

(2)
Here, for any input , the optical power is given by . See [14]
for more details concerning this channel model.

4) A Signal-Dependent Noise Optical Pulse Amplitude Mod-
ulation (PAM) Channel: Subject to peak and average power
constraints, the channel is characterized by the tuple

This example will be elaborated in detail in Section IV-A.
5) A MIMO Rayleigh-Fading Channel: Assuming that there

are and transmitting and receiving antennae, subject
to peak and average power constraints, the channel is character-
ized by the tuple

It was proved in [4] that the capacity-achieving measure for this
channel is discrete in the sense that the distribution of is
discrete with a finite number of probability mass points. Fur-
thermore, the discreteness of the capacity-achieving measure re-
mains valid even when , i.e., .

6) A MIMO Rician Fading Channel: Subject to a peak
power constraint, the channel is characterized by the tuple

7) A MIMO Rayleigh Fading Channel With Receiver-Side
Channel Information: Assuming that there are transmit-
ting and one receiving antennae, subject to peak power con-
straint, the channel is characterized by the tuple

where and is defined as

(3)

8) An Interference Channel: Subject to peak power con-
straint, the channel is characterized by the tuple

This channel is a special case of MIMO Rician fading channel
where is equal to . We will elaborate more in
Section IV-C.

III. MAIN RESULTS

Consider a CG channel characterized by the tuple
. We are interested in the prob-

ability measure which satisfies the channel input constraints and
maximizes the mutual information between the channel input
and output. Let be the set of all input probability measures
satisfying the bounded-input constraint, and be the subset of

which also satisfies the average cost constraints (if any). For
any input probability measure of , we denote the -induced
probability density function of by , the differential
entropy of by , the conditional differential entropy of
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given by , and the mutual information between
and by . Thus,

(4)

As a result, the channel capacity problem is the following op-
timization problem:

Maximize
subject to and for all

(5)

Our first result shows that a capacity-achieving measure
exists.

Theorem 1 (Existence and Uniqueness): There exists in
which solves the channel capacity problem. Furthermore,

the capacity-achieving output distribution is unique. In other
words, if is also a capacity-achieving input measure, then

.
Suppose, in addition, that the CG channel is constant and the

channel matrix is left-invertible. Then the capacity-achieving
input measure is unique.

Sketch of Proof: The proof of Theorem 1 follows the same
approach used in [1]. First, we will prove that is convex and
sequentially compact2 (see Proposition 2). As the mutual infor-
mation function is continuous over (see Proposition 3),
it achieves its maximum in .

For any and , let
. It is well known that and are concave, i.e.,

. By the strict concavity of the
function , we can show that equality holds if
and only if .

Furthermore, if the CG channel is constant with a left-invert-
ible channel matrix , then by Lemma 4, there is a one-to-one
correspondence between the input and output probability mea-
sures, i.e., if and only if . As a
result, is a strictly concave function of . The uniqueness
of the capacity-achieving input measure then follows.

Definition 1: A point is said to be a point of
increase of if for any open subset of containing ,

.

Let be the set of points of increase of . Then .
In fact, is the minimal closed subset of whose probability
is .

Theorem 2 (Necessity and Sufficiency): Let be an admis-
sible input probability measure, i.e., . Let be

. Then is capacity achieving if and
only if there exists such that for all

(6)

2A space is sequentially compact if every infinite sequence in the space has a
convergent subsequence.

where is defined as .
Furthermore, if belongs to , the inequality (6) is satisfied
with equality.

Sketch of Proof: The proof of this theorem also follows
a similar approach as in [1]. By the method of Lagrange mul-
tipliers [16], is capacity achieving if and only if 1) there
exists such that for
all and 2) for all , where

. Since the function is
concave, the condition 2) is equivalent to that for
all where is the weak derivative of at
(see Definition 6). Since is a linear function of , we have

Therefore, given that the condition 1) is true, the condition 2) is
equivalent to

(7)

for all . In Proposition 4, we prove that

For simplicity, the function is used to
denote the following formula:

(8)

(Proof of Necessity) Suppose is capacity achieving. Let
be selected such that the inequality (7) is

satisfied. For any , let be the probability measure such
that , i.e., is the measure with a single probability
mass at . Obviously, . Substituting into (7), we have

. The necessity is thus proved.
(Proof of Sufficiency) Suppose the inequality (6) is satisfied

for selected . Since
and , if we integrate both

sides of (6) with respect to , we have

where the last inequality follows from that . Hence,
for all . On the other hand, if we integrate

(6) with respect to any , we have

(9)

(10)

Hence, is capacity-achieving.
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Finally, it remains to prove that the inequality (6) is satisfied
with equality at . Let , and suppose, to the contrary,
that . By the continuity
of (see Lemma 5), the function

is also continuous on . Hence, there is an open subset
containing such that for
all . Consequently, if we integrate both sides of (6) with
respect to , we have .
A contradiction occurs, and the theorem is proved.

By Theorem 1, if and are both capacity achieving, then
, which further implies that

. Hence,

for all . According to Theorem 2, the inequality (6) is thus
tight at any points of increase of a capacity-achieving measure.

Definition 2: A complex-valued function defined on an
open subset of is called holomorphic [17] on if it is
analytic in each individual variable on .

Definition 3: A subset of is defined to be sparse (in
) if there exists a nonzero holomorphic function defined

on a connected open subset of containing the closure of
such that for all .

Suppose is not sparse and is holomorphic on a con-
nected open subset of containing the closure of . If is
zero on , then it is also zero on .

By the identity theorem, a bounded subset of is sparse
in if and only if it is finite. However, for a high-dimensional
space , it is difficult in general to determine whether a
bounded subset of is sparse or not. In the following lemma,
we show that when is a collection of “concentric shells” and
is bounded, it is sparse if and only if its number of shells is
finite.

Lemma 1: Suppose is a set of distinct non-
negative real numbers which are bounded above by a positive
real number. Let be a collection of “concentric shells” of radii

, i.e.,

Then is sparse if and only if is finite.
Proof: See Appendix A.

Definition 4: A probability measure is said to be discrete
if its set of points of increase is sparse.

Definition 5: Let be a holomorphic extension of to
. The well-behaved region of , denoted by , is the

subset of such that for all its elements ,
and is positive definite.

Note that implies that the logarithm and
the square root of are well defined and holomorphic
over . Furthermore, as is a symmetric matrix,
the condition that is positive definite is equivalent to
the condition that the eigenvalues of are positive. As
the eigenvalues of are continuous functions of , the

well-behaved region is an open subset in . In the
special case when the channel is constant, is real, constant,
and positive definite for all . Hence, .

Theorem 3 (Discreteness): Suppose is capacity achieving
and are chosen such that the inequality (6) is
satisfied. Let be the subset of at which the inequality (6) is
tight. In the following three cases, the set is sparse, and hence,

is discrete.

[Case A] There is no average cost constraint (i.e.,
is empty), and there exists a connected open
subset of containing and a se-
quence in such that 1) and

are real for all positive integers , and 2)
.

[Case B] There exists a connected open subset of
containing and a convergent sequence

in with a limit (not necessary
in ), such that 1) and are real for all
positive integers , and 2) .

[Case C] The channel is constant with a nonzero channel
matrix , and the cost functions are of second
order, i.e., for some

real matrices , real row vectors
and real scalars .

Sketch of Proof: Let be the capacity-achieving mea-
sure for the channel . For any

, define as

(11)
It is clear from the definition that for all ,

. Let

Then, by definition, for all .
In the above three cases, there exists a connected open subset
of containing . In particular, is equal to

in Case C. Since is a closed and bounded subset containing
, also contains the closure of . As is holomorphic

on (see Proposition 5), is also holomorphic on
. Hence, if is not sparse, then for all , ,

or equivalently

In the following, we will show that if is not sparse, then a con-
tradiction occurs in each of the three cases and hence Theorem 3
is proved.

Contradiction in Case A:
Suppose the requirements in Case A are satisfied, and

is not sparse. By Lemma 6, there exist such that
. Without loss of generality, assume

that are the eigenvalues of
. Then
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and

As a result

and hence,

Since

and are not bounded
above. A contradiction thus occurs.

Contradiction in Case B:
Suppose the requirements in Case B are satisfied, and is

not sparse. Again, by Lemma 6, there exist such that
. Therefore,

and consequently

Since , a contradiction thus
occurs.

Contradiction in Case C:
Suppose the requirements in Case C are satisfied, and is not

sparse. Then, for all , we have

(12)

Following the same approach as in [1], we will show that the
equality (12) implies that the capacity-achieving output distri-
bution is Gaussian. Since and is Gaussian
distributed, is also Gaussian distributed. As the set of
points of increase of a Gaussian distribution is not bounded, the
Gaussianity of contradicts the assumption that satisfies
the bounded-input constraint.

Now, it remains to prove that is Gaussian distributed. First,
assume that the rank of is equal to . Without loss of gen-
erality, we can also assume that is zero mean. Let be
the probability density function of the additive Gaussian noise.
Then, it is clear that for

(13)

(14)

where denotes convolution. Let . The right-hand side
of (14) depends only on . Hence,

also depends on only and we can thus construct matrices
and such that

Thus, we have

(15)

By direct integration, we can immediately verify that
and

where and are the th entries of and ,
respectively. Hence, (15) implies that for all , we have

As the Fourier transform of is nonzero everywhere, by
Corollary 9, the function

is equal to , which further implies that is Gaussian
distributed.

Now, assume that the rank of is equal to . As is
real, symmetric, and positive definite, there exists an invertible
matrix such that . Using singular-value decom-
position on , we can construct an matrix such
that 1) , and 2) the
rank of is . Hence, the original constant CG channel
is equivalent to another constant CG channel where the channel
matrix is and the additive noise is . Using the same
argument as above, we can conclude that if the requirements in
Case C are satisfied, then must be sparse.

As a remark, subject to an average power constraint
( ), the capacity-achieving measure for a
constant CG channel whose channel gain matrix is an identity
matrix has also been studied separately in [8], in which it was
proved that the capacity-achieving measure is discrete if
has a positive Lebesgue measure.

Corollary 1: Let be a quadratic CG
channel subject only to a bounded-input constraint. The ca-
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pacity-achieving measure is discrete except in the trivial case
that the channel is constant with a zero channel matrix .

Proof: Let be the channel matrix for the quadratic CG
channel. Then

Clearly, and are real over , and is a subset of
.

Suppose the quadratic CG channel is not constant. Let
be an open subset of containing . Then
is unbounded over . Hence, the requirements in Case A
of Theorem 3 are satisfied, and thus the capacity-achieving
measure is discrete.

If the quadratic CG channel is constant, then the requirements
in Case C of Theorem 3 are also satisfied. Hence, the capacity-
achieving measure is still discrete.

It is well known that for a scalar additive Gaussian chan-
nel subject only to an average power constraint, the ca-
pacity-achieving input distribution is Gaussian. When an
additional bounded-input constraint is imposed,
the capacity-achieving measure becomes discrete. An inter-
esting question then arises: if we relax the bounded-input
constraint by increasing , then what is its effect on the
capacity-achieving measure? In the next theorem, we will
prove that as increases, the capacity-achieving measure ap-
proaches the capacity-achieving distribution when there is no
bounded-input constraint.

Consider a sequence of CG channels

where is a nonzero real matrix and is a closed and
bounded subset of . Let and be the capacity-achieving
measures for the channels and

, respectively. Note that is discrete
while is Gaussian distributed.

Theorem 4: Suppose for any closed and bounded set of
, we have for all sufficiently large. Then

converges to in metric.
Sketch of Proof: First, consider the special case when

is an diagonal matrix and . For clarity, we
use to denote and to denote its diagonal entries
for . Using the water-filling algorithm [18], [19], there
exist and such that 1) ,
2) , and 3) for all , we have

and . Let
be the Gaussian input distribution of such that the com-

ponents of are zero mean and independent with variances
, respectively. Then is capacity achieving for the

channel .
By Proposition 6, we show that , or

equivalently, . Let be the set of
all input probability measures of such that .
In Lemma 10, we prove that is sequentially compact. Hence,

converges to if all convergent subsequences of
converge to . Assume without loss of generality that

converges to an input probability measure in . As
, by Lemma 9, we have

On the other hand, as converges to

for all

Therefore, for any

As is arbitrary, by the continuity of and ,
we have for all . Hence,

for all . Let be the subset
. As and

, we have for
all . Consequently

which implies that for . In other words,
with respect to and , is deterministic and equal to zero
for .

Let and be the probability measures of
when the input probability measures of are and

, respectively. Since , by Lemma 4,
. As is deterministic with respect to

and for those such that ,
implies that . Hence, Theorem 4 holds for this simple
case.

Now, consider a general channel . Let
be the rank of . Using singular-value decomposition, we

can construct an orthonormal matrix , an
diagonal matrix , an matrix , and an
matrix such that 1)

, 2) the rank of is , 3) , and
4) , Then the channel is equivalent
to where , , and
is denoted by the tuple where

.
By adding “dummy” output variables, the

channel is equivalent to
, where is obtained by ap-

pending rows of zeros in . It is obvious that
and are still capacity-achieving measures for the channels

and

where . Since is a diagonal square
matrix, using the same argument as before, we prove that

converges to .

IV. EXAMPLES

A. Optical Channel—PAM

Consider an optical channel using intensity modulation and
direct detection, in which an electrical signal is directly con-
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Fig. 1. Two optical channels.

verted to an optical intensity signal (e.g., by a laser diode). A
discrete-time model for this channel is where
is a zero-mean additive Gaussian noise, whose power may de-
pend on the channel input. Specifically, we assume that

for and . This system is subject to three
channel input constraints: a) the average power constraint, b) the
peak power constraint, and c) the nonnegativity constraint (due
to the nonnegativity of intensity). Such a channel can be char-
acterized by the tuple .

By Theorem 1, there exists a probability measure in
which solves the channel capacity problem. In fact, by

Theorem 2, there exists such that for all

(16)

Furthermore, the inequality (16) is satisfied with equality for all
.

Corollary 2: Let be the capacity-achieving measure for
the channel . Then is a discrete
distribution with a finite number of probability mass points.

Proof: Suppose . Since is connected, it is
contained in one of the maximal connected open subsets
of . Denote this connected open subset by . As

and , the interval
is a subset of . Let be a convergent sequence
in the interval with limit . Then

and for all positive integers ,
and are real. Clearly, the requirements in Case B of
Theorem 3 are satisfied, and thus, is discrete.

In the case , the channel is constant and is subject
to a linear average cost constraint. Hence, the requirements in
Case C of Theorem 3 are satisfied, and the capacity-achieving
probability measure is thus discrete.

In both cases, , the set of points of increase of , is a
sparse set. Since is a bounded subset of , it is a finite set,
i.e., has a finite number of probability mass points.

Proposition 1: Suppose is the capacity-achieving mea-
sure for the channel . Then
is a point of increase of .

Proof: Suppose, to the contrary, that is not a point of
increase of . Let be the minimal element in , and hence

. Consider the two channels depicted in Fig. 1. Channel 1
is the original optical channel, and channel 2 is obtained from
channel 1 by appending a “pre-coder” and a “post-coder” before
and after the inner optical channel. Specifically, and

where is an independent additive Gaussian noise
with mean and covariance .
For any , the conditional probability density functions

of given is the same in both channels. Hence, if the
input probability measure of the two channels is , then the
joint probability measures of and in the two channels are
still the same, and consequently, so is the mutual information
between the channel input and output.

In the second channel, as , , , and form a Markov
chain , we have
by data processing inequality. Let be the corresponding prob-
ability measure of when the probability measure of is .
Clearly, satisfies the bounded-input constraint and the average
power constraint. Thus, is also capacity-achieving for channel
1, and hence, by Theorem 1. As a result,
for channel 2, given the input probability measure of is ,
the probability density function for and are the same, which
is not possible since . Hence, the proposition
follows.

Corollary 3: If is capacity achieving for the channel
, and it satisfies (16), then

Proof: Since is a point of increase of , the inequality
(16) is tight at . Therefore, the Lagrange multiplier can be
obtained by putting in (16).

For each , let be an input probability
measure in that maximizes and has or fewer points
of increase. Using an approach similar to that of [1], the ca-
pacity-achieving measure of this optical channel can be found
via the following search algorithm.

Search Algorithm for Capacity-Achieving Measures
Step 1: Set .
Step 2: Solve for .
Step 3: Let . If

, increase by and go back to step 2.
Step 4: Verify whether the inequality

holds for all . If so, then is capacity
achieving. If otherwise, increase by and go back
to step 2.

Numerical Results
The parameter determines the degree of signal dependency

of the optical channel. It is interesting to know how the param-
eter affects the capacity-achieving measure. In the above op-
tical channel, we fix the following parameters: , ,
and . Let be the capacity-achieving measure for the
channel . With respect to different
specified values of , via the above search algorithm,
was found and its set of points of increases are plotted in Fig. 2.
Specifically, the horizontal axis denotes the values of and the
vertical axis denotes the input signal. If a dot is indicated in the
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Fig. 2. Capacity-achieving measures.

position , then is a point of increase of . More-
over, the probabilities at the points of increase of are also
shown in the figure for selected values of .

From the figure, we observe the following.

1. and are always points of increase of . It is proved
in Proposition 1 that is always a point of increase of

. However, it is not known whether is also a point
of increase of in general.

2. The distance between two neighboring points of increases
of varies significantly. In particular, the separation is
smaller if the interval is “closer” to . This phenomenon is
especially apparent when the channel is highly signal de-
pendent (i.e., when is large). We believe that this phe-
nomenon is due to the fact that when is large, input sig-
nals of larger power require greater separation than those
of smaller power.

3. As increases, the size of decreases. This hap-
pens because when increases, the average noise power
also increases; hence, a signaling scheme with a smaller
constellation is more favorable.

4. The probabilities of “ ” and “ ” increase, as
increases. For a fixed channel input, when increases,
the induced noise power also increases. Hence, for large

, it is more favorable to use inputs of smaller power.
This explains why the probability of “ ” increases.
An unexpected observation from our numerical results is
that the probability of “ ” also increases. We believe
that this is because the increase in probabilities of “ ”
and “ ” also increases the “average distances” be-
tween channel codewords. According to our numerical re-
sults, this advantage seems to outweigh the disadvantage
of the increase in average noise power.

B. Fading Channel

Consider a general multiple-antenna system operated in a
fading environment. The channel input and output are com-
plex-valued -tuple and -tuple , respectively, such that

and are related as . Here, we do not make
any assumption on the complex channel gain matrix and the
additive noise except that 1) they are complex Gaussian dis-
tributed and 2) and are independent to each other. Such
a channel can also be formulated as a quadratic CG channel

, where

(17)

Example: Rayleigh-Fading Channels: Consider the
Rayleigh-fading channel, in which all the entries in and

are independent, zero-mean, complex Gaussian distributed
with variance and , respectively. Hence, for any input

, and

Subject to peak and average total power constraints, the channel
is denoted by the tuple

where and are the maximal peak and average total power
respectively.

Corollary 4: Let be the capacity-achieving measure for
the above Rayleigh-fading channel. Then is discrete. In par-
ticular, its set of points of increase is contained in a finite number
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Fig. 3. Two equivalent Rayleigh-fading channels.

of “concentric shells” centered at . In other words, the prob-
ability distribution of is discrete with a finite number of
probability mass points.

Proof: Let be the maximal connected open subset of
containing . Then, for any , the

vector . Let
be a sequence in such that and

for all positive integers . Obviously,
and for all positive integers , and are real. The

requirements in Case B of Theorem 3 are thus satisfied, and
hence, is discrete. It remains to prove that is a subset
of a finite number of concentric shells centered at .

Consider the two channels depicted in Fig. 3. Channel 1 is
the Rayleigh-fading channel, and channel 2 is obtained from
channel 1 by multiplying a real orthonormal matrix and its
inverse before and after the Rayleigh-fading channel. It is
easy to see that for any , the conditional probability den-
sity functions of given is the same for both channels.
Hence, if the input probability measures of the two channels are
equal to , then the mutual information in both chan-
nels is the same.

In the second channel, as , , and form a Markov
chain , we have .
Let be the probability measure of . It is obvious that
satisfies all channel input constraints. Thus, is also capacity
achieving, and .

By Theorem 2, there exists such that for all

(18)

Let be the subset of such that (18) is tight. If ,
then . Hence, and are both in . Since is an
arbitrary orthonormal matrix, contains the set

such that

which is a collection of concentric shells centered at . By
Lemma 1, the sparseness of implies that the number of
concentric shells is finite and the corollary then follows.

As a remark, the capacity-achieving measure for the
Rayleigh-fading channel has been studied separately in [4],
in which it is proved that the capacity-achieving measure is
discrete even when there is no peak power constraint.

Suppose the receiver can estimate the channel correctly. In
other words, suppose the channel matrix is known to the re-
ceiver. Let be an column vector such that it contains
all the entries of . Such a fading channel with receiver-side
channel information can still be formulated as a CG channel,
where the output of the channel is . It is easy to prove
that for all , and are real,

and

for all

Corollary 5: For the above Rayleigh-fading channel with
channel side information available at the receiver, subject
only to the peak total power constraint,3 there exists a ca-
pacity-achieving measure which is DAUP.

Proof: Let be a capacity-achieving measure and be
the maximal connected open subset of containing .
As is unbounded over , the requirements of Case A
in Theorem 3 are satisfied. Hence, is discrete.

For any orthonormal matrix , let and
be its probability measure. Applying a similar technique
when we proved Corollary 4, we can show that is also ca-
pacity-achieving. Since is concave, any linear combination
of and is still capacity achieving. By “averaging” over all
possible orthonormal matrices , we can construct from a
capacity-achieving measure which is uniform in phase. The
phase uniformity of implies that consists of a number
of concentric shells centered at . Hence, the sparseness of
implies that the number of concentric shells in is finite. In
other words, is DAUP.

Example: MIMO Rayleigh Block-Fading Channels: Consi-
der a MIMO Rayleigh block-fading channel [15], whose
channel gain matrix remains constant for symbol periods,
after which it changes to a new set of values independently, and
again, maintain for another symbol periods, and so on. Let
and be the number of transmitting and receiving antennas,
respectively. Within a block of channel input vectors, for

, let

be the th channel input vector and

be the corresponding channel output vector. Then and

are related by the equation where is
the complex channel gain matrix for the Rayleigh channel as

defined in Section IV-B and is the corresponding additive
complex Gaussian noise. For simplicity, let

3The peak total power is the sum of the powers of all transmitting antennae
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(19)

It is easy to show that the MIMO Rayleigh block-fading channel
can be rewritten as a quadratic CG channel
where is a “block-diagonal matrix” whose di-
agonal blocks are all equal to . Since the channel is quadratic,
the well-behaved region contains . As is zero
mean, for all .

Corollary 6: Let be the capacity-achieving measure for
the above Rayleigh block-fading channel subject to peak and
average power constraint. Then is discrete.

Proof: Let be the maximal connected open subset of
that contains . Let be a vector

in where . By direct substitution, it can be
verified easily that . Furthermore, are real and

(20)

Let be a sequence in such that
and for all positive integers

. Obviously, and for all positive inte-
gers , and are real. The requirements in Case B of
Theorem 3 are thus satisfied, and hence, is discrete.

As a remark, the capacity-achieving measure for the single-
antenna Rayleigh block-fading channel has been studied sep-
arately in [8], in which it is proved that the capacity-achieving
measure is discrete even when there is no peak power constraint.

Example: Rician Fading Channels: The Rician fading chan-
nel is a generalization of the Rayleigh-fading channel in the
sense that is not necessarily a zero matrix as in the case of
Rayleigh-fading channel. Specifically, given the channel input
is ,

and which is nonzero in general.

Corollary 7: The capacity-achieving probability measure for
the Rician fading channel

is discrete.
Proof: Since a Rician fading channel is a quadratic CG

channel, by Corollary 1, the result follows.

As a remark, many fading channels can be formulated as
quadratic CG channels. Therefore, according to Corollary 1,
their capacity-achieving measures are discrete if there is no av-
erage cost constraint.

C. Example: Interference Channels

Consider a communication system consisting of pairs
of transmitters and receivers. Each pair is connected by a
point-to-point subchannel, and the subchannels interfere with
each other. Specifically, the channel input and output are
related as such that 1) the entries of and
are Gaussian distributed independently with variances and

, respectively, 2) is zero mean and is the identity
matrix. Therefore, for any input , , and

Corollary 8: There exists a DAUP capacity-achieving mea-
sure for the interference channel

Proof: Since the channel is quadratic and there is no av-
erage cost constraint, the capacity-achieving measure is dis-
crete. The proof of that is DAUP is the same as the one given
in Corollary 5.

D. Example: Parallel Gaussian Channels

Consider a system of independent and identically scalar
additive Gaussian channels in parallel subject to an average total
power constraint and a bounded-input
constraint. In other words, the channel is characterized by the
tuple . By Theorems 1 and 3, the ca-
pacity-achieving measure is unique and discrete. We will con-
sider two cases of bounded-input constraints: cubic and spher-
ical constraints.

Case A: Cubic Constraint: In the first case, the set of
admissible channel input vectors is a hypercube, defined as

where . In other
words, the peak power of each component channel is . For
any input probability measure of , we denote the corre-
sponding marginal probability measure of by .

Let be the capacity-achieving measure for the channel
and be the product measure

of . It can be proved easily that
and . By the uniqueness of , we have and

. By direct substitution, we can verify
immediately that where is the channel capacity
of the channel and is the cor-
responding capacity-achieving measure. Again, by Theorem 3,

is discrete and hence has a finite set of points of increase.
As , is also finite.

Case B: Spherical Constraint: In the second case, the set
of admissible channel input vectors is . Let be the
capacity-achieving measure for the channel

. For any orthonormal matrix , let and
be its probability measure. Again, using the same technique

as in proving Corollary 4, we can show that is also capacity
achieving. The uniqueness of the capacity-achieving measures
thus implies that . Hence, is uniform in phase, and

consists of a number of concentric shells centered at . The
sparseness of thus implies that the number of concentric
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shells in is finite. In other words, is DAUP. The special
case when was proved by Shamai and Bar-David in [3].

V. CONCLUSION

In this paper, we have shown that, in many instances, the
capacity-achieving probability measure for a conditionally
Gaussian channel with bounded-input constraints is discrete.
The criteria for discreteness given in Theorem 3 are not ex-
haustive, and hence, there may be many more examples of CG
channels with a discrete capacity-achieving measure. In fact,
according to Theorem 2, for a conditionally Gaussian channel
subject to bounded-input constraints, if its capacity-achieving
probability measure is not discrete, then the inequality in (6)
must be tight for all admissible channel inputs . We believe
that such a requirement is rather stringent in general. In other
words, it is more natural to expect that most capacity-achieving
measures are discrete.

There is much work yet to be done in the analysis of chan-
nels with input constraints. The tools we used allow us to verify
whether a given input measure is capacity achieving or not.
Once the capacity-achieving measure and the channel capacity
are determined, they can serve as a benchmark to evaluate the
efficiency of any practical scheme. Furthermore, the obtained
capacity-achieving measure may lead to valuable insights in de-
signing practical and efficient modulation schemes.

However, except in a few special cases, when we may guess
the form (e.g., DAUP) of the capacity-achieving probability
measure, these capacity-achieving probability measures are
extremely difficult to obtain. More sophisticated techniques are
yet to be discovered to overcome this problem.

APPENDIX I
PROOF OF LEMMA 1

Suppose is finite. Let . Clearly,
the function is holomorphic over and is zero in .
Therefore, is sparse. It remains to prove that if is not finite,
then is not sparse.

Suppose is not finite. The Bolzano–Weierstrass theorem im-
plies that has a limiting point . Let be a holo-
morphic function defined on a connected open subset of
containing the closure of such that for all .

First, consider the case when . Let be any point in
such that . Then is a limiting point of , and is

contained in . Let be as in the equation at the bottom
of the page. By picking small enough, can be
made to be a subset of .

Let be a vector such that . Let
be the single-variable complex-valued function, and be

the set

such that for some

It is easy to see that is an analytic function on an open
subset of containing the interval , and
is zero on . As is a limiting point of , is
a limiting point of . By the identity theorem [20],
for all . In other words, for all

. As

(21)

for all . Since is open in ,
again by the identity theorem, for all . This
implies that is not sparse.

In the case when , then the origin is a limiting point of
. Let . Picking small enough,

is a subset of . For any such that ,
let be the single-variable complex-valued function .
Then is analytic on an open subset of containing the
interval . As has a limiting point
at and is zero on this set, for , and
consequently, for all . Again, by the identity
theorem, for all . The lemma is thus proved.

APPENDIX II
SUPPLEMENTARY RESULTS

Let be the vector space of all bounded and continuous
real-valued functions defined on and be its dual space
[21]. The set of input probability measures, denoted by , can
be identified as a subset of . In this paper, we assume that the
topology on is induced by the weak* topology defined on .
The induced topology on is metrizable, whose metric is called
the Lévy metric [23]. This topology is complete and satisfies the
following properties.

Lemma 2: Let be a sequence in .

1. The sequence converges to in the metric, denoted
by , if and only if for every

In particular, if is a sequence in , then
if and only if for all-continuous function defined on

2. Suppose . For any closed subset of ,

Moreover, if is continuous on and is bounded
below, then

3. A subset of is called tight if for any , there
exists a closed and bounded subset of such that
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for all . Suppose is closed and
tight. Then it is sequentially compact.

Proof: See [23, Sec. 3.1].

Proposition 2 (Convexity and Sequential Compactness): The
subsets and of are convex and sequentially compact.

Proof: The convexity of and are trivial. To prove that
they are sequentially compact, it is sufficient to show that they
are tight and closed. First, notice that is closed and bounded.
As for all , and its subset are tight.

Let be a convergent sequence in with limit .
Since is closed, , which further implies
that , or, equivalently, . Therefore, is
closed, and thus sequentially compact.

Similarly, let be a convergent sequence in with
limit . The sequential compactness of implies that

. As and is continuous on for all ,
by Lemma 2, we have

Hence, and the sequential compactness of then
follows.

Lemma 3: There exist positive constants such that
for all and

Hence, for all

and .
Proof: As stated in Section II, there exist

such that for all , all eigenvalues of are within the
interval and . Hence, is within the
interval . As a result

(22)

Hence, for any and , we have

(23)

and

(24)

Let and . Then . If
is large enough, then

for all and the lemma is proved.

Proposition 3 (Continuity): , , and are
continuous over .

Proof: Let be a sequence in such that
. For any fixed , is a continuous function

of over . Hence,

i.e., is pointwise convergent to . By
Lemma 3, there exist such that

By the Lebesgue convergence theorem

(25)

Thus, is continuous over .
The continuity of follows from the fact that

is continuous over and

Finally, as , the continuity of
is established.

Lemma 4: Consider a constant CG channel . Let
and be the probability measure of where

is the probability measure of . Then,
if and only if . Consequently, if is left-
invertible, then if and only if .

Proof: It is obvious that is equal to the convo-
lution of and , where is the probability
density function of the Gaussian noise . Since the Fourier
transform of is nonzero everywhere, and
are in one-to-one correspondence (see [1] and Lemma 7). In
other words, for any input probability measures and ,

if and only if .

Definition 6: Let be a real-valued function defined on
and . If the limit

(26)

exists for all , then the function is called weakly
differentiable [1] at , and the function is its weak
derivative at .

Note that, if is concave and is weakly differentiable on
, then is maximized if and only if for all

.

Proposition 4 (Weak Differentiability): The mutual informa-
tion function is weakly differentiable in , and
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Proof: Let and . It can
be shown easily that is equal to

(27)

Since , to
prove Proposition 4, it suffices to prove the following claims.

Claim 1:

Claim 2:

As the limit is equal to
and there exists such that

the first claim thus follows from the Lebesgue convergence
theorem.

To prove the second claim, first notice that for ,
and . Let

and

Then it is easy to show that

By L’Hospital’s rule, it can be shown that

Since and are
integrable, by the Lebesgue convergence theorem

(28)

(29)

The proposition is thus proved.

Lemma 5: is a continuous function of over .

Proof: Suppose is a convergent sequence in
with limit . For any , the sequence

is pointwise convergent to .
Again, by the Lebesgue convergence theorem, we have

(30)

and the result follows.

Proposition 5: Let be defined as in (11). Then is
holomorphic over .

Proof: Suppose is a closed and bounded subset of
. As the entries in and are continuous functions

of , there exists such that for all ,
we have 1) , 2) the eigenvalues of the matrix
are within the interval , 3) ,
and 4) the magnitude of is within the interval .

For any scalar and vector such that and
, we have

(31)

(32)

(33)

(34)

Let be . By choosing small
enough, is positive. Let be

and be . Thus, for all

we have

As a result, by picking a positive number large enough, we
have

for all

and

As a corollary, the integral is uniformly conver-
gent over .

On the other hand, since the entries in and are well
behaved and for all , the function

is a holomorphic function over for any .
Therefore, according to the differentiation lemma [24], is
holomorphic over .
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Lemma 6: Let be defined as in (11). If
such that and are real, then for some and ,
we have .

Proof: Since is real and , the matrix
is symmetric and positive definite. By Lemma 3, we have

. Let

(35)

Then, we have

(36)

(37)

(38)

(39)

Lemma 7: Let be a Schwartz function [21] defined on
such that its Fourier transform is nonzero for all

. Suppose is a tempered distribution (i.e., a linear and con-
tinuous functional defined on the set of Schwartz functions) and

, the convolution between and , is the zero tempered
distribution. Then and its Fourier transform are the zero
tempered distribution. In addition, if there exist two probability
measures and such that , then .

Proof: Let be the set of Schwartz functions which
have a compact support and be a function in . As
is nonzero for all , the function (i.e.,

for all ) is also in .
Since is the zero tempered distribution, its Fourier

transform is again the zero tempered distribution. Conse-
quently, we have4

(40)

(41)

(42)

As is dense in the set of Schwartz functions[22],
for any Schwartz function . In other words, , and conse-
quently, , are the zero tempered distribution.

Finally, if for some probability measures
and , then for any . By Riesz repre-
sentation theorem [25], .

Corollary 9: Let be a Gaussian random variable and
be the corresponding probability density function. Sup-

pose is a continuous function such that
for some . If is the zero function, then

is also the zero function.
Proof: It can be proved easily that 1) is a Schwartz

function such that its Fourier transform is nonzero everywhere,
and 2) is a tempered distribution. Therefore, by Lemma
7, is the zero tempered distribution, which further implies
that is the zero function.

Lemma 8: Consider a constant CG channel .
Let be Gaussian distributed with probability measure

4For any Schwartz function  and tempered distribution 	, we denote the
function value of 	 at  by h�;	i.

. Then we can construct a sequence of probability mea-
sures such that 1) is closed and bounded,
2) , 3) in the Lévy
metric, and 4) , or equivalently,

.
Proof: Assume without loss of generality that

is positive definite. Hence, is indeed characterized by a proba-
bility density function, which is denoted by for simplicity.
For any positive integer , let , and

be the following “truncated” Gaussian probability density
function

if
otherwise

(43)

where is a normalizing constant. Clearly, conditions 1)
and 2) are satisfied, and . For any continuous
and bounded function defined on , it is apparent that

Hence, by Lemma 2, . It remains to prove that
.

Let . Since

Also, as for all ,
for all .

Let such that for all . As
is increasing and nonnegative on the interval ,

for all .
By the Lebesgue convergence theorem

Similarly, as the function is bounded for
, the limit

is equal to . Consequently, as
goes to infinity, converges to

and, as a result, the limit

is also equal to

i.e., and the lemma is proved.

Proposition 6: Consider a sequence of constant CG chan-
nels such that for any closed
and bounded subset of , for sufficiently large .
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Let and be the capacity-achieving measures for the chan-
nels and ,
respectively. Then , or equivalently,

.
Proof: By Lemma 8, we can construct a sequence

such that 1) is closed and bounded, 2)
, and 3) .

It is obvious that for sufficiently large , . Hence,
, and thus, the proposition follows.

Consider a constant CG channel with a diagonal square
channel matrix with diagonal entries . Let be
the capacity-acheiving probability measure for the channel

, and for .

Lemma 9: Let be an input probability measure such that
. For the above channel ,

we have

where is the Kullback–Leibler distance
between and . Consequently

according to Pinsker’s inequality [19].
Proof: According to the water-filling algorithm, there

exists such that and
for all . Let be the covari-

ance matrix of when the input probability measure is . Let
. We have

(44)

(45)

(46)

(47)

Lemma 10: Let be the set of all input probability mea-
sures of such that . Then is sequentially
compact.

Proof: For any , let be the closed and bounded set
. Hence, if , then .

Therefore, is tight. Let be a convergent sequence in
such that it converges to . By Lemma 2, we have

Hence, , and thus, is closed. The sequential compact-
ness of then follows from Lemma 2.
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