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Channel Capacity and Non-Uniform Signalling for
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Abstract—This work considers the design of capacity-
approaching, non-uniform optical intensity signalling in the
presence of average and peak amplitude constraints. Although it
is known that the capacity achieving input distribution is discrete
with a finite number of mass points, finding it requires complex
non-linear optimization at every SNR. In this work, a simple
expression for a capacity-approaching distribution is derived via
source entropy maximization. The resulting mutual information
using the derived discrete non-uniform input distribution is
negligibly far away from the channel capacity. The computation
of this distribution is substantially less complex than previous
optimization approaches and can be easily computed at different
SNRs. A practical algorithm for non-uniform optical intensity
signalling is presented using multi-level coding followed by a
mapper and multi-stage decoding at the receiver. The proposed
signalling is simulated on free-space optical channels and outage
capacity is analyzed. A significant gain in both rate and prob-
ability of outage is achieved compared to uniform signalling,
especially in the case of channels corrupted by fog.

I. INTRODUCTION

POINT-to-point free-space optical (FSO) communication
links through the atmosphere provide an economical

high-speed link for wireless access [1]–[3]. However, this high
data rate can be degraded severely due to the atmospheric
turbulence induced fading, scattering and misalignment errors
[3]–[6]. Conventional signalling for FSO channels consists
of uncoded, equiprobable binary on-off keying. This work
considers improving the rates and reliability of FSO links us-
ing capacity-approaching, non-uniform signalling. A family of
capacity-approaching input distributions are developed along
with practical non-uniform signalling which is shown to be
essential in maximizing the rate of a wide range of practical
FSO channels.
The performance of FSO channels has been extensively

studied using bit-error rate (BER) as a metric [7]–[12].
Recently, information and coding theory have been applied
to FSO channels for both Poisson [13], [14] and Gaussian
channels [15] in the absence of misalignment errors. The
performance of detection techniques [16], bounds on the pair-
wise error probability for a variety of coding schemes [17],
[18] and low-complexity codes [13] have been considered
for FSO channels. The outage capacity for FSO channels
considering beam width optimization and on-off keying is
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analyzed in [19]. In all previous work, a uniform source
distribution is considered.

In order to design input distributions for the optical channel,
amplitude constraints must be considered. In wireless optical
systems, data are transmitted by modulating the instantaneous
intensity of a laser or a LED. Hence, all signals must be
non-negative. Due to eye safety standards, an average optical
power, i.e., amplitude, constraint is imposed on the transmit-
ted signal. A peak amplitude constraint is also applied due
to safety and physical limitations. It is known that under
peak and average power constraints, the capacity-achieving
distribution is discrete with a finite number of probability
mass points [20], [21]. However, analytical expressions for
the capacity-achieving input distributions are not available,
and are instead found via complex optimization. Under non-
negativity and average optical power constraints, a lower
bound on channel capacity was computed using the max-
entropic continuous exponential distribution [22]. Additional
bounds on the capacity of such links were developed in [23]–
[25], however, no explicit source distributions were given. As
a result, no clear insights for communication system design
can be drawn. In recent work [26], [27], a tight lower bound
on channel capacity is given with a closed form expression
for a capacity-approaching input distribution, however, peak
amplitude constraints were not considered in the analysis.

In this paper, under non-negativity, average and peak power
constraints, a family of discrete non-uniform input distribu-
tions is developed via entropy maximization. For comparison,
the capacity-achieving distributions are computed via complex
non-linear optimization [20]. The tightness of the correspond-
ing information rates to the channel capacity is verified
numerically over a practical range of signal-to-noise ratios
(SNRs) and peak-to-average ratios. Based on these results, the
designed distributions are termed capacity-approaching. The
developed distributions have rates close to the channel capacity
over a wide range of SNRs and require fewer amplitude mass
points, making implementation simpler. Their simple struc-
ture is exploited to develop a practical signalling algorithm.
A deterministic mapper, to induce the correct non-uniform
distribution, is coupled with multilevel coding (MLC) and
multistage decoding (MSD) [28]–[31]. Finally, the proposed
non-uniform input distributions are applied to practical FSO
channels and the outage capacity is simulated and compared
against uniform signalling. The results show that non-uniform
signalling is essential for FSO channels, especially those
operating at low SNRs, i.e., fog.

Section II presents an overview of the channel model and
Sec. III presents the channel capacity definitions. Section IV
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outlines the design of capacity-approaching input distributions
via entropy maximization. A practical algorithm to approach
the higher available data rates is presented in Sec. V and is
applied to slow-fading FSO channels in Sec. VI. The paper
concludes in Sec. VII.

II. SYSTEM MODEL

The following notation is used in this paper. Let X be
a random variable defined on R with x as a particular
realization. The probability density function (pdf) of X is
identified by the subscript X , e.g. fX(x), and the expectation
denoted as E{X}. Boldface, e.g.,W , denotes a vector defined
on RN while sets are defined using blackboard bold font, e.g.
R.
A majority of free-space optical (FSO) communication links

employ intensity modulation with direct detection (IM/DD).
A consequence of intensity modulation is that all signals
input to the channel must be non-negative. Also due to eye
safety standards and device limits, both the average power, i.e.,
average amplitude, and peak amplitude must be limited [2]. A
mathematical representation for a pulse amplitude modulated
(PAM) IM/DD channel is given by [2]

Y = HX + Z, (1)

where X represents the transmitted intensity with constraints

0 ≤ X ≤ A, E{X} ≤ P,

where A is the peak-amplitude limit and P is the average
power limit. Channel loss and fading are represented by H
with probability density function fH(h) that is accurately
modeled for FSO channels by a Gamma-Gamma density
function [32]. The noise, Z , models both thermal noise and
ambient light induced shot noise and is well modeled as zero-
mean, signal-independent, Gaussian noise with variance σ2.
The optical SNR for a given channel realization H = h is
defined as [22]

SNR(h) =
P h

σ

and the optical peak-to-average power ratio (PAR) is defined
as

ρ =
A

P
.

For FSO channels the time scale of the fading process, i.e.,
the coherence time, is on the order of 1–100 msec [16]. Notice
that this is significantly slower than typical bit rates which
are often shorter than 1 nsec. As a result, the FSO channel
is often modeled as a slow-fading channel and the use of
extensive interleaving to average fading states is impractical.
Based on this fact we assume a block-fading model where
H is fixed over a large number of transmitted symbols and
varies independently over blocks. Following this assumption
the receiver can efficiently estimate the channel and hence
we consider a perfect channel state information (CSI) at
the receiver. In this scenario, there is a non-zero probability
that a transmitted rate exceeds the instantaneous channel
capacity. In this case, outage capacity is a suitable metric to
characterize the channel capacity where each transmitted rate
is associated with an outage probability, i.e., the probability

that the channel cannot support a given rate. In Sec. VI the
outage capacity of FSO communication links is considered for
both conventional uniform signalling as well as the developed
capacity-approaching distributions.

III. CHANNEL CAPACITY

Consider the Gaussian channel model given in (1). The
mutual information, in bits/channel use, between channel input
and output for a given a channel realization is

I(X ; Y |H = h) =
∫ ∫

fY |H,X(y|h, x)fX(x)

log2

fY |H,X(y|h, x)
fY |H(y|h)

dx dy, (2)

where

fY |H,X(y|h, x) = N (h x, σ2),

fY |H(y|h) =
∫

x

fX(x)fY |H,X(y|h, x) dx,

and N (ν, γ2) denotes a Gaussian distribution with mean
ν and variance γ2. Let F denote the family of all input
distributions fX(x) satisfying the non-negativity, peak and
average optical power constraints. The instantaneous channel
capacity, C(h), for a given channel state h, is the maximum
mutual information over the set F and is given by

C(h) = max
fX (x)∈F

I(X ; Y |H = h), (3)

where the capacity-achieving input distribution is

f∗
X(x) = arg max

fX (x)∈F
I(X ; Y |H = h). (4)

In general, f∗
X(x) is different for each PAR and SNR(h), i.e.,

each channel state h.
For channels with constrained input amplitude and power,

it was first shown in [20] that the capacity-achieving input
distributions are discrete with a finite number of mass points.
Define the family of discrete input distributions

P =

{
pX(x) : pX(x) =

K∑
k=0

ak δ(x − xk), xk ∈ [0, A],

ak ≥ 0,
K∑

k=0

ak = 1, K ∈ Z+, P ≥
K∑

k=0

xk ak

}
,

where δ(·) is the delta functional and Z+ is the set of positive
integers. The number of mass points is K + 1, and ak and
xk are the amplitudes and positions of the kth mass point
respectively. Therefore, f∗

X(x) ∈ P and the channel capacity
for a given h, can be found by solving the following complex
non-linear optimization problem,

C(h) = max
fX (x)∈P

I(X ; Y |H = h), (5)

where the free parameters are ak, xk and K .
Finding an analytical closed form expression for the op-

timum distribution is difficult. However, for a given A, P ,
h, and σ2, numerical optimization methods can be used to
efficiently solve this non-linear optimization problem to find
f∗

X(x). It was shown in [20] that for a given ρ the number
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of mass points in f∗
X(x) is monotonically non-decreasing

with SNR and a mass point at xk = 0 always exists. The
capacity-achieving distribution is found by repeatedly solving
the optimization problem in (5) for fixed K = 1, 2, 3, 4, . . .
until a stopping criterion is met. Assume that the capacity-
achieving distribution has K∗ + 1 mass points. Solving the
optimization problem with K = K∗ + m, m > 1, results in
the capacity-achieving distribution where the extram−1 mass
points are assigned zero amplitudes. Consequently, this fact is
utilized as a stopping criterion for the optimization problem
while incrementing K .

IV. CAPACITY-APPROACHING DISTRIBUTIONS

For every average optical power, peak amplitude and noise
variance, the optimization problem (5) must be solved to
extract f∗

X(x). In addition to this drawback, the complex-
ity of each run of the optimization problem increases as
the number of mass points is increased. In this section, a
simple family of capacity-approaching input distributions is
developed based on source entropy maximization and termed
capacity-approaching source distributions. These distributions
have mutual information which closely approaches the channel
capacity over a practical range of SNRs and are substantially
simpler to generate than the capacity-achieving distribution.
In addition, these capacity-approaching distributions are fixed
over intervals of SNR making practical implementation easier.

A. Definition of Distributions

Consider the set of discrete input distributions QK ⊂ P

with K + 1 equally spaced mass points,

QK =

{
q(x) ∈ P : � =

A

K
, q(x) =

K∑
k=0

akδ(x − k�)

}
(6)

where � is defined as the mass point spacing. Define the
maxentropic input distribution with K +1 mass points in QK

as
q̄X(x; K) = argmax

QK

H(X) (7)

where

H(X) =
K∑

k=0

ak log2

1
ak

.

The input distribution that maximizes H(X) is considered
based on the intuition that this distribution is capacity-
approaching at high SNR. Define the collection of entropy
maximizing discrete input distributions with different number
of mass points as

Q̄ =
{
q̄(x) : ∀K ∈ Z+ q̄(x) = q̄X(x; K)

}
For a given A, P and σ2, the capacity-approaching input
distribution is the distribution in Q̄ which maximizes the
mutual information, i.e.,

q̄∗X(x; K̄(ρ, SNR)) = arg max
fX (x)∈Q̄

I(X ; Y |H = h), (8)

where K̄(ρ, SNR)+1 is defined as the number of mass points
in the capacity-approaching distribution. Notice that while q̄X

is independent of the channel parameters, q̄∗X is not.

For each number of mass pointsK+1, an expression for the
maxentropic input distribution q̄X(x; K) in (7) can be found
by solving

max
ak

H(X)

s.t
K∑

k=0

ak = 1,

K∑
k=0

k�ak ≤ P, A = K�. (9)

Define J as the Lagrangian associated with the optimization
problem as

J =
K∑

k=0

ak log2

1
ak

−λ1

(
K∑

k=0

ak − 1

)
−λ2

(
K∑

k=0

k�ak − P

)
.

Proposition 4.1: The discrete input distribution with
equally spaced mass points that maximizes the entropy is given
as,

q̄(x; K) =
K∑

k=0

āk δ(x − k�) (10)

where

āk =
1

K + 1
, A ≤ 2P

āk =
tk0

1 + t0 + t20 + . . . + tK0
, A ≥ 2P (11)

t0 is the unique positive real root of

S(t) =
K∑

k=0

(
1 − k

K
ρ

)
tk. (12)

Proof: Notice that when A < 2P , a uniform distribution
over the ak satisfies both average and peak amplitude con-
straints. Since the uniform distribution is entropy maximizing
among all discrete distributions, it must also be the result of
the optimization problem. In this case there is slack in the
average constraint, i.e.,

∑K
k=0 k�ak < P and hence λ2 = 0.

When A ≥ 2P the above optimization problem is solved
analytically considering all constraints. Solving the equations
∂J /∂ak = 0 and substituting the constraints given in (9) it
is straightforward to obtain (11). Notice that āk > 0 in (11)
and for a given t0 the polynomial 1 + t0 + t20 + . . . + tK0
has a fixed sign. Thus, t0 > 0 since otherwise the sign of āk

would alternate. Lemma A.1 in the Appendix demonstrates
that S(t) has a unique positive root in [0, 1]. For a given K ,
equation (12) can be solved efficiently to obtain the real root
t0. As shown in Appendix A, t0 = 1 when ρ = 2 and both
expressions for the mass point amplitude ak coincide.
An analytic expression for K̄ , that maximizes the mutual

information is difficult to obtain since it varies with SNR and
ρ and since the mutual information expression depends on a
nested relation between t0 and K . Here we provide a simple
approximation for K̄ based on numerical analysis.
For a given ρ and SNR, q̄∗(x; K̄(ρ, SNR)) has the highest

mutual information over all source distributions in Q̄. Consider
increasing SNR for a fixed ρ. There exists an SNRo > SNR
at which the mutual information using q̄∗(x; K̄(ρ, SNRo)), is
greater than or equal to that obtained using q̄∗(x; K̄(ρ, SNR)).
In this case, K̄(ρ, SNRo) = K̄(ρ, SNR) + 1. We term SNRo
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Fig. 1. Normalized spacing �/σ versus ρ at transition SNRs between K̄ +
1 → K̄ + 2 mass points in q̄∗X(x; K̄).

as a transition SNR where the number of mass points in the
capacity-approaching distribution is incremented.
In order to remove the impact of scaling, define the nor-

malized mass point spacing

�

σ
=

A

K̄σ
= ρ · SNR · 1

K̄(ρ, SNR)
.

The normalized mass point spacing is shown in Fig. 1 versus
ρ at the transition SNRs as K̄ increases from 1 to 7. From
the figure, it is clear that �/σ for a given transition between
numbers of mass points changes slowly with ρ. A simple
approximation adopted here is to set �/σ = c, for some
constant c. This constant can be chosen from Fig. 1 depending
on the SNR range of interest. For example, for high SNR cases
where K̄ is large, a reasonable value for c ≈ 2.7, whereas, for
low SNR cases c ≈ 2.2. For the purposes of our numerical
work we set c = 2.5 to yield the simple approximation for K̄

K̂ =
⌊

A

2.5 σ

⌋
. (13)

Although many selections of K̂ yield acceptable performance,
the resulting mutual information using this approximation
remains close to the channel capacity as shown in Sec. IV-B.

B. Channel Capacity and Information Rates

The mutual information of the proposed maxentropic input
distributions (7) versus SNR for ρ = 2 and K = 1,
2 and 3 are shown in Fig. 2. Recall that when ρ = 2
the maxentropic input distribution is uniform with K + 1
probability mass points (Proposition 4.1). For comparison,
the channel capacity computed via non-linear optimization
is also presented. Clearly, a negligible gap can be noticed
between the mutual information and the channel capacity for
different SNRs. In addition, based on the numerical results
obtained from solving the optimization problem, the input
distribution f∗

X(x) = 0.5 δ(x) + 0.5 δ(x − A) is a capacity-
achieving input distribution at low SNRs which is also the
maxentropic distribution obtained in (11). This distribution can
be implemented directly using a binary linear codes.
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Fig. 5. Channel capacity and mutual information for the proposed input
distribution with K and K̂ and the uniform input distributions for ρ = 4.

Although the uniform distribution is a capacity-approaching
distribution when ρ = 2, the situation is quite different when
ρ > 2. As shown in Fig. 3 when ρ = 4 the capacity-
approaching distributions are non-uniform. The maxentropic
input distributions approach the channel capacity over a wide
range of SNRs. At low SNRs the maxentropic distribution is a
capacity-approaching distribution with q̄∗(x, 1) = 0.75 δ(x)+
0.25 δ(x−A) where more weight is assigned to the mass point
located at zero. Fig. 4 presents the mutual information and
the channel capacity when ρ = 6. As shown, as ρ increases
the maxentropic input distributions become more non-uniform
with increasing mass point amplitude at zero amplitude.
From the previous discussion, at low SNRs, an input dis-

tribution with two mass points (i.e., K = 1) is sufficient to
achieve/approach the channel capacity. The probability mass
for these two-level outputs can be found from (10) and are
given by

[p0, p1] =
[
ρ − 1

ρ
,
1
ρ

]
.

Notice that as ρ increases the resulting capacity-approaching
distributions become increasingly non-uniform with most
weight on the zero-amplitude.
The capacity of the wireless optical intensity channel versus

SNR (5) is shown in Fig. 5 for ρ = 4. In addition, the
mutual information with input distribution q̄∗X(x; K̄) in (8)
is presented. Clearly, the proposed input distributions achieve
nearly all of the data rate offered by the optical channel with
a substantial reduction in complexity. Figure 5 also plots the
mutual information using the maxentropic source distribution
(7) where the number of mass points are approximated to have
K̂ + 1 mass points (13). Notice that the mutual information
is also close to the capacity over the SNR range considered,
and only differs negligibly from the case where a search is
performed to find a good K̄ value. Thus, the approximation
(13) does not incur a significant penalty in terms of rate.
For comparison, the mutual information using uniform input

distributions satisfying both the average and the peak power
constraints is also presented. The uniform distributions utilized
in the comparison are selected from the set U defined for ρ ≥ 2

TABLE I
NUMBER OF MASS POINTS FOR CAPACITY-ACHEIVING/APPROACHING

INPUT DISTRIBUTIONS (ρ = 4)

SNR [dB] -1 0 1 2 3 4 5

Capacity-Achieving (5) K∗ + 1 2 3 3 4 4 5 7

Max. Entropy (8) K̄ + 1 2 2 3 3 4 4 5

Max. Entropy approx K (13) K̂ + 1 2 2 3 3 4 5 6

Uniform Ku + 1 2 2 2 2 2 3 3

as

U =
{

qX(x) : ∀K > 0, d =
2P

K
,

qX(x) =
K∑

k=0

1
K + 1

δ(x − kd)

}
.

Notice that these distributions have mass points with equal
probability that are equally spaced. At each SNR, the dis-
tribution in U which maximizes the mutual information is
selected and the information rate plotted. As shown in Fig. 5,
a remarkable gap between the mutual information of the uni-
form distribution and the non-uniform distribution is noticed.
Therefore, the use of non-uniform signalling is essential for
optical intensity channels, especially as ρ increases.

C. Input Distributions and Numbers of Mass Points

The number of mass points in the capacity-achieving source
distribution (5), K∗+1, the capacity-approaching maxentropic
distribution (8), K̄ + 1, the maxentropic distribution with
approximated K (13), K̂ + 1, and the uniform distribution,
Ku + 1, are presented in Table I for different SNR values.
Note that, although K∗ is fixed over a range of SNR, the

input distribution, i.e., mass points amplitudes and locations,
varies for each SNR value. Unlike the capacity-achieving
input distribution, for a given K̄ the maxentropic distribution
is fixed. Therefore, and as shown in Table I, the maxen-
tropic distribution that maximizes the mutual information is
fixed over a range of SNRs. This advantage, in addition to
the negligible gap between the mutual information and the
channel capacity and the substantial complexity reduction in
generating this distribution, renders the maxentropic input
distribution more practical for realization over the capacity-
achieving distribution obtained via optimization. Also notice
that the uniform distribution has the minimum number of
mass points as SNR increases simplifying its implementation,
however, there is a severe rate degradation as shown in Fig. 5.

The capacity-achieving and the maxentropic input distri-
butions are shown in Fig. 6 for SNRs=[−3, 0, 3, 5] dB at
ρ = 4. Notice that the mass point spacing is a free pa-
rameter in the capacity-achieving distributions while it is
fixed in the maxentropic distributions. When SNR=−3 dB,
an input distribution with two mass points can achieve the
channel capacity and both the capacity-achieving and the
maxentropic distributions coincide. As the SNR increases to
0 dB and although the number of mass points is different,
the maxentropic distribution is still capable to approach the
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Fig. 6. The optimum and the proposed input distribution for different SNRs with ρ = 4 .

channel capacity with a negligible gap. When SNR increases
further to 5 dB, five and seven mass points are shown for
the maxentropic and the capacity-achieving input distributions
respectively. Surprisingly, the resulting information rates for
both distributions are still very close as shown in Fig. 5.

V. NON-UNIFORM SIGNALLING ALGORITHM

Based on the results obtained in the previous section, non-
uniform input distributions achieve higher rates compared to
uniform distributions for different SNRs. Although coding for
uniform input distributions is simple where binary linear codes
can be applied directly, coding for channels with non-uniform
input distribution is more complex and different strategies are
proposed. A deterministic mapper at the output of a binary
encoder was presented in [28]. LDPC codes design over
GF(q) is discussed in [33] where higher complexity in both
code design and decoding process limits the employment of
such techniques. A method to realize a capacity approaching
system with a non-uniform source distribution is to employ a
multilevel coding (MLC) followed by a deterministic mapper
[29]–[31]. In this section we apply the results of [28] and [31]
to develop an algorithm for an FSO system with non-uniform
input distributions.

A. Generation of a Non-uniform Input Distribution

Here we consider the combination of MLC with a deter-
ministic mapper which is used to ensure that an appropriate

Fig. 7. System model for multilevel coding (MLC) and mapping scheme
for optical intensity channels with non-uniform channel input distribution.

non-uniform distribution is induced on the output symbols.
Figure 7 shows a block diagram for the MLC system including
a deterministic mapper. The inputs are k independent, equally
likely bits which are divided into N sub-streams each with ki

bits such that
∑N

i=1 ki = k. In each of the sub-streams the ith

encoder applies a linear binary code of rate Ri.
The output of the encoders are the bits W =

[W1, . . . , WN ], where Wi denotes the ith encoder output
bit. The Wi’s are mapped to a constellation point X ∈
[0, �, 2�, . . . , A] using a deterministic mapper M. Note that

the mapping W = [W1, . . . , WN ] M−→ X is not necessarily a
bijection, as is conventionally assumed in MLC/MSD [29]. In
spite of this fact, the mutual information, I(X ; Y ), between
channel input and output is unaffected as presented in the
following Lemma.
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Fig. 8. System model for multi-stage decoders (MSD).

Lemma 5.1: Given a Markov chain W → X → Y and a
deterministic mapper M(W ) = X , then

I(X ; Y ) = I(W ; Y ).

Proof: See [31].
Applying the chain rule, the mutual information can be
expressed in terms of the sub-channels rates as follows,

I(W ; Y ) =
N∑

i=1

I(Wi; Y |W1, . . . , Wi−1),

where the sub-channel rates are given by

Ri = I(Wi; Y |W1, . . . , Wi−1).

The received codeword is decoded sequentially to extract
the transmitted data bits. Figure 8 shows a block diagram
for the multi-stage decoding (MSD) technique that describes
the rule of the MSD process. The first decoder utilizes the
received signal, Y , to obtain the estimate Ŵ1. Given that
the first codeword is decoded correctly, i.e., Ŵ1 = W1, the
second decoder utilizes both Y and Ŵ1 to decode the second
codeword and obtain the estimate Ŵ2. This process is repeated
till ŴN is estimated. Notice that if an estimate was incorrect,
i.e., Ŵi 	= Wi, error propagation will occur and lead to
decoding error.
The mapper can be modeled with the equivalent channel

model shown in Fig. 9 which is in general different for each
Wi. As an example, consider two mass points with input
alphabet {0, A} and p0 = 3/4. This system can be constructed
using N = 2 encoders where the mapping function M is
defined as,

W = [W1, W2]
M
−→ X : X =

{
1 if W1 = W2 = 1,

0 otherwise.
(14)

The equivalent channel seen by bit W1 is a Z-channel with
pW1 = 1/2 and qW1 = 0. However, the situation is different
for W2 where the equivalent channel is determined based on
W1. Given W1 = 0, then pW2 = 1 and qW2 = 0 otherwise
pW2 = qW2 = 0.
In general the equivalent channel for the proposed system

is composed of two cascaded channels, a binary asymmetric
channel representing the mapper followed by an optical fading
channel with Gaussian noise. LDPC codes optimized for

Fig. 9. Equivalent channel for the mapper as seen by the individual bit Wi.

Gaussian channels have been shown to perform well over
many asymmetric channels [34] and are hence used in our
design and simulations in Sec. VI.

B. Quantized-level Distributions

Although the input distribution given in (10) has a simple
form and is capacity-approaching, its implementation is im-
practical due to the real valued mass point amplitudes. In this
subsection, a modified version of this distribution is considered
with a quantized probability mass amplitudes with a finite
number of quantization levels. From (10) and since t0 ∈ [0, 1],
the elements of {āk} in (11) satisfy

∀ i < j, āi > āj .

Define

Q̆K = {q̆(x; K) ∈ QK : ak ∈ A, ak ≥ ak+1, }
where A is the set of rational numbers of the form,

A =
{

a : a =
i

2N
, i ∈ {1, . . . , 2N − 1}

}

and 2N denotes the number of permissible quantization levels.
The set Q̆K consists of all discrete input distributions with
K + 1 equally spaced mass points with descending quantized
mass amplitudes. Note that for a givenK , there exist a number
of input distributions in Q̆K which satisfy the peak and the
average power constraints. As a result, for a given SNR it is
computationally expensive to search for the distribution that
maximizes the mutual information over Q̆K . In order to reduce
the computation within the set Q̆K , a new set Q̃ is proposed
based on the relative entropy, D, between the maxentropic
input distribution, q̄(x; K), and the quantized distribution,
q̆(x; K), and is given by,

Q̃ =
{

q̃(x) : ∀K ∈ Z+ q̃(x) = arg min
q̆∈Q̆

D (q̄(x; K)||q̆(x; K))
}

where

D (q̄(x; K)||q̆(x; K)) =
K∑

k=0

āk log
(

āk

ăk

)
.

The savings in computation arise since computing the relative
entropy is simpler than numerically simulating of the mutual
information for all input distributions in Q̆K over K . Once Q̃

is formed, the input distribution which maximizes the mutual
information is selected, i.e.,

q̃∗X(x; K̃) = arg max
fX (x)∈Q̃

I(X ; Y |H = h), (15)
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Fig. 10. Channel capacity and mutual information for the quantized input
distribution (15) with K̃ + 1 mass points for 4- and 8-quantization levels for
ρ = 4. The M -ary uniform input distributions is presented for comparison.

where K̃ + 1 is the number of mass points associated with
the input distribution q̃∗X(x; K̃). Notice that q̃∗X(x; K̃) can be
implemented directly by the deterministic mapper discussed
in Sec. V-A.
Figure 10 presents the mutual information versus SNR

when the quantized-level input distributions are employed for
ρ = 4. When N = 2, i.e., 2N = 4 quantization levels.
In this example, the corresponding permissible mass points
amplitudes are⋃

K

Q̆K =

{[
3
4
,
1
4

]
,

[
1
2
,
1
2

]
,

[
1
2
,
1
4
,
1
4

]
,

[
1
4
,
1
4
,
1
4
,
1
4

]}
. (16)

The mass point spacing is set such that average and peak
constraints are met. The spacing � is increased until one of
the constraints is met with equality. In Fig. 10 and for a given
SNR, the 4-Quantization levels distribution that maximizes
the mutual information is selected among the permissible set
(16). Also the information rate using 8-Quantization levels
distribution is shown in Fig. 10.
At low SNRs the information rates using the input distribu-

tion q(x) = 0.75 δ(x)+0.25 δ(x−A) are negligibly far from
the channel capacity. Since both 4- and 8-Quantization levels
techniques can both generate this distribution, they have the
same mutual information at low SNRs. For comparison the
channel capacity obtained by numerically solving (5) and the
mutual information using M -ary uniform input distributions
from U are shown. Clearly, the information rates using the 8-
Quantization levels distribution approach the channel capacity
closely with a small gap while the rates achieved using
the 4-Quantization level distributions incur a degradation at
moderate SNRs.

VI. CODING SCHEME FOR FSO CHANNELS

Under the slow-fading channel model considered, there is
a probability bounded above zero that the realized channel
capacity is below the transmitted data rate , i.e., C(h) < R0.

An outage is that event that the instantaneous capacity of
the channel is below the transmission rate. For a given
transmission rate, R0, the probability of outage is denoted
as

Pout(R0) = Prob(C(h) < R0).

Considering the monotonic increase of C(·) with h, the above
equation can be rewritten as follows

Pout(R0) = Prob(h < h0),

where the threshold ho is given by

I(X ; Y |H = h0) = R0. (17)

The pairs (R0, Pout) that can be simultaneously realized
depend on the statistical properties of the channel which are
presented next.

A. Optical Channel Fading

The channel gain H models the random fluctuation of the
optical intensity at the receiver due to atmospheric effects and
pointing errors. The gain can be factored as H = gaHaHp,
where ga is a deterministic loss in the channel due to scat-
tering, Ha models the random turbulence induced fading and
Hp models random pointing errors.
Atmospheric turbulence induces fluctuations in the received

optical intensity which is well modeled by a Gamma-Gamma
distribution [32] providing close agreement with the mea-
surements under different turbulence strengths. The Gamma-
Gamma pdf is expressed as [35],

fHa(ha) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
h

(α+β)
2 −1

a Kα−β(2
√

αβha), (18)

where Kα−β(·) is the modified Bessel function of the second
kind, Γ(·) is the gamma function, and 1/β and 1/α are the
variances of small and large scale eddies respectively defined
in terms of Rytov variance σ2

R given by [32] ,

σ2
R = 1.23 k7/6 C2

n L11/6

where C2
n is the weather-dependent index of refraction struc-

ture parameter, k = 2π/λ is the optical wave number, λ is
the wavelength and L is the propagation distance. The fading
statistical model given in (18) is governed by the parameters
α and β. We consider a Gaussian beam with beam waist, wo,
and radius of curvature, Fo. Expressions for α and β, taking
into account the aperture average effects at the receiver, are
given explicitly in [35, Sec. 10.3.5].
The attenuation factor, ga, is also weather dependent. It is

described by the exponential Beers-Lambert Law [36, Eq. 1],

ga = exp(−μL)

where μ is the attenuation coefficient and is expressed in terms
of the visibility through empirical formulas [36].
The misalignment error can be modeled by considering a

laser beam with a spatial Gaussian profile of beam waist wL at
distance L and a receiver with a circular aperture of radius a.
The random displacement at the receiver in both elevation and
horizontal directions, due to misalignment, has an identical
zero-mean Gaussian distribution with variance σ2

s [7]. As a



FARID and HRANILOVIC: CHANNEL CAPACITY AND NON-UNIFORM SIGNALLING FOR FREE-SPACE OPTICAL INTENSITY CHANNELS 9

result, the fraction of collected power by the receiver aperture,
hp, has the following distribution [19],

fHp(hp) =
γ2

Aγ2

0

hγ2−1
p , 0 ≤ hp ≤ A0 (19)

where

v =
√

πa√
2wL

, A0 = [erf(v)]2 , γ =
√

π w2
L erf(v)

4σs v exp(−v2)
.

An expression for the beam spot size at the receiver, wL, is
given in [35, Eq. 45, p. 238]. Note that the jitter displacement
standard deviation at the receiver σs can be expressed in terms
of the jitter angle standard deviation at the transmitter σθ by
the approximation σs

∼= z σθ .
In general, the statistics of Ha vary with radial distance

from the beam center. For the case of mild to moderate
jitter, as is the case in Sec. VI-B, it can be demonstrated
that the normalized intensity variance changes within 1% at
the extreme misalignment deviation point (radial displacement
r ∼= 3σs) compared to the beam centre point (r = 0) [35]. As
a result, for small displacements, the statistics of the Gamma-
Gamma distribution are set to be equal to those at the beam
centre. Thus, the probability density function for atmospheric
turbulence and pointing errors fading is given by (see [19] for
more details),

fH(h) =
γ2hγ2−1

(A0 ga)γ2

∫ ∞

h/A0ga

h−γ2

a fHa(ha) dha. (20)

B. Simulation results

The probability of outage is simulated on a typical FSO
channel considering both the atmospheric turbulence and the
misalignment effects. Atmospheric parameters of a light fog
weather condition are used and are listed in Table II. Notice
that the statistical channel models depend also on the beam
waist, wo, radius of curvature, Fo, distance, L, receiver radius,
a, and the jitter angle variance, σ2

θ . The physical parameters
for the FSO system are also presented in Table II.
The impact of non-uniform signalling on the pairs

(R0, Pout) can be quantified for modelled FSO channel. Con-
sider the case when ρ = 4 and the input distribution q̄(x; 1) =
0.75 δ(x) + 0.25 δ(x−A) which is the capacity-approaching
distribution at low SNR (see Fig. 3). For comparison the uni-
form input distribution q(x) = 0.5 δ(x)+0.5 δ(x−A/2) ∈ U

which has the same average power as the non-uniform case.
The probability of outage Pout(R0) versus the rate R0 is

shown in Fig. 11. The grey area is the unachievable region,
i.e., no pair (R0, Pout) in this region can be realized with any
input distribution satisfying the peak and the average power
constraints. Notice that the performance with q̄(x; 1) nearly
coincides with the capacity boundary. Clearly, for a given rate,
an order of magnitude reduction in probability of outage is
noticed when employing the non-uniform input distribution
compared to the uniform input distribution. Similar gain can be
achieved in terms of rate. As an example, at Pout = 10−3 the
non-uniform distribution achieves R0 = 0.187 bits/channel
use, however, the uniform distribution achieves R0 = 0.07
bits/channel use.
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Fig. 11. Probability of outage versus rate using non-uniform q̄(x; 1) =
{0.75, 0.25} for ρ = 4 and uniform input distributions.

C. Code Design Example

The section presents a coding design for the non-uniform
signalling algorithm in Sec. V-A and applies it to the light fog
FSO channel model.
Consider the non-uniform input distribution in Sec. VI-B.

This distribution can be implemented using N = 2 encoders
and the mapper in (14). In this case the sub-channels rates
R1 = I(Y ; W1) and R2 = I(Y ; W2|W1) are shown in
Fig. 12 versus SNR with a total rate R0 = R1 + R2.
Consider the FSO channel model and assume that it is

required to design the system to operate in a region such that
Pout ≤ 10−3. From Fig. 11 the equivalent rate using the non-
uniform input distribution q(x) = {0.75, 0.25} is R0 ≤ 0.187
bits/channel use. From Fig. 12 and at R0 = 0.187, the sub-
channel mutual information rates areR1 = I(W1; Y ) = 0.066
and R2 = I(W2; Y |W1) = 0.121.
For convenience, block codes are considered where the

output codeword length of each encoder is fixed. Since, in
practice, it is not straightforward to design LDPC codes with
arbitrary rates, we consider practical LDPC codes with rates
RLDPC

1 = 0.05 and RLDPC
2 = 0.12, that is, the system is

designed to operate at R0 = 0.17. The LDPC codes are
generated based on degree distributions that are designed for
Gaussian channels [38]. As mentioned, these codes have been
shown to efficiently operate over many asymmetric channels
as well. The codeword length is fixed to n = 10, 000 for
each code. The corresponding probability of outage at rate
R0 = 0.17, bits/channel use, is Pout = 5 × 10−4 for the
non-uniform distribution and Pout = 0.25 for the uniform
distribution.
The performance of this system is shown in Fig. 13 where

BER versus SNR is plotted. The Shannon limit at rate
R0 = 0.17 bits/channel use, for both the uniform and the non-
uniform input distributions is shown and given as −2.85 dB
and −5.25 dB respectively. Clearly the performance of the
non-uniform input distribution q(x) = 0.75δ(x)+0.25δ(x−A)
when generated using the mapper and coupled with MLC
using LDPC codes of length n = 10, 000 and MSD at the
receiver is close to the Shannon limit where this structure
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TABLE II
SYSTEM PARAMETERS

Parameter Symbol Value

Transmitted optical power P 20 mW

Combined Tx/Rx optics efficiency η 0.64

Responsivity r 0.5 A/W

Wavelength λ 1550 nm

Noise standard deviation (at 1Gbps) σ 5 × 10−7 A

Receiver radius a 4 cm

Distance z 1000 m

Beam waist radius wo 4 cm

Phase front radius Fo -20 m

Jitter angle standard deviation σθ 0.3 mrad

Structure Parameter C2
n 0.5 × 10−14 m−2/3 [37]

Attenuation coefficient μ 2.8 km−1 [37]
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Fig. 12. Sub-channels rate for the MLC system using two mass points with
probabilities [3/4, 1/4] at ρ = 4.

achieves BER=10−5 at SNR = −3.8 dB, i.e., 1.45 dB
greater than the Shannon limit. Furthermore, this structure is
approximately 1 dB less than the Shannon limit when using
a uniform input distribution.

VII. CONCLUSION

The capacity of optical intensity channels with peak and
average optical power constraints is considered. The capacity-
achieving distribution is found by numerically solving a non-
linear optimization problem. A capacity-approaching distribu-
tion based on entropy maximization is developed. In addition
to the substantial complexity reduction in generating this
distribution compared to the optimum distribution, a negligible
gap between the resulting mutual information and the channel
capacity is noticed. Unlike the capacity-achieving distributions
where for each SNR value a different input distribution is
obtained, the proposed maxentropic input distribution is fixed
over a range of SNRs. The derived capacity-approaching
distributions serve as a useful tool not only to bound the
channel capacity but to guide the development of channel
coding for optical wireless channels. Simulations of a mapper
to realize a non-uniform input distribution at the channel
input is presented along with MLC/MSD. Analysis of the
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Fig. 13. BER versus SNR for the non-uniform signalling using finite
length LDPC codes. Also Shannon limits for both non-uniform and uniform
signalling is presented.

outage capacity of FSO channels with non-uniform signalling
and atmospheric turbulence and pointing errors is presented.
A significant reduction in the outage probability using the
proposed non-uniform input distributions is noticed compared
to a uniform input distribution. As a result, non-uniform
signalling is motivated as an important area of further study
to improve the rates and reliability of FSO channels.

APPENDIX A
UNIQUENESS OF THE ROOT t0

Lemma A.1: The polynomial S(t) in (12) has a unique
positive real root t0 ∈ [0, 1].

Proof: Consider the polynomial

S(t) =
K∑

k=0

(
1 − k

ρ

K

)
tk

where ρ ≥ 2. It is straightforward to show

S(0) = 1, and S(1) = (K + 1)
(
1 − ρ

2

)
≤ 0 (A-1)

By the intermediate value theorem of continuous functions,
there exists at least one real root for S(t) in the interval [0, 1].
Note that a root at t = 1 exist when ρ = 2.
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Consider ordering the coefficients of this polynomial in
terms of ascending exponents of the variable t. Note that the
first coefficient is positive and equal to one independent of
ρ and K while the last coefficient is negative since ρ ≥ 2.
Notice also that the coefficients decay linearly with increasing
exponent and thus there must exist a k = k∗ such that

(
1 − k

ρ

K

)
=⇒

{
positive, k ≤ k∗,
negative, k > k∗.

More precisely, the number of variations in sign in this
ordering of the coefficients of S(t) is one. For completeness,
consider the following well-known theorem.
Descartes’ Rule of Signs [39]: Let S(t) be a polynomial with
real coefficients ordered in terms of ascending powers of the
variable. The number of positive roots of S(t) is either equal
to the number of variations in sign of consecutive non-zero
coefficients of S(t) or less than this by a multiple of 2.
Applying Descartes’ Rule of Signs, S(t) has a single root

for t ≥ 0. Since it has already been demonstrated that a real
root exists in [0, 1], thus S(t) has a unique real root t0 ∈ [0, 1].
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