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Abstract: This paper illustrates transcritical and Hopf bifur-
cations in a realistic ac/dc power system model. These bifur-
cations are thoroughly analyzed based on bifurcation theory
to understand and characterize their e�ect on the dynamic
behavior of the system, particularly on voltage stability. A
new technique to trace transcritical bifurcations diagrams is
proposed, based on the generic characteristic of saddle-node
bifurcations for constant P load changes, as demonstrated in
the paper. Control mechanisms for avoiding the bifurcations
are also presented. Finally, the paper discusses the computa-
tional requirements for studying possible chaotic behavior due
to bifurcations on the system limit cycles.
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1. Introduction

Hopf and saddle-node bifurcations have been recognized as
some of the reasons, albeit not the only ones, for stability
problems in a variety of power system models [2]{[13]. These
local bifurcations are detected by monitoring the eigenvalues
of the current operating point. As certain parameters in the
system change slowly, allowing the system to quickly recover
and maintain a stable operating point, the system eventually
turns unstable, either due to one of the eigenvalues becom-
ing zero (saddle-node, transcritical, pitchfork bifurcations), or
due to a pair of complex conjugate eigenvalues crossing the
imaginary axes of the complex plane (Hopf bifurcation). The
instability of the system is reected on the state variables,
i.e., frequency, angles, voltages and currents, by an oscillatory
behavior or a continuos change that lead to voltage collapse
and loss of synchronism. In some cases saddle-node bifur-
cations can be associated to the power transfer limit of the
transmission system [6]; in other instances Hopf bifurcations
appear due to voltage control problems, such as fast acting
automatic voltage regulators (AVR) in the generators [12]. In
all cases these bifurcations occur on very stressed systems, i.e.,
the region of stability for the current operating point (stable
equilibrium point or s.e.p.) is small [6, 14], hence, the sys-
tem is not able to withstand small perturbations and becomes
unstable. Although there are reports of these bifurcations
occurring in unstressed systems [13], this cannot be consid-
ered typical, since power system controls are designed so that
eigenvalues of various operating points are well into the left
half complex plane.

Some voltage collapse problems are not directly associated
to bifurcations, but are generated by voltage control devices
such as under-load tap changers (ULTCs) or AVRs [15]{[18].
In some of these cases the voltage controls force the eigenval-
ues to instantaneously jump into the unstable region, making
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Fig. 1: Sample ac/dc system

the system immediately unstable. Although this particular
phenomena is not directly associated to a bifurcation, since
the eigenvalues do not go through zero or the imaginary axis,
transcritical bifurcation theory can be used to explain the phe-
nomena when AVR limits are assumed to apply gradually [16].

Hopf bifurcations have been detected in a variety of power
system models [7, 11, 12, 13]. Particularly, in reference [11]
a thorough study of this problem and period doubling bifur-
cations is presented for a simple dynamic model of 4 state
variables and no algebraic constraints. On the other hand,
there is little reference in the literature to transcritical bifur-
cations in typical power system models. This can be explained
based on the fact that these types of bifurcations, as formally
shown in this paper, are not generic and they only occur under
certain assumptions that give the problem a special symmetry
[19, 20].

This paper focuses on studying transcritical and Hopf bi-
furcations in a realistic model of the ac/dc system depicted in
Fig. 1, with two di�erent sets of data and system parameters
to obtain the desired bifurcations. This network can be repre-
sented by a set of di�erential and algebraic equations [7, 21].
For each case, time simulations and eigenvalue analyses are
carried out to study and depict the phenomena, and based
on the results, control mechanisms are implemented to try to
avoid the stability problems generated by these bifurcations.
The paper also discusses the computational requirements and
techniques needed for studying these bifurcations. Particu-
larly, the last section is dedicated to discuss the problems of
implementing known techniques to study bifurcations on limit
cycles that lead to chaotic behavior.
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2. Transcritical Bifurcations

The system model of references [7, 21] is used. This is a typ-
ical dynamic model useful for transient and voltage stability
studies. Thus, a second order synchronous generator model
is used, with constant terminal voltage, reactive power limits,
and constant mechanical power that changes with system load
level; this simulates some of the e�ects of the AVR and the
governor. A �-equivalent circuit model is employed to repre-
sent all the elements of the transmission system; transformers
and phase shifters are included as part of this transmission
network. A ZIP load model with dynamic voltage and fre-
quency dependent terms is used, since this simulates a wide
variety of aggregated power system loads. It is important to
mention that the location of the bifurcations depend signif-
icantly on the static load models used, as demonstrated in
reference [6].

DC lines are simulated using R-L circuits, and HVDC con-
trollers are modeled using saturable PI current controllers
with KP (Proportional) and KI (Integral) gains. Although
these control circuits are only approximations to the more
complicated HVDC control structures, they recreate several
of the main properties of the actual control systems, espe-
cially when close to the equilibria. Power controls and Voltage
Dependent Current Order Limiters (VDCOL) are introduced
into this model by representing the controller current order as
a function of the converter voltages.

This system model can be summarized in the following set
of equations [7, 21]:

_x = f(x;y; �)
0 = g(x;y; �)

�
)

�
_x
0

�
= F(z; �) (1)

where x 2 <n is a vector of state variables, y 2 <m is a vector

of algebraic variables, z
4
= [xT yT ]T ,and � 2 < is any parame-

ter in the system that changes slowly, moving the system from
one s.e.p. to another until a bifurcation is encountered. For
this one-parameter dynamical system, non-singularity of the
Jacobian Dyg(�) along system trajectories of interest, guaran-
tees a well posed system [22] or strictly causal system [4], i.e.,
for these trajectories

y
4
= h(x)

s(x; �)
4
= f(x;h(x); �)

) _x = s(x; �) (2)

If Dyg(�) becomes singular, then the model represented by
equations (1) breaks down. When this occurs, dynamic load
models may be introduced to transform some algebraic con-
straints into di�erential equations to remove the singularity,
which is similar to the singular perturbation approach pro-
posed in [22].

For this particular model, bifurcations characterized by a
singular dynamic Jacobian Dxsj0 at the equilibrium point
(x0;y0; �0) with nonsingular Dygj0, can be detected us-
ing either the Jacobian of the full steady state equations

F(�)
4
= [fT (�) gT (�)]T = 0, or the Jacobian of the power ow

equations, which are a subset of the steady state equations
including detailed static load models, as thoroughly demon-
strated in reference [21]. Of these particular local bifurcations
only saddle-nodes are generic [19, 20], i.e., they are expected

to take place under typical operating conditions and model-
ing assumptions. However, transcritical and pitchfork bifur-
cations could also occur when the system presents a special
symmetry due to certain modeling assumptions [19, 20], as
shown below for an ac/dc test system.

2.1. Background

The following conditions apply for a transcritical bifur-
cation of equations (1) at the equilibrium point (x0;y0; �0)
where Dygj0 is non-singular [19]:

1. Dxsj0
4
= Dxs(x0; �0) has a simple and unique zero eigen-

value, with normalized right eigenvector v and left eigen-
vector w, i.e., Dxsj0 v = 0 and wT Dxsj0 = 0T (3)

2. wT @s
@�

���
0
= 0, and wTD2

�xsj0v 6= 0 (4)

3. wT
�
D2
xsj0 v

�
v 6= 0 (5)

Observe that from (1) and (2),

Dxsj0 = Dxf j0 �Dyf j0Dygj
�1
0 Dxgj0

Hence, these conditions have an equivalent representation for
the steady state and power ow equations [21], i.e.,

1. DzFj0
4
= DzF(z0; �0) has a zero eigenvalue, with unique

normalized right eigenvector � and left eigenvector !, i.e.,
DzFj0 � = 0 and !T DzFj0 = 0T (6)

2. !T @F
@�

���
0
= 0 (7)

3. !T
�
D2
zFj0 �

�
� 6= 0 (8)

Observe that in general, wTD2
�xsj0v 6= !TD2

�zFj0�.
Parameterized continuation and direct methods can be used

to trace the bifurcation diagrams and determine the exact lo-
cation of these bifurcations, respectively [18, 20]. Further-
more, conditions (3), (4) and (5) can be used to prove that
these methods have nonsingular Jacobians of the associated
equations at the bifurcation point, by following similar steps
to the ones used for saddle-node bifurcations in references
[21, 23].
Continuation methods run into problems when construct-

ing transcritical bifurcations diagrams, because in this case, as
opposed to saddle-node bifurcations, there are two indepen-
dent paths of equilibria to be traced, which cross transversally
at the bifurcation point. Tracing one branch with this method
gives the approximate location of the bifurcation point; how-
ever, it does not yield much information with regards to the
location of the second path of equilibrium points. To �nd
the direction that the second branch follows, researchers have
developed techniques aimed at �nding the tangent vectors of
the two branches at the bifurcation point, which is a nontriv-
ial problem [20]. Another approach is to �nd a point on the
second branch of equilibria for certain value of the parameter
�, using then this point to apply the continuation method to
trace the corresponding branch; this is done by �nding an ap-
proximation of a perpendicular vector to one of the branches
near the bifurcation [20]. Although the latter is computation-
ally more e�cient, it also presents several di�culties.
This paper presents a di�erent and novel solution to the

problem of tracing the second branch of equilibria in power
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systems. The idea is also to �nd a point on the second branch
for a �xed value of �, but relying in this case on the generic
characteristic of saddle-nodes for certain parameters in the
system. Thus, for a particular operating point, i.e., for a given
value of �, one chooses a constant P load as the new system
parameter, so that the system bifurcates through a saddle-
node instead of a transcritical bifurcation, as demonstrated
below. Hence, the saddle-node bifurcation diagram can now
be fully traced around the bifurcation to �nd the desired point
on the second branch for the chosen operating conditions.
To show that the saddle-node is a generic bifurcation when a

constant P load change is chosen as the new system parameter,
one starts by observing that for this particular choice of � and
for the system model described in [21, 23],

@s

@�
(x; �) = k 8 x 2 <n

; � 2 <

where k 2 <n is a constant vector and � represents the new
load parameter. Hence, the second transversality condition
(4) required in transcritical and pitchfork bifurcations [19], is
not met since

D
2
�xs(x; �) = 0 8 x 2 <n

; � 2 <

Thus, the local bifurcation associated to a singular eigenvalue
in this system is a saddle-node, which is characterized by
transversality conditions (3), (5), and

w
T @s

@�

����
0

= w
T
k 6= 0

2.2. Example

The data in Tables 1, 2 and 3 are used in the ac/dc test
system of Fig. 1 to obtain a transcritical bifurcation. In this
case, the impedance of transformer G3 at the inverter side is
used as the system parameter �, so that the e�ect of Short
Circuit Ratio (SCR) changes in the overall ac/dc system can
be studied. Generator G3 is modeled using a large inertia and
damping, as shown in Table 2, to represent a large system on
the inverter side. Moreover, this generator keeps V3 at 1p.u.
when the SCR changes by using an open-loop control strat-
egy, which is not a typical approach to remote voltage control;
this particular modeling assumption yields the transcritical bi-
furcation, as shown below. The generator G2 is modeled as
a constant power source supplying the local load demand of
Pl = 0:1p.u. and Ql = 0, and has no bearing in the dynamic
behavior of the system for the transcritical bifurcation study.
These generator and load at bus 2 are only used to transform
the problem from a transcritical into a saddle-node bifurca-
tion, by making Pl the new system parameter for a given value
of the inverter SCR, so that the second branch of equilibria
can be traced using the technique described above. Observe
in Table 1 that the ac link between recti�er and inverter is
very weak, so that ac voltage changes in one converter do not
a�ect the other through the ac transmission system, which is
the typical situation in long HVDC links. Finally, the HVDC
is assumed to operate under power control in the recti�er and
extinction angle control in the inverter, within the angle limits
depicted in Table 3.
All the results depicted in this paper were obtained using a

variety of tools and simulation packages, namely, Pflow [18],
Solver-Q [24], EES [25], Matlab [26], and MapleV [27].

Element G B �Bs

Line 1{2 0 1.1513 0
Line 2{3 0 1.1513 0
Transf. G1 0 146.63 0

Transf. G2 0 100.00 0
Transf. G3 0 � 0
Capac. 1 0 0 13.75

Capac. 3 0 0 21.46

Table 1: AC transmission system data in p.u. for a 230 kV and
100 MVA base.

Variable G1 G2 G3

Inertia M 1 | 1
Damping D | | 1

Terminal Voltage Vt 1.05 | |
Mechanical Power Pm | 0.1 27.72

Table 2: Generator data in p.u. for a 13.8 kV and 100 MVA
base

Figure 2 shows the bifurcation diagram for both ac con-
verter voltages V1 and V3 as the inverter SCR changes. The
eigenvalues were calculated for all system equilibria; thus,
the s.e.p.s are depicted in this �gure with continuous lines,
whereas the unstable equilibrium points (u.e.p.s) are repre-
sented by dashed lines. These curves were traced using a
continuation method with the branch switching technique de-
scribed above. Notice the characteristic � crossing at the
bifurcation point, where the s.e.p. associated to V3 = 1p.u.
changes into a u.e.p. Figure 3 depicts, for both equilibria
branches, the real part of the eigenvalues of Dxsj0 closest to
the imaginary axis, showing how this matrix becomes singular
at SCR=2.2123.
The exact bifurcation point was calculated applying a direct

method to the full set of steady state equations F(z; �) = 0,
since the symbolic Jacobian DzF(z; �) can be easily com-
puted. This method cannot be applied in practice to the sym-
bolic transient Jacobian Dxs(x; �), since this matrix is di�cult
to obtain symbolically (it takes several days using MapleV in
a 32MB-RAM SPARCstation-LX with 200MB swap space).
On the other hand, using numerical approximations to Dxs(�)
signi�cantly a�ect the convergence characteristics of the nu-

Variable Recti�er Inverter

KP 1 1

KI 43.5 43.5
Commutation reactance Xc 0.06654 0.06541
Tap a 3.7077 3.3731

Min. �ring angle �min 50 � 1200y

Max. �ring angle �max 1200 � 1420y

Min. extinction angle min � 400y 180

Max. extinction angle max � 1550y 400

Power order Pr 31.42 |
Extinction angle order i | 180

DC resistance Rd 0.072892
DC inductance Ld 0.008695

y
Assuming � � 200

Table 3: DC system data in p.u. for a 230 kV and 435 A base.
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merical techniques used to solve the direct method equations.
Time domain simulations were carried out to study the ef-

fects of changing the SCR from a pre-bifurcation value to a
post-bifurcation one, and see whether the system becomes un-
stable or recovers to a new equilibrium point on the second
branch. The results of these simulations are shown in Figs.
4 and 5. In Fig. 4 the generator G3 terminal voltage VtG3

is changed after 0.5sec. to keep V3 at 1p.u. In this case the
system becomes unstable, with a clear voltage collapse of the
inverter ac voltage and large changes in generator frequency
and HVDC variables. Observe that some of the system vari-
ables oscillate in a stable limit cycle, which could be attributed
to the HVDC controls. If VtG3

is instantaneously changed, the
system recovers and converges to the stable equilibrium point
on the second branch of the transcritical bifurcation diagram,
as shown in Fig. 5.
The results from the simulation demonstrate the impor-

tance of controlling the inverter ac voltage. Hence, a fast
closed-loop control is introduced in the system to maintain V3
at 1p.u. by instantaneously changing VtG3

, i.e., V3 = 1p.u. for
all system simulations. This is a more realistic control strat-
egy that the open-loop control approach, and it eliminates the
special symmetry responsible for the transcritical bifurcation,
making all system equilibria stable for any value of SCR. Nev-
ertheless, limits, gains, and time delays should be included for
a more accurate representation of this type of remote voltage
control.

3. Hopf Bifurcations

Hopf bifurcations are also generic bifurcations of dynamic
systems represented by equations (2) [19, 20]. These types
of bifurcations can be shown not to exist in a simple lossless
power system model [28]; however, they have been observed in
a variety of more realistic power system models [7, 11, 12, 13].
The following sections concentrate on discussing the theory
of Hopf bifurcations and the methods used to study them,
highlighting their computational requirements and limitations
when applied to the ac/dc test system of Fig. 1.

3.1. Background

The transversality conditions of a Hopf bifurcation for equa-
tions (1) at the equilibrium point (x0; y0; �0), where Dygj0 is
non-singular, are [19, 20]:

1. Dxsj0 has a simple pair of purely imaginary eigenvalues

�(�0) = �j� (9)

and no other eigenvalue with zero real part.

2. These eigenvalues cross the imaginary axis with \non-
zero speed", i.e.,

dRef�(�0)g

d�
6= 0 (10)

This bifurcation gives birth to a zero-amplitude oscillation
(limit cycle) with initial period

T0 =
2�

�

Hopf bifurcations can be detected using a continuation
method to trace the system equilibria while monitoring the
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Fig. 4: Simulation of a SCR change from 2.24 to 2.20 at 1 sec.,
with a 0.5sec. delay on VtG3

change to maintain V3 at 1p.u. The

(a) inverter ac voltage V3, (b) generator G3 frequency !3, (c) dc
current Id, and (d) recti�er �ring angle �r are shown. The system
is unstable.
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Fig. 5: Simulation of a SCR change from 2.24 to 2.20 at 1 sec.,
with an instantaneous change on VtG3

to maintain V3 at 1p.u. The

(a) inverter ac voltage V3, (b) generator G3 frequency !3, (c) dc
current Id, and (d) recti�er �ring angle �r are shown. The system
recovers, approaching a new stable equilibrium point.

eigenvalues of the dynamic Jacobian Dxs0. In this case, the
eigenvalues ofDzFj0 do not change in any signi�cant way that
would allow to determine the location of this bifurcation by
using this matrix. The system matrices, i.e., Dxsj0, DzFj0,
and the power ow Jacobian, do not become singular at the
bifurcation point.
Two distinct direct methods can be used to �nd the exact

position of the Hopf bifurcation point. The �rst method is
based on a mathematical restatement of condition (9) [20, 29],
thus, one has to solve

F(x;y; �) = 0 (11)

Dxsj0vr = ��vi

Dxsj0vi = �vr

k vr k 6= 0

k vi k 6= 0

where vr � jvi (vr; vi 2 <n) are the eigenvectors of the pair
of complex conjugate eigenvalues �j�. The second method
consists on solving equations (12) below, which can be easily
obtained from equations (11) [20, 30],

F(x;y; �) = 0 (12)

Dxsj
2
0v = ��2

v

k v k 6= 0

pTv = 0

where v 2 Rangefvr ;vig, and p 2 <n is a known constant
vector orthogonal to v. Of these two methods, equations (11)
present better sparsity characteristics but requires of n more
equations than (12). In both cases, good initial conditions
for all system variables and unknown vectors can be obtained
from a equilibrium close to the bifurcation point, produced
by the continuation method. Notice that in (12), a vector
p 62 Rangefvr;vig must be chosen, hence, good approxima-
tions of vr and vi are required. Unless an exact location of
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Fig. 6: Examples of (a) subcritical and (b) supercritical Hopf
bifurcations. The symbols � and � are used to depict half of the
amplitude of the unstable and stable limit cycles, respectively.

the bifurcation point is needed, continuation methods usually
su�ce to determine the bifurcation. Furthermore, these di-
rect methods are not useful in practice to locate Hopf bifurca-
tions of systems represented by di�erential-algebraic equations
(1), due to the computational di�culties of determining the
symbolic Jacobian Dxsj0. Although approximations to this
Jacobian can be used, the convergence characteristics of the
numerical methods used to solve equations (11) or (12) are
signi�cantly degraded.
Two types of Hopfs are possible depending on the stability

of the limit cycle generated by the bifurcation, namely, sub-
critical and supercritical. Examples of these two types are
depicted in Fig. 6 for a system modeled with equations (2).
In this �gure, the equilibrium points of a state variable xi 2 x

are depicted for several values of the parameter �, and a Hopf
bifurcation is shown at (xi0 ; �0). Half of the amplitude of the
oscillation generated by the bifurcation is depicted using the
symbols � (unstable) and � (stable). For the subcritical bifur-
cation the corresponding limit cycle is unstable, whereas for
the supercritical the limit cycle is stable [20].
The limit cycle generated by a Hopf bifurcation can be

computed by solving the following Boundary Value Problem
(BVP) for t 2 [t0; t0 + T ] [20]:

�
_x
_T

�
=

�
s(x; �)

0

�
(13)

s.t. r(x(t0);x(t0 + T )) =

�
x(t0)� x(t0 + T )

p(x(t0); �)

�
= 0

where p(x(0); �) is a phase condition to set the initial time t0.
This condition can be set to

p(x(t0); �) = xi(t0)� k = 0
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where xi 2 x, and k 2 <n is a �xed initial value of xi(t) that
must be in the desired solution range. Another possible phase
condition is

p(x(t0); �) = si(x(t0); �) = 0

with si(�) 2 s(�), so that the initial t0 is set to a local minimum
or maximum of the oscillation of xi(t). The latter condition
has the advantage of not requiring any previous knowledge
of the solution range xi(t) in t 2 [t0; t0 + T ]; however, si(�)
should be linear in order to apply simple known methods to
solve BVPs with linear boundary conditions r(x(t0);x(t0+T ))
[31].
Normalizing the time interval to have a unit length, i.e.,

t 2 [0; 1], BVP (13) becomes

�
x0

T 0

�
=

�
T s(x; �)

0

�
(14)

s.t. r(x(0); x(1)) =

�
x(0)� x(1)
p(x(0); �)

�
= 0

where x0 and T 0 denote the derivatives of x and T w.r.t. the
normalized variable t.
Current numerical techniques do not address the problem

of solving di�erential-algebraic BVPs, and are limited in the
number of states and equations that can e�ciently handle.
Moreover, due to the di�erent nature of the BVPs that need
to be solved, one has to use generic techniques proven to work
in a variety of problems (e.g., the multiple shooting method
[31]), rather than use more e�cient methods which are model
dependent (e.g., �nite elements method [33]). Furthermore,
BVP (14) introduces an additional zero equation that gener-
ates convergence problems if one does not start with a good
initial guess for all system variables, particularly for the pe-
riod T . An example to illustrate some of these problems is
presented at the end of section 3.2..
Once the limit cycle is calculated for a given value of the

parameter �, one can proceed to address the issue of stability
of these oscillations. The idea is simple, to determine the sta-
bility of a limit cycle one must answer the question of whether
a system trajectory starting arbitrary close to the limit cycle
converges to it (stable) or not (unstable). Hence, the distance
between the system trajectory and the limit cycle at any point
in time for a given � can be de�ned as:

k d�(t) k
4
= k '�(t;x(0)� d0)� 'T� (t;x(0)) k (15)

where x(0) is the initial point of the oscillatory system trajec-
tory 'T� (t;x(0)) of period T , i.e.,

x(0) = x(T ) = '
T
� (T ; x(0))

d0 is the initial distance between this limit cycle and the sys-
tem trajectory '�(t;x(0)+d0) generated by the initial condi-
tions x(0) + d0. Then, the stability problem can be analyzed
in two ways:

1. Use time simulations to solve an initial value prob-
lem with initial conditions x(0) + d0, and see whether
k d�(T ) k < k d0 k (stable limit cycle) or k d�(T ) k >
k d0 k (unstable limit cycle). The limit cycle must be
known beforehand, otherwise system trajectories that do
not converge to it yield no information regarding the sta-
bility of the oscillations. The advantage of this method
is that time simulations are relatively inexpensive.

Element G B �Bs

Line 1{2 3.68 54.13 4.68
Line 2{3 3.68 54.13 4.68
Transf. G1 0 166.67 0

Transf. G2 0 100.00 0
Transf. G3 0 100.00 0
Capac. 1 0 0 13.00

Capac. 3 0 0 13.68

Table 4: AC transmission system data in p.u. for a 550 kV and
100 MVA base.

Variable G1 G2 G3

Inertia M 0.1 0.016 1

Damping D 0.001 0.001 |
Terminal Voltage Vt 1 1 1
Mechanical Power Pm 40 4.75 |

Table 5: Generator data in p.u. for a 13.8 kV and 100 MVA
base.

2. Determine the monodromy matrix [20], which is part of
the �rst term on the Taylor series expansion around x(0)
of d�(T ) in (15), i.e.,

M� = ��(T ) = Dx'
T
� (T ; x(0)) (16)

This matrix M� 2 <n�n has one eigenvalue �(M�) =
1. Hence, based on Floquet theory, one can show that
if j�(M�)j < 1 for all the remaining n � 1 eigenvalues
(Floquet multipliers), the associated limit cycle is stable,
otherwise, if only one eigenvalue j�(M�)j > 1, the limit
cycle is unstable. If more than one eigenvalue j�(M�)j =
1, then the limit cycle bifurcates leading the system to
chaotic behavior. A more detailed discussion of the latter
condition is carried out in section 4..

Calculation of the monodromy matrix (16) is a nontrivial
task; M� can be approximated, however, by the product
of several matrices generated during the numerical so-
lution of BVP (14) with the multiple shooting method
[20, 31].

3.2. Example

Tables 4, 5 and 6 show the steady state and dynamic data
used in the system of Fig. 1 to generate a Hopf bifurcation.
The SCR in the recti�er is 5.6, whereas the inverter side SCR
is 3.3. The load at bus 2 is modeled as a frequency dependent
active power plus a voltage dependent reactive power term,
i.e.,

Pl = Pl0 + dP +Dl
_�2

Ql =

�
V2

V20

�2

Ql0

where Pl0 = 4:75, Ql0 = 1:561, Dl = 0:1, and V20 = 1:01965,
all in p.u. The active power load change at bus 2 is chosen as
the slowly changing system parameter, i.e., � = dP ; thus, any
local bifurcation associated to a zero eigenvalue is expected
to be a saddle-node as discussed above. The in�nite bus G3

absorbs all losses and load power changes in the system.
Figures 7 and 8 depict part of the bifurcation diagrams,

PV or \nose" curves, obtained with the continuation method
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Variable Recti�er Inverter

KP 1 1
KI 75 75
Commutation reactance Xc 0.1345 0.1257

Tap a 1.7634 1.7678

Min. �ring angle �min 50 � 1200y

Max. �ring angle �max 1200 � 1420y

Min. extinction angle min � 400y 180

Max. extinction angle max � 1550y 400

Current order Io 1.0 0.9

Min. current order Iomin
z 0.1 0.0

Max. ac voltage Vacmax
z 0.95 0.95

Min. ac voltage Vacmin
z 0.5 0.5

DC resistance Rd 0.06236
DC inductance Ld 0.01981

y
Assuming � � 200

z
VDCOL

Table 6: DC system data in p.u. for a 550 kV and 2.5 kA base.

for the recti�er and inverter ac voltages when the parameter
dP changes. These diagrams were traced up to the maximum
value of dP , or maximum loading point, which corresponds to
a saddle-node bifurcation at dPmax = 4466MW for the ac/dc
system with no VDCOL (Fig. 7), and dPmax = 4683:6MW
when VDCOL is included (Fig. 8). The continuous lines rep-
resent the s.e.p.s, whereas the dashed lines depict the u.e.p.s.
Not all unstable equilibrium points were traced, since they
are not relevant to this paper. Observe that in Fig. 7, the
system is stable up to the saddle-node bifurcation, whereas
in Fig. 8 the system losses stability due to a Hopf bifur-
cation before the saddle-node is encountered. Hence, from
these results one can conclude that the VDCOL is the source
of the Hopf bifurcation, but at the same time, this control
mode increases the system loadability margin by about 5%,
from dPmax = 4466MW to dPHopf = 4682:3MW. Although
VDCOLs are typically designed to operate during transient
conditions rather than in steady state, the VDCOL data used
in this paper [32] enhances system stability by increasing the
loadability margin.

The number of state variables in vector x is n = 7, and
the number of algebraic variables in y is m = 10. By trac-
ing the eigenvalues of the dynamic Jacobian Dxsj0(7�7) and
the full system Jacobian DzFj0(17�17) for all the equilibrium
points depicted in Figs. 7 and 8, one can demonstrate that
both become singular at the maximum loading point dPmax,
as expected. However, the Hopf bifurcation depicted in Fig.
8 can only be detected by tracing the eigenvalues of Dxsj0, as
explained above. Figure 9 depicts the behavior of the eigenval-
ues for the system equilibria around the Hopf and saddle-node
bifurcations. Figures 9(a) and 9(b) show a complex pair of
eigenvalues crossing the imaginary axis with non-zero speed
before the saddle-node bifurcation, which is represented by
the zero eigenvalue depicted in Figs. 9(a) and 9(c).

Direct methods (11) and (12) cannot be applied in practice
to the ac/dc test system, due to the computational di�culties
of determining the symbolic Jacobian Dxsj0. The continua-
tion method and a trial and error approach was used here to
successfully locate this bifurcation.

Figure 10 depicts the e�ect of the Hopf bifurcation in the
ac/dc system. Observe the oscillations of all variables, partic-
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Fig. 7: Bifurcation diagram for ac/dc system with no VDCOL.
There is a saddle-node bifurcation at dPmax = 4466MW.
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Fig. 8: Bifurcation diagrams for ac/dc system with VD-
COL. Plot (b) depict the region around dP = 4682:3MW where
a Hopf bifurcation occurs before the saddle-node is encountered at
dPmax = 4683:6MW.
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Fig. 9: Eigenvalues for ac/dc test system with VDCOL: (a)
complex plane loci depicting a zero eigenvalue and the crossing
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Fig. 10: Simulation of a change in dP from 4682 to 4683 MW
at t = 0:1sec. The (a) recti�er V1 and inverter V3 voltages, (b)
generators frequencies !1 and !2, (c) dc current Id, and (d) recti-
�er �ring angle �r are shown. The system oscillates and becomes
unstable.

ularly voltages and frequencies, before system collapse. From
these simulations one cannot conclude whether the Hopf is
subcritical or supercritical; for that type of analysis the limit
cycles around the equilibria must be computed solving BVP
(14), to then calculate the eigenvalues of the associated mon-
odromy matrix, as previously explained. However, these types
of studies could not be carried out on this example due to
the limitations of the available numerical methods, simula-
tion tools, and computer resources. To give the reader an
idea of what is required to solve a BVP of the class repre-
sented by equations (14), a multiple shooting method with
modi�ed Newton-Raphson [31] was implemented in Matlab

to determine a stable limit cycle of a system of two state vari-
ables and no algebraic constraints. Depending on the initial
guesses, this problem takes from 3-4 iterations to 15-20 itera-
tions, with CPU times ranging from 10 minute to 3 hours in
a dedicated 32MB-RAM SPARCstation-LX with a 50MHz
microSPARC chip delivering a 21.0 SPECfp92. For an un-
stable limit cycle the method does not converge unless one
starts from an initial guess very close to the �nal solution.

4. Computational Requirements to Study Chaotic

Behavior

A system modeled by a set of one-parameter di�erential
equations can display chaotic behavior through several mech-
anisms, all based on a series of bifurcations of equations (2)
[20]. As the system parameter � changes, the limit cycles born
of Hopf bifurcations also bifurcate. These types of bifurcations
can be detected by monitoring the eigenvalues �(M�) of the
monodromy matrix (16) for the various values of �. Thus, the
following bifurcations take place at � = �0 when one or two of
the n� 1 eigenvalues �(M�0) (one eigenvalue is always unity,
say �n(M�) = 1) cross the unit circle in the complex plane
[20]:

1. If �j(M�0 ) = 1, for some 1 � j � n� 1, the limit cycle
undergoes a saddle-node, transcritical or pitchfork bifur-
cation at �0. In this case, limit cycles appear or disappear
and gain or lose stability, depending on the type of bifur-
cation. This phenomenon is similar to the bifurcations of
equilibrium points, and can be associated to a singularity
of the Jacobian of the related Poincar�e map equations.

2. If �j(M�0) = �1, for some 1 � j � n� 1, the limit cycle
bifurcates through a period doubling bifurcation at �0.
This bifurcation can be characterized by the emergence
of a second limit cycle; hence, this bifurcation becomes
apparent in the time domain by the system trajectories
jumping alternatively from one limit cycle to another.
An in�nite series of period doublings lead the system to
chaos. An example of this behavior in a simple power
system model of 4 state variables and no algebraic con-
strains is shown in references [11, 34].

3. If a pair of complex conjugate eigenvalues �j(M�0 ) =
��k(M�0), for some 1 � j; k � n�1, lie on the unit circle,
i.e., j�j(M�0)j = j�k(M�0 )j = 1, the system presents a
torus bifurcation or generalized Hopf bifurcation at �0.
One can think of this bifurcation as the equivalent of the
Hopf bifurcation in system equilibria. The torus bifur-
cation can be represented in the time domain as a torus
like object, with system trajectories spiraling around it.
Theoretical and experimental evidence point to a series
of two consecutive torus bifurcations as another route to
chaos.

To calculate the values of �0 where these bifurcations take
place for di�erential equations (2), and thus study the mecha-
nisms that might lead to chaos, continuation and direct meth-
ods can be applied to the BVP (14). This problem can be
reduced for both methods to solve BVPs of the form [20]

�
X0

�0

�
=

�
S(X; �)

0

�
(17)

s.t.

�
R(X(0);X(1))

�(X(0))

�
= 0

where �(X(0)) is a scalar and linear boundary condition re-
quired to compensate for the introduction of the constant �
as a system variable, and X(t) 2 <N , t 2 [0; 1], represents the
vector of the sate variables x and T in BVP (14) plus the new
variables introduced to solve the desired problem, which vary
with S(�) and R(�) according to the method used.
For example, to �nd the location of a period doubling bifur-

cation using the direct method, one should solve the following
N = 2n+ 3 BVP:

2
66664

x0

T 0

�0

v0x
v0T

3
77775 =

2
66664

Ts(x; �)
0
0

TDxs(x; �)vx + vT s(x; �)
0

3
77775 (18)

s.t.

2
666664

x(0)� x(1)
p(x(0); �)

vx(0)� vx(1)

vTx
@p

@x(0)
(x(0); �)

vxk (0)� 1

3
777775
= 0
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BVP (18) comes from the linearization of the BVP (14) around

the bifurcation point, i.e., for ~s(�)
4
= [sT (�) 0]T , ~x

4
= [xT T ]T ,

and ~r(�)
4
= [rT (�) p(�)]T , the linearization of (14) yields

~v0 = D~x~s(~x; �)~v

s.t. A~v(0) +B~v(1) = 0

where

A = D~x(0)~r(~x(0); ~x(1))

B = D~x(1)~r(~x(0); ~x(1))

A and B are constant matrices for a linear set of boundary

conditions ~r(�). Observe that ~v
4
= [vTx vT ]

T could be viewed
as the equivalent of the right eigenvector at a bifurcation of
equilibrium points. These equations are similar to the ones
used to �nd bifurcations of equilibria with direct methods.
Continuation methods for �nding bifurcations of limit cy-

cles is a two part process, similar to the continuation methods
used to detect bifurcations in system equilibria. A predictor
step is applied �rst to �nd an initial guess, which is then used
in the corrector step to calculate the actual solution on the
bifurcation branch. The corrector step requires the solution
of an N = n + 2 BVP similar to (17) for x, T , and �. On
the other hand, the predictor step can be designed so that it
uses by-products of the numerical solution of previous BVPs,
particularly when multiple shooting methods are used [20]
Both continuation and direct methods need good initial

guesses for convergence of the associated BVPs. Hence, this
issue must be considered in the actual implementation of these
methods.
For power systems represented by di�erential-algebraic

equations (1), direct methods cannot be used in practice, since
they require of Dxs(x; �) or a good approximation of it. Con-
tinuation methods also present di�culties due to the need of
having to solve a series of BVPs with algebraic constraints.
Although available numerical techniques, particularly multi-
ple shooting methods, can be modi�ed to solve these prob-
lems, they will require of rather large computer resources, as
previously discussed.

5. Conclusions

Transcritical and Hopf bifurcations in di�erential-algebraic
power system models are thoroughly discussed in this paper.
Examples of these bifurcations are illustrated in an realistic
transient stability model of an ac/dc power system, showing
their direct link to particular voltage control mechanisms in
the system. The paper also shows the computational require-
ments for the study of these phenomena, and a a new tech-
nique for tracing transcritical bifurcations diagrams is pro-
posed, based on the generic characteristics of saddle-node bi-
furcations in power systems.
This paper demonstrates the need for implementing and

modifying existing numerical techniques to solve di�erential-
algebraic BVPs, especially for the study of the mechanisms
that could lead a system to chaos. However, the large amount
of computational resources required for these types of analy-
ses, signi�cantly limits the practical application of these tech-
niques to realistic power system models. More research on
the solution of large BVPs is required before the methods dis-
cussed in this paper can be used in real environments.
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