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Motivation

1 A high data rate, short distance link is
required to connect portable devices to:
» backbone network, data storage, user

interface peripherals, other portable
devices ...

1 Possible Solutions :
» Mechanical connection
* RF wireless link
» Optical wireless link
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Why Wireless Infrared ?

1 Advantages of Wireless IR links :
* high data rate
» unregulated bandwidth
 lower cost
» flexible interface
» small form factor

1 Constraint :
* need to use inexpensive optical devices
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Basic Channel Structure
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0 LED emits incoherent light over a wide
spectrum.

0 Photodiode is linear over a wide input range.
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Experimental Link

g

lis® [ 410

i

KA

:

H

Transmit Electronics

]

T3

out
w0

Recelve Electronics



University of Toronto 3

Experimental Results
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Channel Constraints

0 Physical channel constraints :
* signals must remain non-negative
 average output signal fixed for eye safety

1 Practical channel limitations :

e bandwidth of channel is limited

—need bandwidth efficient modulation
schemes for higher data rate transmission.



Conventional Optical
Modulation Techniques

1 Schemes based on pulse transmission
» on-off keying
* pulse position modulation ( PPM )

4-PPM . 2 bits/symbol
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1 Well suited to optical fibre applications.
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Pulse Amplitude
Modulation ( PAM )

1 In each symbol interval, pulse assumes
one of L non-negative levels.
* non-negativity guaranteed.

» average optical power set by symbol
distribution.
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Quadrature PAM
( QAM )

1 Two L-PAM signals on quadrature carriers

» fixed DC bias added to each symbol to
ensure non-negative output

 average optical power independent of data
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Adaptively-Biased QAM
( AB-QAM )

1 [%-QAM with square wave carriers

» adaptive DC bias is added to each symbol to
satisfy non-negativity constraint

 average optical power set by data distribution
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Example : 9-AB-QAM

Constellation

1.5
b 08
WM | Time-Domain| 0.75/
o -
- ] DC-biasy~
: 3‘0.75, 0.75,1.5) i
C 0.75 e
s M- (0,0.75,0.75) o 0 0
> g I I e _ 0.75 °
=M1 - in-phase ~ 0-7° ®,
2 0 , — quadrature
S 0 T, 2T,



University of Toronto 3

AB-QAM Key Points

1 Achieves an asymptotic 3dB optical
SNR improvement over PAM by :

* minimizing the amount of bias to optical
signal

« using information in symbol average :
— SIGNAL SPACE DIVERSITY
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Simulation Results

For L2=49, BW fixed
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Conclusions

0 Multilevel modulation schemes are
necessary for next generation, short
distance, high-speed wireless infrared
links.

1 AB-QAM provides a 3dB optical SNR
gain over PAM, while maintaining the
same bandwidth efficiency.
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