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Abstract — A discrete-time memoryless additive
vector Gaussian noise channel subject to average cost
constraints and an input-bounded constraints is con-
sidered. The necessary and sufficient condition for an
input distribution to be capacity achieving is derived,
and the capacity achieving distribution is shown to be
“discrete” in nature.

I. Introduction

In [1], Smith showed that the capacity achieving distribution
of a discrete-time memoryless scalar Gaussian channel sub-
ject to both an average power constraint and a peak power
constraint is a probability mass function. Using a similar ap-
proach as [1], Shamai et al. showed that the capacity achiev-
ing distributions of quadrature Gaussian channels are also dis-
crete in nature [2]. In this paper, we generalize the results of
Smith and Shamai by considering a class of more general chan-
nels, called vector Gaussian noise channels. Also, the input-
bounded constraint is not restricted to be the peak power con-
straint as in previous work, and the average cost constraints
we interested are the second-order constraints, of which the
conventional average power constraint is a special case.

First, consider an additive vector Gaussian noise chan-
nel whose input X = [X1, X2, · · · , XN]> and output Y =
[Y1, Y2, · · · , YM]> is related by the equation Y = AX + Z
where A is a fixed M × N matrix and Z = [Z1, Z2, · · · , ZM]>

is a zero-mean Gaussian noise vector. The communication
systems are subject to two classes of constraints. The first
class is second-order average cost constraints of the form
Gk(µ) = Eµ

�
X>QkX + LkX

�−γk ≤ 0 for k = 1 · · ·K, where
Qk and Lk are N×N and 1×N matrices, and the expectations
are taken with respect to the input distribution µ. The sec-
ond class is the input-bounded constraint, which restricts the
set of admissible channel inputs to be a closed and bounded
subset S in RN.

Example 1 Consider a wireless optical channel in which the
dominant noise source is the ambient light. Assuming that the
symbol waveform is a linear combination of a basis of func-
tions {φn(t) : n = 1, · · · , N}, the channel is equivalent to a
discrete time vector Gaussian noise channel [Y1, · · · , YN]> =
[X1, · · · , XN]>+[Z1, Z2, · · · , ZN]>, such that the average power

constraint is given by Eµ

hPN
n=1 xn(

R T

0
φn(t) dt)

i
− γ ≤ 0.

Moreover, the set of admissible channel inputs is the following
closed and bounded subset [5]

S =

(
(x1, · · · , xN) ∈ RN : ∀0 ≤ t < T, 0 ≤

NX
n=1

xnφn(t) ≤ s

)
.
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II. Results
Let H (µ) and I (µ) be the entropy of Y and the mutual in-
formation between X and Y given that the input distribution
of X is µ respectively.

Theorem 1 (Existence) There exists a probability distribu-
tion µo satisfying the average cost constraints and the input-
bounded constraint, which maximizes I (µ). Furthermore, if A
has a left-inverse, then the capacity achieving distribution is
unique.

Let h (x; µo) = − R PZ(y−Ax) log PY (y; µo)dy where PZ

and PY are the densities of Z and Y respectively. For any
distribution µo, its set of points of increase Eo is defined by

Eo =

�
x ∈ RN :

µo(V ) > 0 for any open

set V containing x

�
.

Theorem 2 (Necessary and Sufficient Condition) Let
µo satisfy the average cost constraints and the input-bounded
constraint, and Eo be its set of points of increase. Then µo is
capacity achieving if and only if there exists λ1 · · · , λK ≥ 0
such that�

h (x; µo) ≤ H (µo) +
PK

k=1 λk(x>Qkx + Lkx − γk) ∀x ∈ S
h (x; µo) = H (µo) +

PK
k=1 λk(x>Qkx + Lkx − γk) ∀x ∈ Eo.

A complex-valued function f(w) defined on CN is called
holomorphic if it is analytic in each individual variable. A
subset F in RN is called sparse if there exists a nonzero holo-
morphic function f(w), such that f(w) = 0 for all w ∈ F .
For example, F is sparse if it is finite, whereas it is not sparse
if it contains an open subset in RN. In particular, if N = 1
and F is bounded, then F is sparse if and only if it is finite.

Theorem 3 (Discreteness) The capacity achieving distri-
bution is “discrete” in the sense that its set of points of in-
crease is sparse.
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