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Abstract— Improved upper and lower bounds on the capacity sphere-packing to derive an upper bound for the optical IM/DD
of wireless optical intensity channels under non-negativity and channel capacity with multiple-subcarrier modulation [7].
average optical power constraints are derived. We consider pagits for band and power-limited optical intensity channels
intensity modulated/direct detection (IM/DD) channels with pulse - . .
amplitude modulation (PAM). Utilizing the signal space geometry were present_ed in [5] where the total volume '_5 approxmajted
and a sphere packing argument, an upper bound is derived. by a genera“zed@-cone. As a result, the derived bound is
Compared to previous work, the derived upper bound is tighter only tight at high signal-to-noise ratio (SNR) and loose at low
at low signal-to-noise ratios. In addition, a lower bound is derived SNR.

based on source entropy maximization over discrete distributions. : : :
The proposed distribution provides a tighter lower bound com- In this work, tight upper and low bounds on the capacity

pared to previous continuous distributions. The derived bounds Of Pulse amplitude modulated (PAM) wireless optical IM/DD
asymptotically describe the capacity of PAM optical intensity channels are derived. Using the intuition from previous studies,
channels at both low and high SNR. a tight lower bound is derived using a family of entropy
maximizing discrete distributions. Although not necessarily
capacity achieving, these distributions are shown to provide a
In this paper, we study the capacity of wireless opticaight lower bound for the capacity of wireless optical IM/DD
intensity modulated/direct detection (IM/DD) channels. lehannels at both low and high SNRs. Compared to previous
these channels, information is modulated as the instantanepoands based on continuous distributions, the presented bound
optical intensity and hence the information bearing signahs approximately double the channel capacity at SNR=0 dB.
is restricted to be non-negative. An average amplitude, i.tn, addition, an analytic upper bound to the channel capacity
average optical power, constraint is imposed to ensure eyederived using a sphere packing argument. Unlike previous
safety. The direct application of techniques from electric@ork [5], the Minkowski sum of convex bodies is utilized to
channels to this channel is thus not straight forward due ¢btain the exact volume of the outer parallel body at fixed
the amplitude constraints. Here, we present improved upmiistance from a regulan-simplex. As a result, the derived
and lower bounds for wireless optical channels which take thgper bound is tighter than previous bounds [5] at low signal-
amplitude constraints into account explicitly. to-noise ratios. Since most wireless optical links typically
Wireless optical channels can be well modelled as condiperate at low SNRs, the tightness of the derived bounds at low
tionally Gaussian channels with signal independent noise [§NR provides a useful benchmark for communication system
For conditionally Gaussian channels with bounded-input aiésign.
power constraints the capacity-achieving distribution, under
certain conditions, is shown to be discrete with a finite Il. SYSTEM MODEL
number of probability mass points [2], [3]. Similar results ) o .
were obtained for optical photon counting channels, i.e. Pois-Wireless optical communication links transmit data by mod-
son channels, with optical power constraints [4]. Since tpdating the transmitted optical power of a laser. In practical
channel capacity is the maximum mutual information betwedifks, only the optical intensity is modulated and detected.
transmitter and receiver over all possible input distributiont) the following analysis, we consider pulse amplitude mod-
any input distribution results in a lower bound for the chann#fation (PAM). The transmitted optical signal is constrained
capacity. Based on this reasoning, a lower bound for the capit-0€ non-negative due to physical constraints. Due to eye
ity of wireless optical IM/DD channels was computed usin§afety concerns, a constraint is also imposed on the average
the maxentropic continuous exponential distribution satisfyirgptical power transmitted, i.e., the average amplitude. The
the amplitude constraints [5]. output electrical signal is related to the incident power by the
The channel capacity of wireless optical intensity channel§tector responsivity coefficiertt. Without loss of generality,
can be upper bounded by applying a similar sphere-packing %€ c0n5|_derR = 1. A good statistical channel model for this
gument presented by Shannon [6] in a region which guarantéggnnel is [1],
that the amplitude constraints are met. You and Kahn utilized y=x+z
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wherex > 0 is the transmitted optical signal with averageapacity and can be formulated as,

optical powerE{z} < P, y is the output electrical signal and

z is thermal noise which is well modelled as zero-mean, signal, — max
4

1
Ip(x;y) = h(y) — 7 logy 277602,
independent, Gaussian distributed with variaméeWe define 2

the optical signal-to-noise ratio & R = P/c as in previous —

M foasinp st Ly = S ik 08y — k/0) @ o), >0
TR k=0
I1l. L OWER BOUND ON CHANNEL CAPACITY where ® is the convolution operator and(-) is the Dirac

delta functional. Substituting the discrete distributjgrix; ¢)
The capacity of the wireless optical IM/DD channel isesults in the mutual information,

defined as the maximum mutual information between channel A
input and output over all possible input distributions satisfy- Rl N e—(y—k/0)? /207
ing the non-negativity and average optical power constraint (% ¥) = _/ pa(k; €) 2

. . ! . -0 | =0 V2mo
Consequently, the mutual information obtained by any input - o
distribution satisfying the amplitude constraints is a lower, iy g € WTROT 20 1 2

: ) . o T log, pr(k,f) ————— || dy — =logy(2mec™).

bound for the channel capacity. Since the capacity achieving — 2mo? 2
distribution of conditional Gaussian channels under amplitude B @)
and average power constraints was shown to be discrete, a

discrete distribution is proposed and a lower bound on Chamﬂ%tice that a relation between noise standard deviatiamd

capacity is derived. The proposed distribution is obtainqﬂe spacing between successive points must exist. Let
through input source entropy maximization.

Consider a discrete distribution forover the alphabe}Z*, lo =3, w="/y. (3)
whereZ™ is the set of non-negative integers and > 0 is the

spacing between mass points. A probability masg.@¥;¢), Rearranging (2) with respect tband substituting (3) yields,

k € Z+, is assigned to each point such that
> > Iw;y:—/ Pp(k; B) ———=—=—
S pelki)=1 and S Zp(k0) =P (1) slmu)== | LZ;) i) — s

k=0 k=0 ef(wfk)2/2,82

= 1
- - 1 *(k; ) ———— | | dw — = log,(2me3?
Thus, p,.(k; £) satisfies both the non-negativity and averageOg2 <l;)pl< 0) /2732 ﬂ YTy 0g(2mef),
amplitude constraints of wireless optical IM/DD channels. The a (4)
entropy of the source is defined as,

o0

e~ (w—k)?/25

|

where

Hy(z) = ~pa(ki ) logy p.(k;0). gy — [ g2 \*
k=0 P (R 1+5§ 1+ﬂ§ .

Although any pmfp.(k;¢) is sufficient to provide a lower Thus, for a givenP/o, I(x:y) is a function of 3 which

bound, we propose selecting thmaxentropic distribution - X . .

. RO, o guantifies the ratio between the noise variaacand mass
subject to (1) under the intuition that it will be close to the'". . )
capacity at high SNRs. In other words, for a giver 0 point separationl/¢. A lower bound for the capacity of

' ' wireless optical IM/DD channels can be obtained as,

“(k; 0) = H
pa(kif) = arg max,  Helo) O =max  I5(z;y).

s.t  Egn. 1 is satisfied.

_ o ~ Note that, the optimum value fgt is a function ofP/o. For a
Applying the method of Lagrange multipliers, the solution igiven P/o, this maximization can be solved numerically using

given by, the bisection method over wide range @fo find C'..
. 1 (P \* The lower bound(';,, obtained from the proposed discrete
Pe(kil) = 1 p (1 n gp) : distributionp* (k; ) is tighter at both low and high SNR than

the previously reported bounds based on continuous distri-
Notice that althoughp?(k;¢) is a family of distributions butions. Although no analytical form is provided, the bound
parameterized i, P is independent of. Using this family can be computed efficiently through numerical integration. An
of distributions, the maximum mutual information obtaineddvantage of this approach, however, is that it avoids a costly
over this set will be a function of both ands. For a given search procedure to find the capacity achieving distribution. In
o there is an optimum value fdrthat maximizes the mutual addition, it provides a closed form for the input distribution
information. This results in a lower boun@y, for the channel p?(k; ).
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IV. CHANNEL CAPACITY UPPERBOUND A

Due to the non-negativity and average optical power con- /
straints, any sequence aftransmitted PAM symbols can be O (P,p)
represented geometrically as the set of points contained inside
a regularn-simplex [8]. For conditionally Gaussian channels,
the set of the received codewords approaches the parallel body nP
to this regulam-simplex for largen. However, the maximum
achievable rate can be upper bounded by the maximum
asymptotic number of non-overlapping spheres packed in this
volume, i.e. via a sphere packing argument. Unlike previous L »,
approaches, we use an exact expression for the volume of
the set of received codewords to compute the bound, yielding Fi npP——f
greater accuracy at low SNRs.

>
»

A. Set of Received Codewords and Volumes Fig. 1. Two-dimensional representation ofarsimplex and its parallel body
at distancep.

Consider transmitting a sequence wofindependent PAM
symbols to form the codeword = (z1,z2,...,2,). The
admissible set of transmitted codewords,P), is defined as, B. Volume Approximation

Since ®(P, p) results as the Minkowski sum of two sets,
analytic expressions exist to compute its volume. The volume
V(®(P, p)) can be expressed in terms of the intrinsic volumes
The setV is a regularn-simplex of equal side lengthsP v, (P) of ann-simplex as [9],
located at the origin as shown in Fig. 1. According to the .

Gaussian noise model presented, the received vectws a . nem
Gaussian distribution wiF:h mean as follows, Vie(p p)) = ;Vm(P)K”’mp ' 0

1
U(P) = R"™: i>07* ‘Z‘SP,‘:].,Q,.‘., .
(P)={x € T; > n;l 7 n}

Yy=x+=z, The V,,,(P) are given as,
wherez has i.i.d. Gaussian components. Defifig as then- Vo (P) — (nP)™ 8
dimensional ball. In the signal space representation, for large m(P) =vm m! (8)

enoughn, y will, with high probability, be on the surface of

o5, centered on: where where~,, =1 and when0 <m <n —1[9],

_ 2 _(n 1 n m+1
p=ynes Y= A ) gumm T \mr1) — 7
Define the setb(P, p) as the outer parallel body td(P) *  m? 1 n—m-—1
at distancep which results as the Minkowski sum @i (P) /0 € {1 - frfc(“)} dv. (9)

and pB,,. Formally,
The ratio of the outer volum& (®(P, p)) to the volume of

o(Pp)={yeR":y=x+b, x€ VY(P), bepB,}.  then-dimensional ballV(pB,) is thus,

The regions defined by (P) and (P, p) are illustrated in V(®(P,p)) Fnem Ym (MP\™
Fig. 1 for the two-dimensional case. An upper bound for the W = Z Tl (p) (10)
wireless optical IM/DD channel capacity can be obtained by " m=0 "

applying a sphere-packing argument and finding the maximumin order to find a simple analytic upper bound for the
number of non-overlapping spheres that can be packedcifannel capacityy,, needs to be simplified to a more compact
®(P,p) asn — oo. Let V(-) denote the volume of a closedform. Since(1 — erfc(v)) > 3 for v > 0 it follows that,

set. The volume op5,, is given by,

m + 1 > 7(1+ ) 2 ]. nom=1
/2 e vl — —erfe(v) dv > ——r0
V(pBp) = knp" = Wﬂn (5) VT Jo 2 anmm
) ) ) and (9) can be bounded as,
wherex,, denotes the volume of the-dimensional unit ball.
The maximum rate can be expressed in terms of the asymptotic n+1\ m+1
number of transmissible signals as, m m+1) " /x x
1 (I) P [e’) 1 n—m-—1
C< nlgrolo - log, W (6) /0 e~ (L+m)v? [1 — 2erfc(v)} dv.
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Consider the substitutiosrfc(v) = 2« and applying the bound C. Uniqueness of*

1 Consider the right hand side of (12). To simplify the

2 analysis, the natural logarithmic function is considered instead
of log, where the optimum value fo will not be affected.
Denote this term by/ where,

e~ (et @) o 0<u<

then~,, can be upper bounded as follows,

1/2
+1 ” m n—m-— 2
TYm < :rlz+1)(m+1)(\/é)n/0 w? (1 —u)""™ du, J=alnK —In[B(a)], K = Z—E
mw O
1
< (”+ 11) (m+ 1)(\/g)m/ w® (1 —u)"" dy In order to maximi;eJ With. respect tow, let 0J/0a = 0,
m+ 0 resulting in the cubic equation,
B(g+1ln-—m) A(@) = a® — ae® + 3aa — 2a = 0, (13)
1 m (FN(n—m —1)!
= <w¢zi 1) (m+1)(ve)™ =2 (=) where X
. 2 a:iexp(Zan—l)zO.

Proposition 1:For all o > 0, there exists a unique root for
(o), denoteda*, lying in the interval) < o* < 1.
Proof: Note that,A(0) = —2a < 0 and A(1) = 1. As

V(®(P, p)) i Ko A, (np)m _ i . a result, there exists at least one root/dix) in [0,1). The
P m=0

whereB(§ +1,n—m) is the beta function. Substituting into ,
(20) results in

extrema,w, anda_, of A(«) are,

V(pB,) Ko, !
m=0 1
Y ar =g (a + Va2 — 9a)
The capacity can be upper bounded as follows, The existence of these extrema ovBr depends ona as
1 V(®(P,p)) follows,
c<1 —1 _
S it n 082 V(pB,) No extrema a<9;
I 1 1 a+ — < One extrimum atx =3, a=09;
< Jim > logy[n max ] Two extrema a>9.
= lim 1 logy [max 1., To prove the existence of a unique root fbfa) in [0, 1), it
noeen 1 m is sufficient to prove that. > 1 for all values ofa > 0. For
= max lim — logy[tm] (11) a < 9, there are no extrema, and the single roof(nl) is

m n—oon

unique. Fora > 9, consider the following lemma.

where the last inequality is due to the monotonic increase of_emma 1:If a > 9 thenay > 1.

the log, (-) function. Let Proof: It is clear thatay > 3 whena > 9. In addition,
a_ is decreasing ie and its asymptotic value as— oo is

m=on O=axl, greater than one as follows,

then the capacity can be expressed as, da 1 ( 1 )
—=-|1-————— <0, whena >9
1 —a)n )‘om P on da 3 1 = ’ ’
C < max lim —log, Bz Zan (R0 1-9/a
a n—oon Rn (om)‘ 14 . 3
lim o == > 1.
Bounding the factorial using Stirling’s approximation amee 2
N N As a resulta > 1 whenevera > 9. |
21n (@> elm1) < nl < Vo (E) e(m7) Therefore, for all values o& > 0 there is a unique real root
€ ¢ for A(a) in [0,1) and is denoted as*. [ ]

results in the following upper bound .
g upp D. Expression for*

C < maxlog, K Z) () . (12) To find the unique rootv*, define
« m) \o/) O Ao = Aa/3), & = (a®—9a)/9, h =28
where, The following three cases are considered [10] to solve (13).
i (o) s (1-2) (i) A2 > h?%: One root exists for\(«) and is given by,
O(a)=a® (1—a) 2 (1_f) "
2 of = 2+ + 0, (14)

In the following we will show that there is a unique rddt s
a* < 1 that maximizes the capacity upper bound given in (12) 1 5 5
and explicitly derive a closed form expression for. where 0y = 2 <_A" £ VAS—h ) ‘
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[52]

(i) A%2 = h2: Two roots coincide and* depends on the sign
of A,, 45F
. . Ja A, 13 4 A, 1/3 4r
o =min -+ | — o — 2 — .
3 2 3 2 2 35l
(i) A% < h?%: Three distinct roots, and* is obtained as, ?'5; 3r Gaussian
2 % 25 ;
o = min a + 20 cos om +0 , 3 Exponential
i=0,1,2 | 3 3 > 2
Y -
where cos(30) = : g
h 1
The upper bound for the optical channel capacity can b
explicitly written as follows, 0%
€2 . P\ 1 e Plo 1
Cy =1 — — —_— 15

Fig. 2. Capacity bounds and mutual information for continuous one-sided

V. RESULTS exponential, Gaussian and discrete uniform PAM.

Fig. 2 presents the lower bound];, derived using the
discrete source distributiopr: (k; ¢) and the upper bound;;; analytical form is provided, the bound can be efficiently
in (15). The proposed lower bound is tight at both low andomputed numerically avoiding a search procedure to find
high SNRs and asymptotically describes the channel capacihe capacity achieving distribution. The proposed discrete
In addition, the mutual information is shown for one-sidedistribution achieves higher mutual information than the con-
continuous exponential and Gaussian input distributions whithuous one-sided exponential and Gaussian distributions or
satisfy non-negativity and average optical power constraintsliscrete uniformM/-ary distributions. In addition, an analytical

The lower bound proposed here, indicates that a significaxpression for a tight upper bound at low SNRs is derived
increase in rate is possible at low SNRs, where most wireldsased on a sphere packing argument. The asymptotic behavior
optical links operate. An SNR margin of 3.7 and 2 dB caaf the upper bound at high SNRs incurs a constant increase
be noticed betweet’;, and the bound obtained from the oneever the actual channel capacity. Since most wireless optical
sided exponential distribution, proposed in [5], at a channlgks operate at relatively low SNRs, the tightness of the
capacity of 0.5 and 1 bits/channel use respectively. In additiaferived lower and upper bounds at low SNRs provides a useful

the presented bound has approximately double the chanbehchmark for modulation and coding design.

capacity (0.85 and 0.45 respectively) at SNR=0 dB. For the
sake of comparison, the mutual information with uniform
M-ary source distributions are also presented. Notice that [&
significant gap of 3.5 dB exists betwegry, and the lower [
bound from a uniform (2-PAM) discrete source distribution at
C = 0.5 bits/channel use. 3l
The derived upper bound’y is tight at low SNRs and
asymptotically incurs an increase hfg,(1/e/2) in channel
capacity at high SNRs. Compared to the previous upper boun[q]
C% [5, Eq. 20],Cy is a significantly better representation for
the channel capacity at low SNRs. As a resal; is a better
metric for comparison at low SNRs (SNR-3.5 dB) overC?, 9]
since a majority of wireless optical IM/DD channels operate
in this low SNR regime. Note that, the unique redtdepends [6]
on SNR throughu. Numerical simulations indicate that (14) is 7]
utilized to findo* when SNR<9.9 dB. As a result, the upper
bound can be defined by (14) and (15) at low and moderate
SNRs. 8]

VI. CONCLUSION

Lower and upper bounds for the capacity of PAM wirelesg®]
optical IM/DD channels are derived. The proposed Iowq,[o]
bound is tight at both low and high SNRs. Although no
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