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Abstract— This paper finds asymptotically exact upper
and lower bounds on the channel capacity of power and
band-limited optical intensity channels corrupted by white
Gaussian noise. This work differs from the oft investigated
case of the Poisson photon counting channel in that not
only are rectangular pulse amplitude schemes considered,
but general results for all time-disjoint intensity modulation
schemes are presented. The role of bandwidth is expressed
by way of the effective dimension of the set of signals and
together with an average optical power constraint is used to
determine bounds on the spectral efficiency of time-disjoint
optical intensity signalling schemes. The signal independent,
additive white Gaussian noise model is realistic for indoor
free-space optical channels. The bounds show that at high
optical signal-to-noise ratios the use of bandwidth efficient
pulse sets is essential to achieve high spectral efficiencies.
This result can be considered as an extension of previous
work on photon counting channels which more closely model
low optical intensity channels.

I. Introduction

Previous investigations into the capacity of optical inten-
sity systems has focused primarily on channels in which the
dominant noise source is quantum in nature. In these chan-
nels the transmitted optical intensity is constant in discrete
time intervals. The received signal is modelled by a Pois-
son distributed count of the number of received photons in
each discrete interval. The capacity of such channels has
been reported under a variety of peak and average opti-
cal power constraints [1–4]. It has also been shown that
schemes based on photon counting in discrete intervals re-
quire an exponential increase in bandwidth as a function of
the rate (in nats/photon) for reliable communication [5].

In this work we present capacity bounds for a fundamen-
tally different optical intensity channel. The indoor free-
space optical channel can be modelled as a lowpass, linear
channel with additive, white, signal independent, Gaussian
noise [6]. Unlike previous treatments, capacity bounds are
computed for any time-disjoint modulation scheme under
a constraint on the bandwidth of any codeword.

II. The Optical Intensity Channel

Optical intensity channels transmit information by mod-
ulating the optical power of a laser or LED light source.
Take some optical intensity signal x(t) to be transmitted.
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The channel which is composed of the multipath response
of the room as well the electrical characteristics of the opto-
electronics can be modelled by a linear conversion between
optical and electrical domains [6]. The transmitted signal
is corrupted by noise which can be modelled as being ad-
ditive white Gaussian distributed [6]. Thus, the received
electrical signal, y(t) can be written as

y(t) = rx(t) + z(t)

where r > 0 is the responsivity of the photodiode in units
of Amperes per Watt and z(t) is zero mean AWGN. Since
the transmitted signal is an intensity, x(t) must satisfy ∀t
x(t) ≥ 0. Due to eye and skin safety regulations the average
optical power is limited, and hence the average amplitude
of x(t) is limited. The received electrical signal y(t) can
assume negative amplitude values.

Note that this channel model applies not only to free-
space optical channels but also to fiber optic links with neg-
ligible dispersion and signal independent, additive, white,
Gaussian noise.

III. Signal Space Model

The free-space optical channel can be viewed as a vec-
tor channel with respect to the time-disjoint, orthonor-
mal M -dimensional signal basis {φ1(t), φ2(t), . . . , φM (t)},
where φm(t) = 0 for t /∈ [0, T ). The vector channel can
then be represented as Y = X + Z, where each term is an
M -dimensional random vector distributed as fY(y), fX(x)
and fZ(z) respectively where Z is Gaussian with uncorre-
lated components. In order to adapt the signal space model
to the optical intensity channel, we specify

φ1(t) =
1√
T

, t ∈ [0, T ) (1)

as a basis function for every intensity modulation scheme
[7]. This basis function represents the average amplitude of
each symbol, and as a result represents the average optical
power of each symbol.

The admissible region of the optical intensity modulation
scheme is defined as the set of all points in the signal space
which describe non-negative pulses, or formally

Υ =

{
(υ1, υ2, . . . , υM ) ∈ RM : (∀t ∈ R),

M∑
m=1

υmφm(t) ≥ 0

}
.
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It can be shown that Υ is the convex hull of a generalized
N -cone with vertex at the origin [7]. Clearly fX(x) = 0
for x /∈ Υ to ensure the non-negativity constraint is met.
Additionally, since Υ is a generalized cone, it can be pa-
rameterized by the coordinate value in the φ1 direction as
well as the set of points

Υk = {(υ1, υ2, . . . , υN ) ∈ Υ : υ1 = k, k ∈ R, k ≥ 0}.

The average optical power, P , of an intensity signalling
set can then be computed as

rP =
1√
T

∫
x∈Υ

x1fX(x)dx (2)

=
1√
T

PG, (3)

where PG is the expected value of the x1 component of each
signal vector and depends solely on fX(x). Note that the
responsivity, r, allows the optical constraints to be cast in
terms of electrical quantities. In this case, rP is in units of
Amperes.

IV. Upperbound on Channel Capacity

An upper-bound on the capacity of a Gaussian noise cor-
rupted channel can be obtained by considering a sphere-
packing argument in the set of all received codewords while
imposing an average optical power constraint. This anal-
ysis is done in the same spirit as Shannon’s sphere pack-
ing argument for channels subject to an average electrical
power constraint [8]. Determining this bound requires that
the volume of the set of received codewords be computed
for a given average optical power limit.

A. Set of Transmitted Codewords

Consider transmitting a codeword x formed from a series
of N , M -dimensional symbols at a low probability of error.
Geometrically, in order for x to be transmittable, x ∈ ΥN

where ΥN is the N -fold Cartesian product of Υ with it-
self. Recall from Section III that Υ is the convex hull of
a generalized cone parameterized by the Υk cross-sections
at φ1 = k. The Cartesian product ΥN represents the set
of transmittable codewords formed by the concatenation in
time of N time-limited symbols. As a result, ΥN represents
a time-limited optical intensity scheme and is the convex
hull of a generalized cone with vertex at the origin [7]. In
an analogous fashion to (1), define the φMN

1 basis vector
as

φMN
1 =

1√
N

(1, 0, 0, . . . , 0︸ ︷︷ ︸
M

, 1, 0, 0, . . . 0︸ ︷︷ ︸
M

, 1, 0, 0, . . .)

︸ ︷︷ ︸
MN

(4)

so that it represents the average optical power of each MN -
dimensional codeword x ∈ ΥN . The region ΥN is then
parameterized by cross-sections for a given φMN

1 coordinate
value.

For a fixed symbol period T , assume that the average
optical power of each transmitted codeword is limited to

be at most PG/
√

T as defined in (3). In terms of the signal
space definition for Υ,

1
N

N∑
n=1

x1,n ≤ PG (5)

where x1,n is the coordinate value in the φ1 direction
for each constituent symbol. The transmitted NM -
dimensional vector x is taken from the set Θ(PG) =
ΥN ∩Ψ(PG) where Ψ(PG) is a hyperplane defined so that
the power constraint (5) is satisfied.

B. Set of Received Codewords

For some x ∈ Θ(PG), the received vector, Y is normally
distributed with mean x and variance equal to the noise
variance, σ2 per dimension. Let ΩMN denote the set of
all possible received vectors. By the law of large numbers,
with high probability Y will lie near the surface of a sphere
of radius

√
MN(σ2 + ε) where ε can be made arbitrarily

small by increasing N . A codeword is decoded by assigning
all vectors contained inside the sphere to the given code-
word.

Let the region Ω∞ = limN→∞ΩMN . This asymptotic
set can be formally represented as

Ω∞ = {x + b : x ∈ Θ(PG), b ∈ ρBMN}
= Θ(PG)⊕ ρBMN (6)

where
ρ =

√
MNσ2, (7)

the ⊕ operation is the Minkowski addition of two sets and
BMN is the MN -dimensional unit ball. Since Θ(PG) is
convex, Ω∞ is a parallel convex set of radius ρ, that is, the
set of all points with distance at most ρ from Θ(PG).

Clearly, Θ(PG) ⊂ Ω∞ since 0 ∈ BMN . Where ever the
boundary of Θ(PG) is smooth, the boundary points of Ω∞
are a subset of the points parallel to Θ(PG) at distance ρ
away. Form the parallel extension of Θ(PG) as the region
Θ(PG+pρ)−h, for some h, pρ > 0 as the set of points which
are at most distance of ρ away from Θ(PG) whenever the
boundary of Θ(PG) is smooth. At points of discontinu-
ity, that is, in the “corners” of the bodies in question, the
points in Ω∞ lie inside the parallel extension of Θ(PG) at
a distance ρ away due to the triangle inequality. In other
words,

Θ(PG) ⊂ Ω∞ ⊂ Θ(PG + pρ)− h. (8)

Let V (·) evaluate to the volume of the region. Since all
the regions are closed, an upperbound on V (Ω∞) can be
found using (8) to give,

V (Θ(PG + pρ)) > V (Ω∞) > V (Θ(PG)).

By exploiting the geometry of the regions, it is possible
to show that for large N , pρ = 2σ

√
M to give

V (Θ(PG+pρ)) = V (Υ1)N (M − 1)!N

(MN)!
(N(PG+2σ

√
M))MN .

(9)
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C. Upperbound Computation

The channel capacity in bits/symbol can be upper-
bounded using the sphere packing argument developed for
electrical power constrained channels [8]. The maximum
rate is upperbounded by the asymptotic number of non-
overlapping spheres that can be packed in ΩMN as N goes
to infinity. Using the previously defined regions,

Csym ≤ lim
N→∞

1
N

log2

V (ΩMN )
V (ρBMN )

≤ lim
N→∞

1
N

log2

V (Θ(PG + pρ))
V (ρBMN )

(10)

where the volume of the MN -ball can be written as

V (ρBMN ) =
πMN/2ρMN

(MN/2)!
.

Using (9) and taking the limit the capacity of the channel
can be upperbounded as

Csym ≤ M log2

[(√
T

rP

σ
+ 2

√
M

)
V (Υ1)1/M (M − 1)!1/M

M

√
e

2π

]
(11)

in units of bits/symbol for some symbol period T .

V. Lowerbound on Channel Capacity

A lower bound on the capacity of the optical intensity
channel can be found by computing the mutual informa-
tion between the channel input and output for any input
distribution. An asymptotically tight lower bound for high
optical SNR can be achieved if the maxentropic source dis-
tribution, subject to an average optical power constraint,
is used to compute this lower bound. It is possible to show
that this choice of source distribution causes the upper-
bound (11) and lower bound to converge at high optical
SNR.

Due to the signal space definition, the average optical
power depends solely on the φ1 coordinate and can be rep-
resented as in (2). By the maximum entropy principle, the
maxentropic source distribution subject to this constraint
must take the form f∗X(x) = K exp(−λx1), for x ∈ Υ and
for some K, λ > 0 [9]. The constants K and λ can be
found by using the form of the distribution and solving the
following ∫

x∈Υ

f∗X(x)dx = 1∫
x∈Υ

x1f
∗
X(x)dx = PG

to yield

f∗X(x) =
(

M

PG

)M 1
V (Υ1)(M − 1)!

exp
(
−M

x1

PG

)
(12)

for x = (x1, x2, . . . , xM ) ∈ Υ . Notice that f∗X(x) is a
function of solely the coordinate in the φ1 direction which

represents the average optical power of each symbol. The
conditional distribution for a given x1 = k is uniform over
all elements of Υk, which is entropy maximizing in the
absence of constraints.

VI. Bandwidth Constraint on Signal Space
Dimension

Previous results with rectangular pulses on the photon
counting channel demonstrated that the rate is unbounded
if the average optical power is the only constraint [1, 2].
Indeed, it is possible to show that signalling with arbitrarily
narrow rectangular pulses in a symbol interval of T at a
given average optical power causes the upperbound in (11)
to tend to infinity.

However, previous work on the photon counting channel
also indicated that this unbounded rate necessarily comes
at the price of an infinite bandwidth requirement [5]. It is
clear that in order to have a consistent bound or notion of
maximum rate for this channel that a bandwidth constraint
must be placed on the space of signals transmitted.

Imposing a bandwidth constraint on a set of time-limited
signals is not straight forward since the Fourier spectrum
is necessarily time-unlimited. Define the fractional power
bandwidth, WK , of a transmitted symbol x(t) with Fourier
transform X(f) as∫ WK

−WK
|X(f)|2df∫∞

−∞ |X(f)|2df
= K

where K ∈ (0, 1) is fixed to some value typically 0.99
or 0.999. The orthonormal family of prolate spheroidal
wave functions are time-limited functions which have for a
given K the minimum WK of all unit energy functions with
support in [0, T ) [10–12]. For signals x(t), approximately
κ = 2WKT prolate spheroidal wave functions are required
to represent the function with an error that tends to zero
as K → 1. Thus, κ can be regarded as the “essential”
dimension of the set of signals time-limited to [0, T ) with
fractional power bandwidth WK .

In order to bound the maximum rate possible, select the
the effective dimension value κ over all symbols in Υ so that
the rate is maximized. In light of the spectral constraint,
the capacity of the channel is expressed as a maximum
spectral efficiency in units of bits/second/Hertz, Cη as op-
posed to Csym in (11) which is in units of bits/symbol.
Spectral efficiency is a more appropriate measure of the
rate of since it combines important practical channel per-
formance measures of data rate and bandwidth. Thus the
upperbound on channel capacity in (11) can be represented
as a bound on the maximum spectral efficiency using the
effective dimension κ and (3) as,

Cη ≤ 2M

κ
log2

[(√
κ

2WK

rP

σ
+ 2

√
M

)
V (Υ1)1/M (M − 1)!1/M

M

√
e

2π

]
(13)

in units of bits/second/Hertz. Unlike the bandlimited case
where the dimension of each basis signal is one, here the
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Fig. 1. Bounds on the achievable spectral efficiencies using rectan-
gular PAM along with results for some uniform discrete constel-
lations.

dimension of each signal in the constituent constellation
must be computed. Define κ as the effective dimension of
signalling scheme as the maximum effective dimension over
all transmit symbols. In this manner, every signal in the
constellation can be represented in a κ dimensional space,
where some coordinates may be zero.

At high optical SNRs, the lower bound on capacity tends
to the true capacity since it is chosen to be the maxentropic
source distribution. It is possible to show that using this
bandwidth constraint the upper and lower capacity bounds
converge at high optical signal-to-noise ratios. As a re-
sult, we make the claim that the upper and lower capacity
bounds computed here are asymptotically exact.

VII. Examples and Discussion

A. PAM

Form an M -ary pulse-amplitude modulation scheme us-
ing the rectangular pulse shape of (1). Define the effective
dimension of the scheme using the 99% fractional power
bandwidth (K=0.99) to yield κPAM = 20.572.

Figure 1 presents the upper and the lower bounds on Cη

for the PAM scheme defined as well as spectral efficiency
curves for for discrete uniform 2, 4, 8 and 16 point constel-
lations versus optical SNR. These spectral efficiency curves
were computed numerically using Monte Carlo methods.

The upper bound on capacity is obtained by direct ap-
plication of (13) to give,

CPAM
η ≤ 2

κ
log2

[(√
κ

2W

rP

σ
+ 2

) √
e

2π

]
.

The lower bound on capacity was determined first by com-
puting fY(y), which takes the form

fY(y) = f∗X(x) ∗ fZ(z)

=
1

PG

(
1−Q

( y

σ
− σ

PG

))
exp

(
σ2 − 2y

2PG

)
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Fig. 2. Bounds on the achievable spectral efficiencies using optical
intensity raised-QAM along with results for some uniform discrete
constellations.

where Q(x)
4
= (1/

√
2π)

∫∞
x

exp(−u2/2)du. Since fY(y)
does not have a closed form in this case, computing the
mutual information explicitly is impossible. Figure 1 shows
the lower bound computed for a number of points. Note
that at high SNR the lower and upper bounds on capacity
approach one another.

B. Raised-QAM

An optical 3-dimensional raised-QAM scheme can be de-
fined by specifying φ1(t) as in (1) and

φ2(t) =

√
2
T

cos(2πt/T )

φ3(t) =

√
2
T

sin(2πt/T )

for t ∈ [0, T ) [7]. Figure 2 presents a plot of the upper
bound on capacity (13) for a 3-dimensional raised-QAM
scheme which takes the form

CQAM
η ≤ 6

κ
log2

[(√
κ

2W

rP

σ
+ 2

√
3
) √

e

18π1/3

]
.

Using the same definition of bandwidth, K = 0.99, κQAM =
27.038. As is the case with PAM, the lower bound must
be computed numerically. Unfortunately, computation of
fY(y) is difficult and the lower bound was computed us-
ing a discretized version of f∗X(x) (12) and integrated us-
ing Monte Carlo methods. The upper and lower bounds
approach one another at high optical SNRs Spectral effi-
ciency curves for 4, 16, 64 and 256 point uniform distribu-
tions were determined using Monte Carlo techniques and
are also presented.

C. Discussion

An important difference over the electrical channels is
that the upper and the lower bound depend explicitly on
the pulse set chosen. Thus, Cη is a measure of the maxi-
mum spectral efficiency of the optical channel for the given
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Fig. 3. Comparison of achievable spectral efficiencies using rectan-
gular PAM versus optical intensity raised-QAM.

pulse set. Indeed, in order to determine a bound on the
maximum spectral efficiency, Cη should be maximized over
all intensity pulse sets, that is, over all Υ. Some early work
on the photon counting channel demonstrated that narrow
pulse position techniques were optimal pulse techniques in
the sense of a given average distance measure [13,14]. Ca-
pacity results for the photon counting channel nearly ex-
clusively assume that rectangular pulse techniques are em-
ployed. Here the assumption on the shape of the pulses is
removed and the maximum spectral efficiencies are com-
puted for a given pulse set. However, the rate maximizing
pulse set for an optical intensity channel under an average
optical and bandwidth constraint is an open problem.

At high optical signal-to-noise ratios, pulse techniques
have lower maximum spectral efficiencies than bandwidth
efficient techniques. Figure 3 presents a comparison of the
capacity bounds derived earlier. Note that at high SNRs
signalling schemes based on the raised-QAM pulse set have
nearly twice the maximum spectral efficiency of the rect-
angular PAM techniques at a given SNR. At lower optical
SNR, the derived bounds are loose and do not reveal any
new insight. Indeed, at low SNR, when the available spec-
tral efficiencies tend to zero, rectangular pulse techniques
are attractive due to their ease of implementation.

VIII. Conclusions

We have derived capacity bounds for the optical inten-
sity channel with average optical power and bandwidth
constraints in Gaussian noise. These results complement
rather than contradict previous work on the Poisson pho-
ton counting channel. The photon counting channel can be
viewed as an optical system operating at low optical power
where the quantum nature of the photons dominates per-
formance. Rectangular pulse techniques are uniquely con-
sidered since the bandwidth of the channel is considered to
be very large.

In this work, we treat a fundamentally different channel.
Indoor free-space channels suffer from reduced bandwidth

due to multipath distortion and from white, Gaussian noise
due to high background illumination. The derived capac-
ity bounds are not restricted to pulse techniques, as in
previous work, but are general and treat all time-disjoint
optical intensity schemes. A bandwidth constraint is im-
posed on the set of signals that are transmitted by way of
determining the effective dimension of the space of time-
limited signals with a given fractional power bandwidth.
The derived capacity bounds demonstrate that for a given
average optical power, pulse techniques have significantly
lower maximum spectral efficiencies than bandwidth effi-
cient techniques. In particular, significant rate gains can
be had by using a raised-QAM pulse set over a rectangular
PAM at high optical signal-to-noise ratios.
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