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LECTURE 4: Fundamental Antenna Parameters 
(Radiation pattern. Pattern beamwidths. Radiation intensity. Directivity. Gain. 

Antenna efficiency and radiation efficiency. Frequency bandwidth. Input 

impedance and radiation resistance. Antenna effective area. Relationship 

between directivity and antenna effective area. Other antenna equivalent areas.) 
 
The antenna parameters describe the antenna performance with respect to space 
distribution of the radiated energy, power efficiency, matching to the feed 
circuitry, etc. Many of these parameters are interrelated. There are several 
parameters not described here, in particular, antenna temperature and noise 

characteristics. They are discussed later in conjunction with radio-wave 
propagation and system performance. 
 
1. Radiation Pattern 

Definitions: 

RPs are measured in the far-field region, where the angular distribution of the 
radiated power does not depend on the distance. We measure and plot either the 
field intensity, | ( , ) |θ ϕE∼ , or the power 2| ( , ) | /θ ϕ ηE∼  = 2| ( , ) |η θ ϕH . Usually, 
the pattern describes the normalized field (or power) values with respect to the 
maximum value. 

Note: The power pattern and the amplitude field pattern are the same when 
computed and plotted in dB. 

The pattern can be a 3-D plot (both θ  and ϕ  vary), or a 2-D plot. A 2-D plot 
is obtained as an intersection of the 3-D RP with a given plane, usually a 

.constθ =  plane or a .constϕ =  plane that must contain the pattern’s maximum. 
 

The trace of the angular variation of the magnitude of the electric (or 
magnetic) field at a constant radius from the antenna is called the amplitude 

field pattern. 

The radiation pattern (RP) (or antenna pattern) is the representation of a 
radiation property of the antenna as a function of the angular coordinates. 

The trace of the angular variation of the received/radiated power at a 
constant radius from the antenna is called the power pattern. 
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Plotting the pattern: the trace of the pattern is obtained by setting the distance 
from the origin in the direction ( , )θ ϕ  to be proportional to the strength of the 
field | ( , ) |θ ϕE  (in the case of an amplitude field pattern) or proportional to the 
power density 2| ( , ) |θ ϕE  (in the case of a power pattern). 
 

| | 1/ 2=r

sinθ
z

Elevation Plane: constϕ =

| | 1=r

45θ = �

 
 

 
Some concepts related to the pattern terminology 

a) Isotropic pattern is the pattern of an antenna having equal radiation in all 
directions. This is an ideal concept, which, strictly speaking, is achievable 
only approximately in a narrow frequency band. However, it is used to 
define other antenna parameters. It is represented simply by a sphere whose 
center coincides with the location of the isotropic radiator. 

b) Directional antenna is an antenna, which radiates (receives) much more 
efficiently in some directions than in others. Usually, this term is applied to 
antennas whose directivity is much higher than that of a half-wavelength 
dipole. 

c) Omnidirectional antenna is an antenna, which has a non-directional 
pattern in a given plane, and a directional pattern in any orthogonal plane 
(e.g. single-wire antenna). The pattern in the figure below is that of a dipole 
– it is omnidirectional. 
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Omnidirectional 3-D pattern 

 
d) Principal patterns are the 2-D patterns of linearly polarized antennas, 

measured in the E-plane (a plane parallel to the E vector and containing 
the direction of maximum radiation) and in the H-plane (a plane parallel to 
the H vector, orthogonal to the E-plane, and containing the direction of 
maximum radiation). 

 

[Balanis, 3rd ed.] 
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2-D patterns can be polar or rectangular, depending on the way the angle is 
depicted, and linear or logarithmic (in dB), depending on the chosen pattern 
scale. The plots below show the same 2-D pattern in 4 different formats. 

 
 

 
Polar Pattern (linear scale) 

 

Polar Pattern (dB scale, min @-60 dB) 

 
Rectangular Pattern (linear scale) 

 
Rectangular Pattern (dB) 
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e) Pattern lobe is a portion of the RP with a local radiation-intensity 
maximum and limits defined by neighboring nulls. Lobes are classified as: 
major, minor, side lobes, back lobes. 
 
 

 
J.D. Kraus and R.J. Marhefka, Antennas, 3rd. ed., Fig. 2-3 

 
2. Pattern Beamwidth 

Half-power beamwidth (HPBW) is the angle between two vectors, 
originating at the pattern’s origin and passing through these points of the major 
lobe where the radiation intensity is half its maximum. 
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First-null beamwidth (FNBW) is the angle between two vectors, originating 
at the pattern’s origin and tangent to the main beam at its base. Often, the 
approximation FNBW ≈ 2⋅HPBW is used. 

The HPBW is the best parameter to describe the antenna resolution 
properties. In radar technology as well as in radioastronomy, the antenna 
resolution capability is of primary importance. 
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3.  Radiation Intensity 

 

 
a) Solid angle 

One steradian (sr) is the solid angle with its vertex at the center of a sphere 
of radius r, which is subtended by a spherical surface of area r2. In a closed 
sphere, there are 4π  steradians. A solid angle is defined as 

 
2

S

r

ΩΩ = , sr (4.1) 

Note: The above definition is analogous to the definition of a 2-D angle in 
radians, /lωω ρ= , where lω  is the length of the arc segment supported by the 
angle ω  in a circle of radius ρ . 
 

 
The infinitesimal area ds on a surface of a sphere of radius r in spherical 
coordinates is 

 2 sinds r d dθ θ ϕ= , m2. (4.2) 

Therefore, 
 sind d dθ θ ϕΩ = , sr, (4.3) 

and 
 2ds r d= Ω . (4.4) 

 

Radiation intensity in a given direction is the power per unit solid angle 
radiated in this direction by the antenna. 
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b) Radiation intensity U 

The radiation intensity is the power radiated within unit solid angle: 

 
0

lim rad radd
U

d∆Ω→

∆Π Π
= =

∆Ω Ω
, W/sr. (4.5) 

The expression inverse to that in (4.5) is 

 
4

rad Ud

π

Π = Ω� , W. (4.6) 

From now on, we will denote the radiated power simply by Π . There is a direct 
relation between the radiation intensity U and the radiation power density P (that 
is the time-average Poynting vector magnitude in the far zone). Since 

 
2 2

1d d
P U

ds r d r

Π Π
= = =

Ω
, W/m2 (4.7) 

then 
 2U r P= ⋅  (4.8) 

It was already shown that the power density of the far field depends on the 
distance from the source as 1/r2, since the far field magnitude depends on r as 
1/r. Thus, the radiation intensity U depends only on the direction ( , )θ ϕ  but not 

on the distance r. 

In the far-field zone, the radial field components vanish, and the remaining E 
and H transverse components are in phase and have magnitudes related by 
 | | | |η=E H . (4.9) 

This is why the far-field Poynting vector has only a radial component and it is a 
real number showing the radiation power-flow density: 

 
2

2
2

1 1 | | 1
| |

2 2
radP P

r
η

η
= = =

E
H ∼ . (4.10) 

Then, for the radiation intensity, we obtain in terms of the electric field 

 ( )
2

2, | |
2

r
U θ ϕ

η
= E . (4.11) 

Equation (4.11) leads to a useful relation between the power pattern and the 
amplitude field pattern: 

The power pattern is a trace of the function | ( , ) |U θ ϕ  usually normalized to 
its maximum value. The normalized pattern will be denoted as ( , )U θ ϕ . 
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 [ ]
2

2 2 2 21
( , ) ( , , ) ( , , ) ( , ) ( , )

2 2 p p

r
U E r E r E Eϕθ θ ϕθ ϕ θ ϕ θ ϕ θ ϕ θ ϕ

η η
 = + = +  . (4.12) 

Here, ( , )
p

Eθ θ ϕ  and ( , )
p

Eϕ θ ϕ  denote the far-zone field patterns for the two 

orthogonal polarizations. 
 
Examples: 

1) Radiation intensity and pattern of an isotropic radiator: 

( )
2

, ,
4

P r
r

θ ϕ
π

Π
=  

( ) 2, .
4

U r P constθ ϕ
π

Π
= ⋅ = =  

( ), 1U θ ϕ = . 

The normalized pattern of an isotropic radiator is simply a sphere of a unit 
radius. 
 

2) Radiation intensity and pattern of an infinitesimal dipole: 

From Lecture 3, the far-field term of the electric field is: 

( )
sin ( , ) sin

4

j rI l e
E j E

r

β

θ

β
η θ θ ϕ θ

π

−⋅ ∆ ⋅
= ⋅  = , 

( )
222

2 2
2

| | sin
2 32

I lr
U

β
η θ

η π

⋅ ∆
= ⋅ = ⋅E , 

( ) 2, sinU θ ϕ θ = . 
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4. Directivity 

 
4.1. Definitions and examples 
 

 
It can be also defined as the ratio of the radiation intensity (RI) of the antenna in 
a given direction and the RI of an isotropic radiator fed by the same amount of 
power: 

 
( , ) ( , )

( , ) 4
av

U U
D

U

θ ϕ θ ϕ
θ ϕ π= =

Π
, (4.13) 

and 

max
max 0 4

U
D D π= =

Π
. 

The directivity is a dimensionless quantity. The maximum directivity is always 
1≥ . 

 
Examples: 

 

1) Directivity of an isotropic source: 

( )

( )
( )

0

0

, .

4

,
, 4 1

U U const

U

U
D

θ ϕ

π

θ ϕ
θ ϕ π

= =

 Π =

 = =
Π

 

0 1D = . 

Directivity of an antenna (in a given direction) is the ratio of the radiation 
intensity in this direction and the radiation intensity averaged over all 
directions. The radiation intensity averaged over all directions is equal to the 
total power radiated by the antenna divided by 4π . If a direction is not 
specified, then the direction of maximum radiation is implied. 
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2) Directivity of an infinitesimal dipole: 

( )
22

2
2

2 2

( , ) sin
32

( , ) sin ; ( , ) ( , ) sin

I l
U

U U M U M

β
θ ϕ η θ

π

θ ϕ θ θ ϕ θ ϕ θ

⋅ ∆
= ⋅

 = = ⋅ =

 

As per (4.6), 
2

2

4
0 0

8
sin sin

3
Ud M d d M

π π

π

π
θ θ ϕ θΠ = Ω = ⋅ ⋅ = ⋅  �  

2
2( , ) sin 3

( , ) 4 4 3 sin
8 2

U M
D

M

θ ϕ θ
θ ϕ π π θ

π
= = ⋅ =

Π ⋅
 

0 1.5D = . 

 

Exercise: Calculate the maximum directivity of an antenna with a radiation 
intensity sinU M θ= . (Answer: 0 4 / 1.27D π= ≈ ) 

 

The total directivity is the sum of the partial directivities for any two orthogonal 
polarizations: 

 D D Dθ ϕ= + , (4.14) 

where: 

4
U

D
θ

θ
θ ϕ

π=
Π + Π

, 

4
U

D
ϕ

ϕ
θ ϕ

π=
Π + Π

. 

The partial directivity of an antenna is specified for a given polarization of the 
field. It is defined as that part of the radiation intensity, which corresponds to 
a given polarization, divided by the total radiation intensity averaged over all 
directions. 
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4.2. Directivity in terms of normalized radiation intensity ( ),U θ ϕ  

 ( , ) ( , )U M Uθ ϕ θ ϕ= ⋅  (4.15) 

 
2

4 0 0

( , )sinUd M U d d

π π

π

θ ϕ θ ϕ θΠ = Ω = ⋅  �  (4.16) 

 
2

0 0

( , )
( , ) 4

( , )sin

U
D

U d d

π π

θ ϕ
θ ϕ π

θ ϕ θ ϕ θ

=

′ ′ ′ ′ ′ 
 (4.17) 

For the maximum directivity 0D , we have 0 0( , ) 1U θ ϕ = ; therefore, 

 0 2

0 0

1
4

( , )sin

D

U d d

π π
π

θ ϕ θ ϕ θ

=

 
. (4.18) 

This expression is used to compute the directivity of an antenna from its 
measured and normalized power pattern. In this computation, the integral in the 
denominator is represented as a discrete sum. 

 
4.3. Beam solid angle AΩ  

 
2

0 0

( , )sinA U d d

π π

θ ϕ θ ϕ θΩ =    (4.19) 

The relation between the maximum directivity and the beam solid angle is 
obvious from (4.18) and (4.19): 

 0 4 / AD π= Ω . (4.20) 

In order to understand how (4.19) is obtained, follow the derivations below 
(they reflect the mathematical meaning of the definition above): 

 0 0

4

assumed constant 
radiation intensity

A

AUd U d U

π Ω

Π = Ω = Ω = Ω 
�������

�  

The beam solid angle AΩ  of an antenna is the solid angle through which all 

the power of the antenna would flow if its radiation intensity were constant and 
equal to the maximum radiation intensity 0U  for all angles within AΩ . 
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2

4

0 4 0 0

( , )sinA

Ud

Ud U d d
U

π π
π

π

θ ϕ θ ϕ θ

Ω

 Ω = = Ω =


  
�

� . 

 

4.4. Approximate expressions for directivity 

The complexity of the calculation of the antenna directivity 0D  depends on 
the power pattern ( , )U θ ϕ , which has to be integrated over a spherical surface. 
In most practical cases, this function is not available in closed analytical form 
(e.g., it might be a data set). Even if it is available in closed analytical form, the 
integral in (4.18) may not have a closed analytical solution. In practice, simpler 
although not exact expressions are often used for approximate and fast 
calculations. These formulas are based on the two orthogonal-plane half-power 
beamwidths (HPBW) of the pattern. The approximations for the directivity are 
usually valid for highly directive (pencil-beam) antennas such as large reflectors 
and horns. 

 
a) Kraus’ formula 
For antennas with narrow major lobe and with negligible minor lobes, the 

beam solid angle AΩ  is approximately equal to the product of the HPBWs in two 
orthogonal planes: 

 1 2AΩ = Θ Θ , (4.21) 

where the HPBW angles are in radians. Another variation of (4.21) is 

 0

1 2

41000
D

Θ Θ� �
≃ , (4.22) 

where 1Θ�  and 1Θ�  are in degrees. 

 
b) Formula of Tai and Pereira 

 0 2 2
1 2

32ln 2
D

Θ + Θ
≃  (4.23) 

The angles in (4.23) are in radians. For details see: C. Tai and C. Pereira, “An 
approximate formula for calculating the directivity of an antenna,” IEEE Trans. 

Antennas Propagat., vol. AP-24, No. 2, March 1976, pp. 235-236. 
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5. Antenna Gain 

 

 
in

( , )
( , ) 4

U
G

θ ϕ
θ ϕ π=

Π
 (4.24) 

The gain is a dimensionless quantity, which is very similar to the directivity D. 
When the antenna has no losses, i.e. when inΠ = Π , then ( , ) ( , )G Dθ ϕ θ ϕ= . 
Thus, the gain of the antenna takes into account the losses in the antenna system. 
It is calculated using the input power Πin, which can be measured directly. In 
contrast, the directivity is calculated via the radiated power Π . 

There are many factors that can worsen the transfer of energy from the 
transmitter to the antenna (or from the antenna to the receiver): 

• mismatch losses, 
• losses in the transmission line, 
• losses in the antenna: dielectric losses, conduction losses, polarization 

losses. 
The power radiated by the antenna is always less than the power fed to it, i.e., 

inΠ ≤ Π , unless the antenna has integrated active devices. That is why, usually, 

G D≤ . 

According to the IEEE Standards, the gain does not include losses arising 

from impedance mismatch and from polarization mismatch. 

Therefore, the gain takes into account only the dielectric and conduction losses 
of the antenna itself. 

The radiated power Π is related to the input power Πin through a coefficient 
called the radiation efficiency e: 

 in , 1e eΠ = ⋅ Π ≤ , (4.25) 

 ( , ) ( , )G e Dθ ϕ θ ϕ = ⋅ . (4.26) 

Partial gains with respect to a given field polarization are defined in the same 
way as it is done with the partial directivities; see equation (4.14). 

The gain G of an antenna is the ratio of the radiation intensity U in a given 
direction and the radiation intensity that would be obtained, if the power fed 
to the antenna were radiated isotropically. 

!
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6. Antenna Efficiency 

The total efficiency of the antenna te  is used to estimate the total loss of 
energy at the input terminals of the antenna and within the antenna structure. It 
includes all mismatch losses and the dielectric/conduction losses (described by 
the radiation efficiency e  as defined by the IEEE Standards): 

 	t p r c d p r

e

e e e e e e e e= = ⋅ . (4.27) 

Here:  er is the reflection (impedance mismatch) efficiency, 
           ep is the polarization mismatch efficiency, 
           ec is the conduction efficiency, 
           ed is the dielectric efficiency. 
The reflection efficiency can be calculated through the reflection coefficient Γ  
at the antenna terminals: 

 21 | |re = − Γ . (4.28) 

Γ  can be either measured or calculated, provided the antenna impedance is 
known: 

 in c

in c

Z Z

Z Z

−
Γ =

+
. (4.29) 

inZ  is the antenna input impedance and cZ  is the characteristic impedance of the 

feed line. If there are no polarization losses, then the total efficiency is related to 
the radiation efficiency e as 

 ( )21 | |te e= ⋅ − Γ . (4.30) 

 

 

7. Beam Efficiency 

1 12 2

0 0 0 0

2

0 0

beam

( , )sin ( , )sin

( , )sin
A A

U d d U d d

BE

U d d

π π

π π

θ ϕ θ θ ϕ θ ϕ θ θ ϕ

θ ϕ θ θ ϕ

Θ Θ

Ω
= = =

Ω Ω

   

 
 (4.31) 

The beam efficiency is the ratio of the power radiated in a cone of angle 12Θ  

and the total radiated power. The angle 12Θ  can be generally any angle, but 

usually this is the first-null beam width (the FNBW of the main lobe). 



 

Nikolova 2023 17

If the antenna has its main beam directed along the z-axis ( 0θ = ) and if 1Θ  is the 
angle where the first null occurs in two principal planes, formula (4.31) defines 
the main-beam efficiency and the BE will show what part of the total radiated 
power is channeled through the main beam. 

Very high beam-efficiency antennas are needed in radars, radiometry and 
radioastronomy. 
 

 

8.  Frequency Bandwidth (FBW) 

Antenna characteristics, which should conform to certain requirements, might 
be: input impedance, radiation pattern, beamwidth, polarization, side-lobe level, 
gain, beam direction, beamwidth, radiation efficiency. Separate bandwidths may 
be introduced: impedance bandwidth, pattern bandwidth, etc. 

The FBW of broadband antennas is expressed as the ratio of the upper to the 
lower frequencies, where the antenna performance is acceptable: 

 max minFBW /f f= . (4.32) 

Broadband antennas with FBW as large as 40:1 have been designed. Such 
antennas are referred to as frequency independent antennas. 

For narrowband antennas, the FBW is expressed as a percentage of the 
maximum and minimum frequency difference over the center frequency: 

 max min

0

FBW 100
f f

f

−
= ⋅  %. (4.33) 

Usually, ( )0 max min / 2f f f= +  or 0 max minf f f= . 

 

This is the range of frequencies, within which the antenna characteristics 
(input impedance, pattern) conform to certain specifications. 
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9. Input Impedance 

 A A AZ R jX= +  (4.34) 

Here, AR  is the antenna resistance and AX  is its reactance. Generally, the antenna 
resistance has two terms: 

 A rad lossR R R= + , (4.35) 

where radR  is the radiation resistance and lossR  is the loss resistance. 

The antenna impedance is related to the radiated power radΠ ≡ Π , the 
dissipated (loss) power lossΠ , and the stored reactive energy as: 

 rad loss m e
A *

0 0

2 ( )

0.5

j W W
Z

I I

ωΠ + Π + −
= . (4.36) 

Here, 0I  is the current phasor at the antenna terminals; mW  is the time-average 
(stored) magnetic energy, and eW  is the time-average electric energy, both stored 
in the near-field region. When the stored magnetic and electric energy values are 
equal, a condition of resonance occurs and the reactive part of AZ  vanishes. For 
a thin dipole antenna, this occurs when the antenna length is close to a multiple 
of a half wavelength. 
 
9.1. Radiation resistance 

The radiation resistance relates the radiated power to the voltage (or current) 
at the antenna terminals. For example, in the Thevenin equivalent of the antenna, 
the following holds: 

 2
rad 2 / | | ,R I= Π Ω . (4.37) 

 

Example: Find the radiation resistance of an infinitesimal dipole in terms of the 
ratio ( / )l λ∆ . 

 
We have already derived the radiated power of an infinitesimal dipole in Lecture 
3, as: 

 
2

id

3

I lπ
η

λ

∆ 
Π =  

 
 (4.38) 

 
2

id
rad

2

3

l
R

π
η

λ

∆ 
 =  

 
. (4.39) 
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9.2. Equivalent circuits of the transmitting antenna 
 
 

 
 

gV

gR

gX

AX

lR

rR

 
 

gI gG gB AB lG rG

 
 
 
 

In the above model, it is assumed that the generator is connected to the antenna 
directly. If there is a transmission line between the generator and the antenna, 
which is usually the case, then g g gZ R jX= +  represents the equivalent 
impedance of the generator transferred to the input terminals of the antenna. 
Transmission lines themselves often have significant losses. 
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Reminder: The impedance transformation by a long transmission line is given 
by 

 L 0
in 0

0 L

tanh( )

tanh( )

Z Z L
Z Z

Z Z L

γ

γ

 +
=  + 

. (4.40) 

Here, 0Z  is the characteristic impedance of the line, γ  is its propagation constant, 

LZ  is the load impedance, and inZ  is the input impedance. In the case of a loss-
free line, 

 L 0
in 0

0 L

tan( )

tan( )

Z jZ L
Z Z

Z jZ L

β

β

+
=

+
, (4.41) 

since jγ β= . To avoid infinite values of the tangent function in case Lβ = / 2π

nπ+ , the input-impedance formula is often used in the form 

 L 0
in 0

0 L

cos( ) sin( )

cos( ) sin( )

Z L jZ L
Z Z

Z L jZ L

β β

β β

+
=

+
. (4.42) 

 
Maximum power is delivered to the antenna when conjugate matching of 

impedances is achieved: 

 
A loss rad g

A g

,

.

R R R R

X X

= + =

= −
 (4.43) 

Using circuit theory, we can derive the following formulas in the case of matched 
impedances: 

a) power delivered to the antenna 

 
( )

2
g

A
rad loss

| |

8

V
P

R R
=

+
 (4.44) 

b) power dissipated as heat in the generator 

 
( )

2 2
g g

g A
g rad loss

| | | |

8 8

V V
P P

R R R
= = =

+
 (4.45) 

c) radiated power 

 
( )

2
g rad

rad 2
rad loss

| |

8

V R
P

R R
Π = =

+
 (4.46) 

d) power dissipated as heat in the antenna 

 
( )

2
g loss

loss 2
rad loss

| |

8

V R
P

R R
=

+
. (4.47) 



 

Nikolova 2023 21

9.3. Equivalent circuits of the receiving antenna 
 

antenna

load LZ

(b) Norton equivalent

AB lG rGLG LB AI

(a) Thevenin equivalent

lR
a

b

LR

LX

AX

rR

AV

AI

 
 
The incident wave induces voltage AV  at the antenna terminals (measured 

when the antenna is open circuited). Conjugate impedance matching is required 
between the antenna and the load (the receiver) to achieve maximum power 
delivery: 

 
L A loss rad

L A

,

.

R R R R

X X

= = +

= −
 (4.48) 
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For the case of conjugate matching, the following power expressions hold: 
a) power delivered to the load 

 
2 2

A A
L

L A

| | | |

8 8

V V
P

R R
= =  (4.49) 

b) power dissipated as heat in the antenna 

 
2

A loss
loss 2

A

| |

8

V R
P

R
=  (4.50) 

c) scattered (re-radiated) power 

 
2

A rad
rad 2

A

| |

8

V R
P

R
=  (4.51) 

d) total captured power 

 
( )

2 2
A A

c
rad loss A

| | | |

4 4

V V
P

R R R
= =

+
 (4.52) 

When conjugate matching is achieved, half of the captured power cP  is 
delivered to the load (the receiver) and half is antenna loss. The antenna losses 
are heat dissipation lossP  and reradiated (scattered) power radP . When the antenna 
is non-dissipative (loss-free), half of the power is delivered to the load and the 
other half is scattered back into space. Thus, a receiving antenna is also a 
scatterer. 

The antenna input impedance is frequency dependent. Thus, it is 

matched to its load in a certain frequency band. It can be influenced by 

the proximity of objects, too. 

 
9.4. Radiation efficiency and antenna losses 

The radiation efficiency e  takes into account the conductor and dielectric 
dissipative losses of the antenna. It is the ratio of the power radiated by the 
antenna and the total power delivered to the antenna terminals (in transmitting 
mode). In terms of equivalent circuit parameters, 

 rad

rad loss

R
e

R R
=

+
. (4.53) 

Some useful formulas to calculate conduction losses are given below: 

a) dc resistance per unit length 

!
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 dc
1

, Ω/mR
Aσ

′ =  (4.54) 

σ  - specific conductivity, S/m 
A – conductor’s cross-section, m2. 

 
b) high-frequency surface resistance 

At high frequencies, the current is confined in a thin layer at the conductor’s 
surface (skin effect). This thin layer, called the skin layer, has much smaller 
cross-section than that of the conductor itself. Its effective thickness, known as 
the skin depth or penetration depth, is calculated as 

 
1

f
δ

π σµ
≈ , m, (4.55) 

in the case of very good conductors, where f  is the frequency in Hz, and µ  is 
the magnetic permeability in H/m. Remember that (4.55) holds for very good 
conductors only ( / 1σ ωε >> ). The exact definition of the skin depth is 1/ ,δ α=
where Re( )α γ= , i.e., it is inverse proportional to the attenuation constant of the 
conducting medium. Here, jγ ω µε= , ( )/jε ε ε σ ω′ ′′= − + . Due to the 
exponential decay of the current density in the conductor as xe α−∼ , where x 
denotes the distance from the surface, it can be shown that the total current I 
flowing along the conductor (along z) is 

 0 0 0 s

0

1
x

S C C C C

I d J e dxdc dJ JJ dc c dcα

α
δ

∞

−= ⋅ = = = =     J s  (4.56) 

where 0J  is the current density at the conductor surface (in A/m2), s 0J J δ=  is 
the equivalent surface current density (in A/m), and C is the contour of the 
conductor’s cross-section. If the equivalent surface current density sJ  is 
distributed uniformly on the contour of the conductor’s cross-section, then 

sI J p= , where p is the perimeter of the conductor (or the length of its cross-
sectional contour). 

The surface resistance sR  (in Ω ) is defined as the real part of the intrinsic 
impedance of the conductor cη , which in the case of very good conductors can 
be found to be 

 s c
1

Re
2

f
R

µω µπ
η

σ σ σδ
= ≈ = = , Ω  . (4.57) 
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For the case where the current density is uniformly distributed on the conductor’s 
cross-sectional contour, we can find a simple relation between the high-

frequency resistance per unit length hfR′  of a conducting rod, its cross-sectional 
perimeter p and its surface resistance sR : 

 hf
hf

s11
R

A p p

R

σδσ
′ = = = , Ω/m . (4.58) 

Here the area hfA pδ=  is not the actual cross-
sectional area of the conducting rod but the 
effective area through which the high-frequency 
current flows. 

 
 
If the surface current distribution is not uniform over the contour of the 

conductor’s cross-section, hfR′  appears as a function of sR  and this distribution. 
The surface density of the loss power in a good conductor is 

 2
s s

1
| |

2
p R= Jℓ  W/m2. (4.59) 

Then, the power loss per unit length is 

 

2

s 2 2
s hf hf s

1 1
| | | |

2 2 2
C C C

R
P p dc dc R I R dc

 
′ ′ ′= = = =   

 
  J Jℓ ℓ  W/m. (4.60) 

It then follows that 

 

2
s

hf s 2

s

| |

| |

C

C

dc

R R

dc

′ =
 
  
 





J

J

 Ω/m . (4.61) 

The above expression reduces to (4.58) if sJ  is constant over C. 

 
Example: A half-wavelength dipole (fed at its center) is made of copper 

7( 5.7 10σ = ×  S/m). Determine the radiation efficiency e , if the operating 
frequency is 100f =  MHz, the radius of the wire is 410b λ−= , and the radiation 
resistance is rad 73 .R = Ω  

 

δ

p

hfA pδ=
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810f =  Hz 3
c

f
λ = ≈  m 1.5

2
l

λ
 = ≈  m 

4 4 42 2 10 2 10 3 6 10p bπ π λ π π− − −= = = × = × , m. 

If the current along the dipole were uniform, the high-frequency loss power 
would be uniformly distributed along the dipole. However, the current has 
approximately a sine distribution along a dipole as we will discuss in Lecture 9: 

 0( ) sin | | ,
2 2 2

l l l
I z I z zβ

  
= − − ≤ ≤    

. (4.62) 

Equation (4.58) can be now used to express the high-frequency loss resistance 
per wire differential element of infinitesimal length dz : 

 

s

0
hf hf

R

dz f
dR R dz

p

µ π

σ
′= =

�����

. 

The high-frequency loss power per wire element of infinitesimal length dz  is 
then obtained as 

 

hf

02
hf

1
( ) ( )

2

dR

dz f
dP z I z

p

µ π

σ
= ⋅

�����

. 

The total loss power is obtained by integrating along the dipole’s length. The 
symmetry in the current distribution along z means that the two arms of the dipole 
dissipate the same amount of power. Thus, 

/2 2
00 2

hf

0

1
2 sin

2 2

l
I l f

P z dz
p

µ π
β

σ

  
= − ⋅    
 , 

/22
00 2

hf

0

sin
2

l
I f l

P z dz
p

µ π
β

σ

  
 = ⋅ −    

 . 

Changing variable as 

 
2

l
x zβ

 
= − 

 
 

results in 

hf

/2
02

hf 0

0

1 1 1 cos2

2

l

R

l f x
P I dx

p l

β
µ π

σ β

  −
= ⋅ ⋅ 

 


�������

, 
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2

hf02
hf hf0

1 sin( ) sin( )
1 1

4 4

I Rl l l
P I R

l l l

β β

β β

   
 = ⋅ ⋅ − = −   

   
. (4.63) 

Since 2
hf loss00.5P I R=  ( lossR  being the loss resistance of the dipole), we obtain 

 0
hloss f

1 sin( ) 1 sin( )
1 1

2 2

l l
R

l l

l f
R

p

µ π

σ

β β

β β

   
= − = −   

   
. (4.64) 

In the case of / 2l λ= , lβ π=  and sin( ) 0lβ = , which leads to 

0
loss hf0.5 0.5 0.349

l f
R R

p

π µ

σ
= = = Ω . 

The antenna efficiency is: 

rad

rad loss

73
0.9952

73 0.349

R
e

R R
= = =

+ +
 (99.52%) 

[dB] 1010log 0.9952 0.02e = = − . 

 
 

The formula (4.64) that we derived in the example above assumed that the 
loss power depends on the current as 2

hf loss00.5P I R= , which in turn implies that 

the current at the center-feed point has a value of 0I . This may not always be the 

case. Note that 0I  is the magnitude of the sinusoidal current distribution in (4.62) 

assumed for the dipole. What if the dipole is shorter than half-wavelength, 
/ 2l λ< ? The current at the center of the dipole (the feed point) will be smaller 

than 0I . From (4.62), it follows that this feed-point current is 

 c 0( 0) sin(0.5 )I z I I lβ= = = . (4.65) 

Note that in the case of a half-wavelength dipole, lβ π=  and, indeed, c 0.I I=

For the case where / 2l λ≠ , the case of / 2l λ<  included, we can employ the 
expression (4.63) for hfP , where we replace 0I  with the expression for cI  in 

(4.65): 

 
2

hf02 2 2
hf c loss loss0

1 1 sin( )
sin (0.5 ) 1

2 2 4

I R l
P I R I l R

l

β
β

β

 
= = = − 

 
, (4.66) 

where 

 0
hf

l f
R

p

µ π

σ
= . (4.67) 

It follows that the loss resistance is now 
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 hf
loss 2

sin( )
1

2sin (0.5 )

R l
R

l l

β

β β

 
= − 

 
. (4.68) 

The above formula is general as it applies for any length l of a dipole as long as 
the dipole is center-fed. 
 
 
10. Effective Area (Effective Aperture) Ae 
 

 /e A iA P W= , (4.69) 

where 

eA  is the effective aperture, m2, 

AP  is the power delivered from the antenna to a matched load, W, 

iW  is the power flux density (Poynting vector) of the incident wave, W/m2. 

 
Using the Thevenin equivalent of a receiving antenna, we can show that 

equation (4.69) relates the antenna impedance and its effective aperture as 

 
( ) ( )

2 2

2 2

/ 2

2

| | | |A A

r l L A

L L
e

i i L

R R
A

W W

I V

R R R X X + + + +
 

= = ⋅ . (4.70) 

Under conditions of conjugate matching ( A r l LR R R R= + = , A LX X= − ), 

 
( )

2| | 1

8

A L

A
e

i r l

R R

V
A

W R R

=

=
+

�����

. (4.71) 

For aperture type antennas, the effective area is smaller than the physical area 
of their aperture. Antennas with constant field amplitude and phase distribution 
across their aperture have the maximum possible effective area, which, in the 
case of aperture antennas, is practically equal to their physical aperture area. The 
effective aperture of wire antennas is much larger than the surface of the wire 

The effective antenna aperture is the ratio of the available power at the 
terminals of the antenna (operating in receiving mode) to the power flux 
density of a plane wave incident upon the antenna, where the plane wave is 
matched to the antenna polarization. If no direction of incidence is specified, 
the direction of the antenna’s maximum radiation is implied, which is also this 
antenna’s direction of best reception. 
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itself. Sometimes, the aperture efficiency of an antenna is provided as the ratio 
of the effective antenna aperture and its physical area: 

 e
ap

p

A

A
ε = . (4.72) 

 
Example: A uniform plane wave is incident upon a very short dipole. Find the 
effective area eA  assuming that the radiation resistance is ( )

2
80 /rR lπ λ=  Ω  

and that the field is linearly polarized along the axis of the dipole. Compare eA  
with the physical surface of the wire if / 50l λ=  and / 300d λ= , where d  is the 
wire’s diameter. 

 
Since the dipole is very short, we can neglect the conduction losses. Wire 
antennas do not have dielectric losses. Therefore, we assume that 0lR = . Under 

conjugate matching (which is implied unless specified otherwise), 

 
2| |

8
A

e

i r

V
A

W R
= . 

The dipole is very short and we can assume that the E-field intensity is the same 
along the whole wire. Then, the voltage created by the induced electromotive 
force of the incident wave is 

 | |AV l= ⋅E . 

The Poynting vector has a magnitude of 2| | /(2 )iW η= E . Then, under conditions 

of conjugate matching, see (4.71), 

 2
2

2 2 2| | 3
0.11

2
9

8 | 8|
e

r

l
A

R

λ
λ

π

η⋅ ⋅
= = = ⋅

⋅ ⋅E

E
. 

The physical surface of the dipole is 

 3 2 4 210 2.1 10
300 50 15

pA dl
λ λ π

π π λ λ− −= = = = × ⋅ . 

The aperture efficiency of this dipole is then 

4

0.119
568.2

2.1 10
e

ap

p

A

A
ε

−
= = =

×
. 

 

 
It is evident from the above example, that the aperture efficiency is not a suitable 
parameter for wire antennas, which have very small surface area. However, the 
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effective area is still a useful parameter for wire antennas as it has direct relation 
with the directivity, as discussed next. 
 
11. Relation Between Directivity 0D  and Effective Aperture eA  

The simplest derivation of this relation goes through two stages. 

Stage 1: Using reciprocity, prove that the ratio 0 / eD A γ=  is the same for any 

antenna. 

Consider two antennas: A1 and A2. Let A1 be the transmitting antenna, and A2 
be the receiving one. Let the distance between the two antennas be R. The power 
flux density generated by A1 at A2 is 

 1 1
1 24

D
W

Rπ

Π
= . 

Here, 1Π  is the total power radiated by A1 and 1D  is the directivity of A1. The 
above follows directly from the definition of directivity: 

 
2

2( , ) (4 ( , )
( , ) 4 ( , )

, )

4

D
D

R W

R

U
W

θ ϕ θ ϕπ θ ϕ
θ ϕ π θ ϕ

π

Π
= =  =

Π Π
. 

The power received by A2 and delivered to its load is 

 
2 2

1 1
1 2 1 24

e e

D
P A W A

Rπ
→

Π
= = , 

where 
2eA  is the effective area of A2. 

 2

1 22
1

1

4e

P
D A Rπ → =

Π
. 

Now, let A1 be the receiving antenna and A2 be the transmitting one. We can 
derive the following: 

 1

2 12
2

2

4e

P
D A Rπ →=

Π
. 

If 1 2Π = Π , then, according to the reciprocity principle in electromagnetics♣, 

1 2 2 1P P→ →= . Therefore, 

 
2 1

1 2

1 2
1 2  .e e

e e

D D
D A D A

A A
γ=  = =  

 
♣ Reciprocity in antenna theory states that if antenna #1 is a transmitting antenna and antenna #2 is a receiving antenna, then the 
ratio of transmitted to received power Tx Rx/P P  will not change if antenna #1 becomes the receiving antenna and antenna #2 
becomes the transmitting one. 
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We thus proved that γ  is the same for every antenna. 

 
Stage 2: Find the ratio 0 / eD Aγ =  for an infinitesimal dipole. 

The directivity of a very short dipole (infinitesimal dipole) is id
0 1.5D =  (see 

Examples of Section 4, this Lecture). The effective aperture of an infinitesimal 
dipole is id 2

e 3 / (8 )A λ π=  (see the Example of Section 10, this Lecture). Then, 

 0

2

1.5
8

3e

D

A
γ π

λ
= = ⋅ , 

 0

2

4

e

D

A

π
γ

λ
= = . (4.73) 

Equation (4.73) is true if there are no dissipation, polarization mismatch, and 
impedance mismatch in the antenna system. If these are present, then 

 	
0

2
2 2

0ˆ ˆ(1 | | ) | |
4

e w a

G

A eD
λ

π

 
= − Γ ⋅  

 
ρ ρ . (4.74) 

From (4.20) and (4.73), we can obtain a simple relation between the antenna 
beam solid angle AΩ  and Ae: 

 
2 2

0
4

e

A

A D
λ λ

π
= =

Ω
. (4.75) 

 
12. Other Antenna Equivalent Areas 

Before, we have defined the antenna effective area (or effective aperture) Ae 
as the area, which when multiplied by the incident wave power density Wi, 
produces the power delivered to the load (the terminals of the antenna) AP . In a 
similar manner, we define the antenna scattering area sA . It is the area, which 
when multiplied with the incident wave power density, produces the re-radiated 
(scattered) power: 

 
2|

2

|As r
s

i i

IP R
A

W W
= = , m2. (4.76) 

In the case of conjugate matching, 
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, m2. (4.77) 
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The loss area is the area, which, when multiplied by the incident wave power 
density, produces the dissipated power of the antenna. 

 
2|

2

|Al l
l

i i

IP R
A

W W
= = , m2. (4.78) 

In the case of conjugate matching, 
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r

l l
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i i Al

V
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R V R
A

W W R+
= = , m2. (4.79) 

The capture area is the area, which when multiplied with the incident wave 
power density, produces the total power intercepted by the antenna: 

 
2| | ( )

2
t A r l L

c

i i

P I R R R
A

W W

+ +
= = . (4.80) 

In the case of conjugate matching, 

 
2 2 2

2 2

| | ( ) | | ( ) | | 1

8 ( ) 8 4
A r l L A A L A

c

i r l i i AA
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A
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+ + +
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+
. (4.81) 

The capture area is the sum of the effective area, the loss area and the 
scattering area: 

 
2

2 2

| | 1

8
A l r

c e l s

i A A A

V R R
A A A A
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 
= + + = + + 
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. (4.82) 

When conjugate matching is achieved, we have from (4.71) that 

 
2| | 1

8
A

e

i A

V
A

W R
= . (4.83) 

Comparing (4.83) with (4.77), (4.79) and (4.82), we see that 
 0.5e l s cA A A A= + = . (4.84) 

If conjugate matching is achieved for a loss-free antenna, then 
 0.5e s cA A A= = . (4.85) 

The results in (4.84) and (4.85) suggest that even under optimal conditions for 
delivering power to the receiver (conjugate match), only one-half of the power 
captured by the antenna is delivered. The other half is simply scattered back into 
space if the antenna is loss-free. If the antenna has loss, a portion of this other 
half of the captured power (corresponding to 0.5Ac) is scattered back into space 
and the other portion is dissipated. 


