ASSIGNMENT 1

Review of Transmission Line Basics

(due Thursday Sep. 15, 2022)

1. (50 points) The parallel-plate transmission line shown in the figure has dimensions b = 4 mm and d = 2 mm. The medium between the plates is characterized by $\mu_r = 1$, $\varepsilon_r = 9.8$, $\sigma = 0$ S/m. Neglect fringing and the field outside the dielectric. Given the TEM-wave electric field

 $\mathbf{E}(z,t) = \hat{\mathbf{y}} 5 \cos(2\pi 10^9 t - \beta z), \, \text{V/m}$

find:

- (a) $\beta (\beta > 0);$
- (b) the intrinsic impedance η of the medium between the plates;
- (c) the magnetic field $\mathbf{H}(z,t)$;
- (d) the average transmitted power density \mathbf{p}_{av} (give direction and magnitude);
- (e) the displacement current density $\mathbf{J}_D(t) = \partial \mathbf{D} / \partial t$ at z = 0;
- (f) the displacement current $I_D(t)$ crossing the surface y = 0.5d, $0 \le x \le b$, $0 \le z \le 0.01$ m, in the y direction;
- (g) the voltage of the line V(z,t);
- (h) the current of the line I(z,t);
- (i) the characteristic impedance Z_0 of the transmission line;
- (j) the total power transmitted through the line P.

2. (20 points) An antenna has an impedance $Z_A = 50 + j100 \ \Omega$ at $f_0 = 300$ MHz. It is connected to the receiver through a loss-free coaxial cable of length L=1.25 m, characteristic impedance $Z_0=50 \ \Omega$ and a phase constant equal to the free-space wave number: $\beta = k = 2\pi / \lambda_0$. What is the impedance "seen" by the receiver?

3. (30 points) A low-loss optical cable has a loss of 3 dB/km. Assume that the strength of the signal V_0 at a distance $D_0=0.001$ km provided by the transmitter is the same regardless of whether the transmission is realized through the optical cable or through a wireless link (in air). Determine the distance D, after which the wireless link would provide a stronger signal.

Hints: A nonlinear equation needs to be solved: use the mathematical package of your preference (possible MATLAB function is fzero).