ASSIGNMENT 1

Review of Transmission Line Basics

(due Thursday Sep. 15, 2022)

1. (50 points) The parallel-plate transmission line shown in the figure has dimensions $b=4 \mathrm{~mm}$ and $d=2 \mathrm{~mm}$. The medium between the plates is characterized by $\mu_{r}=1, \varepsilon_{r}=9.8, \sigma=0 \mathrm{~S} / \mathrm{m}$. Neglect fringing and the field outside the dielectric. Given the TEM-wave electric field

$$
\mathbf{E}(z, t)=\hat{\mathbf{y}} 5 \cos \left(2 \pi 10^{9} t-\beta z\right), \mathrm{V} / \mathrm{m}
$$

find:
(a) $\beta(\beta>0)$;
(b) the intrinsic impedance η of the medium between the plates;
(c) the magnetic field $\mathbf{H}(z, t)$;
(d) the average transmitted power density $\mathbf{p}_{a v}$ (give direction and magnitude);
(e) the displacement current density $\mathbf{J}_{D}(t)=\partial \mathbf{D} / \partial t$ at $z=0$;
(f) the displacement current $I_{D}(t)$ crossing the surface $y=0.5 d, 0 \leq x \leq b, 0 \leq z \leq 0.01 \mathrm{~m}$, in the y direction;
(g) the voltage of the line $V(z, t)$;
(h) the current of the line $I(z, t)$;
(i) the characteristic impedance Z_{0} of the transmission line;
(j) the total power transmitted through the line P.

2. (20 points) An antenna has an impedance $Z_{A}=50+j 100 \Omega$ at $f_{0}=300 \mathrm{MHz}$. It is connected to the receiver through a loss-free coaxial cable of length $L=1.25 \mathrm{~m}$, characteristic impedance $Z_{0}=50 \Omega$ and a phase constant equal to the free-space wave number: $\beta=k=2 \pi / \lambda_{0}$. What is the impedance "seen" by the receiver?
3. (30 points) A low-loss optical cable has a loss of $3 \mathrm{~dB} / \mathrm{km}$. Assume that the strength of the signal V_{0} at a distance $D_{0}=0.001 \mathrm{~km}$ provided by the transmitter is the same regardless of whether the transmission is realized through the optical cable or through a wireless link (in air). Determine the distance D, after which the wireless link would provide a stronger signal.
Hints: A nonlinear equation needs to be solved: use the mathematical package of your preference (possible MATLAB function is fzero).

