ASSIGNMENT 9
 (due Thursday December 1, 2022)

1. (50 points) A $\lambda / 20$-dipole (triangular current distribution) is placed vertically at a height of $h=2 \lambda$ above an infinite electric ground plane. Determine analytically the angles (between zero and $\pi / 2$ radians) where all nulls of its pattern occur.

Explore the pattern of this arrangement with $F E K O$ using a perfect infinite ground plane. Use thin wire segments and an operating frequency of $f_{0}=300 \mathrm{MHz}$. Provide plots with the $F E K O$ output. Comment if differences exist between the FEKO model and the analytical solution.

NOTE: To observe the pattern nulls well, increase the number of samples in the elevation pattern when requesting the far field from FEKO.
2. (50 points) A horizontal $\lambda / 20$-dipole (triangular current distribution) is placed parallel to the x-axis a distance $h=\lambda / \sqrt{2}$ above an infinite electric ground plane. Determine:
(a) the radiation resistance,
(b) the direction of maximum radiation $\left(\theta_{m}, \phi_{m}\right)$,
(c) the maximum directivity,
(d) the nulls of the pattern in the $\varphi=0$ plane.

Confirm all calculations above with FEKO simulations and summarize the observed discrepancies.

