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LECTURE 3:  Radiation from Infinitesimal (Elementary) Sources 

(Radiation from an infinitesimal dipole. Duality of Maxwell’s equations. 

Radiation from an infinitesimal loop. Radiation zones.) 
 
1. Radiation from Infinitesimal Dipole (Electric-current Element) 

 
Definition: The infinitesimal dipole is a straight line segment of length l∆ , 
which is much smaller than the radiation wavelength λ, l λ∆ ≪  (Δl < / 50λ ), 
and which supports constant current distribution I along its length. The assumed 
positive direction of the current I determines the orientation of the line segment: 

ˆl∆ = ∆l i . 
The infinitesimal dipole is mathematically described by a current element: 

dQ
Id d

dt
= −l l . 

A current element is best illustrated by a very short 
(compared to λ) piece of infinitesimally thin wire with 
constant current I. The ideal current element is difficult to 
realize in practice, but a good approximation of it is the 
short top-hat antenna. To realize a uniform current 
distribution along the wire, capacitive plates are added to 
provide enough charge storage at the end of the wire, so 
that the current is not zero there. 
 
1.1. Magnetic vector potential due to a current element 

The magnetic vector potential (VP) A due to a linear 
source is (see Lecture 2): 
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If we assume that the dipole’s length l∆  is much smaller than the distance from 
its center to the observation point P, then PQR r≈  holds both in the exponential 
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Equation (3.3) gives the vector potential due to an electric current element 
(infinitesimal dipole). This is an important result because the field radiated by 

any complex antenna in a linear medium is a superposition of the fields due to 

the current elements on the antenna. 
We represent A with its spherical components. In antenna theory, the 

preferred coordinate system is the spherical one. This is because the far field 
radiation is of interest where the field dependence on the distance r from the 
source is decoupled from its angular dependence. This angular dependence is 
described conveniently in terms of the two angles in the spherical coordinate 
system (SCS) ϕ  and θ . Also, this field propagates radially (along r̂ ) when the 

source is located at the origin of the coordinate system.  
The transformation from rectangular to spherical vector components is: 

 

sin cos sin sin cos

cos cos cos sin sin

sin cos 0

r x

y

z

A A

A A

A A

θ

ϕ

θ ϕ θ ϕ θ

θ ϕ θ ϕ θ

ϕ ϕ

     
     = −     
   −       

. (3.4) 

Applying (3.4) to A in (3.3) produces 
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Note that: 
1) A does not depend on ϕ  (due to the cylindrical symmetry of the dipole); 

2) the dependence on r, /j re rβ− , is separable from the dependence on θ . 
 

1.2. Field vectors due to current element 

Next we find the field vectors H and E from A. 

a) 
1

µ
= ∇ ×H A               (3.6) 

The curl operator is expressed in spherical coordinates to obtain 
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Thus, the magnetic field H has only a ϕ -component, i.e., 
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b) 
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In spherical coordinates, the E field components are: 
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Notes: 1) Equations (3.8) and (3.10) show that the E and H field vectors due to 

the current element are given by quite complicated expressions unlike 
that for the VP A in (3.3). The use of the VP instead of the field vectors 
is often advantageous in antenna studies. 

2) The field vectors contain terms, which depend on the distance from 
the source as 1/r, 1/r2 and 1/r3; the higher-order terms can be neglected 
at large distances from the dipole. 
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3) The longitudinal r̂ -component of the E field vector decreases fast as 
the field propagates away from the source (as 1/r2 and 1/r3): it is 
neglected in the far zone. The longitudinal H field component of the 
infinitesimal electric dipole is zero everywhere. 

4) The nonzero transverse field components, Eθ  and Hϕ , are orthogonal 
to each other, and they have terms that depend on the distance as 1/r. 
These terms relate through the intrinsic impedance η  and they describe a 
TEM wave. They represent the so-called far field which satisfies the 
Sommerfeld vector radiation boundary conditions. The concept of far 
field will be re-visited later, when the radiation zones are defined. 

 
1.3. Power density and overall radiated power of the infinitesimal dipole 

The complex Poynting vector P describes the complex power-flux density. In 
the case of infinitesimal dipole, it is 
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Substituting (3.8) and (3.10) into (3.11) yields 
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The overall power Π  is calculated over a sphere, and, therefore, only the radial 
component Pr contributes: 
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The radiated power is equal to the real part of the complex power (the time-
average of the total power flow, see Lecture 2). Therefore, the radiated power of 
an infinitesimal electric dipole is 
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Here, we introduce the concept of radiation resistance rR , which describes 

the power loss due to radiation in the equivalent circuit of the antenna: 
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Note that (3.17) holds only for an infinitesimal dipole, i.e., when the current is 
assumed constant over the length l∆  of the dipole. 
 
2. Duality in Maxwell’s Equations 

Duality in electromagnetics means that the EM field is described by two sets 
of quantities, which correspond to each other in such a manner that substituting 
the quantities from one set with the respective quantities from the other set in any 
given equation produces a valid equation (the dual of the given one). 

We deduce these dual sets by comparing the equations describing two dual 
fields: the field of electric sources and the field of magnetic sources. Note that 
duality exists even if there are no sources present in the region of interest. Tables 
2.1 and 2.2 summarize the duality of the EM equations and quantities. 
 
 

TABLE 2.1.  DUALITY IN ELECTROMAGNETIC EQUATIONS 

Electric sources ( )0, 0≠ =J M  Magnetic sources( )0, 0= ≠J M  
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TABLE 2.2.  DUAL QUANTITIES IN ELECTROMAGNETICS 
given E H J M A F ε  µ  η  1 /η  β  

dual H −E M −J F −A µ  ε  1 /η  η  β  

 
 

3. Radiation from Infinitesimal Magnetic Dipole (Electric-current Loop) 

3.1. The vector potential and the field vectors of a magnetic dipole (magnetic 
current element) mI l∆  

Using the duality theorem, the field of a magnetic dipole mI l∆  is readily found 

by a simple substitution of the dual quantities in equations (3.5), (3.8) and (3.10) 
as per Table 2.2. We denote the magnetic current, which is the dual of the electric 
current I, by Im (measured in volts). 
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(b) the electric field of the magnetic dipole 
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(c) the magnetic field of the magnetic dipole 
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3.2. Equivalence between a magnetic dipole (magnetic current element) and an 
electric current loop 

First, we prove the equivalence of the fields excited by particular 
configurations of electric and magnetic current densities. We write Maxwell’s 
equations for the two cases: 

(a) electric current density (EM field 1) 

 
1 1

1 1

j

j
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−∇× =

∇× = +

E H

H E J
 (3.21) 

 2
1 1 jω µε ωµ ∇ × ∇ × − = −E E J  (3.22) 

 
(b) magnetic current density (EM field 2) 
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 (3.23) 

 2
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If the boundary conditions (BCs) for 1E  in (3.22) are the same as the BCs for 2E  

in (3.24), and the excitations of both fields fulfill 
jωµ = ∇ ×J M ,      (3.25) 

then both fields are identical, i.e., 1 2≡E E  and 1 2≡H H . 

Consider a loop [L] of electric current I. Equation (3.25) can be written in its 
integral form as 

[ ]CS C

j d dωµ ⋅ = ⋅ J s M l� .     (3.26) 
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The integral on the left side is the electric current I. M in a magnetic dipole is 
non-zero and constant only at the section l∆ , which is normal to the loop’s plane 
and passes through the loop’s centre. Then, 

j I M lωµ = ∆ .      (3.27) 

The magnetic current mI  corresponding to the loop [L] is obtained by multiplying 
the magnetic current density M by the area of the loop [ ]LA , which yields 

[ ]L mj IA I lωµ = ∆ .      (3.28) 

Thus, we show that a small loop of electric current I and of area A[L] creates EM 

field equivalent to that of a small magnetic dipole (magnetic current element) 

mI l∆ , such that (3.28) holds. 

Here, it was assumed that the electric current is constant along the loop, which 
is true only for very small loops ( 0.1a λ< , where a  is the loop’s radius and the 
loop has only 1 turn). If the loop is larger, the field expressions below are 
inaccurate and other solutions should be used. We will discuss the loop antennas 
in more detail in a dedicated lecture. 
 
3.3. Field vectors of an infinitesimal loop antenna 

The expressions below are derived by substituting (3.28) into (3.19)-(3.20): 
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 0rE E Hθ ϕ= = = . (3.32) 

The far-field terms (1/r dependence on the distance from the source) show the 
same behaviour as in the case of an infinitesimal dipole antenna: (1) the electric 
field Eϕ  is orthogonal to the magnetic field Hθ ; (2) Eϕ  and Hθ  relate through η
; (3) the longitudinal r̂  components have no far-field terms. 

The dependence of the Poynting vector and the complex power on the 
distance r is the same as in the case of an infinitesimal electric dipole. The 
radiated power can be found to be 

( )24 / 12rad IAηβ πΠ = .     (3.33) 
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4. Radiation Zones – Introduction 

The space surrounding the antenna is divided into three regions according to 
the dominant field behaviour. The boundaries between the regions are not distinct 
and the field behaviour changes gradually as these boundaries are crossed. In this 
course, we are mostly concerned with the far-field characteristics of the antennas. 

Next, we illustrate the three radiation zones through the field of the small 
electric dipole. 

 
4.1. Reactive near-field region 

This is the region immediately surrounding the antenna, where the reactive 

field dominates and the angular field distribution is different at different 

distances from the antenna. For most antennas, it is assumed that this region is a 
sphere with the antenna at its centre, and with a radius 

3
RNF 0.62 /r D λ≈ ,     (3.34) 

where D is the largest dimension of the antenna, and λ  is the wavelength of the 
radiation. The above expression will be derived in Section 5. It must be noted 
that this limit is most appropriate for wire and waveguide aperture antennas while 
it is not valid for electrically large reflector antennas. 

At this point, we discuss the general field behaviour making use of our 
knowledge of the infinitesimal electric-dipole field. When (3.34) is true, r is 
sufficiently small so that 1rβ ≪  (note that D λ≪  for the infinitesimal dipole). 
Then, the most significant terms in the field expressions (3.8) and (3.10) are 
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This approximated field is purely reactive (H and E are in phase quadrature). 
Since 1j re β− ≈  we see that: (1) Hϕ  has the distribution of the magnetostatic field 
of a current filament I l∆  (remember Bio-Savart’s law); (2) Eθ  and rE  have the 
distribution of the electrostatic field of a dipole. 
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That the field is almost purely reactive in the near zone is obvious from the 
power equation (3.14). Its imaginary part is 

{ }
( )
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1
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3

I l

r

π
η

λ β

∆ 
Π = −  
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.    (3.36) 

{ }Im Π  dominates over the radiated power, 

{ }
2

rad Re
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I lπ
η

λ

∆ 
Π = Π =  

 
,    (3.37) 

when 0r →  because 1rβ ≪  and radΠ  does not depend on r.  

The radial component of the near-field Poynting vector rP  has negative 
imaginary value and decreases as 1/r5: 

2 2
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The near-field Pθ  component is also imaginary and has the same order of 

dependence on r but it is positive: 
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4.2. Radiating near-field (Fresnel) region 

This is an intermediate region between the reactive near-field region and the 
far-field region, where the radiation field is more significant but the angular field 
distribution is still dependent on the distance from the antenna. In this region, 

1rβ ≥ . For most antennas, it is assumed that the Fresnel region is enclosed 
between two spherical surfaces: 

3 22
0.62

D D
r

λ λ
≤ ≤ .     (3.41) 

Here, D is the largest dimension of the antenna. This region is called the Fresnel 

region because its field expressions reduce to Fresnel integrals. 
The fields of an infinitesimal dipole in the Fresnel region are obtained by 

neglecting the higher-order (1/βr)n-terms, n ≥ 2, in (3.8) and (3.10): 
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The radial component rE  is not negligible yet but the transverse components Eθ  
and Hϕ  are dominant. 
 
4.3. Far-field (Fraunhofer) region 

Only the terms 1/ r∼  are considered when 1rβ ≫ . The angular field 
distribution does not depend on the distance from the source any more, i.e., the 
far-field pattern is already well established. The field is a transverse EM wave. 
For most antennas, the far-field region is defined as 

22 /r D λ≥ .      (3.43) 
The far-field of the infinitesimal dipole is obtained as 
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The features of the far field are summarized below: 
1) no radial components; 
2) the angular field distribution is independent of r; 
3) ⊥E H ; 
4) E Hθ ϕη= ; 

5) * 2 2ˆ ˆ( ) / 2 0.5 | | / 0.5 | |E Hθ ϕη η= × = =P E H r r .   (3.45) 
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5. Region Separation and Accuracy of the Approximations 

In most practical cases, a closed form solution of the radiation integral (the 
VP integral) does not exist. For the evaluation of the far fields or the fields in the 
Fraunhofer region, standard approximations are applied, from which the 
boundaries of these regions are derived. 

Consider the VP integral for a linear current source: 

( )
4

j R

L

e
I l d

R

βµ

π

−

′

′ ′= A l ,    (3.46) 

where 2 2 2( ) ( ) ( )R x x y y z z′ ′ ′= − + − + − . The observation point is at ( , , )P x y z  
and the source point is at ( , , )Q x y z′ ′ ′ , which belongs to the integration line L′ . 

So far, we have analyzed the infinitesimal dipole whose current is constant 
along L′ . In practical antennas, the current distribution is not constant and the 
solution of (3.46) can be very complicated depending on the vector function 

( )I l d′ ′l . Besides, because of the infinitesimal size of this source, the distance R 
between the integration point and the observation point was considered constant 
and equal to the distance from the centre of the dipole, 2 2 2 1/2( )R r x y z≈ = + + . 
However, if maxD  (the maximum dimension of the antenna) is larger and 
commensurate with the wavelength λ , the error, especially in the phase term 

,Rβ  due to the above assumption for R would be unacceptable. 
Let us divide the integral kernel /j Re Rβ−  into two factors: (1) the amplitude-

decay factor ( )1/ R , and (2) the phase-delay factor j Re β− . The amplitude factor 
is not very sensitive to errors in R. In both, the Fresnel and the Fraunhofer 
regions, the approximation 

1/ 1 /R r≈       (3.47) 
is acceptable, provided maxr D>> . 

The approximation R r≈ , however, is unacceptable in the phase term. To 

keep the phase term error low enough, the maximum error in ( )Rβ  must be 

kept below / 8 22.5π = � . 
Neglect the antenna dimensions along the x- and y-axes (infinitesimally thin 

wire). Then, 

 ( )
22 20x y R x y z z′ ′ ′= =  = + + − , (3.48) 

 ( ) ( )2 2 2 2 2 22 ' 2 cosR x y z z zz r z rz θ′ ′ ′ = + + + − = + − ⋅ . (3.49) 
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Using the binomial expansion,♣ R is expanded as 

( ) ( ) ( ) ( ) ( )

( ) ( )

1/2 1/2 3/2 22 2 2 2 2

5/2 32 2

1 1 1 1
2 cos 2 cos

2 2 2 2

1 1 3 1
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2 2 2 6

R r r z rz r z rz
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θ θ

θ
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−

 ′ ′ ′ ′= + − + − − 
 

   ′ ′+ − − − +  
  

⋯

 

2 2 2
3 2 3

2

cos 1
cos cos sin

2 2 2

z z
R r z z O

r r r

θ
θ θ θ

′ ′
′ ′ = − + − + + .  (3.50) 

3O  denotes terms of the order (1/r3) and higher. Neglecting these terms and 
simplifying further leads to the approximation 

2 2 3 2
2

1 1
cos sin cos sin

2 2
R r z z z

r r
θ θ θ θ′ ′ ′≈ − + + .   (3.51) 

This expansion is used below to mathematically define the reactive near-field 
region, the radiating near-field region, and the far-field region. 
 

(a) Far-field approximation 

Only the first two terms in the expansion (3.51) are taken into account: 
cosR r z θ′≈ − .     (3.52) 

 

r

R

( , , )P r θ ϕ

/2D

( ')Q z

θ
'θ

'ϕ ϕ=

 

(a) z-oriented dipole of length D 

 

♣ ( ) 1 2 2 3 3( 1) ( 1)( 2)

2! 3!

n n n n nn n n n n
a b a na b a b a b

− − −− − −
+ = + + + +⋯ 
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r

R
( , , )P r θ ϕ

/2D

( ')Q z

'θ θ=

'ϕ ϕ=

'cosz θ

 
(b) z-oriented dipole: far-field approximation 

 
The most significant error term in R that was neglected in (3.52) is 

2
21 ( )

( ) sin
2

z
e r

r
θ

′
= , 

which has its maximum at / 2θ π=  and max / 2z z D′ ′= = : 

 
2

max
max

( )
( )

2

z
e r

r

′
= . (3.53) 

The minimum r, at which the phase error ( )Rβ  is below / 8π , is derived from: 
2

max( )

2 8

z

r

π
β

′
⋅ ≤ . 

Thus, the smallest distance from the antenna centre r, at which the phase error is 
acceptable is 

far 2
min 2 /r D λ= .      (3.54) 

This is the far-zone limit defined in (3.43). 
As a word of caution, sometimes equation (3.54) produces too small values, 

which are in conflict with the assumptions made before. For example, in order 
the amplitude-factor approximation 1/ 1/R r≈  to hold, the ratio of the maximum 
antenna dimension D and the distance R must fulfill / 1D R≪ . Otherwise, the 
first-order approximation based on the binomial expansion is too inaccurate.   

Besides, in order to neglect all field components except the far-field ones, the 
condition r λ≫  must hold, too. Therefore, in addition to (3.54), the calculated 



 

Nikolova 2023 15

inner boundary of the far-field region should comply with two more conditions: 
 andr D r λ≫ ≫ . (3.55) 

Finally, we can generalize the far-zone limit as 
 ( )far 2

min max 2 / ,  2 ,  2r D Dλ λ= ∼ ∼ . (3.56) 

 
(b) Radiating near-field (Fresnel region) approximation 

This region is adjacent to the Fraunhofer region, so its upper boundary is 
specified by 

far 2
min 2 /r r D λ≤ = .      (3.57) 

When the observation point belongs to this region, we must take one more term 
in the expansion of R as given by (3.51) to reduce sufficiently the phase error. 
The approximation this time is 

2 21
cos sin

2
R r z z

r
θ θ′ ′≈ − + .    (3.58) 

The most significant error term is 
3

2
2

1
cos sin

2

z
e

r
θ θ

′
= .     (3.59) 

The angles oθ  must be found, at which e has its extrema: 

( )
3

2 2
2

sin sin 2cos 0
2

e z

r
θ θ θ

θ

′∂
= − + =

∂
.   (3.60) 

The roots of (3.60) are 

( )

(1)

(2),(3)

0 min,

arctan 2 54.7 max  .

o

o

θ

θ

= →

= ± ≈ ± →�
   (3.61) 

Following a procedure similar to case (a), we obtain: 
3 3

(2) (2)2
max 2 2

3

max max2

2 1 2
( ) cos sin ,

2 3 3

( ) ,  note: / 2
812 3

o o

z z
e r

r r

D
e r z D

r

π π
β θ θ

λ λ

π π
β

λ

′ ′
= ⋅ =

′ = ≤ =

 

3 32
0.62

3 3

D D
r

λ λ
 ≥ ≈ .    (3.62) 

Equation (3.62) states the lower boundary of the Fresnel region (for wire 
antennas) and is identical to the left-hand side of (3.41). 


