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Lecture 5: Polarization and Related Antenna Parameters 

(Polarization of EM fields – revision. Polarization vector. Antenna polarization. 

Polarization loss factor and polarization efficiency.) 
 
1. Introduction and Definition 

The polarization of the EM field describes the orientation of its vectors at a 
given point and how it varies with time. In other words, it describes the way the 
direction and magnitude of the field vectors (usually E) change in time. 
Polarization is associated with TEM time-harmonic waves where the H vector 
relates to the E vector simply by ˆ /η= ×H r E . This is why it suffices to know 
the polarization of the E vector only. 

In antenna theory, we are concerned with the polarization of the field in the 
plane orthogonal to the direction of propagation (the polarization plane)—this is 
the plane defined by the far-zone vectors E and H. Remember that the far field 
is a quasi-TEM field. 

 

 
According to the shape of the trace, three types of polarization exist for 

harmonic fields: linear, circular and elliptical. Any polarization can be 
represented by two orthogonal linearly polarized fields, ( ˆ ˆ,x yE Ex y ) or ( ,H VE E ), 
which, in general, may have different magnitudes and phases. As far as phases 
are concerned, what matters is their phase difference L y xδ ϕ ϕ= − . 
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The polarization is the locus traced by the extremity of the time-varying field 
vector at a fixed observation point. 

(a) linear polarization (b) circular polarization (c) elliptical polarization 
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• If L nδ π=  (n is integer), the field is linearly polarized, i.e., the locus traced 
by the tip of the E vector as time flows is a line since 

 ˆ ˆ( ) ( )cos( )x yt E E tω= ±E x y . (5.1) 

The magnitude of the total field is 2 2
m x yE E E= +  whereas the tilt angle 

of the polarization (relative to the x axis) is arctan( / )y xE Eτ = ± . 

 

   

   
Animation: Linear Polarization, 0Lδ = , x yE E=  
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• If / 2 (90 )Lδ π= °  and x ym m= , then the field is circularly polarized. 

 [ ] [ ]ˆ ˆ ˆ ˆ( ) cos( ) cos( / 2) cos( ) sin( )t m t t m t tω ω π ω ω= + ± = ±E x y x y  (5.2) 

Here, m is the magnitude of each field component. 

    
Animation: Clockwise Circular Rotation 

 
• In the most general case, the polarization is elliptical. 

 

   
Animation: Counter-clockwise Elliptical Rotation 

 
Also, any type of polarization can be represented by a right-hand and a left-

hand circularly polarized field components ( LE , RE ), instead of two orthogonal 
linearly polarized field components. Note that, in a mathematical sense, LE  and 

RE  are also orthogonal.  [Animation] 
Next, we delve into the mathematical description of the above statements and 

definitions, and introduce the new concept of polarization vector. 

2 1 / 2t tω ω π= +1tω

/ 2tω π=0tω =
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2. Field Polarization in Terms of Two Orthogonal Linearly Polarized 

Components 

The polarization of any field can be represented by the superposition of two 
orthogonal linearly polarized fields. Assume that a far-field wave propagates 
along the z-axis. The far-zone field vectors have only transverse components. 
Then, the set of two orthogonal linearly polarized fields along the x-axis and 
along the y-axis, is sufficient to represent any TEMz field. We use this 
arrangement to introduce the concept of polarization vector. 

The field (time-dependent or phasor vector) is decomposed into two 
orthogonal components: 
 x y x y= +  = +e e e E E E , (5.3) 

 
( )
( )

ˆ ˆcos  
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x x x x
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β

β δ

ω β

ω β δ

−

−

= − =


= − + =

e x E x
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 (5.4) 

At a fixed position (assume 0z = ), the equations (5.3) can be written as 

 
ˆ ˆ( ) cos cos( )

ˆ ˆ L

x y L

j
x y

t E t E t

E E e δ

ω ω δ= ⋅ + ⋅ +

 = ⋅ + ⋅

e x y

E x y
 (5.5) 

 
Case 1:  Linear polarization: , 0,1,2,L n nδ π= = …  
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x y

x y
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 (5.6) 
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Case 2: Circular polarization: 

m and , 0,1,2,
2

x y LE E E n n
π

δ π
 

= = = ± + = 
 

… 

 
m m

m

ˆ ˆ( ) cos( ) cos[ ( / 2 )]

ˆ ˆ( )

t E t E t n

E j

ω ω π π= + ± +

 = ±

e x y

E x y
 (5.7) 
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Note that the sense of rotation is tied to the direction of propagation. In the 

example above, if the wave propagates along ˆ−z , the plot on the left, where 

m ˆ ˆ( ) ( ) j zz E j e β= + ⋅E x y , corresponds to a right-hand (RH) wave, while the plot 
on the right, where m ˆ ˆ( ) ( ) j zz E j e β= − ⋅E x y , corresponds to a left-hand (LH) 
wave. Vice versa, if the wave propagates along ˆ+z , then the left plot shows a 
LH wave, m ˆ ˆ( ) ( ) j zz E j e β−= + ⋅E x y , whereas the right plot shows a RH wave, 

m ˆ ˆ( ) ( ) j zz E j e β−= − ⋅E x y . 

If ˆ+z  is the direction of propagation: 
counterclockwise (CCW) or left-

hand (LH) polarization 

If ˆ+z  is the direction of 
propagation: clockwise (CW) or 
right-hand (RH) polarization 
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A snapshot of the field vector along the axis of propagation is given below for 
a right-hand circularly polarized (RHCP) wave. Pick an observing position along 
the axis of propagation (see the plane defined by the x and y axes in the plot 
below) and imagine that the whole helical trajectory of the tip of the field vector 
moves along the wave vector k . Are you going to see the vector rotating 
clockwise or counter-clockwise as you look along k ? (Ans.: Clockwise, which 
is equivalent to RH sense of rotation.) 

 

 
[Hayt, Buck, Engineering Electromagnetics, 8th ed., p. 399] 

 

Case 3:  Elliptic polarization 

The tip of the field vector at a given point traces an ellipse as a function of 
time. This is the most general type of polarization, obtained for any phase 
difference Lδ  and any ratio ( / )x yE E . Mathematically, the linear and the circular 
polarizations are special cases of the elliptical polarization. In practice, however, 
the term elliptical polarization is used to indicate polarizations other than linear 

or circular. 

 

ˆ ˆ( ) cos cos( )

ˆ ˆ L

x y L

j
x y

t E t E t

E E e δ

ω ω δ= + +

 = +

e x y

E x y
 (5.8) 

x
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Show that the trace of the time-dependent vector is an ellipse: 

 ( ) (cos cos sin sin )y y L Le t E t tω δ ω δ= ⋅ − ⋅  

( )
cos x

x

e t
t

E
ω =  and 

2
( )

sin 1 x

x

e t
t

E
ω

 
= −  

 
 

22

2
( ) ( )( ) ( )

sin 2 cosy yx x
L L

x x y y

e t e te t e t

E E E E
δ δ

      
= − +      
       

 

or (dividing both sides by 2sin Lδ ), 
 2 21 ( ) 2 ( ) ( )cos ( )Lx t x t y t y tδ= − + , (5.9) 

where 
( ) cos

( )
sin sin
x

x L L

e t t
x t

E

ω

δ δ
= = , 

( ) cos( )
( )

sin sin

y L

y L L

e t t
y t

E

ω δ

δ δ

+
= = . 

Equation (5.9) is the equation of an ellipse centered in the xy  plane. It 
describes the trajectory of a point of coordinates x(t) and y(t) (these are 
normalized ( )xe t  and ( )ye t  values) along an ellipse. As time flows, the point 
moves along the ellipse with an angular frequency ω , i.e., in one period, 

2 /T π ω= , the point completes one elliptical trajectory. 
Similarly to the circular polarization, the elliptical polarization can be right-

handed or left-handed, depending on the relation between the direction of 
propagation and the sense of rotation. 
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The parameters of the polarization ellipse are given below. Their derivation is 
given in Appendix I. 

a) major axis (2 OA× ) 

 2 2 4 4 2 21
OA = 2 cos(2 )

2
x y x y x y LE E E E E E δ + + + +

   (5.10) 

b) minor axis (2 OB× ) 

 2 2 4 4 2 21
OB = 2 cos(2 )

2
x y x y x y LE E E E E E δ + − + +

   (5.11) 

c) tilt angle τ  

 
2 2

21
arctan cos

2 2

x y
L

x y

A

E E
n

E E

π
τ δ

 
= ± 

− �������

 (5.12) 

Eq. (5.12) produces an infinite number of angles, τ = (arctanA)/2 / 2nπ± , 
n = 1,2,… . Thus, it gives not only the angle of the major axis of the ellipse 
with the x axis but also the angle of the minor axis with the x axis. In 
spherical coordinates, τ is usually specified with respect to the θ̂  direction. 

d) axial ratio 

 
major axis OA

minor axis OB
AR = =  (5.13) 

The axial ratio defined in (5.13) attains values between 1 and ∞ . The 
alternative definition of OB/OAAR =  is also used often. In this case, 
0 1AR≤ ≤ . 

Mathematically speaking, the linear and circular polarizations are special cases 
of the elliptical polarization: 

• If 2
2

L n
π

δ π 
= ± + 

 
 and x yE E= , then OA OB x yE E= = = , 1AR = ; the 

ellipse becomes a circle. 
• If L nδ π= , then OB 0=  and arctan( / )y xE Eτ = ± ; the ellipse collapses 

into a line. 
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3. Field Polarization in Terms of Two Circularly Polarized Components 

The representation of a complex vector field as a superposition of circularly 
polarized components is somewhat less intuitive but it is more useful in the 
calculation of the polarization ellipse parameters. This time, the total field phasor 
is represented as the superposition of two circularly polarized waves, one right-
handed and the other left-handed. For the case of a wave propagating along z−  
[see Case 2 and Eq. (5.7)], 

 

R Lˆ ˆ

ˆ ˆ ˆ ˆ( ) ( )

2 2
R L

j j
E E

+ −
= +

p p

x y x y
E

����� �����

. (5.14) 

Here, ER and EL are, in general, complex phasors. Assuming a relative phase 
difference of C R Lδ ϕ ϕ= − , one can write (5.14) as 

 �
ˆ ˆ ˆ ˆ( ) / 2 ( ) / 2C

LR

j
R L

EE

m e j m jδ= + + −E x y x y
���

, (5.15) 

where Rm  and Lm  are magnitudes. 
The relations between the linear-component and the circular-component 

representations of the field polarization are easily found as 

 ˆ ˆ( ) / 2 ( ) / 2

x y

R L R L

E E

E E j E E= + + −E x y
������� �������

 (5.16) 

 
( )/ 2     

( ) / 2
x R L

y R L

E E E

E j E E

= +


= −
 (5.17) 

 
( ) / 2

( ) / 2 .
R x y

L x y

E E jE

E E jE

= −


= +
 (5.18) 

 
4. Polarization Vector and Polarization Ratio of a Plane Wave 

 2 2
m

m m m

ˆ ˆ ˆ ,L
yx j

L x y

EE
e E E E

E E E
δ= = + = +

E
p x y  (5.19) 

The expression in (5.19) assumes a wave decomposition into linearly polarized 
(x and y) components, thereby the subscript L. Polarization vector in terms of 

The polarization vector is the normalized phasor of the electric field vector. It 
is a complex-valued vector of unit magnitude, i.e., ˆ ˆ 1L L

∗⋅ =p p . 
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RHCP and LHCP components is also used. The polarization vector defined in 
(5.19) takes the following specific forms in the cases of linearly, circularly and 
elliptically polarized waves. 

Case 1:  Linear polarization (the polarization vector is real-valued) 

 2 2
m

m m

ˆ ˆ ˆ ,
yx

x y

EE
E E E

E E
= ± = +p x y  (5.20) 

where xE  and yE  are magnitudes (real-positive). 

 
Case 2: Circular polarization (the polarization vector is complex-valued) 

 ( ) m
1

ˆ ˆ ˆ , 2 2
2

L x yj E E E= ± = =p x y  (5.21) 

 

 or
L

L

j
y y V

L L L

x x H

E E e E
r r e r

E E E

δ
δ= = = =

ɶ ɶ
ɶ ɶ

ɶ ɶ
 (5.22) 

Point of interest: In the case of circular-component representation, the 
polarization ratio is defined as 

 C
Rj

C C

L

E
r r e

E
δ= =

ɶ
ɶ

ɶ
. (5.23) 

The circular polarization ratio Crɶ  is of particular interest since the axial ratio of 
the polarization ellipse AR can be expressed as 

 
1

1
C

C

r
AR

r

+
=

−
. (5.24) 

Besides, its tilt angle with respect to the y (vertical) axis is simply 

 / 2V C nτ δ π= + , 0, 1,...n = ±  . (5.25) 

Comparing (5.12) and (5.25) readily shows the relation between the phase 
difference δC of the circular-component representation and the linear 
polarization ratio Lj

L Lr r e δ=ɶ : 

The polarization ratio is the ratio of the phasors of the two orthogonal 
polarization components. In general, it is a complex number: 
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2

2
arctan cos

1
L

C L

L

r

r
δ δ

 
=  − 

. (5.26) 

We can calculate the magnitude Cr  of the circular polarization ratio from the 

linear polarization ratio Lrɶ  making use of (5.13), (5.24), and (5.26): 

 
2 4 2

2 4 2

1 1 2 cos(2 )1

1 1 1 2 cos(2 )

LC L L L

C LL L L

r r rr
AR

r r r r

δ

δ

+ + + ++
= =

− + − + +
. (5.27) 

Using (5.26) and (5.27) allows for switching between the representation of the 
wave polarization in terms of linear and circular components. 
 
5. Antenna Polarization 

The polarization of a transmitting (Tx) antenna is the polarization of its 
radiated wave in the far zone. The polarization of a receiving (Rx) antenna is 
the polarization of an incident plane wave, which, for a given power flux density, 
results in maximum available power at the antenna terminals. Both definitions 
lead to the same polarization vector, which is the antenna polarization vector ˆ .ap  

As per the first definition above (Tx mode of operation), the antenna 
polarization vector ˆ ap  is that of the wave it transmits in its own coordinate 
system (the antenna is at the origin). The second definition (Rx mode of 
operation) requires that ˆ ap  equals the polarization vector of an incident wave ˆ wp

such that maximum power is received. This would happen if the dot product of 
the two unit vectors ˆ ap  and ˆ wp  attains a maximum value: 
 ˆ ˆ 1a w⋅ =p p .     (5.28) 

In turn, the condition in (5.28) implies that ˆ ap  and ˆ wp  must be mutually 
conjugate, i.e., ˆ ˆa w

∗=p p . Next we show that the conjugation of a polarization 
vector simply implies a change of coordinate system such that if in one 
coordinate system the wave moves away from the origin, in the other it moves 
toward the origin. 

Consider the polarization vector ˆ t
wp  of a wave in the coordinate system of 

transmission (the wave travels away from the antenna at the origin along ˆ t
r ). Let 

us now represent this unit vector in the coordinate system of reception, where 
the wave travels toward the Rx antenna at the origin along ˆ r−r . This is illustrated 
in the figure below with a RHCP wave. The coordinate triplet ˆˆ ˆ( , , )t t tr θ φ  
represent the coordinate system of the Tx antenna whereas ˆˆ ˆ( , , )r r rr θ φ  represents 
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that of the Rx antenna. In antenna analysis, the plane of polarization is usually 
the plane of θ̂  and φ̂  since the far-zone wave travels radially along r̂ . Since the 
Tx and Rx antennas face each other, their coordinate systems are oriented so that 
ˆ ˆr t= −r r . If we align the axes ˆ tθ  and ˆ rθ , then ˆ ˆr t= −φ φ  must hold. This changes 
the sign of the respective (2nd) polarization-vector component, which results in 
its conjugation. Thus, we conclude that the transmitted-wave polarization 

vector must be conjugated when represented in the coordinate system of the 

Rx antenna, i.e., 
 ˆ ˆ( )t r

w w
∗=p p . (5.29) 

In the context of the Rx antenna polarization-vector definition, we need the 
incident-wave polarization vector in the Rx coordinate system, ˆ ˆ r

w w≡p p , to 
satisfy ˆ ˆw a

∗=p p . Thus, ˆ ap  is nothing but the polarization vector of the Rx antenna 
if it were to transmit. This finally proves that both definitions (for the Tx and the 
Rx mode of antenna operation) are mathematically equivalent. 

1 ˆˆ ˆ( )
2

t t t
w j= −p θ φ

RHCP wave

ˆ t
θ

ˆ t
φ

ˆ tr

0tω = 0tω =

/ 2tω π=/ 2tω π=

ˆ r
θ

ˆ rr
ˆ r
φ

1 ˆˆ ˆ( )
2

r r r
w j= +p θ φ

ˆ ˆ t=k r ˆ ˆ r= −k r

 
 

6. Polarization Loss Factor (Polarization Efficiency) 

Generally, the polarization of the Rx antenna is not the same as the 
polarization of the incident wave. This is called polarization mismatch. The 
polarization loss factor (PLF) characterizes the loss of EM power due to the 
polarization mismatch. The PLF is defined so that it attains a value of 1 (or 
100%, or 0 dB) if there is no polarization mismatch, i.e., the antenna receives the 
maximum possible power for the given incident power density of the wave. A 
PLF equal to 0 (−∞  dB) indicates complete polarization mismatch and inability 
to capture power from the incident wave. Thus, 
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 0 PLF 1≤ ≤ . (5.30) 

Note that the polarization loss has nothing to do with dissipation. It can be 
viewed as a “missed opportunity” to capture as much power from the incident 
wave as possible. The polarization efficiency has the same meaning as PLF. 

Let us denote the polarization vector of a wave incident upon a Rx antenna 
as ˆ wp . The unit vector ˆ wp  is defined in the coordinate system of the Rx antenna, 

where the Rx antenna is at the origin; thus, ˆ wp  describes a wave propagating 

along ˆ−r . On the other hand, the polarization vector of the Rx antenna ˆ ap  is the 

polarization vector of its far field if it were to transmit. Thus, ˆ ap  describes a 

wave propagating along ˆ+r . The PLF is a power-loss quantity; therefore, it is 
defined as 
 2ˆ ˆPLF | |w a= ⋅p p . (5.31) 

Maximum PLF of 1 (no polarization loss, maximum received power) is achieved 
when ˆ ˆw a

∗ =p p . Thus, the optimal polarization of the incident wave is the one that 

matches the polarization of the wave produced by the Rx antenna if it were to 

replace the Tx one. 
Here are some simple examples:  
1) if ˆ ˆ ˆ ˆw a a

∗= = =p p p x , then PLF=1;  

2) if ˆ ˆw =p x  and ˆ ˆ ˆa a
∗= =p p y , then PLF=0;  

3) if ˆ ˆ ˆ ˆ( ) / 2w a j= = +p p x y , then PLF=0; 

4) if ˆ ˆ ˆ( ) / 2w j= +p x y  and ˆ ˆ ˆ( ) / 2a j= −p x y  ( ˆ ˆw a
∗ =p p ), then PLF=1. 

 

 [Balanis, 2nd ed.] 
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In a communication link, the PLF has to be expressed by the polarization 
vectors of the transmitting and receiving antennas, Txp̂  and Rxp̂ , respectively. 

Both of these are defined in the coordinate systems of their respective antennas 
as the polarization of the transmitted wave. However, these two coordinate 
systems have their radial unit vectors pointing in opposite directions, i.e., 

Rx Txˆ ˆ= −r r  as illustrated in the figure below. Therefore, either Txp̂  or Rxp̂  has to 

be conjugated when calculating the PLF (it does not matter which one). For 
example, if the reference coordinate system is that of the Rx antenna, then 

 
2

Tx Rxˆ ˆPLF ∗= ⋅p p . (5.32) 

The expression 
2

Tx Rxˆ ˆPLF ∗= ⋅p p  is also correct. 

Txr̂
Rxr̂

Txθ̂

Txφ̂

Rxφ̂Rxθ̂

Txp̂ Txˆ ∗p

Rxp̂Rxˆ ∗p  
 

Examples 

Example 5.1.  The electric field of a linearly polarized EM wave is 
 ˆ( , , ) ( , )i j z

mx y z E x y e β−=E x . 

It is incident upon a linearly polarized receiving antenna, which, if in 
transmitting mode, would generate the field  

 ˆ ˆ( , , ) ( ) j z
a x y z e β= + ⋅E x y . 

Find the PLF. 

 
Notice that aE  propagates along z−  in accordance with the requirement that 

it represents a transmitted wave. Its polarization vector is ˆ ˆ ˆ( ) / 2a = +p x y . 

On the other hand, the polarization vector of the incident wave is ˆ ˆi =p x . 

Both polarization vectors are real-valued. The PLF is then 
2

1 1
ˆ ˆ ˆPLF ( )

22
= ⋅ + =x x y  

[dB] 10PLF 10log 0.5 3= = −  dB 
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Example 5.2.  A transmitting antenna produces a far-zone field, which is RH 
circularly polarized. This field impinges upon a receiving antenna, whose 
polarization (in transmitting mode) is also RH circular. Determine the PLF. 

 
Both antennas (the transmitting one and the receiving one) are RH circularly 
polarized in transmitting mode. Assume that a transmitting antenna is 
located at the center of a spherical coordinate system. The far-zone field it 
would produce is described as 

ˆ ˆcos cos( / 2)far
mE t tω ω π = + − E θ φ . 

This is a RHCP field with respect to the outward radial direction r̂ . Its 
polarization vector is 

Tx

ˆ ˆ
ˆ

2

j−
=
θ φ

p . 

This is exactly the polarization vector of the transmitting antenna in its own 
coordinate system. 
 

x

y

z

r

ϕ

θ Eθ

Eϕ

 
 
Since the receiving antenna is also RHCP, its polarization vector (in its own 
coordinate system) is 

 Rx
ˆˆ ˆ( ) / 2j= −p θ φ . 

The PLF is calculated as per (5.32): 
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2
* 2
Tx Rx

ˆ ˆˆ ˆ| ( ) ( ) |
ˆ ˆPLF | | 1

4

j j+ ⋅ −
= ⋅ = =

θ φ θ φ
p p , 

[dB] 10PLF 10log 1 0= = . 

There is no polarization loss. When transmitting with an RHCP antenna in 
a communication link, it is best to receive with RHCP antenna. 

 
 
Exercise: Show that an antenna of RH circular polarization (in transmitting 
mode) cannot receive LH circularly polarized incident wave (or a wave 
emitted by a left-circularly polarized antenna), i.e., PLF = 0. 
 
 

Appendix I 

Find the tilt angle τ , the length of the major axis OA, and the length of the minor 
axis OB of the ellipse described by the equation: 

22

2
( ) ( )( ) ( )

sin 2 cosy yx x

x x y y

e t e te t e t

E E E E
δ δ

      
= − +      
       

. 

 

( )xe t

( )ye t

major a
xis (2

 OA)

m
inor axis ( 2 O

B
)

τ

xE

yE

E

ω
 

 
Equation (A-1) can be written as 

2 2 1a x b xy c y⋅ − ⋅ + ⋅ = , 

where 
( )xx e t=  and ( )yy e t=  are the coordinates of a point of the ellipse 

centered in the xy  plane; 

(A-1) 

(A-2) 
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2 2

1

sinx

a
E δ

= ; 

2

2cos

sinx y

b
E E

δ

δ
= ; 

2 2

1

siny

c
E δ

= . 

After dividing both sides of (A-2) by ( )xy , one obtains 

1x y
a b c

y x xy
− + = . 

Introducing 
( )

( )

y

x

e ty

x e t
ξ = = , one obtains that 

2
2

2
2 2 2 2 2

2

1

1
( ) (1 ) .

x
c b a

x y x
c b a

ξ ξ

ξ
ρ ξ ξ

ξ ξ

=
− +

+
 = + = + =

− +

 

Here, ρ  is the distance from the center of the coordinate system to the point on 

the ellipse. We want to know at what values of ξ  the maximum and the minimum 

of ρ  occur ( minξ , maxξ ). This will produce the tilt angle τ . We also want to 

know the values of maxρ  (major axis) and minρ  (minor axis). Then, we have to 

solve 
2( )

0
d

d

ρ

ξ
= , or 

2
m m

2( )
1 0

a c

b
ξ ξ

−
− − = , where m min max,ξ ξ ξ≡ . 

Solving (A-5) will produce the tilt angle τ, which relates to ξmax as 

( )max max
tan /y xξ τ= = . 

Substituting (A-6) in (A-5) yields: 
2

sin sin
2 1 0

cos cos
C

τ τ

τ τ
   

− − =   
   

 

where  

(A-3) 

(A-4) 

(A-5) 

(A-6) 

(A-7) 
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2 2

2 cos

y x

x y

E Ea c
C

b E E δ

−−
= = . 

Multiplying both sides of (A-7) by 2cos τ  and re-arranging results in 
2 2

cos(2 ) sin(2 )

cos sin 2 sin cos 0
C

C
τ τ

τ τ τ τ− + ⋅ =������� ������� . 

Thus, the solution of (A-7) is  
tan(2 ) 1 / Cτ = −  

or 

1 2 12 2

2 cos1
arctan ;

2 2

x y

x y

E E

E E

δ π
τ τ τ

 
= = + 

− 
. 

The angles τ1 and τ2 are the angles between the major and minor axes with the x 
axis, respectively. Substituting 1τ  and 2τ  back in ρ  (see A-4) yields the 

expressions for OA and OB. 

(A-8) 


