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Lecture 7: Antenna Noise Temperature and System Signal-to-Noise Ratio 

(Noise temperature. Antenna noise temperature. System noise temperature. 

Minimum detectable temperature. System signal-to-noise ratio.) 

 

1. Noise Temperature of Bright Bodies 

The performance of a telecommunication system depends on the signal-to-

noise ratio (SNR) at the receiver’s input. The electronic circuitry of the RF front 

end (amplifiers, mixers, etc.) has a significant contribution to the system noise. 

However, the antenna itself is sometimes a significant source of noise, too. The 

antenna noise can be divided into two types according to its physical source: noise 

due to the loss resistance of the antenna and noise, which the antenna picks up 

from the surrounding environment. 

Any object whose temperature is above the absolute zero radiates 

electromagnetic (EM) energy. Thus, an antenna is surrounded by noise sources, 

which create noise power at the antenna terminals. Here, we are not concerned 

with man-made sources of noise, which are the subject of the EM interference 

(EMI) science. We are also not concerned with intentional sources of EMI 

(jamming). We are concerned with natural sources of EM noise, which is thermal 

in nature, such as sky noise and ground noise. 

The concept of antenna noise temperature is critical in understanding how the 

antenna contributes to the system noise in low-noise receiving systems such as in 

radioastronomy and radiometry. It is also important in understanding the relation 

between an object’s temperature and the noise power it generates at the receiving 

antenna terminals. This thermal power is the signal used in passive remote sensing 

(radiometry) and thermal imaging. The low-noise receiver for thermal-noise 

signals is the radiometer. Typically, the remote object’s temperature is measured 

by comparison with the noise due to background sources and the receiver itself. 

Every object (e.g., a resistor R) with a physical temperature above zero (0°K = 

273− °C) emits heat energy. The noise power per hertz ph (also known as noise 

power spectral density) is given by Nyquist’s relation:1 
 h Pp kT= , W/Hz (7.1) 

 
1 See Appendix for more detailed discussion on thermal noise power. 
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where TP is the physical temperature of the object in K (Kelvin degrees) and k  is 

Boltzmann’s constant (k ≈ 231.38 10−×  J/K). 

In the case of a resistor, this is the noise power, which can be measured at the 

resistor’s terminals with a matched load. Thus, a resistor can serve as a noise 

generator. Often, we assume that heat energy is evenly distributed in the 

frequency band f∆ . Then, the associated thermal noise power within f∆  is 
 N PP kT f= ∆ , W. (7.2) 

The noise power radiated by the object depends not only on its physical 

temperature but also on the ability of its surface to let the heat leak out. This 

radiated heat power (or brightness power PB) is associated with the so-called 

equivalent temperature or brightness temperature TB of the body via the power-

temperature relation in (7.2): 
 B BP kT f= ∆ , W. (7.3) 

In general, the brightness temperature BT  is not the same as the physical 

temperature of the body PT . The two temperatures are proportional: 
 2(1 | | )B s P PT T Tε= − Γ ⋅ = , K (7.4) 

where sΓ  is the reflection coefficient at the surface of the body and ε  is what is 

called the emissivity of the body. The brightness power BP  relates to the thermal-

noise (or heat) power NP  the same way as BT  relates to PT , i.e., NBP Pε= . 
 

2. Antenna Noise Temperature 

The power radiated by a bright body BP , when intercepted by an antenna, 

generates noise power AP  at its terminals. The equivalent temperature associated 

with the received power AP  at the antenna terminals is called the antenna 

temperature AT  of the object, where, again, A AP kT f= ∆ . Here, f∆  is a bandwidth, 

which falls within the antenna bandwidth and is sufficiently narrow to ensure 

constant noise-power spectral density. We assume first that the antenna is loss-

free. We will include these losses later. 

To understand how the antenna temperature relates to that of bright bodies, we 

first need to understand how the antenna “collects” the incident power of bright 

bodies to form the total received power AP  at the antenna terminals. The power 

received by an antenna depends on its effective aperture ( , )eA θ ϕ  for an incident 

wave arriving from the ( , )θ ϕ  direction. Assume that the power-flux density from 
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this direction is ( , )BW θ ϕ  (W/m2). This power-flux density is due to a distant 

point-like bright body of cross-section dSB, which subtends the differential solid 

angle dΩ . Then, the power received from this direction is 
 Rx ,( , ) ( ,( ) )BeP WA θθ ϕ θ ϕϕ= ⋅ , W. (7.5) 

Assuming that the bright body at ( , )θ ϕ  radiates isotropically a total power of 

( , )BP θ ϕ , and expressing the effective area by the directivity, we obtain 
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Here, R is the distance between the bright body and the antenna. In turn, the 

directivity is expressed in terms of the antenna solid angle AΩ  as  

 
( , )
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Ω
, (7.7) 

leading to  
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Here, ( , )U θ ϕ  is the normalized power radiation pattern of the antenna. The 

distance R between the bright body and the antenna relates to the cross-section of 

the body dSB and the solid angle it subtends dΩ  as 
 2 /BR dS d= Ω , m2 . (7.9) 

Substituting (7.9) into (7.8) yields 

 2
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π

θ ϕ
= Ω

Ω
. (7.10) 

Next, we view the bright body as a transmitting antenna of gain 1BG =  (isotropic 

radiator) and we assume that its cross-section dSB is a good representation of its 

effective area. Employing the relation between antenna effective area and its gain 

[see (4.65) in Lecture 4], we make the substitution 

 
2 1

1
4 B BdS G

λ

π
= =  (7.11) 

in (7.10). This leads to 

 Rx
( , ) ( , )

( , ) B

A

U P
P d

θ ϕ θ ϕ
θ ϕ = Ω

Ω
. (7.12) 

In general, an antenna receives thermal noise power simultaneously from all 
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directions. Therefore, the total noise power AP  at its terminals is a superposition 

of the weighted power contributions from all directions: 

 Rx

4 4

1
( , ) ( , ) ( , )A B

A

P P U P d

π π

θ ϕ θ ϕ θ ϕ= = Ω
Ω � � . (7.13) 

Thus, the antenna normalized power pattern acts as a weighting factor in the 

superposition integral (7.13). Analogously, the antenna temperature AT  is 

expressed in terms of the brightness temperature BT  of all bright bodies weighted 

by the radiation pattern as  
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π

θ ϕ θ ϕ= Ω
Ω � . (7.14) 

 
2.1. Antenna noise temperature due to uniform bright background 

Let us first assume that the entire antenna pattern “sees” a uniformly “bright” 
object of brightness temperature ( , ) .B BT T constθ ϕ = = , which surrounds the 
antenna from all directions (see the illustration below). We again assume that the 
antenna is loss-free, i.e., it does not generate noise itself. Then, as per (7.14), the 
noise power measured at its terminals is 
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Equivalently, the antenna noise power is simply: 
 A A BP kT f kT f= ∆ = ∆ . (7.16) 
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2.2. Antenna incremental temperature for large bright bodies 

The situation described in Section 2.1 above is of practical importance. When 
an antenna is pointed right at the night sky, i.e., all of its pattern is occupied by 
the night sky, its noise temperature is very low: 3AT = �  to 5�  K at frequencies 
between 1 and 10 GHz. This is the microwave noise temperature of the night sky. 
The higher the elevation angle, the lower the night-sky temperature because of 
the lower physical temperature of the atmosphere toward zenith. The sky noise 
depends on the frequency. It depends on the time of the day, too. Closer to the 
horizon, it is mostly due to the thermal radiation from the Earth’s surface and the 
atmosphere. Closer to the zenith, it is mostly due to cosmic rays from the sun, the 
moon and other bright sky objects, as well as the deep-space background 
temperature commonly referred to as the cosmic microwave background (TCMB ≈ 
2.725° K).2 The latter is a left-over thermal effect from the very origin of the 
universe (the big bang).  

An antenna may also be pointed toward the ground, e.g., when mounted on an 
airplane or a satellite. The noise temperature of the ground is much higher than 
that of the night sky because of its higher physical temperature. The ground noise 
temperature is about 300�  K and it varies during the day. The noise temperature 
at zero elevation (horizon) is about 100�  to 150�  K. 

The discussion above makes it clear that an antenna always receives noise 
power due to background thermal radiation. Thus, when it is pointed at a single 
large bright object of interest, in addition to this object’s brightness temperature, 
the antenna temperature includes contributions from the background.  

Now, consider a bright body, which is large enough to subtend a solid angle 
larger than the solid angle of the antenna’s main beam, MBBΩ > Ω .3 To discern 
this bright body in the thermal-noise background, it has to put out sufficient power 
to “stand out”. To obtain its brightness temperature TB (assumed constant within 
the main beam), the antenna temperature is acquired with the beam on and off the 
target. The difference is the antenna incremental temperature AT∆ . In the 
absence of the bright body, the antenna measures only the background noise: 

 
2 C.T. Stelzried, A.J. Freiley, and M.S. Reid, Low-noise Receiving Systems. Artech, 2010. 

3 Remember the definition of the main beam solid angle: 
12

MB
0 0

( , )sinU d d
π θ

θ ϕ θ θ ϕΩ =   , where 1θ  is the first-null beam width. 

In contrast, the antenna solid angle is 
2

0 0
( , )sinA U d d

π π
θ ϕ θ θ ϕΩ =   . 
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When the main beam of the antenna is pointed at the bright body, its temperature 
includes the bright body’s contribution AT∆ : 
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Ω Ω  ������ . (7.18) 

Here, 0 0( , )θ ϕ  is the antenna boresight where the pattern value is 1. Thus,  

 MB
MB,A B B

A

T T
Ω

∆ = Ω > Ω
Ω

. (7.19) 

High-gain low-sidelobe antennas feature MB AΩ ≈ Ω , in which case: 
 ,A B B AT T∆ = Ω > Ω . (7.20) 

 
2.3. Antenna incremental temperature for small bright bodies 

Now consider a bright object, which subtends a solid angle BΩ  that is smaller 
than the main-beam solid angle: MBBΩ < Ω  (see illustration below). Again, to 
separate the power received from the bright body from the background, the 
incremental antenna temperature AT∆  is measured with the beam on and off the 
object. This time, AT∆  is not equal to the bright body temperature BT  because: 

 0 0

1

1
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B

B
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T U T d Tθ ϕ
Ω

Ω
∆ = Ω =

Ω Ω����� . (7.21) 

Thus, the antenna incremental temperature AT∆  is proportional to the brightness 
temperature of the small bright body: 

 B
A B

A

T T
Ω

∆ =
Ω

 K, B AΩ Ω≪ . (7.22) 

BΩAΩBS
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2.4. Source flux density from noise sources 

In radioastronomy and remote sensing, a bright body is also characterized by 
the noise-source flux density Sꞌ it creates at the antenna aperture. Sꞌ is power flux 
per unit area (the Poynting vector strength) per hertz. If the received noise power 
spectral density is ph (in W/Hz) and the antenna effective area is Ae, then 

 2 1,  Wm Hzh A

e e

p k T
S

A A
− −

∆
′ = = . (7.23) 

Note that, for a given radiation source, the received power density ph at the 
antenna terminals is proportional to its effective area Ae. Thus, just like TB, the 
source flux density is a metric for the source strength, not the antenna used to 
measure it. In radioastronomy, the unit for the source flux density is jansky, where 

261 Jy = 10−  2 1Wm Hz− − ,4 i.e., 2 1
26

Jy Wm Hz 10S S − −′ ′= × . 
 
2.5. Impact of polarization on antenna noise temperature 

The antenna temperature AT  is proportional to the noise power AP  it receives. 
But AP  depends on whether the antenna is polarization matched to the radiation 
source. All derivations above did not account for the PLF, i.e., they assumed that 
the antenna and the bright-body source were polarization matched. A thermal-
radiation source is typically unpolarized, i.e., its polarization is random. Thus, 
about half of the bright-body noise power cannot be picked up by the antenna, the 
polarization of which is fixed. For this reason, all relations between AT∆  and BT  
must include a PLF = 0.5. For example, the expression for a small bright body 
(7.22) should be written as 

 
1

,
2

B
A B B A

A

T T
Ω

∆ = Ω Ω
Ω

≪ . (7.24) 

Similarly, in the case of a large bright body, (7.20) becomes 
 0.5 ,A B B AT T∆ = Ω > Ω , (7.25) 

and the expression for the noise-source flux density (7.23) is: 

 2 1,  Wm Hz
2

A

e

k T
S

A
− −

∆
= . (7.26) 

 

 
4 Karl G. Jansky was the first one to use radio waves for astronomical observations.  
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2.6. Impact of radiation pattern on antenna noise temperature 

The antenna pattern strongly influences the antenna noise temperature. High-
gain antennas (such as reflector systems), when pointed at elevation angles close 
to the zenith at night, have negligible noise level. However, if an antenna has 
significant side and back lobes, which are pointed toward the ground or the 
horizon, its noise power is much higher. The worst case for an antenna is when 
its main beam points towards the ground or the horizon, as is often the case with 
satellite or airborne antennas that are pointed toward the earth. 

The application of (7.14) in the case of high-gain antennas with only a few 
beams (main, side or back lobes) described by their beam efficiencies is 
straightforward. For example, consider an idealized normalized antenna power 
pattern of the form: 

 
MB MB

SL SL

BL BL

1,  within the solid angle  (main beam)
( , ) ,within the solid angle  (side lobe)   

,within the solid angle  (back lobe) .

U
U U

U
θ ϕ

 = Ω
= Ω

Ω

 (7.27) 

Here, SL BL, 1U U <  are the normalized radiation-pattern values of the side and 
back lobes. Let the main beam be entirely occupied by a body of brightness 
temperature ,MBT  whereas the side and back lobes “see” bright bodies of 
temperatures ,SBT  and ,BBT , respectively. Then, (7.14) is written as 

( ),M MB S ,S SL B ,B BL

4

1 1
( , ) ( , )A B B B B

A A

T U T d T U T U T

π

θ ϕ θ ϕ= Ω= Ω + Ω + Ω
Ω Ω� .(7.28) 

At the same time, the beam efficiency (BE) of the main beam is 
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 

�������

. (7.29) 

Similarly, the beam efficiency of the side lobe is 
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, (7.30) 

and that of the back lobe is 
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 BL
B BL

A

BE U
Ω

=
Ω

. (7.31) 

Thus, we can write (7.28) as 
 ,M MB ,M SL ,B BLA B B BT T BE T BE T BE= + + . (7.32) 

The application of (7.32) in the calculation of antenna noise is illustrated in the 
example below. 

 
Example (modified from Kraus, p. 406): A circular reflector antenna of 500 m2 
effective aperture operating at 20λ =  cm is directed at the zenith. What is the 
total antenna temperature assuming the sky temperature close to zenith is equal 
to 10° K, whereas at the horizon it is 150° K? Take the ground temperature equal 
to 300° K and assume that one-half of the minor-lobe beam is in the back direction 
(toward the ground) and one-half is toward the horizon. The main beam efficiency 
is M 0.7BE = . 

 
Such a large reflector antenna is highly directive and, therefore, its main beam 
“sees” only the sky around the zenith. The main beam efficiency is 70%. Thus, 
according to the first term in (7.32) the noise contribution of the main beam is 
 10 0.7 7MB

AT = × = , K. (7.33) 

This antenna has only one other (minor) lobe of some constant normalized power-
pattern value of SL BL lobeU U U= = . Its beam efficiency is lobeBE =  1 0.7 0.3− = , i.e., 

under uniform illumination from all directions, it contributes 30% to the overall 
received power whereas 70% is due to the main beam. We can effectively split 
this side lobe into two parts: half of the minor lobe points to ground and the other 
half points toward the horizon. Each of these half-lobes has a beam efficiency of 

lobe0.5 0.15BE = . Thus, according to the second and third terms in (7.32), the 

contribution from the half-lobe directed toward ground is 
 300 0.15 45GBL

AT = × = , K (7.34) 

whereas the contribution from the half-lobe directed toward the horizon is 
 150 0.15 22.5HBL

AT = × = , K. (7.35) 

The total antenna noise temperature is 
 74.5GBLMB HBL

A A A AT T T T= + + =  K. (7.36) 
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3. System Noise Temperature 

The antenna is a part of a receiving system, which consists of several cascaded 
components: antenna, transmission line (or waveguide) assembly and receiver 
(see figure below). All these system components, the antenna included, have their 
contributions to the system noise due to their non-zero temperature and losses. 
The system noise level is a critical factor in determining its sensitivity and SNR. 

BT

LPT

l

RT

reference
location #1

reference
location #2

reference
location #3

( )AP PT T

 
 

3.1. Noise Analysis of Cascaded Matched Two-port Networks5 

To understand the noise analysis of the receiver system, we must first review 
the basics of the noise analysis of cascaded two-port networks. For simplicity, we 
assume that all networks are impedance matched, which is realistic.  

In the figure below (case (a)), a generic cascaded network is shown where the 
first component on the left is the noise source (e.g., the antenna picking up noise 
from the sky) with noise temperature ST . The remaining two-port components are 
characterized by their physical temperatures PiT  and by their loss factors (or loss 

ratios) iL , 1,2i = …. The loss factor is the input-to-output noise-power ratio, 

in ou/L P P= . In the case of a passive lossy two-port network (such as a waveguide 
or a transmission line), L is the inverse of the efficiency, i.e., 2 lL e α+= , where α  
is the attenuation constant of the waveguide or the transmission line and l  is its 
length. The antenna, too, must be viewed as a two-port network if it is lossy, 

 
5 From T.Y. Otoshi, “Calculation of antenna system noise temperatures at different ports—revisited,” IPN Progress Report, Aug. 
15, 2002. 
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where its “input port” is its aperture receiving the noise signals from the 
environment and its output port is its connection to the transmission line. In this 
case, 1

AL e−=  where Ae  is the antenna efficiency. 
 

ST 1 1, PL T 2 2, PL T 3 3, PL T

1 2 3 4
(a) original network  

2 2, PL T 3 3, PL T

2 3 4

(b) equivalent source noise temperature at location 2

ST ′

 

3 3, PL T

3 4

ST ′′

4

ST ′′′

(c) equivalent source noise temperatures at locations 3 and 4  
 

For a passive two-port component, ou in/ 1e P P= ≤  whereas in ou/ 1L P P= ≥ . 
In noise theory, any two-port for which 1L ≥ , i.e., it exhibits power loss, is 
referred to as “attenuator” although this component does not necessarily need to 
be an attenuator; it could be, for example, the entire antenna-plus-feed assembly. 
On the other hand, if 1L < , the component exhibits gain, and it is referred to as 
an “amplifier”. In this case, the efficiency is replaced by the gain G, which, just 
like the efficiency, is the output-to-input power ratio ou in/P P  but it is greater than 
1. As with the efficiency, the relationship 1L G−=  holds. 

Figure (a) above shows a cascaded network of two-ports, each characterized 
by its loss factor iL , 1,2,3i = , and by its physical temperature PiT , 1,2,3i = . The 
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first component of the cascaded network is a noise source with temperature ST . 
Figure (b) shows a network where an equivalent source of temperature ST ′  
replaces the original source plus its neighboring two-port ( 1 1, PL T ). The equivalent 
source ST ′  at location 2 is 
 1 1

11 1(1 )S S PT L T L T− −′ = + − . (7.37) 

From (7.37), it is evident that in addition to the usual “attenuated” term 1
1 SL T− , 

there is a contribution due to the physical temperature of the 1st two-port after the 
noise source. This contribution is referred to as the device output equivalent noise 

temperature, 
 ou 1

11 1(1 ) PDT L T−= − . (7.38) 

This contribution is entirely determined by the two-port physical temperature and 
its loss factor, i.e., it does not depend on the source. 

To understand where (7.37) comes from, we can re-write it as 

 1
1

1

S P
S P

T T
T T

L

−
′ = + . (7.39) 

We see from (7.39) that the equivalent-source power at position 2 , represented 
by its equivalent temperature ST ′ , consists of two terms. The first term, 1PT , 
represents the noise power due to the non-zero physical temperature of the 1st 
two-port after the noise source. This power travels away toward the noise source 
and toward the 2nd two-port. On the other hand, the numerator 1S PT T−  in the 2nd 
term of (7.39) represents the noise power at the input of the 1st two-port. This is 
because ST  is the noise-source power traveling toward its input whereas 1PT  
represents its own thermal noise power traveling toward the noise source.6 This 
input power 1S PT T−  is attenuated by 1

1L−  (the efficiency of the 1st two-port) to 
produce the 2nd contribution in the equivalent noise power at the output of the 1st 
two-port. 

Analogously, the equivalent source noise temperature ST ′′  at location 3 is 
 1 1

22 2(1 )S S PT L T L T− −′′ ′= + −   (7.40) 

where 
 ou 1

22 2(1 ) PDT L T−= −  (7.41) 

is the 2nd device output equivalent noise temperature. 

 
6 Remember the expression 2 2| | | |a b−  for the total power at the input of a microwave network where a and b are the incident and 
the scattered (outgoing) root-power waves, respectively. 2| |a  represents the incoming power whereas 2| |b  represents the outgoing 
power. 
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We can repeat this step for the network location 4 where we obtain the 
equivalent source noise temperature ST ′′′ . In each case, in addition to the 
“attenuated” source power, we add the respective device output equivalent noise 

temperature, 
 ou 1(1 )i PiDiT L T−= − , 1,2,i = … . (7.42) 

As an illustration of the general procedure, let us state the equivalent source 
noise temperature ST ′′′ at location 4 : 
 1 1 1 1 1 1

1 2 3 1 2 3 2 31 2 3 3( ) (1 ) ( ) (1 ) (1 )S S P P PT T L L L L T L L L T L L T− − − − − −′′′ = + − + − + − . (7.43) 

 
3.2. Transferring System Noise Temperature along Lossy Networks 

The rule of transferring noise temperature from the output port of a lossy two-
port to its input port (or vice versa) is simple: 
 in ou ou /T LT T e= = , (7.44) 

where e is the device efficiency (or gain). This rule, while simple, is not 
immediately obvious. A formal proof can be found in the Appendix of 

B.L. Seidel and C.T. Stelzried, “A radiometric method for measuring the 
insertion loss of radome materials,” IEEE Trans. Microw. Theory Thech., vol. 
MTT-16, No. 9, Sep. 1968, pp. 625−628. 

We can now define the equivalent noise temperature of a lossy component at 

its input (also known as device input equivalent noise temperature) by 
substituting ou

DiT  from (7.42) as ouT  in (7.44): 
 in ou ( 1)i i PiDi DiT L T L T= = − , 1,2,i = … . (7.45) 

Note that, just like ou
DiT , in

DiT  depends only on the intrinsic device loss factor iL  
and its physical temperature PiT , i.e., it has nothing to do with noise sources 
attached to the device. It is also worth noting that (7.45) suggests that in

DiT  could 
be much larger than the physical temperature PiT  if the device is very lossy, i.e., 
if 1iL ≫  ( 1ie ≪ ). 

Finally, we discuss the physical meaning of the device input equivalent noise 

temperature through an alternative way of deriving the relationship in (7.45). We 
omit the subscript i  hereafter. Consider a noise source of temperature ST  at a 
device input. The source noise power is SkT f∆ . To find the output noise power 
of the device, we add the two input contributions − that of the noise source and 
that due to the device input equivalent noise temperature, and then multiply the 
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result by the device efficiency: 

 in
N,ou ( )S DP e kT f kT f= ∆ + ∆ . (7.46) 

To find the relation between the device input equivalent noise temperature in
DT  

and its physical temperature TP, we consider the particular case when the 
temperature of the source ST  is equal to the physical temperature PT  of the device. 
In this case, the output noise power must be N,ou PP kT f= ∆  because the whole 
system of the lossy device plus the source is at the physical temperature PT . 
Substituting S PT T=  in (7.46) results in 

 in
N,ou ( )P D PP e kT f kT f kT f= ∆ + ∆ = ∆  (7.47) 

which, when solved for in
DT , produces (7.45). Note that we have not imposed any 

restrictions on the actual values of ST  and PT  but have only required that in
DT  

depends solely on TP (i.e., it is independent of the noise source at the input) and 
that (7.46) holds in the special case of S PT T= . 
 
3.3. The atmosphere as an “attenuator” 

An illustration of the above concepts in noise analysis is the impact of the 
atmosphere on the sky noise, e.g., the cosmic microwave background (TCMB ≈ 
2.725° K). The atmosphere, depending on the time of the day and the weather 
conditions, exhibits loss, which we describe by the loss factor atmL . atmL  can be 
calculated if we know the averaged attenuation constant in the atmosphere atmα  
and its thickness H, e.g., atm atmexp(2 )L Hα≈ . This atmospheric “attenuator” lies 
between the cosmic microwave background noise source and the antenna. 
Therefore, the actual external noise temperature perceived by the antenna is 

 1 1
sky atm CMB atm atm,(1 ) PT L T L T− −= + − , (7.48) 

where atm,PT  is the physical temperature of the atmosphere, as per (7.37). The 1st 
term in (7.48) is the space noise whereas the 2nd one is the atmospheric noise. For 
a pencil-beam antenna placed on Earth and pointed at the sky, skyAT T= . 
 
3.4. Antenna noise due to the antenna physical temperature 

If the antenna has losses, the noise temperature at its terminals includes not 
only the antenna temperature AT  due to the environment surrounding the antenna 
(the external antenna temperature) but also the antenna equivalent noise 
temperature APT  due to its physical temperature PT . Here, we note that the antenna 
acts as an “attenuator” in the cascaded network consisting of the external noise, 
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the antenna, the waveguide, and the receiver; see Figure on p. 11. 
We first describe the antenna noise contribution at reference location #1, the 

antenna aperture, or, equivalently, its “input”. Here, we view the antenna as a 
lossy two-port component. From (7.45), we obtain the antenna input equivalent 
noise temperature APT  as 

 
1

1 l
AP P P

A r

R
T T T

e R


= − = 
 

, K (7.49) 

where 1
A Ae L−=  is the radiation efficiency (0 1)Ae≤ ≤ , Rl is the antenna loss 

resistance, and Rr is its radiation resistance. As a reminder, Ae = rad in/P P =  
/ ( )r l rR R R+ . Eq. (7.49) describes the thermal noise contribution of the antenna 

due to its physical temperature PT  referred to its “input” (the antenna aperture). 

APT  must be added to AT  in order to obtain the overall antenna noise temperature 
(external and internal) at location #1. However, additional terms exist in the whole 
receiver system due to the noise contributions of the lossy TL (or waveguide) and 
the receiver electronics. 
 
3.5. Noise due to the physical temperature of the transmission line 

We now consider the transmission line (TL) as a source of noise when it has 
conduction losses. In a manner analogous to the one applied to the antenna, the 
TL is considered as a two-port “attenuator”. Thus, its noise contribution at the 
antenna terminals (the input to the TL or reference location #2) is 

 2
1

1L LP

L

T T
e


= − 
 

, K. (7.50) 

Here, 2 1l
L Le e Lα− −= =  is the line efficiency (0 1)Le≤ ≤ , LPT  is the physical 

temperature of the TL, α  (Np/m) is the attenuation constant of the TL, and l is its 
length. 

To transfer the TL noise contribution to the reference location #1, we use (7.44) 
which leads to 

 21
1 2

1 1
1L

L A L LP

A A L

T
T L T T

e e e

−  
= = = − 

 
. (7.51) 

Together with APT , 1LT  must be added to AT  in order to obtain the system 
operating noise temperature at location #1. 

3.6. System noise referred to the antenna aperture (location #1) 
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The system temperature referred to the antenna aperture includes the 
contributions of the antenna (external noise temperature plus equivalent input 
antenna thermal noise temperature), the transmission line and the receiver as 

 
�

antenna
external receiver, antenna internal TL internal

1 1 1 1
1 1

AP

A
sys A P LP R

A A L A L

T

T T T T T
e e e e e

   
= + − + − +   

    ���������� �������

. (7.52) 

Here, AT  is the external temperature that corresponds to the antenna temperature 

provided the antenna is loss-free, as discussed in Section 2. RT  is the receiver 

noise temperature (at its input, reference location #3). It is given by 

 2 3
1

1 1 2
R

T T
T T

G G G
= + + +⋯ , K. (7.53) 

Here, 

1T  is the noise temperature of the first amplifying stage; 

1G  is the gain of the first amplifying stage ( 1
1 1G L−= , see (7.44)); 

2T  is the noise temperature of the second amplifying stage; 

2G  is the gain of the second amplifying stage ( 1
2 2G L−= ). 

Notice that RT  is divided by the efficiencies Le  and Ae  in order to refer it to the 

TL input (location #2) and on to the antenna aperture (location #1); see (7.44). 

3.7. System noise referred to the antenna terminals (TL input, location #2) 
The reference location is changed by considering the efficiency of the antenna. 

As per (7.44), we have 
 TL A

sys sys AT T e= ⋅  (7.54) 

since TL
sysT  is the system noise temperature at the antenna “output” and A

sysT  is that 

at its “input”. Substituting (7.52) into (7.54) produces 

 � ( )
�antenna antenna

external receiverinternal TL internal

1 1
1 1TL

sys A A P A LP R

L L

T T e T e T T
e e


= + − + − + 

 �����
�����

. (7.55) 

 
3.8. System noise referred to the receiver input (location #3) 

The reference location is changed once again by considering the efficiency of 
the TL: 
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 R TL
sys sys LT T e= ⋅ . (7.56) 

Therefore, 

 ( ) ( ) �
receiverantenna antenna TL

external internal

1 1R
sys A A L P A L LP L RT T e e T e e T e T= + − + − +
��� ������� �����

, K. (7.57) 

 

 
Example (from Kraus, p. 410, modified): A receiver has an antenna with an 
external noise temperature 50° K, a physical temperature of 300° K, and an 
efficiency of 99%. Its transmission line has a physical temperature of 300° K and 
an efficiency of 90%. The first three stages of the receiver all have 80° K noise 
temperature and 13 dB gain (13 dB is about 20 times the power). Find the system 
temperature at: (a) the antenna aperture, (b) the antenna terminals, and (c) the 
receiver input. 

 

The receiver noise temperature is 

 
2

80 80
80 84.2

20 20
RT = + + =  °K. (7.58) 

(a) Then, the system temperature at the antenna aperture is 

 

1 1 1 1
1 1 ,

1 300 1 84.2
50 300 1 1 181.2009 K.

0.99 0.99 0.9 0.99 0.9

A
sys A P LP R

A A L A L

A
sys

T T T T T
e e e e e

T

  
= + − + − +   

  

  
= + − + − + ≈   

⋅  

 (7.59) 

(b) The system temperature at the antenna terminals is 
 181.2009 0.99 180.3889TL A

sys sys AT T e= ⋅ ≈ ⋅ ≈  °K. 

(c) The system temperature at the receiver input is 
 180.3889 0.9 162.35R TL

sys sys LT T e= ⋅ = ⋅ ≈  °K. 

 
 
4. Minimum Detectable Temperature (Sensitivity) of the System 

The minimum detectable temperature, or sensitivity, of a noise-power 
receiving system minT∆  is the minimum difference in the brightness temperatures 

of two objects that can be reliably measured by the receiver system. minT∆  is 
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usually taken at the antenna aperture (reference location #1). minT∆  represents the 

system’s uncertainty in measuring noise temperature. Thus, if the incremental 
antenna temperature AT∆  obtained with a given bright object is less than minT∆ , 

the object is deemed undetectable. 

minT∆  is defined as the RMS deviation (or RMS uncertainty) in acquiring AT : 

 min rmsT T∆ = ∆ . (7.60) 

rmsT∆ , referred to as RMS noise temperature, is determined experimentally by 

pointing the antenna at a background portion of space, which does not contain 

distinct bright bodies, and recording many AT  values over a long period of time. 

Acquiring a large number of AT  samples versus time is critical since the formula 

for calculating rmsT∆  relies on a statistical model. This model assumes that the 

thermal-noise voltage at the antenna terminals is a zero-mean randomly 

fluctuating time-waveform v(t) of Gaussian probability distribution.  

Assume the output of the receiver is in the form of real-positive numbers 

proportional to the received noise power. Modern receivers are digital, and their 

output is in the form of integers. Each noise-power measurement is taken over a 

period of time τ , referred to as post-detection (or integration) time constant. The 

measurement is in effect the variance of the noise voltage v(t) over the period τ  

and is thus proportional to R R
sys sysP k f T= ∆ . 

The RMS deviation Drms of the numbers produced by the receiver represents 

(is proportional to) the RMS noise temperature at the receiver: 

 2
rms av rms

1

1
( )

N
R

n

n

D a a T
N

κ
=

= − = ⋅ ∆  where av

1

1 N

n

n

a a
N =

=  . (7.61) 

Here, κ  is a known constant converting the integers to noise-temperature values. 

rmsT∆  (at reference location #1) can be obtained from rms
RT∆  by  

 
rms

rms min

R

A L

T
T T

e e

∆
∆ = = ∆ . (7.62) 

This is the sensitivity of the system in terms of noise temperature. 
In order a source to be detected, it has to create an incremental antenna 

temperature AT∆  which exceeds minT∆ , minAT T∆ > ∆ . Thus, the minimum 

detectable power Pmin is 
 min min min0.5 eP A p k T f= = ∆ ∆ , (7.63) 
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where Ae is the effective antenna area, pmin is the power-flux density (magnitude 

of Poynting vector) due to the source at the location of the antenna, and the factor 

of 0.5 accounts for the randomness of the wave polarization. It follows that the 

minimum detectable power-flux density is 

 min
min

2

e

k T f
p

A

∆ ∆
= , W/m2. (7.64) 

The signal-to-noise ratio (SNR) for a noise-power signal of incremental 
antenna temperature AT∆  is given by 

 
min

AT
SNR

T

∆
=

∆
. (7.65) 

This SNR is used in radioastronomy and remote sensing. 
Theoretically, rmsT∆  can be estimated from the average system temperature 

A
sysT , the bandwidth of the receiver f∆ , and the time τ  over which one 

measurement is taken: 

 min rms
 

A
sysT

T T
f τ

∆ = ∆ =
∆

. (7.66) 

This equation is well known as the radiometry equation. It is derived from 

statistical principles, but its derivation is not going to be discussed here. We only 

mention that (7.66) is often corrected as: 

 min rms
 

A
sysk T

T T
f τ

′
∆ = ∆ =

∆
, (7.67) 

where k′ is termed the system constant, and it is determined experimentally. 
 

 
In the previous example, we found that the system temperature at the antenna 
aperture is 181.2009 KA

sysT ≈ . Assume that the receiver bandwidth is 100f∆ =  

Hz, that the system constant is 1k′ =  and that the post-detection constant is 1τ =  
s. Find the minimum detectable noise power at the antenna aperture minP . 

 

min min

23 20

 

1.38 10 100 181.2009 2.5 10  W

A
sys A

sys

k T f
P k f T k f k k T

f ττ
− −

′ ∆
′= ∆ ∆ = ∆ =

∆ ⋅

≈ ⋅ ⋅ ⋅ ≈ ⋅
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5. System Signal-to-Noise Ratio (SNR) in Communication Links 

The system noise power at the antenna terminals (location #2) is 

 TL
N sysP kT f= ∆ , W, (7.68) 

where TL A
sys A sysT e T= . Using Friis’ transmission equation, we can express the 

received power at the antenna terminals as 

 
2

2 2(1 | | )(1 | | )PLF ( , ) ( , )
4

r t r t t t r r r tP G G P
R

λ
θ ϕ θ ϕ

π

 
= − Γ − Γ  

 
. (7.69) 

Finally, the SNR becomes 

 

2

2 2(1 | | )(1 | | )PLF
4

t r t r t
r

TL
N sys

G G P
P R

SNR
P kT f

λ

π

 
− Γ − Γ  

 = =
∆

. (7.70) 

The above equation is fundamental in the design of telecommunication systems. 
More specifically, if the SNR necessary for the adequate operation of the receiver 
is known, Eq. (7.70) allows for determining the maximum range over which the 
communication link is stable. 
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APPENDIX: Basic Radiometric Receiver Theory 

Any dissipative body emits spontaneous electromagnetic (EM) radiation of 

thermal origin (known as blackbody radiation). Planck’s law of blackbody 

radiation states the spectral radiance (or spectral brightness) ( , )T fB  of a body 

at absolute temperature T (°K) above 0°K as a function of frequency f as: 

 
3

2 /( )

2
( , )

1hf kT

hf
T f

c e
=

 − 
B , W∙m−2

∙sr−1
∙Hz−1 (1) 

where c is the speed of light in vacuum, h is Planck’s constant (h = 

6.62607015×10−34, J⋅s or J⋅Hz−1), and k is Boltzmann’s constant (k ≈ 
231.380649 10−×  J/K). The spectral brightness describes the amount of thermal 

power radiated per unit area, per unit solid angle, and per unit frequency for given 

frequency and temperature. 

At microwave frequencies and moderate temperatures, the term / ( )hf kT  is 

very small. Thus, the approximation /( ) 1 / ( )hf kTe hf kT≈ +  (first 2 terms in the 

Taylor series expansion) can be made, leading to the approximation of (1) known 

as the Rayleigh-Jeans law: 

 
2

2 2

2 2
( , )

f kT kT
T f

c λ
≈ =B . (2) 

We notice that the thermal radiance decreases rapidly with decreasing frequency 

( 2fB ∼ ). Importantly, the radiance is proportional to the body’s temperature T. 

This allows for determining the temperature of the body by measuring the power 

it radiates. This is the underlying principle of thermography in microwave 

radiometry and radioastronomy. 

The total thermal-noise power per hertz ph of an isothermal body radiating 

isotropically can be estimated as 

 ,B ,B( , ) ( , ) 4 ,  W/Hzh ep T f T f A π= ⋅ ⋅B  (3) 

where ,BeA  is the effective radiating area of the bright body and 4π  is the solid 

angle of 3-D space. Since the body radiates isotropically, it has a directivity 

B 1D = ; therefore, its effective area is 2
,B / (4 )eA λ π= . Substituting in (3) yields 

 
2

,B
2

2
( , ) 4 2

4
h

kT
p T f kT

λ
π

λ π
≈ ⋅ ⋅ = . (4) 

Thus, the bright body can be viewed as a source of microwave power with the 
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spectral density given by (4). Note that the result in (4) no longer depends on 

frequency.  

An antenna can receive at best half of the incident power and deliver it to the 

radiometer (provided it is loss-free and perfectly impedance matched). Assuming 

the antenna captures all the power radiated by the bright body, the received power 

is: 

 ,B( ) 0.5 ( ) ,  W/Hzh hp T p T kT= ≈ . (5) 

This is the Nyquist relation given in equation (7.1). The cases where the antenna 

captures only a portion of the black-body radiation are discussed in this Lecture. 

Since the receiver has a limited bandwidth of f∆ , the total noise power it can 

receive is  

 N , WP kT f= ∆ . (6) 

This is equation (7.2). 


