Lecture 9: Linear Wire Antennas — Dipoles and Monopoles
(Small electric dipole antenna. Finite-length dipoles. Half-wavelength dipole.

Method of images — revision. Vertical infinitesimal dipole above a
conducting plane. Monopoles. Horizontal infinitesimal dipole above a
conducting plane.)

The dipole and the monopole are arguably the two most widely used antennas
across the UHF, VHF and lower-microwave bands. Arrays of dipoles are
commonly used as base-station antennas in land-mobile systems. The
monopole and its variations are common in portable equipment, such as
cellular telephones, cordless telephones, automobiles, trains, etc. It has
attractive features such as simple construction, sufficiently broadband
characteristics for voice communication, small dimensions at high
frequencies. Alternatives to the monopole antenna for hand-held units is the
inverted F and L antennas, the microstrip patch antenna, loop and spiral
antennas, and others. The printed inverted F antenna (PIFA) is arguably the
most common antenna design used in modern handheld phones.

1. Small Dipole
The small dipole features short electrical length:
A A
—<[<— 9.1
¢ 50 10 O
1/2 If we assume that (9.1) holds, the maximum phase
. error in (SR) that can occur is
o BL_2TA_T g
=0 I(2) T2 420 1000
L which error corresponds to an observation direction

at 6=0°. As a reminder, a maximum total phase
error less than 7 /8 1is acceptable for the
—1/2 approximation e/ =¢=/k to be made in the
integral solution for the vector potential A.

We also assume that the observation distance fulfills »>1[, so that the
approximation R = r can be made in the amplitude-decay term 1/R=1/r.
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On such a short dipole, the current distribution is a triangular function of

Z .

Im-(l—ij, 0<7'<1/2
1/2

1(z") =+ (9.2)

L, -(1+i), ~1/2<7<0.
| 112
Then, the VP integral is obtained as

0 '\ - iBR 12 '\ - jBR
A:zf{jlm(nljzjele dz,ﬂ[’”(l_zjzjeze dz'}. (9.3)
/4
0

=1/2

The solution of (9.3) is simple when we assume that R=r in both the
amplitude-decay and the phase-delay terms:

_'ﬂr
A=zl A 9.4)
2| 4 r

The further away from the antenna the observation point is, the more accurate
the expression in (9.4).

Note that the result in (9.4) is exactly one-half of the VP A of an
infinitesimal dipole of the same length (where the current magnitude I, =1,
i1s constant along the dipole). This is expected because we made the same
approximation for R as in the case of the infinitesimal dipole but, this time,
we integrated a triangular function along /, whose averageis I,, =1, /2.

Now, we need not repeat all the calculations of the field components,
power and antenna parameters; we simply use the infinitesimal-dipole field
multiplied by a factor of 0.5:

~jpr
Ey~ inPl e oo
8T r
~jpr
Hy~ i Pl e oo | prs1. 9.5)
8T r

E.,=E,=H,=Hy=0
The normalized field pattern is the same as that of the infinitesimal dipole:
E(6,p)=siné (9.6)

and the power pattern is
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U(8,p)=sin28. (9.7)

6=0

field pattern

power pattern

The beam solid angle:

2T

Q= j j sin2 8- sin 8dOd g,
00

T 4 8x
Q, :Zz-jsinmde:z;;._:_
0 3 3

The directivity:

_4r _3_
Q, 2

As expected, the directivity, the beam solid angle as well as the effective
aperture are the same as those of the infinitesimal dipole (the normalized
patterns of both dipoles are the same).

The radiated power is four times less than that of an infinitesimal dipole
of the same length and current I, =1,, because the far fields are twice
smaller in magnitude:

1.5. (9.8)

0
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1\ 7 (I,IY x (I,1)
M=—2p| | 22y nt ) 9.9
4 3"(1) 12”(1) ©-9)

As a result, the radiation resistance i1s also four times smaller than that of the

infinitesimal dipole:
T (1Y Y
R.==n|—| =202 —| . 9.10
oilz) =20 () o0

2. Finite-length Infinitesimally Thin Dipole

A good approximation of the current distribution along the dipole’s length
is the sinusoidal one:

Iysin| S é—z' , 0<7°<1/2
1(z) =1 - - 9.11)
Iysin| 8 é+z' ,—1/2<7<0.
It can be shown that the VP integral
12 _ipR
A=2t [ 1) —d 9.12)
4

has an analytical (closed form) solution. Here, however, we follow a standard
approach used to calculate the far field for an arbitrary wire antenna. It is
based on the solution for the field of the infinitesimal dipole. The finite-
length dipole is divided into an infinite number of infinitesimal dipoles of
constant-current elements of length dz’. Each such dipole produces the
elementary far field given by

, e IPR ,
dEg = jnpBl,(z) sin@ - dz
47 R
dH, = iBL() e sing - dz (9.13)
= (2 sin@- dz .
0= J 47 R

dE, ~dE,~dH, ~dHy =0

where R=[x2+ y2+(z—2)2%]"? and I.(Z") denotes the value of the current
element at z’. Using the far-zone approximations,
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lz%, for the amplitude factor (9.14)

R=~r—7'cos@, for the phase factor

the following approximation of the elementary far field is obtained:

e‘jﬂ”

dEﬁ = ]ﬂﬁle(
dxr

jefﬁz'“’se -sin 8dz’ . (9.15)

Using the superposition principle, the total far field is obtained as

12 . 12
e jbr . s s ,
Eq = J dEy = jﬂﬂ[ jsm@- J 1,(7)eih<cosbdy” (9.16)

=172 azr =172

The first factor

r

2(6) = jﬂﬂ(ejﬁrjsiné? 9.17)

is called the element factor. The element factor in this case is the far field
produced by an infinitesimal dipole of unit current element I/ =1 (AXm).
The element factor is the same for any current element, provided the angle &
1s always associated with the axis of the current flow. The second factor
1/2
fO)= [ L(eibody 9.18)

=1/2

is the space factor (or pattern factor, or, array factor). The pattern factor is
dependent on the amplitude and phase distribution of the current of the
antenna (the source distribution in space).

For the sinusoidal current distribution of (9.11), the pattern factor is

0 i
f(ﬁ):lo{ j sin{ﬂ(é+z'ﬂemz'wsedz'+Z[ sin{ﬁ(é—z'ﬂeiﬁ“owdz'}. (9.19)

=12

The above integrals are solved having in mind that

[c sin(a + bx) —bcos(a + bx)]. (9.20)

cX

jsm(a +b-x)e“*dx = PRI

The far field of the finite-length dipole is thus obtained as
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cos(’b; COS@] - COS(IBZZH . 9.21)

sin @

COS (’BZ COS 49) — cos(m)
E(6, Q) = 2 2 . (9.22)

sin @

|
E9=8(9)'f(9)=j7710(ej ]
27r

Amplitude pattern:

Some elevation patterns (in dB) for dipole lengths [ < A are plotted below
[from Balanis]. Notice that the direction of maximum radiation is always in
the azimuth plane. Also, as the dipole’s length increases, a slight increase in
the pattern directivity is observed (beamwidth decreases).
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4

For dipoles of length [ > A, the patterns develop secondary beams. The 3-D

pattern of the dipole / =1.254 is shown below [from Balanis].
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Power pattern:

[Cos(ﬁz’lcosej _Cos(lglﬂz | (9.23)

sin’ @
Note: The maximum of F(6,9) above is not necessarily unity, but for
[ <1.54 the major maximum is always at € =90°.

F(0,9) =

Radiated power

First, the far-zone power flux density is calculated as

5 B 2
P fi |y P I} |:COS(O.5,BZ cos-é?) cos(O.S,Bl)} 924)
2n 87%r? sin @
The total radiated power is then
2w
M={pP-ds= | [P-r2sin6d6dg (9.25)
00
g ’I” cos(o.s/;’lcosg)—cos(o.sﬂl)]2 ” 9.26)
4z, sin @
3
3 is solved in terms of the cosine and sine integrals:
S=C+n(Bl)-C (Bl +%sin(ﬂl)[s,- (281)-25,(Bl)]+
(9.27)

+%Cos(ﬂl)[C+ln(ﬂl/2)+Ci(2,31)—2@(:51)]'

Here,
C =0.5772 1s the Euler’s constant,

Ci(x)= J' CO; Y dy =— j coys Y dy 1is the cosine integral,

sin y
y

Si(x) =

dy is the sine integral.

St 3
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Thus, the radiated power can be written as

Ig
[M=n—-3. (9.28)
iy

Radiation resistance

The radiation resistance is defined as
R, = E = ﬁ /. g
12 12 2«7

where I, is the maximum current magnitude along the dipole. If the dipole is
half-wavelength long or longer (I>A4/2), I, =1, see (9.11). However, if
[<A/2,then I, <l as per (9.11). For [ < A/2, the maximum current is at
the dipole center (the feed point z”=0) and its value is

L, =1y-0) =Iysin(Bl/2) (9.30)
where Sl /2 < m /2, and, therefore, sin(fl/2)<1. In summary,

1, =Iysin(Bl/2), ifI<A/2

(9.29)

, (9.31)
Im:IO’ 1fl>ﬂ,/2.
Therefore,
r:2’7 — 3”2 ifI< /2
7z sin?(pl/2) 9.32)
R =2.3 f12A72.
27
Directivity
The directivity is obtained as
Dy =4r U =4r_ Fonn (9.33)
[ | F6.9)sin0a6de
00
where
c0s(0.5 B cos 8) —cos(0.581) T’
Fiog =[SO o030
sin @
is the power pattern [see (9.23)]. Finally,
Dy=2F,, /3. (9.34)
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Input resistance of center-fed dipoles

The radiation resistance given in (9.32) is not necessarily equal to the
input resistance because the current at the dipole’s center I;, (if its center is
the feed point) is not necessarily equal to I,,. In particular, I, #1,, if [>A/2
and [ # (2n+1)A/2, nis any integer. Note that when [ > A/2, I, =1,.

To obtain a general expression for the current magnitude I;, at the center
of the dipole (assumed to be the feed point), we note that if the dipole is
lossless, the input power is equal to the radiated power. Therefore, in the case
of a dipole longer than half a wavelength,

| Zin |°

2
P, = R,-n=r1=|102| R, for I>1/2, (9.35)

and the input and radiation resistances relate as
| 1o P

R,-nzll |2R,, for [>A/2. (9.36)
Since the current at the center of the dipole (z"=0) is [see (9.11)]
I, =Iysin(pl/2), (9.37)
then,
R
i = — : : 9.38
sin?(Sl/2) (-38)
Using the 2" expression for R, in (9.32), we obtain
L= S (9.39)
27 sin?(Bl/2)
For a short dipole (I < A/2), I;, =1,,. It then follows from
I. I,
P = | ’;' R, —| | R andI, =1 ,1<1/2, (9.40)
that
R, =R =" . 3 1<A/2, 9.41)

27 sin2(Bl12)’
where we have taken into account the first equation in (9.32).
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In summary, the dipole’s input resistance, regardless of its length, depends on
the integral 3 as in (9.39) or (9.41), as long as the feed point is at the center.

Loss is incorporated in the calculation of R;, by simply adding R, to the
values obtained using (9.39) or (9.41). Remember that in Lecture 4, we
obtained the expression for the loss of a dipole of length [ as:

Rus {1 . sin(,b’l)}

_ _where Ry = [Fo7] (9.42)
25in2(0.581) B

p o

loss —

3. Half-wavelength Dipole

This 1s a classical and widely used thin wire antenna. Substituting
[=A/2in (9.21) yields:

~ Ioye B cos(0.57cosé
Eo = jn 0 cos( : )
27r sin & (9.43)

Radiated power flux density:

| 1o |? |:COS(O.57Z'COSI9)T . T, P
872r? sin @ S72r2

P=1\E,p=1 sin*@. (9.44)
2n

.-

F(6) — normalized power pattern

Radiation intensity:

| 1o |:COS(O.57Z'COSI9)T ~77|10|2

<ing Wsiﬁ 6. (945)

-

F(6) — normalized power pattern
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Radiated power

The radiated power of the half-wavelength dipole is a special case of the
integral in (9.26):

27 2
H:77|IO| ICOS (O:5ﬂcosﬁ)d9 (9.46)
47 7 sin @
) 27 _
r1=plhl jl COSY gy (9.47)
87 y
JTJ=057712+In(27)—-C;(27) = 2.435 (9.48)
—1l= 2.435% |1, [P=36.525| I, . (9.49)
Radiation resistance:
R, = 2H2 =73 Q. (9.50)
| 1o |
Directivity:
DO:47ZUWIX :475M:£:i:1.643. (9.51)
I1 3 2.435
Maximum effective area:
2
A, = /I—DO ~(0.1342. (9.52)
4r

Input impedance

Since [ = A/ 2, the input resistance is the same as the radiation resistance:
R, =R, =73 Q. (9.53)
The 1imaginary part of the input impedance is approximately +j42.5 Q. To
achieve maximum power transfer, this reactance has to be removed by
matching (e.g., shortening) the dipole:
e thick dipole [ =0.471
e thin dipole [ =0.481.

The input reactance of the dipole is very frequency sensitive, i.e., it
depends strongly on the ratio [/ A. This is to be expected from a resonant
narrow-band structure operating at or near resonance. We should also keep in
mind that the input impedance is influenced by the capacitance associated
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with the physical junction to the transmission line. The structure used to
support the antenna, if any, can also influence the input impedance. That is
why the curves below describing the antenna impedance are only
representative.

Measured input impedance of a dipole vs. its electrical length

1600t—

1400

1200

1000~

8001~

6001

400

200

Figure 2.13 Input resistance of dipole antenna.

+ G. H. Brown, and O. M. Woodward, Jr., “Experimentally Determine Impedance Charac-
teristics of Cylindrical Antennas,” Proc. IRE, vol. 33, 1945, pp. 257-262.

(a) input resistance

Note the strong influence of the dipole’s diameter on the dipole’s input
resistance at resonance (maximum input resistance). But when [=0.54,, the
impedance is close to about 73 € regardless of the dipole’s diameter.
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(b) input reactance

We can calculate the input resistance as a function of // A using (9.29)
and (9.39). These equations, however, are valid only for infinitesimally thin
dipoles. Besides, they do not produce the reactance. In practice, dipoles are
most often tubular and they have substantial diameter d. High-frequency
simulators within antenna/microwave CAD packages can calculate accurately
the complex antenna input impedance. However, there exists a classical
method that produces fairly accurate closed form solutions for the self-
impedance and the mutual impedance of straight-wire antennas. This is the
induced electromotive force (emf) method, which is discussed later.
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4. Method of Images — Revision

JiT -
- 4 Ji
J, -
+ 0

JiT -
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5. Vertical Electric Current Element Above Perfect Conductor

The field at the observation point P is a superposition of the fields of the
actual source and the image source, both radiating in a homogeneous medium
of constitutive parameters (&, ;). The actual (or original) source is a current
element /oAl (infinitesimal dipole). Therefore, the image source is also an
infinitesimal dipole. The respective field components are:

e‘]ﬁ’l .
E¢ = jnpIAl) i -sin @,
T
! (9.54)
e_J,B’Q .
E, = jnB1Al) -siné, .
471'1"2

Expressing the distances 1 =|r; | and » =|r, | in terms of r=[r | and & (using
the cosine theorem) gives

R =~r2+h?—2rhcosé,
ry =+r2 +h? =2rhcos(r—6) .

(9.55)

We make use of the binomial expansions of 1 and » to approximate the
amplitude and the phase terms, which simplify the evaluation of the total far
field and the VP integral. For the amplitude term,
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lzlzl. (9.56)

Hn » r
For the phase term, we use the second-order approximation (see also the
geometrical interpretation below),

r=r—hcosé

(9.57)
rn=r+hcosé.
<
A
O = o
K 2hcos @
X
The total far field is
Eg =E{ + Ej (9.58)
E9 _ ]ﬂﬂ (IOAZ) .sin e[e—jﬂ(r—hcosﬁ) + e—jﬂ(r+hcost9):| (959)
dxr
~jBr
Ep= jqﬁ(lOAl)e4 sin@-[ 2cos(Bhcosd)], 220
r < . )
element f;rctor g(0) array factor f () (960)
Eg=0 , 2<0

Note that the far field can be decomposed into two factors: the field of the
elementary source g(@) and the pattern factor (also array factor) f(0).
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The normalized power pattern is
F(H)=[sin9-cos(ﬂhcos€)]2. (9.61)

Below, the elevation plane patterns are plotted for vertical infinitesimal
electric dipoles of different heights above a perfectly conducting plane:

Relative power
(dB down)

[Balanis]

As the vertical dipole moves further away from the infinite conducting

(ground) plane, more and more lobes are introduced in the power pattern.

This effect is called scalloping of the pattern. The number of lobes is
n=nint[(2h/ A1) +1].

Relative power
(dB down)

90°
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Total radiated power

2x 7wl

II:(ﬂ)P-ds:%g ! | Eo |2 r2sin6d6d g,

w2
=" [|E,]P rsin6dé, (9.62)
%

7r/.2

I1=7B2(1)Al)? | sin?@-cos?(Lhcos)do,
0

2 :

T m](lo_Al) 1 cos(2fh) N sin(23h) | 9.63)
A 3 (2Bh*  (2phy

e As fBh— 0, the radiated power of the vertical dipole above ground
approaches twice the value of the radiated power of a dipole of the
same length in free space.

e As [Bh — oo, the radiated power of the vertical dipole above ground

tends toward that of the vertical dipole in open space.
The above asymptotic behavior is explained by the limits:

{_cos(Z,b’h) . sin(Zﬂh)} 1
(2Bn)"  (28n)° | 3
1im[—cos(2ﬂh)+Sin(2ﬂh)}=o. (9.65)

im (9.64)

(28h)"  (2Bh)
Radiation resistance
o2 (Az)z 1_cos(2fh)  sin(2ph)
P A) |3 (2pn)  (2h)
e As fh— 0, the radiation resistance of the vertical dipole above ground

approaches twice the value of the radiation resistance of a dipole of the
same length in free space:

R =2R%  Bh=0. (9.67)

]. (9.66)
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e As Sh — oo, the radiation resistances of both dipoles (in free space and
above ground) become the same.

Radiation intensity

) 2
U=r2P=r2 |§L| _ g(IOTAlj sin? @cos? (Bhcos ). (9.68)
n

The maximum of U (@) occurs at 8=7x/2:
Unmax = Q( IOAZ)
2\ 4 (9.69)

This value 1s 4 times greater than U, of a free-space dipole of the same
length. Can you provide a physical explanation of this result?

Maximum directivity

Umax _ 2
By =T _cos2ph) __sin(2Bh)’
3 @2pn*  2phy

If Bh=0, Dy=3, which is twice the maximum directivity of a free-space
current element (D¢ =1.5). Can you explain why that is when in fact the two
field patterns are identical in the upper half-space?

The maximum of D, as a function of the height & occurs when Sh=
2.881 (h = 04585/1) Then, D() = 6.566/ﬁh:2_881 .

(9.70)

Relative power
(dB down)

10

o} - v ~ — °

— h=0.45854
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6. Monopoles

A monopole is a dipole that has been reduced by one-half and is fed against a
ground plane. It is normally A/4 long (a quarter-wavelength monopole), but
it might be shorter if there are space restrictions. In the latter case, the
monopole is a small monopole the counterpart of which is the small dipole
(see Section 1). Its current has linear distribution with its maximum at the
feed point and its null at the end.

The vertical monopole is a common antenna for AM broadcasting (f =
500 to 1500 kHz, A =200 to 600 m), because it is the shortest most efficient
antenna at these frequencies. Also, the vertically polarized waves suffer less
attenuation at close-to-ground propagation. Vertical monopoles are widely
used as base-station antennas in mobile communications, too.

Monopoles at base stations and radio-broadcast stations are supported by
towers and guy wires. The guy wires must be separated into short enough
(< A/8) pieces insulated from each other to suppress parasitic currents.

Special care is taken when grounding the monopole. Usually, multiple
radial wires or rods, each 0.25—0.354 long, are buried at the monopole base
in the ground to simulate perfect ground plane, so that the pattern
approximates closely the theoretical one, i.e., the upper-hemisphere pattern of
the A/2-dipole. Losses in the ground cause undesirable deformation of the
pattern as shown below (infinitesimal dipole above imperfect ground plane).

|
Relative power
(dB down)

90° *— 90°

h=21/4
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Monopole fed against a Practical monopole with radial
large solid ground plane wires to simulate perfect ground

Several important conclusions follow from the image theory and the
discussion in Section 5:

e The field distribution in the upper half-space is the same as that of the
respective free-space dipole.

® The currents and charges on a monopole are the same as on the upper half
of its dipole counterpart but the terminal voltage is only one-half that of
the dipole. The input impedance of a monopole is therefore only half that
of the respective dipole:

Zm =(0.525%. (9.71)

e The radiation pattern of a monopole is one-half the dipole’s pattern since
it radiates in half-space and, at the same time, the field normalized
distribution in this half-space is the same as that of the dipole. As a result,
the beam solid angle of the monopole is half that of the respective dipole
and its directivity is twice that of the dipole:

mp _ 4% 4r

L — 2D 9.72
Cooom sk T ©-72)

The quarter-wavelength monopole

This is a straight wire of length [ =A4/4 mounted over a ground plane.
From the discussion above, it follows that the quarter-wavelength monopole
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is the counterpart of the half-wavelength dipole as far as the radiation in the
hemisphere above the ground plane is concerned.

e Its radiation pattern is the same as that of a free-space A/2-dipole, but it
is non-zero only for 0° <8 <90° (above ground).

e The field expressions are the same as those of the 4/ 2-dipole.

e The total radiated power of the A/4-monopole is half that of the A/2-
dipole.

e The impedance of the A/4-monopole is half that of the A/2-dipole:
ZM =0.5ZF =0.5(73+ j42.5)=36.5+ j21.25, Q.
e The directivity of the A/4-monopole is twice that of the A/2-dipole:
D™ =2D§? =2-1.643=3.286.

Some approximate formulas for rapid calculations of the input resistance of a
dipole and the respective monopole:

G:ﬁ:
2

JZ%, for dipole
Let l
G=,Bl=27zz, for monopole.

Approximate formulas:
R;,, =20G? ,dipole

e f0<G<” then
4 R;,, =10G? ,monopole

R;,, =24.7G?*> ,dipole

° Ifz<G<£,then
4 2 R;,, =12.35G?*> ,monopole

R, =11.14G*'7 ,dipole

e f X <G<2,then
2 R;,, =5.57G*'7  ,monopole
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7. Horizontal Current Element Above a Perfectly Conducting Plane

The analysis 1s analogous to that of a vertical current element above a
ground plane. The difference arises in the element factor g(€) because of the
horizontal orientation of the current element. Let us assume that the current
element is oriented along the y-axis, and the angle between r and the
dipole’s axis (y-axis) is .

\
L
~o

Y - - ———— - - - - - - - .- - -

- T
E2hcos€
E(P)=E¢(P)+E’(P), (9.73)

—jbn

Ed = jnBIAl)S——siny, (9.74)
47n
e‘]ﬂ’Z .

E;, =—jnB(I,Al) siny/ . (9.75)
471'1"2

We can express the angle ¥ in terms of (6, @):

cosy =y-f=¥y-(Xsinfcos@+ysinfsin @+ ZcosH)
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= cosly =sin @ sin @
(9.76)

= siny = \/l—sinz 6 sin? @.
The far-field approximations are:

I 1 .
—=—=—, for the amplitude term
n 15 r

K=r—hcosé

rn=r+hcos@

} for the phase term.

The substitution of the far-field approximations and equations (9.74), (9.75),
(9.76) into the total field expression (9.73) yields

E,(6,9) = ]nﬁ(loAl)—\/l—smszm Q- [2]s1n ﬂhcosﬁ)] (9.77)

element factor 2(6,p) iy factor 1(6.9)

The normalized power pattern
F(6,9)=(1-sin?8-sin? @)-sin? ( fhcosH) (9.78)

90° b
—— h =0 (free-space) h=3A/8
——=h=A/8 ———h=A1
........ h=1/4 ceenenee = A
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As the height increases beyond a wavelength (k> A), scalloping appears
with the number of lobes being

n= nint(2%). (9.79)

Relative power
(dB down) 3

Do
7

//
vz

Following a procedure similar to that of the vertical dipole, the radiated
power and the radiation resistance of the horizontal dipole can be found:

HZEU(IO_AZT z_sin(Z,Bh)_cos(2ﬁ§z)+sin(2ﬂ?) (9.80)
2'Ua )3 28 (280 (2ph)
k ’(5) J
R,:m;(%j R(Bh). (9.81)

By expanding the sine and the cosine functions into series, it can be shown
that for small values of (£h) the following approximation holds:

3272 ( h)
R gpso = 2 9.82
/ Bh—0 15 (/J ( )
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It is also obvious that if 7 =0, then R, =0 and II =0. This is to be expected
because the dipole is short-circuited by the ground plane.

Radiation intensity

5 2
U= 5—77 |E, |>= g(IOTAl) (1-sin2@-sin? @)-sin?(Shcosd)  (9.83)

The maximum value of (9.83) depends on whether (fBh) is less than 7 /2 or
greater:

T l
o If hh<— —
p 2( 4

) the maximum radiation 1s at @ =0°:

IAL |
’27(071) sin(Bh),,_.. (9.84)

U ma
o If fh>— ( j the maximum-radiation direction depends on Sh:

2
max — g(IOTAlj . (9.85)
/6= arccos(zﬂ jqo 0°
Maximum directivity
o Ifh< %, then U .« 1s obtained from (9.84) and the directivity is
)
Dy = drYmex A" (Bh) (9.86)
I R(Bh
o Ifh> %, then U . 1s obtained from (9.85) and the directivity is
Dy =4rx U max = 4 : (9.87)
IT R(Bh)

2
I h
For very small Sh, the approximation D, = 7.5(8111(’}6; )] is often used.
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