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Lecture 9:  Linear Wire Antennas – Dipoles and Monopoles 

(Small electric dipole antenna. Finite-length dipoles. Half-wavelength dipole. 

Method of images – revision. Vertical infinitesimal dipole above a 

conducting plane. Monopoles. Horizontal infinitesimal dipole above a 

conducting plane.) 
 
The dipole and the monopole are arguably the two most widely used antennas 
across the UHF, VHF and lower-microwave bands. Arrays of dipoles are 
commonly used as base-station antennas in land-mobile systems. The 
monopole and its variations are common in portable equipment, such as 
cellular telephones, cordless telephones, automobiles, trains, etc. It has 
attractive features such as simple construction, sufficiently broadband 
characteristics for voice communication, small dimensions at high 
frequencies. Alternatives to the monopole antenna for hand-held units is the 
inverted F and L antennas, the microstrip patch antenna, loop and spiral 
antennas, and others. The printed inverted F antenna (PIFA) is arguably the 
most common antenna design used in modern handheld phones. 
 
1. Small Dipole 

The small dipole features short electrical length: 
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If we assume that (9.1) holds, the maximum phase 
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which error corresponds to an observation direction 
at 0θ = � . As a reminder, a maximum total phase 
error less than / 8π  is acceptable for the 
approximation jkR jkre e− −≈  to be made in the 
integral solution for the vector potential A.  

We also assume that the observation distance fulfills r l≫ , so that the 
approximation R r≈  can be made in the amplitude-decay term 1/ 1/R r≈ . 
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On such a short dipole, the current distribution is a triangular function of 
z′ : 

1 , 0 / 2
/ 2

( ')

1 , / 2 0.
/ 2

m

m

z
I z l

l
I z

z
I l z

l

′   ′⋅ − ≤ ≤   
= 

′  ′⋅ + − ≤ ≤   

                      (9.2) 

Then, the VP integral is obtained as 
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The solution of (9.3) is simple when we assume that R r≈  in both the 
amplitude-decay and the phase-delay terms: 
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The further away from the antenna the observation point is, the more accurate 
the expression in (9.4).  

Note that the result in (9.4) is exactly one-half of the VP A of an 

infinitesimal dipole of the same length (where the current magnitude 0 mI I=  

is constant along the dipole). This is expected because we made the same 
approximation for R as in the case of the infinitesimal dipole but, this time, 
we integrated a triangular function along l, whose average is av / 2mI I= . 

Now, we need not repeat all the calculations of the field components, 
power and antenna parameters; we simply use the infinitesimal-dipole field 
multiplied by a factor of 0.5: 
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The normalized field pattern is the same as that of the infinitesimal dipole: 

 ( , ) sinE θ ϕ θ=  (9.6) 

and the power pattern is 
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 2( , ) sinU θ ϕ θ= . (9.7) 
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The directivity: 

0
4 3

1.5
2A

D
π

= = =
Ω

.                                     (9.8) 

As expected, the directivity, the beam solid angle as well as the effective 
aperture are the same as those of the infinitesimal dipole (the normalized 
patterns of both dipoles are the same). 

The radiated power is four times less than that of an infinitesimal dipole 
of the same length and current 0 mI I=  because the far fields are twice 

smaller in magnitude: 

sinθ  
2sin θ  

0θ = �
 

90θ = �
 

field pattern 

power pattern 



 

Nikolova 2023 4 

2 2
1

4 3 12
m mI l I lπ π

η η
λ λ

   
Π = ⋅ =   

   
.                         (9.9) 

As a result, the radiation resistance is also four times smaller than that of the 
infinitesimal dipole: 
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2. Finite-length Infinitesimally Thin Dipole 

A good approximation of the current distribution along the dipole’s length 
is the sinusoidal one: 
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It can be shown that the VP integral 
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has an analytical (closed form) solution. Here, however, we follow a standard 
approach used to calculate the far field for an arbitrary wire antenna. It is 
based on the solution for the field of the infinitesimal dipole. The finite-
length dipole is divided into an infinite number of infinitesimal dipoles of 
constant-current elements of length dz′ . Each such dipole produces the 
elementary far field given by 
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where 2 2 2 1/2[ ( ) ]R x y z z′= + + −  and ( )eI z′  denotes the value of the current 
element at z′ . Using the far-zone approximations, 
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1 1
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the following approximation of the elementary far field is obtained: 
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Using the superposition principle, the total far field is obtained as 
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is called the element factor. The element factor in this case is the far field 
produced by an infinitesimal dipole of unit current element 1 (A m)Il = × . 
The element factor is the same for any current element, provided the angle θ  
is always associated with the axis of the current flow. The second factor 
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is the space factor (or pattern factor, or, array factor). The pattern factor is 
dependent on the amplitude and phase distribution of the current of the 
antenna (the source distribution in space). 

For the sinusoidal current distribution of (9.11), the pattern factor is 
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The above integrals are solved having in mind that 
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The far field of the finite-length dipole is thus obtained as 



 

Nikolova 2023 6 

0

cos cos cos
2 2

( ) ( )
2 sin

j r

l l

e
E g f j I

r

β

θ

β β
θ

θ θ η
π θ

−

    
−          = ⋅ = ⋅ 

 
.     (9.21) 

Amplitude pattern: 
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Some elevation patterns (in dB) for dipole lengths l λ≤  are plotted below 
[from Balanis]. Notice that the direction of maximum radiation is always in 
the azimuth plane. Also, as the dipole’s length increases, a slight increase in 
the pattern directivity is observed (beamwidth decreases). 
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For dipoles of length l λ> , the patterns develop secondary beams. The 3-D 
pattern of the dipole 1.25l λ=  is shown below [from Balanis]. 
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Power pattern: 
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Note: The maximum of ( , )F θ ϕ  above is not necessarily unity, but for 
1.5l λ<  the major maximum is always at 90θ = � . 

 
Radiated power 

First, the far-zone power flux density is calculated as 
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The total radiated power is then 
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ℑ  is solved in terms of the cosine and sine integrals: 
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Here, 

0.5772C ≈  is the Euler’s constant, 
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Thus, the radiated power can be written as 
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Radiation resistance  

The radiation resistance is defined as 
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where Im is the maximum current magnitude along the dipole. If the dipole is 
half-wavelength long or longer ( / 2l λ≥ ), 0mI I= , see (9.11). However, if 

/ 2l λ< , then 0mI I<  as per (9.11). For / 2l λ< , the maximum current is at 
the dipole center (the feed point 0z′ = ) and its value is 
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Directivity 

The directivity is obtained as 
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is the power pattern [see (9.23)]. Finally, 
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Input resistance of center-fed dipoles 

The radiation resistance given in (9.32) is not necessarily equal to the 
input resistance because the current at the dipole’s center Iin (if its center is 
the feed point) is not necessarily equal to Im. In particular, in mI I≠  if / 2l λ>  
and (2 1) / 2l n λ≠ + , n is any integer. Note that when / 2l λ≥ , 0mI I= .  

To obtain a general expression for the current magnitude Iin at the center 
of the dipole (assumed to be the feed point), we note that if the dipole is 
lossless, the input power is equal to the radiated power. Therefore, in the case 
of a dipole longer than half a wavelength, 
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and the input and radiation resistances relate as 
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Since the current at the center of the dipole ( 0z′ = ) is [see (9.11)] 
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Using the 2nd expression for Rr in (9.32), we obtain 
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For a short dipole ( / 2l λ≤ ), in mI I= . It then follows from 
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where we have taken into account the first equation in (9.32). 
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In summary, the dipole’s input resistance, regardless of its length, depends on 
the integral ℑ  as in (9.39) or (9.41), as long as the feed point is at the center. 

Loss is incorporated in the calculation of Rin by simply adding lossR  to the 

values obtained using (9.39) or (9.41). Remember that in Lecture 4, we 
obtained the expression for the loss of a dipole of length l as: 
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3. Half-wavelength Dipole 

This is a classical and widely used thin wire antenna. Substituting 
/ 2l λ=  in (9.21) yields: 
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Radiated power flux density: 
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Radiation intensity: 
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3-D power pattern (not in dB) of the half-wavelength dipole 
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Radiated power 

The radiated power of the half-wavelength dipole is a special case of the 
integral in (9.26): 
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Radiation resistance: 
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Maximum effective area: 
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Input impedance 

Since / 2l λ= , the input resistance is the same as the radiation resistance: 
 73in rR R= ≈ Ω . (9.53) 

The imaginary part of the input impedance is approximately 42.5j+  Ω . To 
achieve maximum power transfer, this reactance has to be removed by 
matching (e.g., shortening) the dipole: 

• thick dipole  0.47l λ≈  
• thin dipole  0.48l λ≈ . 

The input reactance of the dipole is very frequency sensitive, i.e., it 
depends strongly on the ratio /l λ . This is to be expected from a resonant 
narrow-band structure operating at or near resonance. We should also keep in 
mind that the input impedance is influenced by the capacitance associated 
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with the physical junction to the transmission line. The structure used to 
support the antenna, if any, can also influence the input impedance. That is 
why the curves below describing the antenna impedance are only 
representative.  

Measured input impedance of a dipole vs. its electrical length 

 
(a) input resistance 

 
Note the strong influence of the dipole’s diameter on the dipole’s input 
resistance at resonance (maximum input resistance). But when 00.5l λ≈ , the 

impedance is close to about 73 Ω regardless of the dipole’s diameter. 
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(b) input reactance 

 
 

We can calculate the input resistance as a function of /l λ  using (9.29) 
and (9.39). These equations, however, are valid only for infinitesimally thin 
dipoles. Besides, they do not produce the reactance. In practice, dipoles are 
most often tubular and they have substantial diameter d. High-frequency 
simulators within antenna/microwave CAD packages can calculate accurately 
the complex antenna input impedance. However, there exists a classical 
method that produces fairly accurate closed form solutions for the self-
impedance and the mutual impedance of straight-wire antennas. This is the 
induced electromotive force (emf) method, which is discussed later. 

 



 

Nikolova 2023 15 

4. Method of Images – Revision 
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5. Vertical Electric Current Element Above Perfect Conductor 
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The field at the observation point P is a superposition of the fields of the 
actual source and the image source, both radiating in a homogeneous medium 
of constitutive parameters 1 1( , )ε µ . The actual (or original) source is a current 
element 0I l∆  (infinitesimal dipole). Therefore, the image source is also an 
infinitesimal dipole. The respective field components are: 
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                            (9.54) 

Expressing the distances 1 1| |r = r  and 2 2| |r = r  in terms of | |r = r  and h (using 
the cosine theorem) gives 
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We make use of the binomial expansions of 1r  and 2r  to approximate the 
amplitude and the phase terms, which simplify the evaluation of the total far 
field and the VP integral. For the amplitude term, 
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For the phase term, we use the second-order approximation (see also the 
geometrical interpretation below), 
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The total far field is 
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Note that the far field can be decomposed into two factors: the field of the 
elementary source ( )g θ  and the pattern factor (also array factor) ( )f θ . 
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The normalized power pattern is 

( )
2

( ) sin cos cosF hθ θ β θ= ⋅   .                            (9.61) 

Below, the elevation plane patterns are plotted for vertical infinitesimal 
electric dipoles of different heights above a perfectly conducting plane: 
 

 
[Balanis] 

 
As the vertical dipole moves further away from the infinite conducting 
(ground) plane, more and more lobes are introduced in the power pattern. 
This effect is called scalloping of the pattern. The number of lobes is 

[ ]nint (2 / ) 1n h λ= + . 

 



 

Nikolova 2023 19 

Total radiated power 

 
2 /2

2 2

0 0

1
| | sin

2
d E r d d

π π

θ θ θ ϕ
η

Π = ⋅ =  P s� , 

 
/2

2 2

0

| | sinE r d

π

θ
π

θ θ
η

Π =  , (9.62) 

 ( )
/2

2 2 2 2
0

0

( ) sin cos cosI l h d

π

ηβ θ β θ θΠ = ∆ ⋅ , 

 
2

0

2 3

1 cos(2 ) sin(2 )

3 (2 ) (2 )

I l h h

h h

β β
πη

λ β β

 ∆ 
Π = − +   

   
. (9.63) 

• As 0hβ → , the radiated power of the vertical dipole above ground 
approaches twice the value of the radiated power of a dipole of the 
same length in free space. 

• As hβ → ∞ , the radiated power of the vertical dipole above ground 

tends toward that of the vertical dipole in open space. 
The above asymptotic behavior is explained by the limits: 

 
( )

( )

( )

( )
2 30

cos 2 sin 2 1
lim

32 2h

h h

h h

β β

β β→

 
− + = 
  

, (9.64) 

 
( )

( )

( )

( )
2 3

cos 2 sin 2
lim 0

2 2h

h h

h h

β β

β β→∞

 
− + = 
  

. (9.65) 

 
Radiation resistance 

( )

( )

( )

( )

2

2 32
0

cos 2 sin 22 1
2

| | 3 2 2
r

h hl
R

I h h

β β
πη

λ β β

 Π ∆ 
= = − +  

    
.         (9.66) 

• As 0hβ → , the radiation resistance of the vertical dipole above ground 
approaches twice the value of the radiation resistance of a dipole of the 
same length in free space: 

2 , 0vdp dp
in inR R hβ= = .                                 (9.67) 
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• As hβ → ∞ , the radiation resistances of both dipoles (in free space and 

above ground) become the same. 

Radiation intensity 

( )
22

02 2 2 2| |
sin cos cos

2 2

E I l
U r P r h

θ η
θ β θ

η λ

∆ 
= = =  

 
.         (9.68) 

The maximum of ( )U θ  occurs at / 2θ π= : 

0
max

2

I l
U

η

λ

∆ 
=  

  .                                        (9.69) 
This value is 4 times greater than maxU  of a free-space dipole of the same 

length. Can you provide a physical explanation of this result? 

Maximum directivity 

max
0

2 3

2
4

1 cos(2 ) sin(2 )

3 (2 ) (2 )

U
D

h h

h h

π
β β

β β

= =
Π − +

.                (9.70) 

If 0hβ = , 0 3D = , which is twice the maximum directivity of a free-space 
current element ( 0 1.5idD = ). Can you explain why that is when in fact the two 
field patterns are identical in the upper half-space? 

The maximum of 0D  as a function of the height h occurs when hβ ≈  
2.881 ( 0.4585h λ≈ ). Then, 0 / 2.8816.566 hD β =≈ . 
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6. Monopoles 

A monopole is a dipole that has been reduced by one-half and is fed against a 
ground plane. It is normally / 4λ  long (a quarter-wavelength monopole), but 
it might be shorter if there are space restrictions. In the latter case, the 
monopole is a small monopole the counterpart of which is the small dipole 
(see Section 1). Its current has linear distribution with its maximum at the 
feed point and its null at the end. 

The vertical monopole is a common antenna for AM broadcasting (f = 
500 to 1500 kHz, λ  = 200 to 600 m), because it is the shortest most efficient 
antenna at these frequencies. Also, the vertically polarized waves suffer less 
attenuation at close-to-ground propagation. Vertical monopoles are widely 
used as base-station antennas in mobile communications, too. 

Monopoles at base stations and radio-broadcast stations are supported by 
towers and guy wires. The guy wires must be separated into short enough 
( / 8λ≤ ) pieces insulated from each other to suppress parasitic currents.  

Special care is taken when grounding the monopole. Usually, multiple 
radial wires or rods, each 0.25 0.35λ−  long, are buried at the monopole base 
in the ground to simulate perfect ground plane, so that the pattern 
approximates closely the theoretical one, i.e., the upper-hemisphere pattern of 
the / 2λ -dipole. Losses in the ground cause undesirable deformation of the 
pattern as shown below (infinitesimal dipole above imperfect ground plane). 
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Monopole fed against a
large solid ground plane

Practical monopole with radial
wires to simulate perfect ground

l

 
 
 

Several important conclusions follow from the image theory and the 
discussion in Section 5: 

• The field distribution in the upper half-space is the same as that of the 
respective free-space dipole. 

• The currents and charges on a monopole are the same as on the upper half 
of its dipole counterpart but the terminal voltage is only one-half that of 
the dipole. The input impedance of a monopole is therefore only half that 
of the respective dipole: 

mp dp0.5in inZ Z= .                                         (9.71) 

• The radiation pattern of a monopole is one-half the dipole’s pattern since 
it radiates in half-space and, at the same time, the field normalized 
distribution in this half-space is the same as that of the dipole. As a result, 
the beam solid angle of the monopole is half that of the respective dipole 
and its directivity is twice that of the dipole: 

mp dp
0 0mp dp

4 4
2

0.5A A

D D
π π

= = =
Ω Ω

.                          (9.72) 

The quarter-wavelength monopole 

This is a straight wire of length / 4l λ=  mounted over a ground plane. 
From the discussion above, it follows that the quarter-wavelength monopole 
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is the counterpart of the half-wavelength dipole as far as the radiation in the 
hemisphere above the ground plane is concerned. 

• Its radiation pattern is the same as that of a free-space / 2λ -dipole, but it 
is non-zero only for 0 90θ° ≤ ≤ °  (above ground). 

• The field expressions are the same as those of the / 2λ -dipole. 

• The total radiated power of the / 4λ -monopole is half that of the / 2λ -
dipole. 

• The impedance of the / 4λ -monopole is half that of the / 2λ -dipole: 

( )mp dp0.5 0.5 73 42.5 36.5 21.25,in inZ Z j j= ≈ + = + Ω . 

• The directivity of the / 4λ -monopole is twice that of the / 2λ -dipole: 
mp dp
0 02 2 1.643 3.286D D= ≈ ⋅ = . 

 
Some approximate formulas for rapid calculations of the input resistance of a 
dipole and the respective monopole: 

Let 

, for dipole
2

2 , for monopole.

l l
G

l
G l

β
π

λ

β π
λ

= =

= =

 

Approximate formulas: 

• If 0
4

G
π

< < , then 
2

2

20 ,dipole

10 ,monopole

in

in

R G

R G

=

=
 

 

• If 
4 2

G
π π

< < , then 
2.5

2.5

24.7 ,dipole

12.35 ,monopole

in

in

R G

R G

=

=
 

 

• If 2
2

G
π

< < , then 
4.17

4.17

11.14 ,dipole

5.57 ,monopole

in

in

R G

R G

=

=
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7. Horizontal Current Element Above a Perfectly Conducting Plane 

The analysis is analogous to that of a vertical current element above a 
ground plane. The difference arises in the element factor ( )g θ  because of the 

horizontal orientation of the current element. Let us assume that the current 
element is oriented along the y-axis, and the angle between r  and the 
dipole’s axis (y-axis) is ψ . 

 

x

y

z

h

h θ

2 cosh θ

σ = ∞

1r

2r

r

P

ϕ

ψ

 
 

 ( ) ( ) ( )d rP P P= +E E E , (9.73) 

 
1

0
1

( ) sin
4

j r
d

e
E j I l

r

β

ψ ηβ ψ
π

−

= ∆ , (9.74) 

 
2

0
2

( ) sin
4

j r
r

e
E j I l

r

β

ψ ηβ ψ
π

−

= − ∆ . (9.75) 

We can express the angle ψ  in terms of ( , )θ ϕ : 

ˆˆ ˆ ˆ ˆ ˆcos ( sin cos sin sin cos )ψ θ ϕ θ ϕ θ= ⋅ = ⋅ + +y r y x y z  
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2 2

cos sin sin

sin 1 sin sin .

ψ θ ϕ

ψ θ ϕ

 =

 = −
 (9.76) 

The far-field approximations are: 

1 2

1

2

1 1 1
, for the amplitude term

cos
for the phase term.

cos

r r r

r r h

r r h

θ

θ

= =

≈ − 


≈ + 

 

The substitution of the far-field approximations and equations (9.74), (9.75), 
(9.76) into the total field expression (9.73) yields 

 ( )2 2
0

array factor ( , )
element factor ( , )

( , ) ( ) 1 sin sin 2 sin cos
4

j r

f
g

e
E j I l j h

r

β

ψ

θ ϕ
θ ϕ

θ ϕ ηβ θ ϕ β θ
π

−

= ∆ − ⋅   ������������������������

. (9.77) 

The normalized power pattern 
 ( ) ( )2 2 2( , ) 1 sin sin sin cosF hθ ϕ θ ϕ β θ= − ⋅ ⋅  (9.78) 

 

 

90ϕ = �
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As the height increases beyond a wavelength (h λ> ), scalloping appears 
with the number of lobes being 

 nint 2
h

n
λ

 
=  

 
. (9.79) 

 

 
Following a procedure similar to that of the vertical dipole, the radiated 

power and the radiation resistance of the horizontal dipole can be found: 

 
( ) ( )

( )

( )

( )
( )

2
0

2 3

sin 2 cos 2 sin 22

2 3 2 2 2

R h

h h hI l

h h h

β

β β βπ
η

λ β β β

 ∆ 
Π = − − +  

    �����������������

 (9.80) 

 ( )
2

r

l
R R hπη β

λ

∆ 
= ⋅ 

 
. (9.81) 

By expanding the sine and the cosine functions into series, it can be shown 
that for small values of ( )hβ  the following approximation holds: 

 
22

/ 0
32

15
h

h
R β

π

λ
→

 
≈  

 
. (9.82) 

90ϕ = �
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It is also obvious that if 0h = , then 0rR =  and 0Π = . This is to be expected 
because the dipole is short-circuited by the ground plane. 
 
Radiation intensity 

( ) ( )
22

02 2 2 2| | 1 sin sin sin cos
2 2

r I l
U hψ

η
θ ϕ β θ

η λ

∆ 
= = − ⋅ ⋅ 

 
E        (9.83) 

The maximum value of (9.83) depends on whether ( )hβ  is less than / 2π  or 

greater: 

• If 
2

h
π

β ≤  
4

h
λ 

≤ 
 

, the maximum radiation is at 0θ = °: 

( )
2

0 2
max / 0

sin
2

I l
U h

θ

η
β

λ = °

∆ 
=  

 
.                          (9.84) 

• If 
2

h
π

β >  
4

h
λ 

> 
 

, the maximum-radiation direction depends on hβ : 

2
0

max

/ arccos , 0
2

2
h

I l
U

π
θ ϕ

β

η

λ  
= = ° 

 

∆ 
=  

 
.                           (9.85) 

 
Maximum directivity 

• If 
4

h
λ

≤ , then maxU  is obtained from (9.84) and the directivity is 

 
2

max
0

4sin ( )
4

( )

U h
D

R h

β
π

β
= =

Π
. (9.86) 

• If 
4

h
λ

> , then maxU  is obtained from (9.85) and the directivity is 

 max
0

4
4

( )

U
D

R h
π

β
= =

Π
. (9.87) 

For very small hβ , the approximation 
( )

2

0

sin
7.5

h
D

h

β

β


≈ 

 
 is often used. 


