
Nikolova 2023 1

LECTURE 13: LINEAR ARRAY THEORY - PART I 

(Linear arrays: the two-element array. N-element array with uniform amplitude 

and spacing. Broad-side array. End-fire array. Phased array.) 
 

1. Introduction 

Usually the radiation patterns of single-element antennas are relatively wide, 
i.e., they have relatively low directivity. In long distance communications, 
antennas with high directivity are often required. Such antennas are possible to 
construct by enlarging the dimensions of the radiating aperture (size much 
larger than λ ). This approach, however, may lead to the appearance of multiple 
side lobes. Besides, the antenna is usually large and difficult to fabricate.  

Another way to increase the electrical size of an antenna is to construct it as 
an assembly of radiating elements in a proper electrical and geometrical 
configuration – antenna array. Often, the array elements are identical. This is 
not necessary but it is practical and simpler to design. The individual elements 
may be of any type (wire dipoles, loops, apertures, printed antennas, etc.) 

The total field of an array is a vector superposition of the fields radiated by 
the individual elements. To provide very directive pattern, it is necessary that 
the partial fields (generated by the individual elements) interfere constructively 
in the desired direction and interfere destructively in the remaining space. 

There are six factors that impact the overall antenna pattern: 
a) the type of the array (linear, circular, spherical, rectangular, etc.), 
b) the overall size of the array, 
c) the relative placement of the elements, 
d) the excitation amplitude of the individual elements, 
e) the excitation phase of each element, 
f) the individual pattern of each element. 
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2. Two-element Array 

Let us represent the electric fields in the far zone of the array elements in the 
form 
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Here, 

1M , 1M  field magnitudes (do not include the 1/r factor); 

1nE , 2nE  normalized field patterns; 

1r , 2r   distances to the observation point P; 
β  phase difference between the feed of the two array elements; 

1p̂ , 2p̂   polarization vectors of the far-zone E fields. 
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The far-field approximation of the two-element array problem: 
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Let us assume that: 

1) the array elements are identical, i.e., 

 1 2( , ) ( , ) ( , )n n nE E Eθ φ θ φ θ φ= = , (13.3) 

2) they are oriented in the same way in space (they have identical 
polarizations), i.e., 

 1 2ˆ ˆ ˆ= =p p p , (13.4) 

3) their excitation is of the same amplitude, i.e., 

 1 2M M M= = . (13.5) 
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Then, the total field can be derived as 

 1 2= +E E E , (13.6) 
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The total field of the array is equal to the product of the field created by a single 
element if located at the origin (element factor) and the array factor (AF): 
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Using the normalized field pattern of a single element, ( , )nE θ φ , and the 
normalized AF, 
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the normalized field pattern of the array is expressed as their product: 

 ( , ) ( , ) ( , )n n nf E AFθ φ θ φ θ φ= × . (13.10) 

The concept expressed by (13.10) is the so-called pattern multiplication rule 

valid for arrays of identical elements. This rule holds for any array consisting of 
decoupled identical elements, where the excitation magnitudes, the phase shift 
between the elements and the displacement between them are not necessarily 
the same. The total pattern, therefore, can be controlled via the single–element 
pattern ( , )nE θ φ  or via the AF. The AF, in general, depends on the: 

• number of elements, 
• mutual placement, 
• relative excitation magnitudes and phases. 
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Example 1: An array consists of two horizontal infinitesimal dipoles a distance 
/ 4d λ=  apart. Find the nulls of the total field in the elevation plane 90φ = ± � , 

if the excitation magnitudes are the same and the phase difference is: 
a) 0β =  
b) / 2β π=  
c) / 2β π= −  

90θ = °

z

8

λ

y

180θ = °

0

0θ = °

8

λ

90φ = ± �

 

 

The element factor 2 2( , ) 1 sin sinnE θ φ θ φ= −  is the same in all three cases 
producing the same null. For 90φ = ± � , ( , ) | cos |nE θ φ θ=  and the null is at 

 1 / 2θ π= . (13.11) 

The AF, which depends on β , produces the following results in the 3 cases: 
a) 0β =  

cos
cos 0   cos cos 0

2 4
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= =  =   

   
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cos (2 1)     cos (2 1) 2
4 2

n nn n
π π

θ θ = +  = + ⋅ ,  0, 1, 2,n = ± ± … . 

A solution with a real-valued angle does not exist. In this case, the total field 
pattern has only 1 null at 90θ = ° , which is due to the element factor. 
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Fig. 6.3, p. 255, Balanis 
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b) / 2β π=  

( )cos cos 0   cos 1 (2 1)
4 4 4 2

n n nAF n
π π π π

θ θ
 

= + =  + = + 
 

, 

( 0) 2cos 1 (2 1) 2   cos 1   0n nnθ θ θ= + = + ⋅  =  = .  

The solution for 0n =  is the only real-valued solution. Thus, the total field 
pattern has 2 nulls: at 1 90θ = °  and at 2 0θ = °: 
 

 
Fig. 6.4, p. 256, Balanis 



Nikolova 2023 8

c) / 2β π= −  

cos cos 0    (cos 1) (2 1)
4 4 4 2

n n nAF n
π π π π

θ θ
 

= − =  − = + 
 

, 

( 1) 2cos 1 (2 1) 2   cos 1   n nnθ θ θ π=− − = + ⋅  = −  = . 

The total field pattern has 2 nulls: at 1 90θ = °  and at 2 180θ = ° . 
 

 
Fig. 6.4b, p. 257, Balanis 
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Example 2: Consider a 2-element array of identical infinitesimal dipoles 
oriented along the y-axis. Find the expression for the angles of observation 
where the nulls of the pattern occur in the plane 90φ = ± �  as a function of the 
distance d between the dipoles and the phase difference β . 

 
The normalized total field pattern is 

 
cos

cos cos
2

n

kd
f

θ β
θ

+ 
= ×  

 
. (13.12) 

In order to find the nulls, the equation 
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is solved. 
The element factor | cos |θ  produces one null at 

 1 / 2θ π= . (13.14) 

The AF leads to the following solution: 
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When there is no phase difference between the two element feeds ( 0)β = , the 
separation d must satisfy 

 
2

d
λ

≥  

in order at least one real-valued null to occur due to (13.15). Real-valued 
solutions to (13.15) occur when the argument within the braces is between −1 
and +1. 
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3. N-element Linear Array with Uniform Amplitude and Spacing 

We assume that each succeeding element has a β  progressive phase lead in 
the excitation relative to the preceding one. An array of identical elements with 
identical magnitudes and with a progressive phase is called a uniform array. 
The AF of the uniform array can be obtained by considering the individual 
elements as point (isotropic) sources. Then, the total field pattern can be 
obtained by simply multiplying the AF by the normalized field pattern of the 
individual element (provided the elements are not coupled). 

The AF of an N-element linear array of isotropic sources is a superposition: 

 ( ) ( ) ( )( )cos 2 cos 1 cos1 j kd j kd j N kdAF e e eθ β θ β θ β+ + − += + + + +… . (13.16) 

The AF (at any angle of observation θ) depends on both the inter-element 
spacing d, which determines the far-zone phase delay, and the progressive 
phase shift β: 
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Equation (13.16) can be re-written as a sum: 
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where coskdψ θ β= + . We refer to ψ  as elemental phase. 
From (13.18), it is obvious that the AFs of uniform linear arrays can be 

controlled by the relative phase β  between the elements. The AF in (13.18) 
can be expressed in a closed form, which is more convenient for pattern 
analysis: 
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Here, the phase factor [ ]exp ( 1) / 2j N ψ−  reflects a phase advancement 
associated with the last (Nth) array element relative to the center of the linear 
array. It represents the phase shift of the array’s centre relative to the origin, 
and it would be equal to one if the origin were to coincide with the array centre. 
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This factor is not important unless the array output signal is further combined 
with the output signal of another antenna. As we aim at obtaining the 
normalized AF, we neglect this phase factor, leading to 
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For small values of coskdψ θ β= + , (13.21) is approximated as 
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To normalize (13.21), we need the maximum of the AF. We re-write (13.21) as 
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The function 
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has its maxima at 0, ,x π= … , all having the value max 1f = . Therefore, 

maxAF N= . The normalized AF is thus obtained as 
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The function | ( ) |f x , which is representative of nAF , is plotted below. 
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For small ψ , the normalized for of (13.22) is 
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Nulls of the AF 

To find the nulls of the AF, equation (13.24) is set equal to zero: 
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When 0, ,2 ,3n N N N= … , the AF attains its maximum values not nulls (see the 
case below). The values of n determine the order of the nulls. For a null to 
exist, the argument of the arccosine must be between –1 and +1. 
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Major maxima of the AF 

They are studied in order to determine the maximum directivity, the 
HPBWs, and the direction of maximum radiation. The maxima of (13.24) occur 
when (see the plot in page 13, where / 2x ψ= ) 
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mkd m
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θ β π= + = ± , (13.28) 
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When (13.28) is true, 1nAF = , i.e., these are not maxima of minor lobes. The 
index m shows the maximum’s order. It is usually desirable to have a single 
major lobe (main beam), i.e., m = 0 only. This can be achieved by choosing 

/d λ  sufficiently small ( / 1 | | /(2 ) |d λ β π< + ). Then the argument of the 
arccosine function in (13.29) becomes greater than unity for 1,2m = …  and 
equation (13.29) has a single real-valued solution: 
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The HPBW of a major lobe 

The HPBW of a major lobe is calculated by setting the value of AFn equal to 
1 / 2 . For the approximate AFn  in (13.25), 
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N N
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See the plot of (sin ) /x x  below. 
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For a symmetrical pattern around mθ  (the angle at which maximum 
radiation occurs), the HPBW is calculated as 

 2 | |m hHPBW θ θ= − . (13.32) 

For a broadside array, for example, 0 / 2mθ θ π= = . 
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Maxima of minor lobes (secondary maxima) 

They are the maxima of AFn, where 1nAF < . These are illustrated in the plot 
below, which shows the array factors as a function of coskdψ θ β= +  for a 
uniform equally spaced linear array with N = 3, 5, 10. 

The secondary maxima occur where the numerator attains a maximum and 
the AF is beyond its 1st null: 
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4. Broadside Array 

A broadside array is an array, which has maximum radiation at 90θ = °  
(plane orthogonal to the axis of the array). For optimal solution, both the 
element factor and the AF, should have their maxima at 90θ = ° . 

From (13.28), it follows that the major maxima of the AF occur when 

 cos 0mkdψ θ β= + = . (13.36) 

For the 0th order maximum, 0m = , we want 0 90θ = ° ; therefore, 

 0β = . (13.37) 

The uniform linear array has its maximum radiation at 90θ = ° , if all array 
elements are fed in phase. 

To ensure that there are no major maxima in other directions (grating lobes), 
the separation between the elements d must be smaller than the wavelength: 

 d λ< . (13.38) 
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To illustrate the appearance of additional maxima, 1nAF = , let us consider the 
case of d ξλ= , where 1ξ ≥ . Then, when 0β = , the elemental phase is 

 ( 0)
2

cos cos 2 coskdβ
π

ψ θ ξλ θ πξ θ
λ

= = = = . (13.39) 

The condition for an AF major maximum ( 1nAF = ) from (13.28) requires that 

 2 cos 2 , 0, 1, 2m m mψ πξ θ π= = ⋅ = ± ± …  (13.40) 

This is fulfilled not only for 0 / 2θ π=  but also for 

 ( )arccos / , 1, 2g m mθ ξ= = ± ± …. (13.41) 

As long as m ξ≤  (remember that 1ξ ≥ ), real-valued solutions for gθ  exist, and 
grating lobes will appear.  

If, for example, d λ=  ( 1)ξ = , equation (13.41) results in two additional 
major lobes at 

 ( ) 1,2
arccos 1 0 ,180g gθ θ= ±  = ° ° . 

The resulting AF is illustrated in figure (b) below.  

  
(a) 0, / 4dβ λ= =  (b) 0, dβ λ= =  

 
If 2d λ=  ( 2)ξ = , equation (13.41) results in four additional major lobes at 

 ( ) 1,2,3,4
arccos 0.5, 1 0 ,60 ,120 ,180g gθ θ= ± ±  = ° ° ° ° . 

If 1.25d λ=  ( 1.25)ξ = , then ( ) 1,2
arccos 0.8 37 ,143g gθ θ= ±  ≈ ° °. 

Balanis 3rd ed., Fig. 6.6 
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5. Ordinary End-fire Array 

An end-fire array is an array, which has its maximum radiation along the 
axis of the array ( 0 ,180 )θ = ° ° . It may be required that the array radiates only in 
one direction – either 0θ = °  or 180θ = ° . For an AF maximum at 0θ = ° , 

 0( cos ) 0kd kdθψ θ β β= °= + = + = , (13.42) 

 max, for 0kdβ θ = − = ° . (13.43) 

For an AF maximum at 180θ = ° , 

180( cos ) 0kd kdθψ θ β β= °= + = − + = , 

 max, for 180kdβ θ = = ° . (13.44) 

If the element separation is multiple of a wavelength, d nλ= , then in addition 
to the end-fire maxima there also exists a major maximum (grating lobe) in the 
broadside direction ( 90θ = °). As with the broadside array, to avoid grating 
lobes, the maximum spacing between the element should be less than λ : 

 d λ< . 

(Show that an end-fire array with / 2d λ=  has 2 maxima for kdβ = − : at 

0θ = �  and at 180θ = �.) 
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AF pattern of an EFA: N = 10, / 4d λ=  

 

Fig. 6-11, p. 270, Balanis 
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6. Phased (Scanning) Arrays 

It was already shown that the 0th order maximum (m=0) of AFn occurs when 

 0cos 0kdψ θ β= + = . (13.45) 

This gives the relation between the direction of the main beam 0θ  and the phase 
difference β . Therefore, the direction of the main beam can be controlled by 
β . This is the basic principle of electronic scanning for phased arrays. 

When the scanning is required to be continuous, the feeding system must be 
capable of continuously varying the progressive phase β  between the elements. 
This is accomplished by ferrite or diode (varactor) phase shifters. 

 
Example: Derive the values of the progressive phase shift β  as dependent on 
the direction of the main beam 0θ  for a uniform linear array with / 4d λ= . 

From equation (13.45): 

0 0 0
2

cos cos cos
4 2

kd
π λ π

β θ θ θ
λ

= − = − = −  

 

0θ  β  

0˚ −90˚ 

60˚ −45˚ 

120˚ +45˚ 

180˚ +90˚ 

 

 
The approximate HPBW of a scanning array is obtained using (13.31) with 

0coskdβ θ= − : 

 
 1,2
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d N

λ
θ β
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  
= − ±  
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. (13.46) 

The total beamwidth is 
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 1 2h hHPBW θ θ= − , (13.47) 

0 0
2.782 2.782

arccos cos arccos cos
2 2

HPBW kd kd
d N d N

λ λ
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π π
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      
 

  (13.48) 

Since 2 /k π λ= , 

 0 0
2.782 2.782

arccos cos arccos cosHPBW
Nkd Nkd

θ θ
   

= − − +      
. (13.49) 

We can use the substitution ( ) /N L d d= +  to obtain 

 

0

0

arccos cos 0.443

             arccos cos 0.443  .

HPBW
L d

L d

λ
θ

λ
θ

  
= − −  +  

  
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 (13.50) 

Here, L is the length of the array. 
Be aware that the equations in (13.49) and (13.50) can be used to calculate 

the HPBW of an array as long as it is not an end-fire array. End-fire arrays have 
circularly symmetric beams around the end-fire direction, in which case 
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