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LECTURE 15: LINEAR ARRAYS – PART III 

(Broadside N-element linear arrays with uniform spacing and non-uniform 

amplitude: Binomial and Dolph–Tschebyscheff arrays. Directivity and design.) 
 

1. Advantages of Linear Arrays with Nonuniform Amplitude Distribution 

The most often met BSAs, classified according to the type of their excitation 
amplitudes, are: 

a) the uniform BSA – relatively high directivity, but the side-lobe levels are 
high; 

b) Dolph–Tschebyscheff (or Chebyshev)1 BSA – for a given directivity with a 
fixed number of array elements, achieves the lowest side-lobe level; 

c) binomial BSA – does not have good directivity (for a given number of 
elements) but has low side-lobes (if / 2d λ= , no side lobes at all). 

 
2. Array Factor of Linear Arrays with Nonuniform Amplitude 

Distribution 

Let us consider a linear array with an even number (2M) of elements, 
located symmetrically along the z-axis, with excitation, which is also 
symmetrical with respect to 0z = . For a broadside array ( 0)β = , 
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If the linear array consists of an odd number (2M+1) of elements, located 
symmetrically along the z-axis, the array factor is 
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1 Russian spelling is Чебышёв. 
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EVEN- AND ODD-NUMBER ARRAYS 
 

 
Fig. 6.17, p. 291, Balanis 
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The normalized AF derived from (15.2) and (15.4) can be written in the form 
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Examples of AFs of arrays of nonuniform amplitude distribution 
 

a) uniform amplitude distribution (N = 5, / 2d λ= , max. at 0 90θ = °) 

 

pp. 148-149, Stutzman 
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b) triangular (1:2:3:2:1) amplitude distribution (N = 5, / 2d λ= , max. at 

0 90θ = °) 

 
 

 

pp. 148-149, Stutzman 
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c) binomial (1:4:6:4:1) amplitude distribution (N = 5, / 2d λ= , max. at 

0 90θ = °) 

 
 

 

pp. 148-149, Stutzman 
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d) Dolph-Tschebyschev (1:1.61:1.94:1.61:1) amplitude distribution (N = 5, 
/ 2d λ= , max. at 0 90θ = °) 

 
 
 

 

pp. 148-149, Stutzman 
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e) Dolph-Tschebyschev (1:2.41:3.14:2.41:1) amplitude distribution (N = 5, 
/ 2d λ= , max. at 0 90θ = °) 

 

 

pp. 148-149, Stutzman 

 
 
Notice that as the current amplitude is tapered more gradually toward the edges 
of the array, the side lobes tend to decrease, and the beamwidth tends to 
increase. 
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3. Binomial Broadside Array 

The binomial BSA was investigated and proposed by J. S. Stone2 to 
synthesize patterns without side lobes. First, consider a 2–element array (along 
the z-axis). 

z

y
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d

 
The elements of the array are identical and their excitations are the same. The 
array factor is of the form 

 1AF Z= + , where ( )cosj kdjZ e e θ βψ += = . (15.7) 

If the spacing is / 2d λ≤  and 0β =  (broad-side maximum), the array pattern 
|AF| has no side lobes at all. This is proven as follows. 

 2 2 2 2| | (1 cos ) sin 2(1 cos ) 4cos ( / 2)AF ψ ψ ψ ψ= + + = + =  (15.8) 

where coskdψ θ= . The first null of the array factor is obtained from (15.8) as 

 1,2 1,2
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As long as / 2d λ< , the first null does not exist. If / 2d λ= , then 1,2 0,nθ =  
180°. Thus, in the “visible” range of θ, all secondary lobes are eliminated. 

Second, consider a 2–element array whose elements are identical and the 
same as the array given above. The distance between the two arrays is again d. 

d
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2 US Patents #1,643,323, #1,715,433. 
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This new array has an AF of the form 

 2(1 )(1 ) 1 2AF Z Z Z Z= + + = + + . (15.10) 

Since (1 )Z+  has no side lobes, 2(1 )Z+  does not have side lobes either. 
Continuing the process for an N-element array produces 

 1(1 )NAF Z −= + . (15.11) 

If / 2d λ≤ , the above AF does not have side lobes regardless of the number of 
elements N. The excitation amplitude distribution can be obtained easily by the 
expansion of the binome in (15.11). Making use of Pascal’s triangle, 

1

1 1

1 2 1

1 3 3 1

     1 4 6 4 1

  1 5 10 10 5 1

..............................

 

the relative excitation amplitudes at each element of an (N+1)-element array 
can be determined. An array with a binomial distribution of the excitation 
amplitudes is called a binomial array. The excitation distribution as given by 
the binomial expansion gives the relative values of the amplitudes. It is 
immediately seen that there is a fairly wide variation of the amplitude, which is 
a disadvantage of the BAs. The overall efficiency of such an array would be 
low. Besides, the BA has relatively wide beam. Its HPBW is the largest as 
compared to the uniform BSA or the DCA for a give number of elements. 

An approximate closed-form expression for the HPBW of a BA with 
/ 2d λ=  is 

 
1.06 1.06 1.75

1 2
HPBW

N L Lλ λ
≈ = =

−
, (15.12) 

where ( 1)L N d= −  is the array’s length. The AFs of 10-element broadside 
binomial arrays (N = 10) are given below. 
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Fig. 6.18, p.293, Balanis 

/ 4d λ=

/ 2d λ=

3 / 4d λ=

d λ=

d λ=

3 / 4d λ=
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The directivity of a broadside BA with spacing / 2d λ=  can be calculated 
as 
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 0 1.77 1.77 1 2D N L λ≈ = + . (15.15) 

 

4. Dolph–Chebyshev Array (DCA) 

Dolph proposed (in 1946) a method for designing arrays with any desired 
side-lobe level for a given HPBW. This method is based on the approximation 
of the pattern of the array by a Chebyshev polynomial of order m, high enough 
to meet the requirement for the side-lobe levels. A DCA with no side lobes 
(side-lobe level of −∞ dB) reduces to the binomial design. 

4.1. Chebyshev polynomials 

The Chebyshev polynomial of order m is defined by 

 ( )
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A Chebyshev polynomial Tm(z) of any order m can be derived via a recursion 
formula, provided Tm−1(z) and Tm−2(z) are known: 

 1 2( ) 2 ( ) ( )m m mT z zT z T z− −= − . (15.17) 

Explicitly, from (15.16) we see that 

00, ( ) 1m T z= =  

11, ( )m T z z= = . 

Then, (15.17) produces: 
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2
22, ( ) 2 1m T z z= = −  

3
33, ( ) 4 3m T z z z= = −  

4 2
44, ( ) 8 8 1m T z z z= = − +  

5 3
55, ( ) 16 20 5 , etc.m T z z z z= = − +  

If | | 1z ≤ , then the Chebyshev polynomials are related to the cosine functions 
through cosz x=  so that ( ) cos( )mT x mx= ; see (15.16). Thus, the Chebyshev 
polynomials are handy in expanding the function cos(mx) as a polynomial of 
cos(x) of order m. For example, for 2m = , 

 2cos2 2cos 1x x= − . (15.18) 

Similar expansion holds for the hyperbolic cosine function cosh. In general, the 
Chebyshev argument z can be related to the cosine argument x by 

 
cos arccos ,| | 1
cosh arccosh ,| | 1 .

z x x z z
z x x z z

= ↔ = ≤
= ↔ = >

 (15.19) 

For example, (15.18) can be written as: 

 [ ]
2 2

2cos(2arccos ) 2 cos(arccos ) 1 cos(2arccos ) 2 1 ( )z z z z T z= −  = − = . (15.20) 

Properties of the Chebyshev polynomials of z 

1) All polynomials of any order m pass through the point (1,1). 

2) Within the range 1 1z− ≤ ≤ , the polynomials have values within [–1,1]. 

3) All nulls occur within 1 1z− ≤ ≤ . 

4) The maxima and minima in the [ 1,1]z ∈ −  range have values +1 and –1, 
respectively. 

5) The higher the order of the polynomial, the steeper the slope for | | 1z > . 
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Fig. 6.19, pp. 296, Balanis 
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4.2. Chebyshev array design 

The main goal is to approximate the desired AF with a Chebyshev 
polynomial such that 

• the side-lobe level meets the requirements, and 
• the main beam width is as small as possible. 

An array of N elements has an AF approximated with a Chebyshev polynomial 
of order m, which is 

 1m N= − . (15.21) 

In general, for a given side-lobe level, the higher the order m of the polynomial, 
the narrower the beamwidth. However, for m > 10, the difference is not 
substantial – see the slopes of ( )mT z  in the previous figure. The AFs of an N-
element array in (15.5) or in (15.6) are shaped by a Chebyshev polynomial by 
requiring that 
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where, as before, ( / )cosu dπ λ θ= . Let the side-lobe level be 

 max
0

1

sl sl

E
R

E AF
= =  (aka voltage ratio). (15.23) 

Then, we require that the maximum of 1NT −  is fixed at an argument 0z , where 

 max
0 0 01 ( ) , | | 1NT z R z− = > . (15.24) 

Equation (15.24) gives the maximum AF value, max
0( ) ( )AF u AF u= , and 0z  

must satisfy the condition 0| | 1z >  so that 1 1NT − > . The maxima of 1| ( ) |NT z−  for 
| | 1z ≤  are equal to unity and they correspond to the side lobes of the AF. Thus, 

( )AF u  has side-lobe levels equal to 01/ R .  

The AFs in (15.22) are sums of cosine functions of the form cos( )mu , 
where 2 1m n= −  for an even-number array and 2( 1)m n= −  for an odd-number 
array. Therefore, they can be expanded into polynomials of cos(u) of order m 
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using the Chebyshev recursion formula. On the other hand, 1( )NT z−  is a 
polynomial of z where z is limited to the range 

 01 1z z− ≤ ≤ > . (15.25) 

Since 1 cos 1u− ≤ ≤ , the relation between z and cosu  must be normalized as 

 0cos /u z z= , where ( / )cosu dπ λ θ= . (15.26) 

 
Design of a DCA of N elements – general procedure: 

1) Expand the AF, as given by the right side of (15.22), by replacing each 
cos( )mu  term with the power series of cosu . 

2) Determine 0z  such that 0 01( )NT z R− =  (voltage ratio). 

3) Substitute 0cos /u z z=  in the AF found in step 1. 

4) Equate the AF found in Step 3 to 1( )NT z−  and determine the coefficients for 

each power of z. 

 
Example: Design a DCA (broadside) of N=10 elements with a major-to-minor 
lobe ratio of 0 26R =  dB. Find the excitation coefficients and the AF. 

 
Solution: 
The order of the Chebyshev polynomial is 1 9m N= − = . The AF for an even-
number array is: 

[ ]
5

2

1

cos (2 1) , cosM n

n

d
AF a n u u

π
θ

λ=

= − = , 5M = . 

Step 1: Write 10AF  (see sum above) explicitly: 

10 1 2 3 4 5cos cos3 cos5 cos7 cos9AF a u a u a u a u a u= + + + + . 

Expand the cos( )mu  terms as powers of cosu : 

3coscos3 4 3cosuu u= − , ( 2a  terms) 

5 3coscos5 16 20 5coscosu uuu = − + , ( 3a  terms) 

7 35cocos7 64 s112 56 7cos sco cosuu uu u= − + − , ( 4a  terms) 

9 57 3coscos co9 256 576 4 cos32 120 9coos ss cu uuu uu= − + − + . ( 5a  terms) 
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Note that the above expansions can be readily obtained from the recursive 
Chebyshev relation (15.17) and the substitution cosz u= . For example,  

3
33, ( ) 4 3m T z z z= = −  

translates into: 3cos(3 ) 4cos 3cosu u u= − . 

Step 2: Determine 0z : 

0 26 dBR =   
26

200 10 20R = ≈   9 0( ) 20T z = , 

[ ]0cosh 9arccosh( ) 20z = , 

09arccosh( ) arccosh20 3.69z = = , 

0arccosh( ) 0.41z = , 

0 cosh 0.41z =    0 1.08515z = . 

 
Step 3: Express the AF from Step 1 in terms of 0cos /u z z=  and make equal to 
the Chebyshev polynomial: 
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Step 4: Find the coefficients by matching the power terms: 

9
5 0 5256 256 2.0860a z a=  =  

7
4 5 4064 576 576 2.8308a a z a− = −  =  

5
3 4 5 3016 112 432 432 4.1184a a a z a− + =  =  
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7
2 3 4 5 204 20 56 120 120 5.2073a a a a z a− + − = −  =  

9
1 2 3 4 5 103 5 7 9 9 5.8377a a a a a z a− + − + =  =  

Normalize coefficients with respect to edge element (N=5): 

5 4 3 2 11; 1.357; 1.974; 2.496; 2.789a a a a a= = = = =  

10 2.789cos( ) 2.496cos(3 ) 1.974cos(5 ) 1.357cos(7 ) cos(9 )AF u u u u u = + + + +  

where cos
d

u
π

θ
λ

= . Remember that the Chebyshev variable z relates to u as 

0 cosz z u= . 

 

 

 

Fig. 6.20b, p. 298, Balanis 
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Fig. 6.21, p. 300, Balanis 
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4.3. Maximum affordable d for Dolph-Chebyshev arrays 

This restriction arises from the requirement for a single major lobe – see 
also equation (15.25), 01 z z− ≤ ≤ : 

 1z ≥ − , 0cos /u z z= , cos
d

u
π

θ
λ

= , 

 0 cos cos 1
d

z z
π

θ
λ


 = ≥ − 

 
. (15.27) 

For a broadside array, when θ  varies from 0° to 180° , the argument z assumes 
values 

 from 0( 0 ) cos
d
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λ
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 to 0( 90 )z zθ = =�  (15.29) 
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d

z z zθ θ

π

λ
= =

 
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� � . (15.30) 

The extreme value of z to the left on the abscissa corresponds to the end-fire 
directions of the AF ( 0,180θ = °). This value must not go beyond 1z = − . 
Otherwise, end-fire lobes of levels higher than 1 (higher than 0R ) will appear. 
Therefore, the inequality (15.27) must hold for 0θ = ° or 180° : 

 0
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d d
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π π

λ λ

  
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Let the angle γ  be such that 0cos 1/ zγ =  (see figure below). Then, 

( )1
0arccos zγ −=  and 

 ( ) cc s so / od γπ λ −≥ . (15.32) 
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z
− cos( / )dπ λ

1

1

1−

maxdπ

λ
γcosγ

 
ILLUSTRATION OF EQUATION (15.31) AND THE REQUIREMENT IN (15.32) AND (15.33) 

allowed cos( / )dπ λ
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Remember that 0 1z > ; thus γ  is a real-positive angle. Then, from (15.32), 

 ( )1
0/ arccosd zπ λ π γ π −< − = −  (15.33) 

or 

 ( )max max1
0

0

1 1
arccos 1 arccos

d d
z

z
γ

π
π

λ λ π
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 �����

  (15.34) 

For the case of the previous example, 

1 1 0.39879
1 arccos 1 0.873

1.08515

d

λ π π


< − = − = 

 
, 

max 0.873d λ= . 

 
5. Directivity of Non-uniform Arrays 

It is difficult to derive closed form expressions for the directivity of non-
uniform arrays. Here, we derive expressions in the form of series in the most 
general case of a linear array when the excitation coefficients are known. 

The non-normalized array factor is 
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where 

na  is the amplitude of the excitation of the n-th element; 

nβ  is the phase angle of the excitation of the n-th element; 

nz  is the z-coordinate of the n-th element. 

The maximum AF is 
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The normalized AF is 
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The beam solid angle of a linear array along z is 
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From 

 0 4 / AD π= Ω , 

we obtain 
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. (15.40) 

For equispaced linear ( nz nd= ) arrays, (15.40) reduces to 
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For equispaced broadside arrays, where m pβ β=  for any (m,p), (15.41) 
reduces to 
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For equispaced broadside uniform arrays, 
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When the spacing d is a multiple of / 2λ , equation (15.42) reduces to 
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Example: Calculate the directivity of the Dolph–Chebyshev array designed in 
the previous example if / 2d λ= . 

 
The 10-element DCA has the following amplitude distribution: 

 5 4 3 2 11; 1.357; 1.974; 2.496; 2.798a a a a a= = = = = . 

We make use of (15.44): 
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( )

25

2
1

0 5
2

1

4
9.625

2 8.9090 (9.5 dB)
20.797

2 ( )

n

n

n

n

a

D

a

=

=

 
 
 = = ⋅ =




. 

Output from ARRAYS.m: 0 8.9276D = . 

 

6. Half-power Beamwidth of a Broadside DCA 

For large DCAs with side lobes in the range from –20 dB to –60 dB, the 
HPBW DCAHPBW  can be found from the HPBW of a uniform array UAHPBW  
by introducing a beam-broadening factor f given by 

 

2

2 2
0

0

2
1 0.636 cosh (arccosh )f R

R
π

  = + −   
, (15.45) 

so that 

 DCA UAHPBW f HPBW= × . (15.46) 

In (15.45), 0R  denotes the side-lobe level (the voltage ratio). 


