LECTURE 17: Radiation from Apertures
(The uniqueness theorem. The equivalence principle. The application of the

equivalence principle to aperture problem. The uniform rectangular aperture
and the radiating slit. The tapered rectangular aperture.)

1. Introduction

Aperture antennas constitute a large class of antennas, which emit EM waves
through an opening (or aperture). These antennas have close analogs in acoustics,
namely, the megaphone and the parabolic microphone. The pupil of the human
eye, too, is an aperture receiver for optical radiation. At radio and microwave
frequencies, horns, waveguide apertures and slots, reflector antennas, and printed
patches or slots are examples of aperture antennas. Aperture antennas are
commonly used at UHF and above where their sizes are relatively small. Their
gain increases as ~ f2. For an aperture antenna to be efficient and to have high
directivity, it must have an area > A2. Thus, these antennas tend to be very large
at low frequencies.

To facilitate the analysis of these antennas, the equivalence principle is
applied. This allows for carrying out the far-field analysis in the outer
(unbounded) region only, which is external to the antenna. This requires the
knowledge of the tangential field components at the aperture.

2. Uniqueness Theorem
A solution is said to be unique if it is the only one possible among a given class
of solutions. The EM field in a region V[g 1s unique if

- all sources are given;
- either the tangential E.,, components or the tangential H,, components
are specified at the boundary S.!

The uniqueness theorem follows from Poynting’s theorem in its integral form:

I A more general statement of the theorem asserts that any one of the following boundary conditions at S ensure the solution’s
|s ,or(2) Htan|S ,or(3) Etan1|S and Htan1|s ,or (4) Etan2|s and H s .Here, E,;, = E—E - is the tangential
component of E at the surface S while E\,,; and E,,, are its components. The same notations hold for H .

uniqueness: (1) E,,

[N.K. Nikolova, “Electromagnetic boundary conditions and uniqueness revisited,” IEEE Antennas & Propagation Magazine,
vol. 46, no. 5, pp. 141-149, Oct. 2004.]
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{pExH")-ds+ joo| [[(ulHP—£[EP v+ [[o]EP dv=—][[(E-J*+H"M/)dv. (17.1)
S Vs Vs Vs

We start with the supposition that a given EM problem has two solutions (due to
the same sources and the same boundary conditions): (E¢,H%) and (E?,H?).

The difference field is then formed:
OE=E* -E?,
(17.2)
OH=H*-H’.

The difference field has no sources; thus, it satisfies the source-free form of
(17.1):

{p(SExSH")-ds+ jo[[ (1| SHP —£| SEP)dv+[[[ 0| SEP dv=0. (17.3)
S Vg Vs

Since both fields satisfy the same boundary conditions, then J0E., =0 or
OH,,, =0 over S, which makes the surface integral in (17.3) zero. This results in

jo[[ (4| SHP —£|SEP)dv+[[[ 0| SEP dv =0, (17.4)
Vs Vs

J/ . J/

VT

imaginary r;:;ll
which is true only if
o|[[ (u|SHP —£| SEP)dv =0,
Vs

[[[oloER av=0. 47

If we assume some dissipation (o >0), however slight, equations (17.5) are
satisfied only if O0E=J0H =0 everywhere in the volume V. This implies the
uniqueness of the solution. If =0 (a common approximation), multiple
solutions (JE,dH) may exist in the form of resonant modes. However, these
resonant modes can be derived using eigenvalue analysis and they are not
considered as the particular solution for the given sources. The particular unique
solution for the loss-free case can be obtained from a problem where o is
assumed nonzero and then the limit is found as o — 0.
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3. Equivalence Principles

The equivalence principle is based on the uniqueness theorem. It allows for
the simplification of certain EM problems. As long as a problem is re-formulated
so that it preserves the boundary conditions for the original field (E,,H,) at S,
it is going to produce the only one possible solution for the region Vs bounded
by S. Such a re-formulated problem is referred to as an equivalent problem.

(E,.H,) (E,,H,) (E,.H,)

Vs Y

no fields

sources S\ no sources no sources
n
(a) Original problem (b) General equivalent (c) Equivalent problem
problem with zero fields

The equivalent problem in (b) assumes that the field inside the volume enclosed
by S is given by (E,.,H,), which is different from the original field (E,,H,).
This results in a field discontinuity at the surface S, which demands the existence
of surface current densities (as per Maxwell’s equations):

J,, =fix(H, -H,),

M, =(E,-E,)xh.

For the equivalent problem in (c), where (E,,H,) is set to zero, these surface
current densities are

(17.6)

J,=nxH,,
M, =E, xn.

The zero-field formulation is often referred to as Love’s equivalence principle.
We can apply Love’s equivalence principle in three different ways.

(17.7)

(a) We assume that the boundary S is a perfect conductor. As per image theory,
in an equivalent open problem, this eliminates the surface electric currents,
1e., J;, =0, and leaves just surface magnetic currents of double strength
2M; radiating in free space. This approach is illustrated below.
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(E,,H,) (E,,H,)
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(a) Original problem
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(E,.H,)
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(b) Equivalent problem

- electric wall

no fields  (E,,H,)

S

_,n

no sources
V"VZM i
J, =
(c) Equivalent problem

- images

(b) We assume that the boundary S is a perfect magnetic conductor. In the
equivalent image-based problem, the surface magnetic currents are zero,
M, =0, and the surface electric currents of double strength 2J radiate in
free space. This approach is illustrated below.

(E,.H,)! (E,.H,)

i N

sources |

Ve
Y

(a) Original problem

no fields

ANNNN

AN

no sources

AN

AN

(b) Equivalent problem

" A
W,

(Eo.H,)

S

M, =0

- magnetic wall

—

no fields

no sources

(E,,H,)

S

A

n
—>

2J,
w

(c) Equivalent problem
- images

(c) Employ both J, and M| from (17.7) without any assumptions of fictitious
conductors behind them. These equivalent surface-current sources radiate
in open space. It can be shown that the radiation from these equivalent
currents leads to zero field inside V. [See Ewald-Oseen extinction
theorem: A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and
Scattering, Prentice Hall, 1991, p. 173]
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The first two approaches are not very accurate in the case of curved boundary
surfaces S because the image theory holds only if the curvature radius is large
compared to the wavelength. However, in the case of flat infinite planes (walls),
the image theory holds exactly, and all three approaches should produce the same
external field as per the uniqueness theorem.

The above approaches are used to compute fields in half-space as excited by
apertures. The field behind § is assumed known and is used to define the
equivalent surface currents. The open-region far-zone solutions for the vector
potentials A (resulting from J,) and F (resulting from M) are

-iBr L
AP) = p—— [[ 3. as’ (17.8)
Tr .S
e‘jﬁ” . , o o,
F(P)=¢ j M, (r))eiFv ds’ | (17.9)
Adr ¢

S

Here, r denotes the unit vector pointing from the origin of the coordinate system
(the center of the aperture) to the point of observation P(r). The source point
Q(r") is at r’. Since in the far zone the field propagates radially away from the
antenna, it is convenient to introduce the propagation vector or wave vector,

p=pr, (17.10)

which characterizes both the wave’s phase constant f (wavenumber) and its
direction of propagation. The far-zone vector potentials can then be written as

e 1B e,
A(P)= i [[3,@)emerwas, (17.11)
4zr <
e~ IBr e,
F(P)=¢ j j M, (r)e BT gy’ (17.12)
dzr <;
The relations between the far-zone field vectors and the vector potentials are
Efr = —jax Agh + A,$), (due to A only) (17.13)
Hir = — jax(Fy0 + F,$), (due to F only). (17.14)
Since
Efar = pH's X, (17.15)
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the total far-zone electric field (due to both A and F) 1s found as
Efor = Efir 4 Efar :—ja)[(Ag +77F(,,)é+(A,/,—77F9)¢] (17.16)

Equation (17.16) requires both vector potentials, A and F, as arising from both
types of surface currents. Computations are reduced in half if image theory is
used in conjunction with an electric or a magnetic wall assumption.

4. Application of the Equivalence Principle to Aperture Problems

The equivalence principle is widely used in the analysis of aperture antennas.
To calculate exactly the far field, the exact field distribution at the antenna
aperture is needed. In the case of exact knowledge of the aperture field
distribution, all three approaches given above produce the same results.
However, the aperture field distribution is usually not known exactly and
approximations are used. Then, the three equivalence-principle approaches
produce slightly different results, the consistency being dependent on how
accurate our knowledge about the aperture field is. Often, it is assumed that the
field is to be determined in half-space, leaving the feed and the antenna behind
an infinite wall S. The aperture of the antenna S, is this portion of S where we
have an approximate knowledge of the field distribution based on the type of the
feed line or the incident wave illuminating the aperture. This is the so-called
physical optics approximation, which is more accurate than the geometrical
optics approach of ray tracing.

Let us assume that the field at the aperture S, is known: E,,H,, and it is zero
everywhere on S except at S4. The equivalent current densities are:

J,=nxH,,
. (17.17)
M, =E,xn.
The substitution of (17.17) into (17.11) and (17.12) produces
e~ IBr o0 L
A(P)=u [[axH, @) eeIwds, (17.18)
4rr o
e‘]ﬂr R , st o,
F(P)=—¢ ”ana(r)-emr s’ (17.19)
dxr 5,
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We can work with the general vector expression for the far field E [see (17.16)]
written as

Ef@ =—jwA | — jonF Xt , (17.20)

where A | contains only the transverse (€ and ¢) components of A. Substituting
(17.18) and (17.19) into (17.20) yields

. e‘]ﬂ"
E (r)=—j3
dxr

Bx [[[AXE, (r) = 7f x (Ax H, (X)) e #eds’. (17.21)
Sa

This is the full vector form of the radiated field resulting from the aperture field,
and it is known as the vector diffraction integral (or vector Kirchhoff integral).

We now consider a practical case of a flat aperture lying in the xy plane with
n=2z.Now, (17.18) and (17. 19) simplify as

A(P) = ﬂ z><”H (x') - eBET gy’ (17.22)
i o
F(P)=-£5——ix [[E,(t))- e ds . (17.23)
r S,
For brevity, the surface integrals in (17.22) and (17.23) are denoted as
17 = IHR+ 11§ ”H e BT s’ (17.24)
A
IF = [EX+IFy j E eBr'ds . (17.25)
Then,
A=pul—(-11%+119), (17.26)
dr
e jBr
F=—e" (- —IER+IEY). (17.27)

The integrals in the above expressions can be explicitly written for the case n =z
in spherical coordinates, bearing in mind that the source-point position on the
aperture is r’ = XX+ y'y:
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IXE (8, ¢) — ([ Eax (.X,, y’)ejﬁ(x'sinQcosq0+y'sin¢9sinqo)dx’dy’ , (17.28)
S

15(9, ¢) — ([ an (x” y’)ejﬂ(x'sinHcosq0+y'sin¢9sinqo)dx’dy’, (17.29)
S

1)1611 (9’ ¢) — [( Hax (x’, y’)ejﬂ(x’sinecos ¢+y'sin95in¢))dx’dy’, (17.30)
S

I}I)—I (9, ¢) — [ .Hay (x” y’)ejﬁ(x'sinecoquy'sin€sinqo)dx’dy’. (1731)
Sa

Note that the above integrals can be viewed as 2-D Fourier transforms of the
aperture field components where x transforms into S, =—/fsinfcos¢@ and y
transforms into S, =—fFsinfsin@.

The transverse components of the magnetic vector potential A in spherical
terms are obtained from (17.26) as

e‘]ﬁr

Ay = U 1 (—Iﬁ’ -cos@cosp+ 11 -cosHsinqp), (17.32)
Tr
e‘]ﬂr .
A, = U (11 -sinp+11 -cosg), (17.33)
Axr

which can also be written in the vector form:

—JBr
A =u 64 [ecose(lf sin@—I¥ cos @) +§(I¥ cos+ I sin go)]. (17.34)
Tr
Analogously,
LA . . :
F, =-¢ 1 [Ocosﬁ(lf sing—15 cosp)+@(IEcosp+1F smqo)]. (17.35)
Ty

By substituting the above expressions in (17.16), we obtain the far-zone E field:

f . e‘]ﬁr
kgt =ib dxr

—Jjpr
64 [—77(1}? cos@+ 11 sin@)+cos@-(IF cosp—1IF sin¢)].(17.37)
r

[ IF cos@+1F singp+1ncos@- (1 cosp—1sing) |, (17.36)

Ef = jp
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For apertures mounted on a flat conducting plane (e.g., slot antennas), the
preferred equivalent model is the one using an electric wall with doubled
magnetic current density,

M, = 2(E, xh), (17.38)

which is non-zero only in the slot, and it radiates in open space. This is because,
in this case, the tangential E-field on the aperture is indeed zero everywhere
except in the slot. The solution (valid only for z >0), uses the fact that I”7 =0
and the far-zone field is given by

e‘]ﬁr

E(0,0)= jp - (IEcosp+IEsing), (17.39)
far . p € IP E E
E(6,0)=jp i cosH(Iy cosp—1I! s1n¢). (17.40)

For apertures illuminated from open space (e.g., reflector antennas), the dual
current formulation is used. Then, the usual assumption is that the aperture field
resembles that of a locally-plane wave, i.e.,

H,=ZxE,/n. (17.41)
This implies that
JE E
17 :lixlE or [H=—"L If :Ii. (17.42)
n n n

This assumption is valid for apertures that are at least a couple of wavelengths in
extent where the reflector is in the far zone of the primary illuminating antenna.

Then, (17.36)-(17.37) reduce to

~jpr
Ef(8,0) = jBS (1+c0s6) (1E cos@+IE sing), (17.43)
Adxr 2
~jpr
E&(6,9) = j < (L+cos6) (IE cosp—IE sing). (17.44)

drr 2

Compare (17.43)-(17.44) to (17.39)-(17.40). The terms in the brackets are
identical. If the aperture has high gain, the factors containing cos @ are not going
to affect the pattern significantly, since cosé =1 within the main beam, and the
two sets of formulas are going to be nearly equivalent.
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S. The Uniform Rectangular Aperture in an Infinite Ground Plane

A rectangular aperture is defined in the xy plane as shown below.

yl\
A
E,
»
M, |
L >
Y X

»

v
L

If the field is uniform in amplitude and phase across the aperture, it is referred to
as a uniform rectangular aperture. Let us assume that the aperture field is y-
polarized:

L L
= Vv <—x <—y
E, = Eyy, for | x|< 5 and |yl[< > (17.45)

E, =0, elsewhere .
Using the equivalence principle, let us assume an electric wall at z =0, where
the equivalent magnetic current density is given by M;, =Eq;xf. Applying
image theory, we double the equivalent source radiating in open space:

L

L
= = v A: X <_x <_y
M, =2M,, = 2(Epf)x2=2E for [x[< = and [y oo

M, =0, elsewhere.

The only non-zero radiation integral is [see (17.29)]

L/2 Ly/2
I)))E (8’ ¢) =2F, J eBx'sinfcosp Jy” . j ejﬂy'siné?singody” (17.47)
~L/2 ~Ly/2

the solution of which yields
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L
sin(’b)zLx sianosgpj sin(ﬂzy sianin(pj

I1E(8,p)=2E\L.L : 17.48
y ( (0) 0 y (ﬂLx ‘ j (,BL), . . j ( )
sin @ cos @ sin @sin @
2 2
To shorten the notations, let us introduce the pattern variables:
u(@,9)=0.56L,sin b cos @,
(0.9) p _ , ¢ (17.49)
v(0,9)=0.5BL,sinfsing .

The complete radiation field is found by substituting (17.48) in (17.39)-(17.40):

e B . sinu \( sinv
Eg(0,0)=jf EoL,L, smqo-( j( j,
27Ty u 1%
, o (17.50)
—ipr
E¢,(6,¢):j,6’e EyL.L, cosH-cosga-(Smuj[smvj.
27Ty u 1%
The total-field amplitude pattern is, therefore,
|E8,9)|= F(8,p)= \/sinz @+ cos? 8 cos? ¢(smuj(smv} =
N AT (17.51)
:\/l—sin2 6 cos? qo.(smuj(smv)
u V
The principal plane patterns are:
E-plane pattern (p=7/2)
— sin(0.58L,sinf) _
F(0)=Ey(0)= . , E, =0 (17.52)
(0.58L, sin )
H-plane pattern (¢ =0)
_ sin(0.56L,sinf) —
F(@)=E,(0)=cos@- _ Ey=0 (17.53)
(0.56L,sind)

Notice that the aperture yields a linearly polarized far field in all directions. In
the E-plane, the field is polarized along @, whereas in the H-plane, it is polarized
along ¢@.
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PRINCIPLE PATTERNS FOR APERTURE OF SIZE: L, =34, Ly =21

E-plane
H-plane

90

For electrically large apertures, the main beam is narrow and the
(1—sin? @cos? )2 in (17.51) is roughly equal to 1 for all observation angles
within the main beam. That is why, in the theory of large apertures and arrays, it

is assumed that the amplitude pattern is simply
sinu sinvy

u 1%

where u =0.58L,sin@cos¢ and v=0.55L, sin@sin¢ as defined in (17.49).

fu,v)= , (17.54)

Below is a view of the | (sinu) / u | function for L, =204 and ¢ =0° (H-plane
pattern):
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Here is a view of the |sinv/v| function for L, =104 and ¢ =90° (E-plane

pattern):

1

0.8

0.6

0.4

0.2

0
1

|sin(10 & sin(theta))/(10 & sin(theta))|
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Notice that the side-lobe level in both patterns is the same although the size of
the aperture is different in the x and y directions (L, =204, L, =104). This is

due to the first minor maximum of the function |sinu/u|=0.2172 occuring at

u = 4.494 . The value of this maximum does not depend on the size of the aperture
as long as this size exceeds a wavelength.?

Point for Discussion: The field of a narrow slot (a slit) (L, < A).

The radiation integral for the case of a slit is a particular case of (17.48):

in(0.56L,sin@ sin| 0.5/ L, sin @sin
(IF) =2E,L.L, sin(0.5fLsinfcosg) || sin(05BL,sinsing) | 1, oo
slit (0.5BL,sinfcosp) L0 (0.58L,sinsing)
‘ i
which leads to
in(0.56L, sin@
(IF) =2E,L.L, sin(0.55L sin G cos ) (17.56)
sht (0.58L, sin&cos @)
The total field pattern of the slit is then
in(0.50L,sin&
F(6,0) = I=sin? foosz g | SM03BL:sin6cosp) | (17.57)
0.5FL,sin@cos @

whereas the principal plane 2D patterns follow from (17.52) and (17.53) as

2 The first minor maximum of the sinc function’s absolute value is reached when its argument solves the transcendental equation
tanx =x .
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shown below.

e [E-plane pattern (¢ =7 /2, yz plane) is omnidirectional:

_ .| sin(0.58L,sin0)
F(@)=Eg(0)= lim . =1. (17.58)
L,~0| (0.58L,sin6)
e H-plane pattern (¢ =0, xz plane)
_ sin(0.55L, sin @)
F(6)=E, =|cos@|- . (17.59)
(0.58L,sin®)

Beamwidths of Uniform Rectangular Aperture in a Ground Plane
(a) First-null beamwidth (FNBW)

We need the locations of the first nulls in the pattern in order to calculate the
FNBW. The nulls of the E-plane pattern are determined from (17.52) as

L
ﬁzy Sing/gzgn =niw, n=1,2,..., (1760)
=0, :arcsin[ﬂj. (17.61)
Ly
The first null occurs at n=1.
= FNBW} =26, = 2arcsin (Lij (17.62)
y

In a similar fashion, FNBWjy is determined as

FNBWy =2arcsin (ij : (17.63)

It 1s apparent that larger aperture widths lead to narrower beams.

(b) Half-power beamwidth (HPBW)

The half-power point in the E-plane occurs when
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sin(0.58L,sin8) 1

=—, 17.64
(0.58L,sin8) 2 (17.64
or
0.58L,sin6g-y, =1.391, (17.65)
= 0, = arcsin£0'443/1], rad, (17.66)
y
HPBW; = 2arcsin(0'é?3/1]. (17.67)
y

A first-order approximation is possible for very small arguments in (17.67), i.e.,
when L, > 0.443A4 (large aperture):

HPBWy = 0.8861. (17.68)

Ly
The half-power beamwidth in the H-plane is analogous:

0.4432]

X

HPBWy = 2arcsin( (17.69)

Side-lobe level of Uniform Rectangular Aperture in a Ground Plane

It is obvious from the properties of the |sin x/ x| function that the first side lobe
has the largest maximum of all side lobes. In the E-plane, the side-love level is

sin4.494
| Eg(0=6,) = |————

~0.217 =-13.26, dB. (17.70)

When evaluating all side-lobe levels and beamwidths, especially in the H-plane,
one must include the cos@ factor as well. The larger the aperture, the less
important this factor is.

Directivity of Uniform Rectangular Aperture in a Ground Plane

The antenna solid angle €, is needed to calculate the directivity from
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The radiation intensity in any direction can be expressed through the normalized
field pattern as

U(0,9) =Unax [F (6,0). (17.72)
The far-field pattern F (6, @) 1s available from (17.51), namely,
F(e,go):Jl—sinmcos%p-[Sm”‘j(smvj. (17.73)
u %
The antenna solid angle is then calculated as
2 7wl2
Q, = j j [F(6,9)]?sin8d6d g, (17.74)
0 0

which, in turn, is used to compute the directivity from (17.71).

However, with an aperture illuminated by a TEM wave, we can use a simpler
approach. Generally, for slot and reflector (dish) antennas, the assumption of a
TEM wave at the aperture is quite accurate. Then, if E =yE,,

H,=-RE, /7, (17.75)

where 77 is the intrinsic impedance of the medium. Analogous expression is used
for an open-end waveguide antennas where 77 is replaced by the waveguide’s
wave impedance Z,,. The far-field components in this case were already derived
in (17.43) and (17.44). They lead to the following radiation intensity:

2
U9 2’; L+ cos@R ([E@.OF +lIF@PF). (776

The maximum value of the function in (17.76) i1s derived after substituting the
radiation integrals from (17.28) and (17.29), which leads to

2 2
Upax = P j E ds’| .
872 19754

(17.77)

The integration of the radiation intensity (17.76) over a closed sphere is not
easy. It can be avoided by observing that the total power reaching the far zone
must have passed through the aperture in the first place. In an aperture, where the
field obeys (17.75), this power is determined as
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H=<ﬂ>Pav-ds=iﬂ|Ea 2 ds. (17.78)
S 277 Sa

Substituting (17.77) and (17.78) into (17.71) finally yields
P Ap
4 ‘.USA Eqds -

Dy = ——X (17.79)
A? 2 ds’
[ jSA |E, |2 ds
In the case of a uniform rectangular aperture,
2
H:LxLylE()' , (17.80)
2n
2
L.L 2
U = | —2 | £ . (17.81)
A 2n
Thus, the directivity is found to be
Unax 47 4r 4z
D():47Z' H _ﬁLXLy —EAP _ﬁAeﬂ (1782)

Note that the physical and effective areas of a uniform aperture are equal.

6. The Uniform Rectangular Aperture in Open Space

Now the rectangular aperture is not mounted on a ground plane. The field
distribution is the same as in (17.45) but now the H field must be defined, too, in
order to apply the equivalence principle with both types of surface currents,

E, =VE, } L /2<X<L./2

; , (17.83)
H,=-XE, /7| -L,/2<y<L,/2.

Note that (17.83) implies an assumption that E, and H, relate through the
medium intrinsic impedance # like in a TEM traveling wave.

To form the equivalent problem, an infinite surface is chosen to extend in the
z =0 plane. Over the entire surface, the equivalent J, and M, surface currents
must be defined. Both J; and M are not really zero outside the aperture in the
z =0 plane because the respective tangential field is not zero. Moreover, the field
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is not known a priori outside the aperture. Thus, an exact equivalent problem
cannot be built.

The simplest approximation is that E, and H, are zero outside the aperture
in the z=0 plane, ie., E,=0,H, =0 for |x'|> L, and |y’|>L,. Then, the
equivalent currents J; and M, are defined as:

M, =-nxE, =—2xVE,)
X —L. /2<x’<L,/2
E0$ for ,
J,=nxH, =Zx(—X)— —L,/2<y <L,/2 (17.84)
ﬁ\_J 77
-¥

J, =M, =0for|x"|> L, /2, |y|>L,

Since the equivalent currents are related via the impedance assumption (17.83),

only the integral /£(8, @) is needed for substitution in the far-field expressions
(17.43)-(17.44). 1£(6,¢) is the same as in (17.48), i.e.,

150, 0)= 2B L L, sin (O.S,Bonsin & cos @) sin (O.S,BLy.sin 6?.sin ®) a7.85)
(0.56L,sinfcosp)  (0.58L, sinBsin @)

The far-field components are obtained by substituting (17.85) into (17.43) and
(17.44):

1+cos@) si i
Engsin¢( )smu smv,
1 2 , wov (17.86)
+ CcoS 1 1
E¢,:Ccosgo( )smusmv’
2 u %

where

C= jBLLES""Y
=J x Ly 02727‘,

u=0.56L,sinfcos@,
v=0.56L,sin@sing.

The far-field expressions in (17.86) are very similar to those of the aperture
mounted on a ground plane, see (17.50). For small values of &, the patterns of
both apertures are practically identical.
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An exact analytical evaluation of the directivity is difficult. However,
according to the approximations made, the directivity formula derived in (17.79)
should provide fairly accurate value. Thus, the directivity is the same as in the
case of the aperture mounted on a ground plane.

7. The Tapered Rectangular Aperture on a Ground Plane

The uniform rectangular aperture has the maximum possible effective area
(for an aperture-type antenna) equal to its physical area. This also implies that it
has the highest possible directivity for all constant-phase excitations of a
rectangular aperture. However, the directivity is not the only important factor in
the design of an antenna. A factor that often is in conflict with the directivity is
the side-lobe level (SLL). The uniform-distribution excitation produces the
highest SLL of all constant-phase excitations of a rectangular aperture (= —13
dB). It is shown below that a reduction of the SLL can be achieved by tapering
the equivalent sources distribution from a maximum at the aperture’s center to
zero values at its edges.

One practical aperture of tapered source distribution is the open rectangular
waveguide. The dominant TE ;o mode has the following distribution:

R T, —L . /2<X'<L. /2
E,=yEjcos| —x |, i (17.87)
L —L,/2<y <L,/2

X
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The general procedure for the far-field analysis is the same as before (Sections 5
and 6). The only difference is in the field distribution. Again, only the integral
1£(60,9) is evaluated:

L./2 Ly/2
15(6,9)=2E, I cos (i x'] eBx'sinbeosg gy J. elBYsindsinp gy’ - (17.88)
\—Lx/ 2 X . \—Ly /2
cosine distrit;/ution along x constant distr;f)ution along y

The integral of the y” variable was already solved in (17.47)-(17.48):

Ly/2 : L
| o , sin(0.5/4L, sin @sin
Iy(8,¢): I e/By smHsmqody :Ly ( ,8 y. . (P)
(0.58L, sin@sin @)

—Ly/2

(17.89)

The integral over the x” variable is also easily solved:

L/2
T R
1.(6,p)= cos| — x” |eiBx'sinfcosp Jy" —
@.0)= | [L j

—Ly/2 X

L2
- j cos(%x')[cos(ﬁx'sin @cos @)+ jsin(Sx’sinHcos go)]dx’ =

—L,/2 X

L./2
_L j {cos Ki — [sin @ cos ¢j x'} +cos Ki + [sin @ cos ¢j x'}}dx' +
2 0n L, L,
L2 T
+% j {sin Kﬂsm Hcosqo—— X } + co{ ,Bsin 9c0s¢+L—]x’}}dx’

—L,/2 X
coS ( PL. sin @ cos ¢j
| }

2
The substitution of (17.89) and (17.90) in (17.88) leads to

—1.0,0)== (17.90)

{@ g
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L
oS ( Z 2Lx sin @ cos (oj sin {'B; sin @'sin (o}
=X

AL, j
2 ——=sin@sin @
(ﬂ-j —’BZLX sin & cos @ ( 2 /

2 - ~ ) V(ér,¢)
u(6,9)

(17.91)

15(6,9)=rE\L,L,

To derive the far-field components, (17.91) is substituted in (17.36)-(17.37):

cosu sin vy

5]

cosu sin v

Boik

Eg(é?,qo):—%Csin(o-

(17.92)

E,(0,0)= —%Ccos@cos&

where

C= jBLLE""Y
=J x L~y 0272'7‘,

u=0.5pL,sinfcos@,
v=0.56L,sin@sing.

Principle plane patterns

In the E-plane, the aperture is not tapered. As expected, the E-plane principal
pattern is the same as that of a uniform aperture.

E-plane (¢ =90°):

L
sin(ﬂzy sinﬁj

('BLysin Hj
2
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H-plane (¢ =0°):

o P sne)
() (3]

H-PLANE PATTERN — UNIFORM VS. TAPERED ILLUMINATION (L, =3A):

F(8)=E,(6)=cos8- (17.94)

— uniform
—— tapered

180

The lower SLL of the tapered-source pattern is obvious. It is better seen in the
rectangular plot given below. The price to pay for the lower SLL is the decrease
in directivity (the beamwidth of the major lobe increases).
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0.8

—— tapered
| =— uniform

0.6

24

H-PLANE PATTERN RECTANGULAR PLOT — UNIFORM VS. TAPERED ILLUMINATION

WHEN L, =34

uiayed apnyl

05 -

dwe aue|d-H

-0.8

sin(theta)

31 illustrates well the effect of source distribution

on the far-field pattern. However, a more practical example is the rectangular-

waveguide open-end aperture

The above example of L,

where the waveguide operates in a dominant

b

mode, i.e. Ay/2< L, <Ay. Here, A, is the wavelength in open space. Consider
the case L, =0.754,. The principal-plane patterns for an aperture on a ground

plane look like this:
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0 —— H-plane
— E-plane

In the plot above, the polar patterns are shown for an X-band waveguide of cross-
section defined by L, =2.286 cm, L, =1.016 cm. The frequency f, =9.84 GHz
is considered when the free-space wavelength is 4y =3.048 cm.

The case of a dominant-mode open-end waveguide radiating in free space can
be analyzed following the approaches outlined in this Section and in Section 6.
The calculation of the beamwidths and the directivity is analogous to the previous
cases. Only the final results will be given here for the case of the x-tapered
(cosine taper) aperture on a ground plane.

Directivity: Dy = 1—72’ - %LxLy (17.95)
Effective area: A,y = %LxLy ~0.81-4A, (17.96)

Note the decrease in the directivity and the effective area compared to the
uniform-aperture case.
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Half-power beamwidths:
50.6

HPBWE = L—/ﬂ,’ deg. (= HPBWg of the uniform aperture) (17.97)
y
68.8 :

HPBWy = m, deg. (> HPBWy of the uniform aperture) (17.98)

X

The above results are approximate. Better results are obtained if the following
factors are taken into account:

e the phase constant of the waveguide S, and its wave impedance Z, are
not equal to the free-space phase constant [, = @\/tH&Ey and intrinsic
impedance Zy =/l / & ; they are dispersive;

e the abrupt termination at the waveguide open end introduces reflection,
which affects the field at the aperture;

e there are strong fringe currents at the waveguide walls, which contribute to
the overall radiation.
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