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LECTURE 18:  Horn Antennas 

(Rectangular horn antennas. Circular apertures.)      
 
1 Rectangular Horn Antennas 

Horn antennas are popular in the microwave bands (above 1 GHz). Horns 
provide high gain, low VSWR (with waveguide feeds), relatively wide 
bandwidth, and they are not difficult to make. There are three basic types of 
rectangular horns. 

 
[Balanis] 

 
The horns can be also flared exponentially. This provides better impedance 

match in a broader frequency band. Such horns are more difficult to make, which 
means higher cost. 

The rectangular horns are ideally suited for rectangular waveguide feeds. The 
horn acts as a gradual transition from a waveguide mode to a free-space mode of 
the EM wave. When the feed is a cylindrical waveguide, the antenna is usually a 
conical horn. 
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Why is it necessary to consider the horns separately instead of applying the 
theory of waveguide aperture antennas (see Lecture 17) directly? It is because 
the so-called phase error occurs due to the difference between the lengths from 
the center of the feed to the center of the horn aperture and the horn edge. The 
field does not have the same phase across the horn aperture. This makes the 
uniform-phase aperture results invalid for the horns. 
 
1.1 The H-plane sectoral horn 

The geometry and the respective parameters shown in the figure below are used 
in the subsequent analysis. The two required dimensions for the construction of 
the horn are A and HR . 
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The tangential field arriving at the input of the horn is composed of the 
transverse field components of the waveguide dominant mode TE10: 
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 is the phase constant of the guided TE10 mode. 

Here, 0 02 /β ω µε π λ= = , and 0λ  is the free-space wavelength. The field that 
is illuminating the aperture of the horn can be approximated as a spatially 
expanded version of the waveguide field. Note that the wave impedance of the 
flared waveguide (the horn) gradually approaches the intrinsic impedance of 
open space η , as A  (the H-plane width) increases.  

The complication in the analysis arises from the fact that the waves arriving 
at the horn aperture are not in phase due to the different path lengths from the 
horn apex. The aperture phase variation is given by 

 0( )j R Re β− − . (18.5) 

Since the aperture is not flared in the y-direction, the phase is uniform along y. 
We first approximate the path of the wave in the horn: 
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The last approximation holds if 0x R≪ , or 0/ 2A R≪ . Then, we can assume that 
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Using (18.7), the field at the aperture is approximated as 
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The field at the aperture plane outside the aperture is assumed equal to zero. The 
field expression (18.8) is substituted in the integral for E

yI  (see Lecture 17): 
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The second integral has been already solved in Lecture 17. The first integral is 
cumbersome and the final result only is given below: 
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( )C x  and ( )S x  are Fresnel integrals, which are defined as 
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More accurate evaluation of ( , )E
yI θ ϕ  is obtained if the approximation in 

(18.6) is not made, and 
yaE  is substituted in (18.9) as 
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The far field can be calculated from ( , )E
yI θ ϕ  as (see Lecture 17): 
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The amplitude pattern of the H-plane sectoral horn is obtained as 
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Principal-plane patterns 

E-plane ( 90ϕ = °): 
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The second factor in (18.18) is dominant and it is identical to the second factor 
of the pattern of a slit of width b (along the y-axis). 
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H-plane ( 0ϕ = ° ): 
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The H-plane pattern in terms of the ( , )I θ ϕ  integral is an approximation, which 
is a consequence of the phase approximation made in (18.7). Accurate value for 

( )Hf θ  is found by integrating numerically the field as given in (18.14), i.e., 
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E- AND H-PLANE PATTERN OF H-PLANE SECTORAL HORN 

 
Fig. 13-12, Balanis, p. 674 
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The directivity of the H-plane sectoral horn is calculated by the general 
directivity expression for apertures (for derivation, see Lecture 17): 
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The integral in the denominator is proportional to the total radiated power, 
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In the solution of the integral in the numerator of (18.21), if the field is substituted 
with its phase approximation in (18.8), the result for the directivity of the H-plane 
horn is 
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The factor tε  explicitly shows the aperture efficiency associated with the 
aperture cosine taper. The factor H

phε  is the aperture efficiency associated with 
the aperture phase distribution. 

A family of universal directivity curves is given below. From these curves, it 
is obvious that for a given axial length 0R  and at a given wavelength, there is an 
optimal aperture width A  corresponding to the maximum directivity. 
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[Stutzman&Thiele, Antenna Theory and Design] 

 
It can be shown that the optimal directivity is obtained if the relation between A 
and 0R  is 
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1.2 The E-plane sectoral horn 
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The geometry of the E-plane sectoral horn in the E-plane (y-z plane) is 

analogous to that of the H-plane sectoral horn in the H-plane. The analysis 
follows the same steps as in the previous section. The field at the aperture is 
approximated by [compare with (18.8)] 
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Here, the approximations 
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are made, which are analogous to (18.6) and (18.7). 
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The radiation field is obtained as 
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The arguments of the Fresnel integrals used in (18.29) are 

 

1 0
0

2 0
0

sin sin ,
2 2

sin sin .
2 2

B B
r R

R

B B
r R

R

β β
θ ϕ

π

β β
θ ϕ

π

 
= − − 

 

 
= + − 

 

 (18.30) 

 
Principal-plane patterns 

The normalized H-plane pattern is found by substituting 0ϕ =  in (18.29): 
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The second factor in this expression is the pattern of a uniform-phase cosine-
amplitude tapered line source.  

The normalized E-plane pattern is found with 90ϕ = °  substituted in 
(18.29): 
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Here, the arguments of the Fresnel integrals are calculated for 90ϕ = °: 
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Similar to the H-plane sectoral horn, the principal E-plane pattern can be 
accurately calculated if no approximation of the phase distribution is made. Then, 
the function ( )Ef θ  has to be calculated by numerical integration of (compare 
with (18.20)) 
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E- AND H-PLANE PATTERN OF E-PLANE SECTORAL HORN 

 
Fig. 13.4, Balanis, p. 660 



Nikolova 2022 13

Directivity 
The directivity of the E-plane sectoral horn is found in a manner analogous to 

the H-plane sectoral horn: 
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A family of universal directivity curves /  vs. /ED a Bλ λ  with R0 being a 
parameter is given below. 

 
[Stutzman&Thiele, Antenna Theory and Design] 
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The optimal relation between the flared height B and the horn apex length 0R  

that produces the maximum possible directivity is 

 02B Rλ= . (18.37) 

 
1.3 The pyramidal horn 

The pyramidal horn is a very popular antenna in the microwave frequency 
ranges (from 1≈  GHz to 30 GHz). The feeding waveguide is flared in both 
directions, the E-plane and the H-plane. All results are combinations of the E-
plane sectoral horn and the H-plane sectoral horn analyses. The field distribution 
at the aperture is approximated as 
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The E-plane principal pattern of the pyramidal horn is the same as the E-plane 
principal pattern of the E-plane sectoral horn. The same holds for the H-plane 
patterns of the pyramidal horn and the H-plane sectoral horn. 

The directivity of the pyramidal horn can be found by introducing the phase 
efficiency factors of both planes and the taper efficiency factor of the H-plane: 
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The gain of a horn is usually very close to its directivity because the radiation 
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efficiency is very good (low losses). The directivity as calculated with (18.39) is 
very close to measurements. The assumed field distribution in the horn aperture 
is a physical optics approximation, which does not take into account only 
multiple diffractions and the diffraction at the edges of the horn. However, these 
phenomena, which are unaccounted for, lead to only very minor fluctuations of 
the measured results about the prediction of (18.39). That is why horns are often 
used as gain standards in antenna measurements. 

The optimal directivity of an E-plane horn is achieved at 1q =  [see also 
(18.37)], 0.8E

phε = . The optimal directivity of an H-plane horn is achieved at 
3 / 8t =  [see also (18.24)], 0.79H

phε = . Thus, the optimal horn has a phase 
aperture efficiency of 

 0.632P H E
ph ph phε ε ε= = . (18.40) 

The total aperture efficiency includes the taper factor, too: 

 0.81 0.632 0.51P H E
tph ph phε ε ε ε= = ⋅ = . (18.41) 

Therefore, the best achievable directivity for a rectangular waveguide horn is 
about half that of a uniform rectangular aperture.  

We reiterate that best accuracy is achieved if H
phε  and E

phε  are calculated 
numerically without using the second-order phase approximation as in (18.38). 
 
Optimum horn design 

Usually, the optimum (from the point of view of maximum gain) design of a 
horn is desired because it results in the shortest axial length for a given gain. The 
whole design can be actually reduced to the solution of a single fourth-order 
equation. For a horn to be realizable, the following must be true: 

 E H PR R R= = . (18.42) 

The figures below summarize the notations used in describing the horn’s 
geometry. 
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It can be shown that 
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The optimum-gain condition in the E-plane (18.37) is substituted in (18.44) to 
produce 

 2 2 0EB bB Rλ− − = . (18.45) 

There is only one physically meaningful solution to (18.45): 
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Similarly, the maximum-gain condition for the H-plane of (18.24) together with 
(18.43) yields 
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Since E HR R=  must be fulfilled, (18.47) is substituted in (18.46), which gives 
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Substituting in the expression for the horn’s gain, 
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gives the relation between A, the gain G, and the aperture efficiency apε : 
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Equation (18.51) is the optimum pyramidal horn design equation. The optimum-
gain value of 0.51apε =  is usually used, which makes the equation a fourth-order 
polynomial equation in A. Its roots can be found analytically (which is not 
particularly easy) and numerically. In a numerical solution, the first guess is 
usually set at (0) 0.45A Gλ= . Once A is found, B can be computed from (18.48) 
and E HR R=  is computed from (18.47). 

Sometimes, an optimal horn is desired for a known axial length R0. In this 
case, there is no need for nonlinear-equation solution. The design procedure 
follows the steps: (a) find A from (18.24), (b) find B from (18.37), and (c) 
calculate the gain G using (18.49) where 0.51apε = . 

Horn antennas operate well over a bandwidth of 50%. However, gain 
performance is optimal only at a given frequency. To understand better the 
frequency dependence of the directivity and the aperture efficiency, the plot of 
these curves for an X-band (8.2 GHz to 12.4 GHz) horn fed by WR90 waveguide 
is given below ( 0.9a =  in. = 2.286 cm and 0.4b =  in. = 1.016 cm). 
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[Stutzman&Thiele, Antenna Theory and Design] 

 
 
The gain increases with frequency, which is typical for aperture antennas. 
However, the curve shows saturation at higher frequencies. This is due to the 
decrease of the aperture efficiency, which is a result of an increased phase 
difference in the field distribution at the aperture. 
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The pattern of a “large” pyramidal horn ( 10.525f =  GHz, feed is waveguide 
WR90): 
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Comparison of the E-plane patterns of a waveguide open end, “small” pyramidal 
horn and “large” pyramidal horn: 

 

 
 
Note the multiple side lobes and the significant back lobe. They are due to 

diffraction at the horn edges, which are perpendicular to the E field. To reduce 
edge diffraction, enhancements are proposed for horn antennas such as 

• corrugated horns 
• aperture-matched horns 

The corrugated horns achieve tapering of the E field in the vertical direction, 
thus, reducing the side-lobes and the diffraction from the top and bottom edges. 
The overall main beam becomes smooth and nearly rotationally symmetrical 
(esp. for A B≈ ). This is important when the horn is used as a feed to a reflector 
antenna. 
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Comparison of the H-plane patterns of a waveguide open end, “small” pyramidal 
horn and “large” pyramidal horn: 
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2 Circular apertures 

2.1 A uniform circular aperture 

The uniform circular aperture is approximated by a circular opening in an 
infinite ground plane illuminated by a uniform plane wave normally incident 
from behind. 
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The idealized field distribution is described as 

 0ˆ ,a E aρ′= ≤E x . (18.52) 

The radiation integral is 
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In (18.54), cylindrical coordinates are used. In spherical coordinates, 
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Hence, (18.53) is written as 
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Here, 0 ( )J ⋅  is the Bessel function of the first kind of order zero. Applying the 
identity 
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 0 1( ) ( )xJ x dx xJ x=  (18.57) 

to (18.56) leads to 
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Note that in this case the equivalent magnetic current formulation of the 
equivalence principle is used [see Lecture 17]. The far field is obtained as 
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Principal-plane patterns 
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The 3-D amplitude pattern: 

 12 2

( )

2 ( sin )
( , ) 1 sin sin

sin

f

J a
E

a

θ

β θ
θ ϕ θ ϕ

β θ
= − ⋅

�������

 (18.62) 

 
The larger the aperture, the less significant the cosθ  factor is in (18.61) because 
the main beam in the 0θ =  direction is very narrow and in this small solid angle 
cos 1θ ≈ . Thus, the 3-D pattern of a large circular aperture features a fairly 
symmetrical beam. 
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Example plot of the principal-plane patterns for 3a λ= : 

 

 
The half-power angle for the ( )f θ  factor is obtained at sin 1.6aβ θ ≈ . So, the 

HPBW for large apertures (a λ≫ ) is given by 

 1/2
1.6 1.6

2 2arcsin 2 58.4
2

HPBW
a a a

λ
θ

β β

 
= ≈ ≈ = 

 
, deg. (18.63) 

For example, if the diameter of the aperture is 2 10a λ= , then 5.84HPBW = °. 
The side-lobe level of any uniform circular aperture is 0.1332 (-17.5 dB). 
Any uniform aperture has unity taper aperture efficiency, and its directivity 

can be found directly in terms of its physical area, 

 2
2 2

4 4
u pD A a

π π
π

λ λ
= = . (18.64) 
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2.2 Tapered circular apertures 

Many practical circular aperture antennas can be approximated as radially 
symmetric apertures with field amplitude distribution, which is tapered from the 
center toward the aperture edge. Then, the radiation integral (18.56) has a more 
general form: 

 0 0

0

2 ( ) ( sin )
a

E
xI E J dπ ρ ρ βρ θ ρ′ ′ ′ ′=  . (18.65) 

In (18.65), we still assume that the field has axial symmetry, i.e., it does not 
depend on ϕ′ . Often used approximation is the parabolic taper of order n: 

 
2

0( ) 1

n

aE E
a

ρ
ρ

 ′ 
′ = −  

   
 (18.66) 

where E0 is a constant. This is substituted in (18.65) to calculate the respective 
component of the radiation integral: 

 
2

0 0

0

( ) 2 1 ( sin )

n
a

E
xI E J d

a

ρ
θ π ρ βρ θ ρ

 ′ 
′ ′ ′= −  

   
 . (18.67) 

The following relation is used to solve (18.67): 

 
1

2
0 1

1
0

2 !
(1 ) ( ) ( )

n
n

n
n

n
x xJ bx dx J b

b
+

+
− = . (18.68) 

In our case, /x aρ′=  and sinb aβ θ= . Then, ( )E
xI θ  reduces to  

 
2

0( ) ( , )
1

E
x

a
I E f n

n

π
θ θ

 
=  + 

, (18.69) 

where 

 
( )

1
1

1

2 ( 1)! ( sin )
( , )

sin

n
n

n

n J a
f n

a

β θ
θ

β θ

+
+

+

+
=  (18.70) 

is the normalized pattern (neglecting the angular factors such as cosϕ  and 
cos sinθ ϕ ). 

The aperture taper efficiency is calculated to be 
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2

2
2

1

1

2 (1 ) (1 )

1 2 1

t

C
C

n

C C C
C

n n

ε

− 
+ + =
− −

+ +
+ +

. (18.71) 

Here, C denotes the pedestal height. The pedestal height is the edge field 
illumination relative to the illumination at the center. 

The properties of several common tapers are given in the tables below. The 
parabolic taper ( 1n = ) provides lower side lobes in comparison with the uniform 
distribution ( 0n = ) but it has a broader main beam. There is always a trade-off 
between low side-lobe levels and high directivity (small HPBW). More or less 
optimal solution is provided by the parabolic-on-pedestal aperture distribution. 
Moreover, this distribution approximates very closely the real case of circular 
reflector antennas, where the feed antenna pattern is intercepted by the reflector 
only out to the reflector rim. 

 

 
[Stutzman&Thiele] 
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