LECTURE 18: Horn Antennas
(Rectangular horn antennas. Circular apertures.)

1 Rectangular Horn Antennas

Horn antennas are popular in the microwave bands (above 1 GHz). Horns
provide high gain, low VSWR (with waveguide feeds), relatively wide
bandwidth, and they are not difficult to make. There are three basic types of
rectangular horns.
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(a) H-plane sectoral horn. (b) E-plane sectoral horn.
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(c) Pyramidal horn.

[Balanis]

The horns can be also flared exponentially. This provides better impedance
match in a broader frequency band. Such horns are more difficult to make, which
means higher cost.

The rectangular horns are ideally suited for rectangular waveguide feeds. The
horn acts as a gradual transition from a waveguide mode to a free-space mode of
the EM wave. When the feed is a cylindrical waveguide, the antenna is usually a
conical horn.



Why is it necessary to consider the horns separately instead of applying the
theory of waveguide aperture antennas (see Lecture 17) directly? It is because
the so-called phase error occurs due to the difference between the lengths from
the center of the feed to the center of the horn aperture and the horn edge. The
field does not have the same phase across the horn aperture. This makes the
uniform-phase aperture results invalid for the horns.

1.1 The H-plane sectoral horn

The geometry and the respective parameters shown in the figure below are used
in the subsequent analysis. The two required dimensions for the construction of
the horn are A and Ry .

H-PLANE (X-Z) CUT OF AN H-PLANE SECTORAL HORN

2
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ay = arctan i , (18.2)
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The tangential field arriving at the input of the horn is composed of the
transverse field components of the waveguide dominant mode TEo:

E,(x) = Eycos (z x] RLE

a (18.4)
H,(x)=-E,(x)/Z,
where
Z, = 4 is the wave impedance of the TE o waveguide mode,

2
Be = Poy|1- (%) is the phase constant of the guided TE1o mode.

Here, B, = a)\/E =27/ Ay, and /A, is the free-space wavelength. The field that
is illuminating the aperture of the horn can be approximated as a spatially
expanded version of the waveguide field. Note that the wave impedance of the
flared waveguide (the horn) gradually approaches the intrinsic impedance of
open space 77, as A (the H-plane width) increases.

The complication in the analysis arises from the fact that the waves arriving
at the horn aperture are not in phase due to the different path lengths from the
horn apex. The aperture phase variation is given by

¢ IB(R-Ry) (18.5)

Since the aperture is not flared in the y-direction, the phase is uniform along y.
We first approximate the path of the wave in the horn:

2 2
R=JR+ 2 =Ry [1+| | =Ry| 14521 |. (18.6)
R 2\ R,

The last approximation holds if x < Ry, or A/2 < Ry. Then, we can assume that

2
R—Ry =L (18.7)
2 R,

Using (18.7), the field at the aperture is approximated as



2

E, (x)= Eycos(mx/A)e 2R . (18.8)

The field at the aperture plane outside the aperture is assumed equal to zero. The
field expression (18.8) is substituted in the integral for /£ (see Lecture 17):

]5(9, ¢) = J‘J‘ an (X’, y’)ejﬂ(x'sinecoswy'sinGsinqo)dx’dy’, (18.9)
Sa

+A/I2 . jix +b/2
156,9)=E | cos(Zx’je R Ifsin0coso gy [ eifysinosingdy’ (18.10)
—A/2 —b/2

~1(8.9)

The second integral has been already solved in Lecture 17. The first integral is
cumbersome and the final result only is given below:

E _ 1 |7ZRy sm(O.S,Bb-sinH-sinqo)
ree E{z p e )}{ (0.58b-sin@-sinp) | (18.11)

where

2
](ﬂ sin @ cos p+— )

1(6,p)=¢ 25 2 [C(s2)— jS(s5)—C(s7)+ jS(si)] (18.12)
e zﬁ(ﬁ“‘e“’s{p j [C) - jSB)-Ct)+ jS)]
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C(x)and S(x) are Fresnel integrals, which are defined as
C(x) = j cos[ fzjdz' C(-x)=-C(x),
f (18.13)
Ism( szd’[ S(—x) =—S(x).
0

S(x)

More accurate evaluation of /£(6,¢) is obtained if the approximation in
(18.6) is not made, and E,  is substituted in (18.9) as

E, (x)=Eq cos(%x} e_jﬂ(VRg”z_Ro) = Eye*/BRo cos(%x} e BRI (18.14)
The far field can be calculated from 1% (6, ¢) as (see Lecture 17):

Eg=]

(18.15)

or

_ iBEb TRy ejﬂr(“_COSQJ sin (0.54b-sin @-sin @) y
IPENTB amr ™ 2 (0.5b-sin 8-sin @) (18.16)

I(&,ga)(ésing0+(bcos ¢).
The amplitude pattern of the H-plane sectoral horn is obtained as

1+cos 6] sin (0.58b-sin 8- sin @)
2 (0.58b-sin &-sin @)

E(&,qp):( }-I(Q,qp). (18.17)

Principal-plane patterns

E-plane (¢ =90°): F(0)= (

1+cos€j{sin(0.5,6’b-sin6’)} (18.18)

2 (0.56b-sin8)

The second factor in (18.18) 1s dominant and it is identical to the second factor
of the pattern of a slit of width b (along the y-axis).



H-plane (¢ =0°):

FHw):(—”"zosej-fH(m=(1+‘32°S‘9]° I(é(quf;?m (18.19)

The H-plane pattern in terms of the /(8, @) integral is an approximation, which
is a consequence of the phase approximation made in (18.7). Accurate value for
fu (@) is found by integrating numerically the field as given in (18.14), i.e.,

+A/2 ,
ﬂ-x _ 4 / . ’ . ,
fu (@) I COS(—)E IBNRGHX o jBx'sind gy (18.20)
_A2 A
E- AND H-PLANE PATTERN OF H-PLANE SECTORAL HORN
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Fig. 13-12, Balanis, p. 674
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The directivity of the H-plane sectoral horn is calculated by the general
directivity expression for apertures (for derivation, see Lecture 17):

_47r. U SAE“dS/
VE .Us |E, |2 ds’
A

The integral in the denominator is proportional to the total radiated power,

2

0 (18.21)

+b/2+A/2 5 T Ab
20 = [[|Ea P ds’= | [ |Eo COSZ(Xx’jdx’dy’:| Eyf—. (1822)
Sa —bl2-A/2

In the solution of the integral in the numerator of (18.21), if the field is substituted
with its phase approximation in (18.8), the result for the directivity of the H-plane
horn is

b32( A 4r
DH :Z;(ZJ(C;ZZ :ﬁgtggl(Ab)’ (1823)
where
8
& =—
2
2 2 2
H _— _ _ .
ety == A0~ C +[S(p) =S ()]}

Pi =2\/;{1+8i} 12 =2\/;{—1+i}
4

8t
t_l(éjz !
8\A) Ry/A

The factor & explicitly shows the aperture efficiency associated with the
aperture cosine taper. The factor £/} is the aperture efficiency associated with
the aperture phase distribution.

A family of universal directivity curves is given below. From these curves, it
is obvious that for a given axial length R, and at a given wavelength, there is an
optimal aperture width A corresponding to the maximum directivity.
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[Stutzman&Thiele, Antenna Theory and Design]

It can be shown that the optimal directivity is obtained if the relation between A

and Ry is
A=.3AR, , (18.24)
or
é: 3&. (18.25)
A A



1.2 The E-plane sectoral horn

R

E-plane ()-z) cut of an E-plane
sectoral horn

The geometry of the E-plane sectoral horn in the E-plane (y-z plane) is
analogous to that of the H-plane sectoral horn in the H-plane. The analysis
follows the same steps as in the previous section. The field at the aperture is
approximated by [compare with (18.8)]

B,
E, =Eocos(£xje "ar (18.26)
a

Here, the approximations
2 | 2
R=\R2+y2 =R, 1+£le zRO[1+5£le ] (18.27)
0 0

2
R—Ry =L (18.28)
2 R,

and

are made, which are analogous to (18.6) and (18.7).



The radiation field is obtained as

= jBE, j@eﬁﬁr ej(ﬂRoj(ismemwjz -(@sin(0+(f)cos¢)

Ay

(1+cos6) cos('ia sin @ cos qo] (18.29)
X 2:|[C(r2)_jS(r2)_C(rl)+jS(ﬁ)]-

2
{1 — (,Bza sin @ cos ¢j

The arguments of the Fresnel integrals used in (18.29) are

K= i(—E—RO'BBsmHsm¢j
TRy 2 2
(18.30)
ry = £(+£—Roﬁsinesin¢j.
7Z'R0 2 2

Principal-plane patterns

The normalized H-plane pattern is found by substituting ¢ =0 in (18.29):
COS (,Bza sin 0)

(ﬂ“smej

The second factor in this expression is the pattern of a uniform-phase cosine-
amplitude tapered line source.

(18.31)

ﬁ(8>:(1+cosc9)x

2

The normalized E-plane pattern is found with @=90° substituted in
(18.29):

E(@)=

2 2
(1+C—205‘9)|fE(6)|:(1+0056’)\/[C(i’z)—c(”l)] +[S(2)=S ()] . (18.32)

2 4] C*(rp=0)+5*(1p=0) |

Here, the arguments of the Fresnel integrals are calculated for ¢ =90°:
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H= i(—E—R()'B—fsinﬁj,

TRy 2
(18.33)
rn = i +£—R0ﬁsinl9 ,
7Z'R0 2 2
and
7792():7’2(6’:()):E i (18.34)

2 TR,

Similar to the H-plane sectoral horn, the principal E-plane pattern can be
accurately calculated if no approximation of the phase distribution is made. Then,

the function fr(6) has to be calculated by numerical integration of (compare
with (18.20))

B/2
£ () o< j e IR g jBsingy gy (18.35)
—B/2
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E- AND H-PLANE PATTERN OF E-PLANE SECTORAL HORN
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Fig. 13.4, Balanis, p. 660
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Directivity
The directivity of the E-plane sectoral ho
the H-plane sectoral horn:

rn is found in a manner analogous to

a32B iy
— E _— E
Dg ——1—7r —/1 Epn = PE £E,,aB, (18.36)
where
8 C?(g)+ S? B
&=—, el = (@) ; @ - :
V4 q \2AR,

A family of universal directivity curves
parameter is given below.
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The optimal relation between the flared height B and the horn apex length R,
that produces the maximum possible directivity is

2AR, . (18.37)

1.3 The pyramidal horn

The pyramidal horn is a very popular antenna in the microwave frequency
ranges (from =1 GHz to 30 GHz). The feeding waveguide is flared in both
directions, the E-plane and the H-plane. All results are combinations of the E-
plane sectoral horn and the H-plane sectoral horn analyses. The field distribution
at the aperture is approximated as

Bl 2 )2
T _J[EzJr sz
E,, oncos(ije 2\Ry™ RS, (18.38)

The E-plane principal pattern of the pyramidal horn is the same as the E-plane
principal pattern of the E-plane sectoral horn. The same holds for the H-plane
patterns of the pyramidal horn and the H-plane sectoral horn.

The directivity of the pyramidal horn can be found by introducing the phase
efficiency factors of both planes and the taper efficiency factor of the H-plane:

2 g.eE et AB, (18.39)

br="7

where

et =Z{[cp-CpT +sp -] |

2
1 1 1(AY 1
=t 1+— |, pp=2t|-1+—|, t=—| = :
h [ St} P [ St} 8(2) Rl 12

C*(q)+S%*(q) B

et = , q= :
’ q J2ARE

The gain of a horn is usually very close to its directivity because the radiation
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efficiency is very good (low losses). The directivity as calculated with (18.39) is
very close to measurements. The assumed field distribution in the horn aperture
1s a physical optics approximation, which does not take into account only
multiple diffractions and the diffraction at the edges of the horn. However, these
phenomena, which are unaccounted for, lead to only very minor fluctuations of
the measured results about the prediction of (18.39). That is why horns are often
used as gain standards in antenna measurements.

The optimal directivity of an E-plane horn is achieved at g=1 [see also
(18.37)], Sl’fh =0.8. The optimal directivity of an H-plane horn is achieved at
t=3/8 [see also (18.24)], 852 =0.79. Thus, the optimal horn has a phase
aperture efficiency of

eb, =gl ek =0.632. (18.40)

The total aperture efficiency includes the taper factor, too:
e, =&eher, =0.81-0.632=0.51. (18.41)

Therefore, the best achievable directivity for a rectangular waveguide horn is
about half that of a uniform rectangular aperture.

We reiterate that best accuracy is achieved if €7}, and &7, are calculated
numerically without using the second-order phase approximation as in (18.38).

Optimum horn design

Usually, the optimum (from the point of view of maximum gain) design of a
horn is desired because it results in the shortest axial length for a given gain. The
whole design can be actually reduced to the solution of a single fourth-order
equation. For a horn to be realizable, the following must be true:

R =Ry =Rp. (18.42)

The figures below summarize the notations used in describing the horn’s
geometry.
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A

It can be shown that

H
Ry Az __ 4 (18.43)
Ry Al2-al2 A-a

E

Ry __BI2 5 (18.44)

R, B/2-b/2 B-b

The optimum-gain condition in the E-plane (18.37) is substituted in (18.44) to
produce

B> —bB-2ARg =0. (18.45)
There is only one physically meaningful solution to (18.45):

B:%(bh/bz +8AR: ) (18.46)

Similarly, the maximum-gain condition for the H-plane of (18.24) together with
(18.43) yields

H

:A—a(A_zj:A(A‘“), (18.47)
A (34 34

Since Rp = Ry must be fulfilled, (18.47) is substituted in (18.46), which gives

16



B:%£b+\/b2+W} (18.48)

Substituting in the expression for the horn’s gain,

4
GzﬁeapAB, (18.49)
gives the relation between A, the gain G, and the aperture efficiency &,,:
G=2T¢ al b+\/192+M , (18.50)
A? 2 3
2 294
:>A4—aA3+3bG}L A et =0. (18.51)

87TE,y 32r2e;,

Equation (18.51) is the optimum pyramidal horn design equation. The optimum-
gain value of £,, =0.51 is usually used, which makes the equation a fourth-order
polynomial equation in A. Its roots can be found analytically (which is not
particularly easy) and numerically. In a numerical solution, the first guess is
usually setat A = 0.451/G . Once A is found, B can be computed from (18.48)
and Rg = Ry is computed from (18.47).

Sometimes, an optimal horn is desired for a known axial length Ro. In this
case, there is no need for nonlinear-equation solution. The design procedure
follows the steps: (a) find A from (18.24), (b) find B from (18.37), and (c)
calculate the gain G using (18.49) where £,, =0.51.

Horn antennas operate well over a bandwidth of 50%. However, gain
performance is optimal only at a given frequency. To understand better the
frequency dependence of the directivity and the aperture efficiency, the plot of
these curves for an X-band (8.2 GHz to 12.4 GHz) horn fed by WR90 waveguide
is given below (¢ =0.9 in. =2.286 cm and »=0.4 in. = 1.016 cm).

17
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[Stutzmané&Thiele, Antenna Theory and Design]

The gain increases with frequency, which is typical for aperture antennas.
However, the curve shows saturation at higher frequencies. This is due to the
decrease of the aperture efficiency, which is a result of an increased phase
difference in the field distribution at the aperture.
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The pattern of a “large” pyramidal horn ( f =10.525 GHz, feed is waveguide
WR90):

biare Irg. ant [Modified)

MSL [dE] MSP [ HFB"W [7]
[E [06] [00] [200
m [35] [00] 5]
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Comparison of the E-plane patterns of a waveguide open end, “small” pyramidal
horn and “large” pyramidal horn:

@ LVDAM-ANT
File Edit “igw Acquisiion DOptions  Help

e s|[o+a <= Lob-Yofr

———

Signal Lewvel Antenna Pozition

Attenuation [dB]

«|4| 1] plp}l HesetDispla_-,-l

waveguid. ant

M5L [dB] MSF [ HFE"W [7]

[(T0.7] [354.0] [490

[E
Hl | | | | |

biare_zml.ant

MSL [dB]  MSF [ HFB"W [7]

[E | | | | | |
H] | | | | |

MSL(dB] MSP[]  HPEW [
[E | | | | | |
Hl | | | | |

Note the multiple side lobes and the significant back lobe. They are due to
diffraction at the horn edges, which are perpendicular to the E field. To reduce
edge diffraction, enhancements are proposed for horn antennas such as

e corrugated horns

e aperture-matched horns
The corrugated horns achieve tapering of the E field in the vertical direction,
thus, reducing the side-lobes and the diffraction from the top and bottom edges.
The overall main beam becomes smooth and nearly rotationally symmetrical
(esp. for A= B). This is important when the horn is used as a feed to a reflector
antenna.
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Comparison of the H-plane patterns of a waveguide open end, “small” pyramidal

horn and “large” pyramidal horn:

@ LVDAM-ANT

File Edit “iew Acguizition Option: Help

Lab-Yol:*

N | P

ﬁ|ﬂﬂ§|l€£@w | o

Signal Level Antenna Pogition
]
Attenuation [dB)
“l 1'”T b|»| Eeset Wiz ey |
waveguid. ant
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El | || | |
m |-1l].E | | 0.0 | | 48.0 |
hore_zml.ant
MSL [dB] HMSF [ HFEW [*]
El | | | | |
m | -3.7 | | 0.0 | | 39.0 |
MSL [dB] HMSF [ HFEW [*]
El | || | |
m | -0.6 | | 0.0 | | 24.0 |

22



2 Circular apertures

2.1 A uniform circular aperture

The uniform circular aperture is approximated by a circular opening in an
infinite ground plane illuminated by a uniform plane wave normally incident
from behind.

The i1dealized field distribution is described as

E, =XE,, p'<a. (18.52)
The radiation integral is
I =By [[eiPras’. (18.53)
Sa
The integration point is at
r'=Xp cos@ +§p’sing’. (18.54)

In (18.54), cylindrical coordinates are used. In spherical coordinates,
r-r’'=p’sin@(cos@cos @ +sin@sin@) = p’sin@cos(p—¢’) . (18.55)
Hence, (18.53) is written as
al| 2rx a
1E = on{ J' ejﬁp’sinﬁc‘«os(fﬂﬂ”')dgo'} pdp = 27[E0Ip’J0 (Bp’sin@)dp’. (18.56)
oL 0 0

Here, Jy(-) is the Bessel function of the first kind of order zero. Applying the
identity
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j xJo(x)dx = xJ,(x) (18.57)
to (18.56) leads to

IE =27E,—2

Ji(Basin@). (18.58)

S1n

Note that in this case the equivalent magnetic current formulation of the
equivalence principle is used [see Lecture 17]. The far field is obtained as

A R . ejﬁ"
Ez(ﬂcosqo—(pcosesmqo)jﬂ It =
2Ty
- i 2],(Basin6) (1859
:(Ocosqo—(f)cosé?sinqo)jﬂEOsz ¢ i :
2zr  Pasin®
Principal-plane patterns
E-plane (p=0): E,(@)=21fasin0) (18.60)
Pasin 6
H-plane (¢=90°): E,(8) = cos 8- 211(/5“_81“ 9 (18.61)
Basin @
The 3-D amplitude pattern:
E(8,¢)=+[1-sin?@sin2 ¢ 2J1(fasin) (18.62)
Pasin @
£(6)

The larger the aperture, the less significant the cos@ factor is in (18.61) because
the main beam in the @ =0 direction is very narrow and in this small solid angle
cos@ =1. Thus, the 3-D pattern of a large circular aperture features a fairly
symmetrical beam.
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Example plot of the principal-plane patterns for a =3A4:
1
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The half-power angle for the f (&) factor is obtained at Basiné =1.6. So, the
HPBW for large apertures (a > A) is given by

HPBW =26,,, = 2arcsin££j = 2E = 58.41, deg. (18.63)
Pa Pa 2a
For example, if the diameter of the aperture is 2a =104, then HPBW =5.84°.
The side-lobe level of any uniform circular aperture is 0.1332 (-17.5 dB).
Any uniform aperture has unity taper aperture efficiency, and its directivity
can be found directly in terms of its physical area,

D, = ‘/‘1’2’ A, = ‘;’;Mz, (18.64)
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2.2 Tapered circular apertures

Many practical circular aperture antennas can be approximated as radially
symmetric apertures with field amplitude distribution, which is tapered from the
center toward the aperture edge. Then, the radiation integral (18.56) has a more
general form:

IE=2x j Eo(0)p'Jo(Bp sin0)dp’ . (18.65)
0

In (18.65), we still assume that the field has axial symmetry, i.e., it does not
depend on ¢’. Often used approximation is the parabolic taper of order n:

~N2 ]
Ea(p’)=E0[1—(ﬂj } (18.66)

a

where Ej is a constant. This is substituted in (18.65) to calculate the respective
component of the radiation integral:

a ~N2 ]!
I£(6)=27E | {1 - (ﬂ) ] 0’ Jo(Bp sin@)dp’. (18.67)
a
0
The following relation is used to solve (18.67):
1 2"n!
j(l—xz)”xJo(bx)dx = an'J,Hl (D). (18.68)

0

In our case, x=p /a and b= fasin@. Then, 1£(0) reduces to

2
IXE(H):EO(jm jf(@,n), (18.69)
n+1
where
n+l1 | 1
f(g,n)zz (n+1).Jn+1(£?51n0) (18.70)
(Basinb)
is the normalized pattern (neglecting the angular factors such as cos¢@ and
cos@sin @).

The aperture taper efficiency is calculated to be
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2
e
n+1
+2C(1—C)+(1—C)2

n+1 2n+1

Here, C denotes the pedestal height. The pedestal height is the edge field
illumination relative to the illumination at the center.

The properties of several common tapers are given in the tables below. The
parabolic taper (n =1) provides lower side lobes in comparison with the uniform
distribution (7 =0) but it has a broader main beam. There is always a trade-off
between low side-lobe levels and high directivity (small HPBW). More or less
optimal solution is provided by the parabolic-on-pedestal aperture distribution.
Moreover, this distribution approximates very closely the real case of circular
reflector antennas, where the feed antenna pattern is intercepted by the reflector
only out to the reflector rim.

E = (18.71)

CZ

a. Parabolic taper E (p)
241 _
! 1.0 /”_()
. e [
E(p) = [1- |5
a
n=1
2" (n + 1)U, 41(Basin 05
f(0,n) = (n ) ”*”'flu sin 0) = B
(Fasinf) n=z
I I I p'

Normalized

Side Lobe Pattern
n HP (rad) Level (dB) & f(0,n) Distribution
0 1.02 %1 17.6 1.00 2J,(Ba sin 6) Uniform
—. Ga sin 0
1 1.27 %l 24.6 0.75 89,(fa sin ) Parabolic
‘ (Basinf)”
2 1.47 30.6 0.55 48.J5(3a sin 0) Parabolic squared

«a

(Fasin ())2

[Stutzman&Thiele]
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b. Parabolic taper on a pedestal

E.p) =C + (11— C)[l - (’—)/>~}
a

- C
Cf(0.n = 0) + ———f(0.n)
f(0.n,C) = 1 ﬁ(,
C 4 .
n+ 1 p
Edge Illumination n =1 n=2
Side Lobe Side Lobe
CaB ¢ HP (rad) Level (dB) & HP (rad) Level (dB) &
-8 0.398 1125 2215 0.942 1142 _247 0918
2a 2a
~10 0316  1.142% ~223 0.917 1172 270 0.877
2a 2a
12 0.251 1162 ~22.9 0.893 1202 ~295 0.834
2a 2a
14 0200 1172 _234 0.871 1232 _31.7 0.792
2a 2a
~16 0.158 1195 ~2338 0.850 1262 _33.5 0.754
2a 2a
18 0.126 1.202 24 0.833 12925 _345 0.719
2a 2a
20 0.100 1215 _243 0.817 13225 _347 0.690
2a 2a
[Stutzman&Thiele]
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