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LECTURE 1:  Introduction into Antenna Studies 
(Definition and circuit theory description. Brief historical notes. General 
review of antenna geometries and arrangements. Wireless vs. cable 
communication systems. The radio-frequency spectrum.) 
 
1. Definition and circuit theory description 
 
 
 
 

The antenna is the transition between a guiding device (transmission line, 
waveguide) and free space (or another usually unbounded medium). Its main 
purpose is to convert the energy of a guided wave into the energy of a free-
space wave (or vice versa) as efficiently as possible, while at the same time 
the radiated power has a certain desired pattern of distribution in space. At 
lower frequencies, where the length of the transmission line is negligible, we 
can view the antenna as a device that converts free-space EM waves into 
voltage/current signals or vice versa. 

 
a) transmission-line Thevenin equivalent circuit of a radiating 

(transmitting) antenna 

LR

radR
AI

AjXcZ

inZ

GV

GZ

Generator Antenna

 
 

GV  - voltage-source generator (transmitter) 
GZ  - impedance of the generator (transmitter) 
cZ  - characteristic impedance of the connecting TL 
radR  - radiation resistance (relates to the radiated power as 

2
rad radAP I R= ⋅ ) 

The antenna (aerial, EM radiator) is a device, which radiates or 
receives electromagnetic waves. 
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LR  - loss resistance (related to conduction and dielectric losses) 
AjX   - antenna reactance 

inZ   - input impedance of feed network as seen from antenna terminals 
rad( )A L AZ R R jX= + +  - antenna impedance 

 
One of the most important issues in antenna design is the matching of the 

antenna to the transmission line (TL) and the generator ( inAZ Z∗= ). Matching 
is often measured in terms of the voltage standing-wave ratio (VSWR). 
Standing waves must be avoided because they may cause arching or discharge 
in the TL in high-power RF systems (radar, broadcasting). But the main 
benefit of good impedance match (with low VSWR) is the maximum power 
transfer to/from the antenna. 

The resistive/dielectric losses (see LR ) are not desirable either. They 
decrease the efficiency of the antenna. On the other hand, in special 
applications such as ultra-wideband (UWB) antennas in imaging and radar, 
the antenna resistance may be increased intentionally in order to improve the 
bandwidth and suppress “ringing” in the transmitted or received signals. 

 
b) transmission-line Thevenin equivalent circuit of a receiving antenna 

Receiver Antenna

cZ

AZ
AI

AVLZ

ouZ  
ouZ  - output impedance of the antenna-plus-feed network, which 

serves as a signal generator as seen from the receiver terminals 
 
 

The antenna is a critical component in a wireless communication system. 
A good design of the antenna can relax the system requirements and improve 
its overall performance. 
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2.  Brief historical notes 
• James Clerk Maxwell formulates the mathematical 

model of electromagnetism (classical electro-
dynamics), “A Treatise on Electricity and 
Magnetism”, 1873. He shows that light is an 
electromagnetic (EM) wave, and that all EM waves 
propagate through space with the same speed, the 
speed of light. 

• Heinrich Rudolph Hertz demonstrates in 1886 the 
first wireless EM wave system: a / 2λ -dipole is 
excited with a spark; it radiates predominantly at 
λ ≈8 m; a spark appears in the gap of a receiving 
loop some 20 m away. In 1890, he publishes his 
memoirs on electrodynamics, replacing all 
potentials by field strengths.1 

• May 7, 1895, a telegraph communication link is 
demonstrated by the Russian scientist, Alexander 
Popov. A message is sent from a Russian Navy ship 
30 miles out in sea, all the way to his lab in St. 
Petersburg, Russia. This accomplishment is little 
known today. 

• In 1892, Tesla delivers a presentation at the IRE of 
London about “transmitting intelligence without 
wires,” and, in 1895, he transmits signals detected 
80 km away. His patent on wireless links precedes 
that of Marconi. 

• Guglielmo Marconi sends signals over large 
distances and successfully commercializes wireless 
communication systems. In 1901, he performs the 
first transatlantic transmission from Poldhu in 
Cornwall, England, to Newfoundland, Canada. He 
receives the Nobel prize for his work in 1909. 
 

                                                 
1 Similar work is done at about the same time by the English scientist Oliver Heaviside. 
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• The beginning of 20th century (until WW2) marks the boom in wire-
antenna technology (dipoles and loops) and in wireless technology as a 
whole, which is largely due to the invention of the DeForest triode tube, 
used as a radio-frequency (RF) generator. Radio links are realized up to 
UHF (about 500 MHz) and over thousands of kilometers. 

• WW2 marks a new era in wireless communications and antenna 
technology. The invention of new microwave generators (magnetrons and 
klystrons) leads to the development of the microwave antennas such as 
waveguide apertures, horns, reflectors, etc. 
 
 

3.  General review of antenna geometries and arrangements 
3.1.  Single-element radiators 
A.  Wire radiators (single-element) 
 

wire antenna elements

straight-wire elements
(dipoles/monopoles) loops helices

 
 
 
There is a variety of shapes corresponding to each group. For example, 

loops can be circular, square, rhombic, etc. Wire antennas are simple to make 
but their dimensions are commensurable with a wavelength. This limits the 
frequency range of their applicability. At low frequencies, these antennas 
become increasingly large. At very high frequencies, they are very small and 
the parasitics become difficult to control. 
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B.  Aperture antennas (single element) 
 

(Q-par Angus) 
(a) pyramidal horn 

 

 
(b) conical horn 
 

 
 

 
(c) open rectangular waveguides 

Aperture antennas were 
developed before and during 
WW2 together with waveguide 
technology. Waveguides were 
primarily developed to transfer 
high-power microwave signals 
(cm wavelengths), generated by 
high-power sources such as 
magnetrons and klystrons. 
These types of antennas are 
preferable in the frequency 
range from 1 to 20 GHz. 
 
 
 
 
[Radiometer Physics Gmbh] 
 
 
 
 
 
 
www.quinstar.com  
 
 
 
 
 
 
www.labvolt.com  

http://www.quinstar.com/
http://www.labvolt.com/
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      [Quinstar Technology Inc.] 
(d) double-ridge horns (TEM, linear polarization, ultra-wide band) 
 

[TMC Design Corp.] 
(e) quad-ridge horns (TEM, dual linear polarization allowing for many 

types of polarization depending on feed , ultra-wide band) 
 

 www.spie.org  

[ZAX Millimeter Wave Corp.] 
(f) corrugated horns (symmetric patterns, low side lobes, low cross-

polarization), often used as primary feeds in reflector antennas 

http://www.spie.org/
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C.  Printed antennas 
The patch antennas consist of a metallic patch etched on a dielectric 

substrate, which has a grounded metallic plane at the opposite side. They are 
developed in the beginning of 1970s. There is a great variety of geometries 
and ways of excitation. Modern integrated antennas often use multi-layer 
designs with a feed coupled to the radiator electromagnetically (no galvanic 
contact). 

 
 
 

PRINTED PATCH RADIATORS 

 
rectangular patch circular patch 

 
 
 
 

 
(c) 

printed dipole 
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director
driver

reflector top layer

bottom layer

dielectric substrate

quarter-wave
transformer

microstrip

 
 

3x2x

1x

0.64
2.56

0.64

1.92

 
 

1.92

reflector

0.64
3x

1x

 
(d) 

double-layer printed Yagi with microstrip feed 
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(e) 

printed monopole antenna 
 

Various shapes used to form a radiating patch: 
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PRINTED SLOT RADIATORS 
 

            
(a)                                     (b) 

            
(c)                                     (d) 

          
(e)                                     (f) 

            
(g)                                     (h) 

Slot antennas were 
developed in the 1980s and 
there is still research on new 
shapes and types of excitation. 
They are suited for integration 
with slot-line circuits, which 
are usually designed to operate 
at frequencies above 10 GHz. 
Popular slot antenna in the 
microwave range is the Vivaldi 
slot (see a). 
 

Patch and slot antennas 
share some common features. 
They are easy and cheap to 
fabricate. They are easy to 
mount; they are light and 
mechanically robust. They 
have low cross-polarization 
radiation. Their directivity is 
not very high. They have 
relatively high conducting and 
dielectric losses. These 
radiators are widely used in 
patch/slot arrays, which are 
esp. convenient for use in 
spacecraft, satellites, missiles, 
cars and other mobile 
applications. 
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http://www.radartutorial.eu/06.antennas/Tapered%20Slot%20Antenna.en.html  
(i) 

UWB printed tapered slot (Vivaldi) antenna  
 
 

D. Leaky-wave antennas 
 
These are antennas derived from millimeter-wave (mm-wave) guides, such 

as dielectric guides, microstrip lines, coplanar and slot lines. They are 
developed for applications at frequencies above 30 GHz, infrared frequencies 
included. Periodical discontinuities are introduced at the end of the guide that 
lead to substantial radiation leakage (radiation from the dielectric surface). 
These are traveling-wave antennas. 

 

      
Dielectric-image guides with gratings 

 

http://www.radartutorial.eu/06.antennas/Tapered%20Slot%20Antenna.en.html
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Printed leaky-wave antennas 

 
The antennas in the mm-wave band are of big variety and are still the subject 
of intensive study. 
 

E. Reflector antennas 
A reflector is used to concentrate the EM energy in a focal point where the 

receiver or the feed is located. Optical astronomers have long known that a 
mirror shaped as a parabolic cylinder transforms rays from a line source on its 
focal line into a bundle of parallel rays. Reflectors are usually parabolic. A 
parabolic-cylinder reflector was first used for radio waves by Heinrich Hertz 
in 1888. Sometimes, corner reflectors are used. Reflector antennas have very 
high gain and directivity. Typical applications include radio telescopes, 
satellite communications. These antennas are electrically large with their size 
being on the order of hundreds and thousands of wavelengths. They are not 
easy to fabricate and in their conventional technology they are rather heavy. It 
is difficult to make them mechanically robust. 

The largest radio telescopes: 
• Max Plank Institüt für Radioastronomie radio telescope, Effelsberg 

(Germany), 100-m paraboloidal reflector 
• National Astronomy and Ionosphere Center (USA) radio telescope in 

Arecibo (Puerto Rico), 1000-ft (304.8-m) spherical reflector 
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• The Green Bank Telescope (the National Radio Astronomy 
Observatory) – paraboloid of aperture 100 m 

 
TYPICAL REFLECTORS 

 

   

 
 

 
The Radio Telescope of the Arecibo Observatory 
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F. Lens antennas 
 
Lenses play a similar role to that of reflectors in reflector antennas. They 

collimate divergent energy into a plane EM wave. Lenses are often preferred 
to reflectors at higher frequencies (f > 100 GHz). They are classified 
according to their shape and the material they are made of. 
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3.2.  Antenna arrays 
Antenna arrays consist of multiple (usually identical) radiating elements. 

Arranging the radiating elements in arrays allows for achieving unique 
radiation characteristics, which cannot be obtained through a single element. 
The careful choice and control of the phase shift and the amplitude of the 
signal fed to each element allows for the electronic control of the radiation 
pattern, i.e., for electronic scanning. Such arrays are called phased arrays. The 
design and the analysis of antenna arrays is a subject of its own and is also 
related to signal processing and communication theory. Research is ongoing 
in the subjects of smart antennas, MIMO antennas, tracking antennas, etc. 
Some commonly met arrays are shown in the figure below. 
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NRAO/ALMA (Atacama Large Millimeter Array): array of radio telescopes 

 

 
Array of Microstrip Patches 

 
Reflectarray of Printed Elements 
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4.  Wireless vs. cable communication systems 
There are two broad categories of communication systems: those that 

utilize transmission lines as interconnections (cable or wire systems), and 
those that use EM radiation with an antenna at both the transmitting and the 
receiving end (wireless systems). 

In areas of high density population, the cable systems are economically 
preferable, especially when broadband communication is in place. Even for 
narrow-band communication, such as voice telephony and low-data-rate 
digital transmission, it is much simpler and cheaper to build wire networks 
with twisted-pair cables, when many users are to be interconnected. Such lines 
introduce very little attenuation at low frequencies, e.g., at about 10 kHz the 
loss is 2-3 dB/km. At higher frequencies, however, the losses increase and so 
does the signal dispersion. At 10 MHz, a twisted-pair cable has a typical loss 
value of 7 dB per 100 meters. 

At high-frequency carriers for broadband signals (TV transmission and 
high-data-rate digital transmission), coaxial cables are commonly used. At 1 
GHz, the loss of a typical high-quality coaxial cable is around 2 dB per 100 
meters (power decreases about 1.6 times). In the USA, the cable loss is rated 
in dB per 100 feet, so a good coaxial cable has about 0.6 dB/100ft loss. 

The least distortion and losses are offered by the optical-fiber transmission 
lines, which operate at three different wavelengths: 850 nm (≅ 2.3 dB/km), 
1300 nm (≅ 0.25 dB/km) and 1550 nm (≅ 0.25 dB/km). Optical fibers are 
relatively expensive and the respective transmitting/receiving equipment is 
also costly.  

Transmission lines provide a measure of security and noise-suppression 
(coaxial, optical-fiber), but they are not the best option in many cases (long-
haul transmission, wide spread over large areas). 

A fundamental feature of all transmission lines is the exponential increase 
of the lost (dissipated) power. Thus, if the loss is 5 dB/km, then a 20-km line 
will have 100 dB power loss (input power is reduced by a factor of 10-10), a 
40-km line will have a 200 dB power loss. This makes it obvious why 
wireless systems are preferred for long-range communications and in scarcely 
populated areas.  

In most wireless channels, the radiated power per unit area decreases as the 
inverse square of the distance r between the transmitting and the receiving 
point. Doubling the distance r would decrease the received power by a factor 
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of 4 (or 6 dB are added to the loss). Thus, if a particular system has a 100 dB 
loss at r = 20 km, doubling the distance will result in 106 dB loss (as 
compared to 200 dB loss in a cable system). The comparison between the 
coax-line losses and free-space attenuation at f=100 MHz  is given in the 
figure below. 

 

 
(Fig. 33 in Siwiak, Radiowave Propagation and Antennas for Personal Communications) 
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Modern personal mobile communications services 
 
• cordless telephony 
• cellular telephony 
• mobile voice and data (3G and 4G PCS) 
• computer network communications: WLANs and Bluetooth 
• Wi-Fi and WiMAX networks 
• personal satellite communications 
• global positioning and navigation systems 
• body-centric communication systems (bio-telemetry and bio-sensing) 
 
Besides, there is a variety of special application of wireless technology in  

• radar systems (navigation, collision, guidance, defense, missile, etc.) 
• remote-control vehicles (RCV), unmanned aerial vehicle (UAV, aka 

drones) 
• microwave relay links and repeaters 
• satellite systems (TV, telephony, military) 
• radio astronomy 
• biomedical engineering (imaging, hyperthermia) 
• RF identification (RFID) 
• animal (migration) tracking 
etc. 
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5.  The radio-frequency spectrum 
 
Table 1.1:  General designation of frequency bands 
Frequency band EM wavelength Designation Services 
3-30 kHz 
 
 
30-300 kHz 
 
300-3000 kHz 
 
 
3-30 MHz 
 
 
 
30-300 MHz 
 
 
300-3000 MHz 
 
 
3-30 GHz 
 
 
 
30-300 GHz 

100-10 km 
 
 
10-1 km 
 
1000-100 m 
 
 
100-10 m 
 
 
 
10-1 m 
 
 
100-10 cm 
 
 
10-1 cm 
 
 
 
10-1 mm 

Very Low Frequency 
(VLF) 
 
Low Frequency (LF) 
 
Medium Frequency 
(MF) 
 
High Frequency 
(HF) 
 
 
Very High Frequency 
(VHF) 
 
Ultrahigh Frequency 
(UHF) 
 
Super high Frequency 
(SHF) 
 
 
Extremely High 
Frequency (EHF) 

Navigation, sonar♣, submarine 
 
 
Radio beacons, navigation 
 
AM broadcast, maritime/ coast-
guard radio 
 
Telephone, telegraph, fax; amateur 
radio, ship-to-coast and ship-to-
aircraft communication 
 
TV, FM broadcast, air traffic 
control, police, taxicab mobile radio 
 
TV, satellite, radiosonde, radar, 
cellular (GSM, PCS) 
 
Airborne radar, microwave links, 
satellite, land mobile 
communication 
 
Radar, experimental 

 

Table 2.1:  Microwave-band designation 
Frequency Old New 
500-1000 MHz 
1-2 GHz 
2-3 GHz 
3-4 GHz 
4-6 GHz 
6-8 GHz 
8-10 GHz 
10-12.4 GHz 
12.4-18 GHz 
18-20 GHz 
20-26.5 GHz 
26.5-40 GHz 

VHF 
L 
S 
S 
C 
C 
X 
X 
Ku 
K 
K 
Ka 

C 
D 
E 
F 
G 
H 
I 
J 
J 
J 
K 
K 

 

                                                 
♣ Sonar (an acronym for Sound, Navigation and Ranging) is a system for underwater detection and location of objects by 
acoustical echo.  The first sonars, invented during World War I by British, American and French scientists, were used to 
locate submarines and icebergs.  Sonar is an American term dating from World War II. 
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LECTURE 2:  Introduction into the Theory of Radiation 
(Maxwell’s equations – revision. Power density and Poynting vector – revision. 
Radiated power – definition. Basic principle of radiation. Vector and scalar 
potentials – revision. Far fields and vector potentials.) 

 
1. Maxwell’s Equations – Revision 

(a) the law of induction (Faraday’s law): 

 
t

∂
−∇× = +

∂
BE M♣ (2.1) 

 

[ ]cc S

d d e
t t
∂ ∂Ψ

⋅ = − ⋅ ⇔ = −
∂ ∂∫ ∫∫E c B s



 

 E (V/m)  electric field (electric field intensity) 
 B (T=Wb/m2) magnetic flux density 
 M (V/m2)  magnetic current density♣ 
 Ψ  (Wb=V s⋅ ) magnetic flux 

 e  (V)   electromotive force 
 

(b) Ampere’s law, generalized by Maxwell to include the displacement 
current / t∂ ∂D : 

 
t

∂
∇× = +

∂
DH J  (2.2) 

 

[ ]cc S c

d d I d
t

∂ ⋅ = + ⋅ ⇔ = ⋅ ∂ ∫ ∫∫ ∫
DH c J s H c

 

 

 H (A/m) magnetic field (magnetic field intensity) 
 D (C/m2) electric flux density (electric displacement) 
 J (A/m2) electric current density 
 I (A)  electric current 

 

                                                 
♣ M is a fictitious quantity, which renders Maxwell’s equations symmetrical and which proves a useful mathematical tool when 

solving EM boundary value problems applying equivalence theorem. 

(2.1-i) 

(2.2-i) 
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(c) Gauss’ electric law: 
 ρ∇ ⋅ =D  (2.3) 
 

[ ]SS V

d dv Qρ⋅ = =∫∫ ∫∫∫D s


 

 ρ  (C/m3) electric charge density 
 Q  (C)  electric charge 
 

Equation (2.3) follows from equation (2.2) and the continuity relation: 

 
t
ρ∂

∇ ⋅ = −
∂

J . (2.4) 

 
Hint: Take the divergence of both sides of (2.2). 
 

(d) Gauss’ magnetic law: 
 mρ∇ ⋅ =B ♣♣ (2.5) 

The equation 0∇⋅ =B  follows from equation (2.1), provided that 0=M . 
Maxwell’s equations alone are insufficient to solve for the four vector 

quantities: E, D, H, and B (twelve scalar quantities). Two additional vector 
equations are needed. 

 
(e) Constitutive relationships 
The constitutive relationships describe the properties of matter with respect 

to electric and magnetic forces. 
 = ⋅D ε E  (2.6) 
 = ⋅B μ H . (2.7) 

In an anisotropic medium, the dielectric permittivity and the magnetic 
permeability are tensors. In vacuum, which is isotropic, the permittivity and the 
permeability are constants (or tensors whose diagonal elements only are non-
zero and are the same): 12

0 8.854187817 10ε −≈ ×  F/m, 7
0 4 10µ π −= ×  H/m. In 

an isotropic medium, D and E are collinear, and so are B and H. 
The dielectric properties relate to the electric field (electric force). 

Dielectric materials with relative permittivity rε  > 1 are built of 
                                                 
♣♣ mρ  is a fictitious quantity introduced via the continuity relation /m tρ∇ ⋅ = −∂ ∂M . As per experimental evidence, 0∇⋅ =B . 

(2.3-i) 
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atomic/molecular sub-domains, which have the properties of dipoles. In an 
external electric field, the dipoles tend to orient in such a way that their own 
fields have a cancellation effect on the external field. The electric force 

e Q=F E  exerted on a test point charge tQ  from a source sQ  in such medium is 
rε  times weaker than the electric force of the same source in vacuum. 

On the contrary, magnetic materials with relative permeability rµ  > 1 are 
made of sub-domains, which tend to orient in the external magnetic field in 
such a way that their own magnetic fields align with the external field. The 
magnetic force m tQ= ×F v B  exerted on a moving (with velocity v ) test point 
charge tQ  in such a medium is rµ  times stronger than the force that this same 
source (e.g. electric currents) would create in vacuum. 

We are mostly concerned with isotropic media, i.e., media where the 
equations 0 rµ µ=B H  and 0 rε ε=D E  hold. 
 

(f) Time-harmonic field analysis 
In harmonic analysis of EM fields, the field phasors are introduced: 

 
{ }
{ }

( , , , ) Re ( , , )

( , , , ) Re ( , , ) .

j t

j t

x y z t x y z e

x y z t x y z e

ω

ω

=

=

e E

h H
 (2.8) 

For example, the phasor of ( , , , ) ( , , )cos( )m Ee x y z t E x y z tω ϕ= +  is ( , , )E x y z =  
Ej

mE e ϕ . For clarity, from this point on, we will denote time-dependent field 
quantities with lower-case letters (bold for vectors), while their phasors will be 
denoted with upper-case letters. Complex-conjugate phasors will be denoted 
with an asterisk *. 

The frequency-domain Maxwell equations are obtained from the time-
dependent equations using the following correspondences: 

( , , , )

( , , , ) ( , , )

( , , )

, , , .

x y z t

f x y z t F x y z
f

j F x y z
t

f F x y z

ω

ξ
ξ ξ

∂
∂

∂ ∂
=

∂ ∂





 

 

Thus, Maxwell’s equations in phasor form are: 
 jωε∇× = +H Ε J , ( )' " /jε ε ε σ ω= − +  (2.9) 

 jωµ−∇× = +E H M , ' "jµ µ µ= − . (2.10) 
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These equations include the equivalent (fictitious) magnetic currents M. The 
imaginary part of the complex dielectric permittivity ε  describes loss. Often, 
the dielectric loss is represented by the dielectric loss angle dδ : 

 "' 1 ' 1 tan
' ' 'dj jε σ σε ε ε δ

ε ωε ωε
      = − + = − +            

. (2.11) 

Similarly, the magnetic loss is described by the imaginary part of the 
complex magnetic permeability µ  or by the magnetic loss angle mδ : 

 ( )"' " ' 1 ' 1 tan
' mj j jµµ µ µ µ µ δ

µ
 

= − = − = − 
 

. (2.12) 

In antenna theory, we are mostly concerned with isotropic, homogeneous and 
loss-free propagation media. 
 
2.  Power Density, Poynting Vector, Radiated Power 

2.1. Poynting vector – revision 
In the time-domain analysis, the Poynting vector is defined as 

 ( ) ( ) ( )t t t= ×p e h , W/m2. (2.13) 
As follows from Poynting’s theorem, p is a vector representing the density and 
the direction of the EM power flow. Thus, the total power leaving certain 
volume V is obtained as 

 
[ ]

( ) ( )
VS

t t dΠ = ⋅∫∫ p s


, W. (2.14) 

Since 

 { } ( )1( ) Re
2

j t j t j tt e e eω ω ω∗ −= = +e E E E , (2.15) 

and 

 { } ( )1( ) Re
2

j t j t j tt e e eω ω ω∗ −= = +h H H H , (2.16) 

the instantaneous power density appears as 

 { } { }21 1( ) Re Re
2 2

av

j tt e ω∗ ⋅= × + × ⋅

p

p E H E H


. (2.17) 

The first term in (2.17), avp , has no time dependence. It is the average 
value, about which the power flux density fluctuates. It is a vector of 
unchanging direction showing a constant outflow (positive value) or inflow 
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(negative value) of EM power. It describes the active (or time-average) power 
flow, 

 
[ ]S V

avav dΠ = ⋅∫∫ p s


. (2.18) 

The second term in (2.17) is a vector changing its direction with a double 
frequency 2ω . It describes power flow, which fluctuates in space (propagates 
to and fro) without contribution to the overall transport of energy. If there is no 
phase difference between E  and H , ( )tp  always maintains the same direction 
(the direction of the outgoing wave) although it changes in intensity. This is 
because the 2nd term in (2.17) never exceeds in magnitude the first term, i.e., 

avp . This indicates that the power moves away from the source at every instant 
of time, with the Poynting vector never directed toward the source.  

However, if E  and H  are out of phase ( 0H Eϕ ϕ ϕ∆ = − ≠ ), there are time 
periods during which the Poynting vector does reverse its direction toward the 
source and when doing so it achieves a maximum value of 0.5 Im{ }∗⋅ ×E H .  

In fact, the time-dependent Poynting vector can be decomposed into two 
parts: (i) a real-positive (active) part fluctuating with double frequency about 
the average value 0.5 Re{ }av

∗= ⋅ ×p E H , i.e., swinging between zero and 
cosm mE H ϕ∆ , and (ii) a double-frequency part of magnitude 0.5 Im{ }∗⋅ ×E H , 

which becomes negative every other quarter-period (reactive). You will prove 
and illustrate this in your next Assignment. 
 
Definition:  The complex Poynting vector is the vector 

 1
2

∗= ×P E H , (2.19) 

whose real part is equal to the average power flux density: Reav =p P . 
 

2.2. Radiated power 
Definition:  Radiated power is the average power radiated by the antenna: 

 { }
[ ] [ ] [ ]

1Re Re
2S S SV V V

avrad d d d∗Π = ⋅ ⋅ × ⋅∫∫ ∫∫ ∫∫= =p s P s E H s
  

. (2.20) 
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3.  Basic Principle of Radiation 
 
 
 
 
3.1. Current element 

Definition: A current element ( I l∆ ), A m× , is a filament of length l∆  carrying 
current I. It is sufficiently small to imply constant magnitude of the current 
along l∆ . 

The time-varying current element is the elementary source of EM radiation. 
It has fundamental significance in radiation theory similar to the fundamental 
concept of a point charge in electrostatics. The field radiated by a complex 
antenna in a linear medium can be analyzed using the superposition principle 
after decomposing the antenna into elementary sources, i.e., current elements. 

The time-dependent current density vector j depends on the charge density ρ 
and its velocity v as 

 2, A / mρ= ⋅j v . (2.21) 
If the current flows along a wire of cross-section S∆ , then the product 

l Sρ ρ= ⋅∆  [C/m] is the charge per unit length (charge line density) along the 
wire. Thus, for the current i = ⋅∆j S  it follows that 

 li v ρ= ⋅ , A. (2.22) 
Then 

 l l
di dv a
dt dt

ρ ρ= = ⋅ , A/s, (2.23) 

where a (m/s2) is the acceleration of the charge. The time-derivative of a 
current element i l∆  is then proportional to the amount of charge q enclosed in 
the volume of the current element and to its acceleration: 

 ,  A m/slldi a
dt

al qρ= ∆ ⋅ ⋅ ×⋅=∆ . (2.24) 

3.2. Mathematical description of the accelerated charge as a radiation source 
It is not immediately obvious from Maxwell’s equations that the time-

varying current is the source of radiation. A simple transformation of the time-
dependent Maxwell equations, 

Radiation is produced by accelerated or decelerated charge 
(time-varying current element). 
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,

t

t

µ

ε

∂
−∇× =

∂
∂

∇× = +
∂

he

eh j




 (2.25) 

into a single second-order equation either for E or for the H field proves this 
statement. By taking the curl of both sides of the first equation in (2.25) and by 
making use of the second equation in (2.25), we obtain 

 
2

2 tt
µε µ∂ ∂

∇×∇× + = −
∂∂

e je . (2.26) 

From (2.26), it is obvious that the time derivative of the electric current is the 
source for the wave-like vector e. Time-constant currents do not radiate. 

In an analogous way, one can obtain the wave equation for the magnetic 
field H and its sources: 

 
2

2t
µε ∂∇×∇× + =∇×

∂
hh j . (2.27) 

Notice that, as follows from (2.27) and (2.25), curl-free currents (e.g., ψ= ∇j ) 
do not radiate either. 

To accelerate/decelerate the charges, one needs sources of electromotive 
force and/or discontinuities of the medium in which the charges move. Such 
discontinuities can be bends or open ends of wires, change in the electrical 
properties of the region, etc. In summary: 

• If charge is not moving, current is zero ⇒ no radiation. 
• If charge is moving with a uniform velocity (DC) ⇒ no radiation. 
• If charge is accelerated due to electromotive force or due to 

discontinuities, such as terminations, bends, curvatures ⇒ radiation 
occurs. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 

 
3.1. Intuitive representation of radiation from simple sources 

 
(a) Illustration of the E-field lines in a transmission (feed) line and at the 

antenna aperture [Balanis, 3rd ed.] 
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(b) Snapshots of the E-field lines around a dipole 

 
 

 
[http://physics.usask.ca/~hirose/ep225/anim.htm ] 

[http://www.falstad.com/emwave2/fullscreen.html] 
 

(c) animation of the E-field lines of a small dipole antenna 
 
 

0t = / 8t T=

/ 4t T= 3 / 8t T=

http://physics.usask.ca/%7Ehirose/ep225/anim.htm
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4. Radiation Boundary Condition 
With few exceptions, antennas are assumed to radiate in open (unbounded) 

space. This is a crucial factor determining the field behavior. Often, the EM 
sources (currents and charges on the antenna) are more or less accurately 
known. These sources are then assumed to radiate in unbounded space and the 
resulting EM field is determined as integrals over the currents on the antenna. 
Such problems, where the field sources are known and the resulting field is to 
be determined are called analysis (forward, direct) problems.1 To ensure the 
uniqueness of the solution in an unbounded analysis problem, we have to 
impose the radiation boundary condition (RBC) on the EM field vectors, i.e., 
for distances far away from the source (r →∞ ), 

 
ˆ( ) 0,

1 ˆ( ) 0 .

r

r

η

η

− × →

− × →

E H r

H r E 
 (2.28) 

The above RBC is known as the Sommerfeld vector RBC or the Silver-Müller 
RBC. Here, η is the intrinsic impedance of the medium; 0 0/ 377 η µ ε= ≈ Ω  
in vacuum. 

The specifics of the antenna problems lead to the introduction of auxiliary 
vector potential functions, which allow simpler and more compact solutions. 

It is customary to perform the EM analysis for the case of time-harmonic 
fields, i.e., in terms of phasors. This course adheres to this tradition. Therefore, 
from now on, all field quantities (vectors and scalars) are to be understood as 
complex phasor quantities, the absolute values of which correspond to the 
magnitudes (not the RMS value!) of the respective sine waves. 
 
 
5. Vector and Scalar Potentials – Review 

In radiation theory, the potential functions are almost exclusively in the form 
of retarded potentials, i.e., the magnetic vector potential A and its scalar 
counterpart Φ  form a 4-potential in space-time and they are related through the 
Lorenz gauge. We next introduce the retarded potentials. 

5.1. The magnetic vector potential A 
We first consider only electric sources (J and ρ , jωρ∇⋅ = −J ). 

                                                 
1 The inverse (or design) problem is the problem of finding the sources of a known field. 
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,

.
j

j
ωµ
ωε

∇× = −
∇× = +

E H
H E J

 (2.29) 

Since 0∇⋅ =B , we can assume that 
 =∇×B A . (2.30) 

Substituting (2.30) in (2.29) yields 

 
,

1 .

j

j

ω

ωε
µ

= − −∇Φ

 = ∇× ∇× − 
 

E A

E A J
 (2.31) 

From (2.31), a single equation can be written for A: 
 ( )j jωµε ω µ∇×∇× + +∇Φ =A A J . (2.32) 

Here, Φ  denotes the electric scalar potential, which plays an essential role in 
the analysis of electrostatic fields. To uniquely define A, we need to define not 
only its curl, but also its divergence. There are no restrictions in defining ∇⋅A . 
Since 2∇×∇× = ∇∇ ⋅−∇ , equation (2.32) can be simplified by assuming that 

 jωµε∇ ⋅ = − ΦA . (2.33) 
Equation (2.33) is known as the Lorenz gauge. It reduces (2.32) to 

 2 2ω µε µ∇ + = −A A J . (2.34) 
If the region is lossless, then µ  and ε  are real numbers, and (2.34) can be 
written as 

 2 2β µ∇ + = −A A J , (2.35) 
where β ω µε=  is the phase constant of the medium. If the region is lossy, 
the complex permittivity ε  and the complex permeability µ  are introduced. 
Then, (2.34) becomes 

 2 2γ µ∇ − = −A A J . (2.36) 
Here, j jγ α β ω µε= + =  is the propagation constant and α  is the 
attenuation constant.  
5.2. The electric vector potential F 

The magnetic field is a solenoidal field, i.e., 0∇⋅ =B , because there are no 
physically existing magnetic charges. Therefore, there are no physically 
existing magnetic currents either. However, the fictitious (equivalent) magnetic 
currents (density is denoted as M) are a useful tool for antenna analysis when 
applied with the equivalence principle. These currents are introduced in 
Maxwell’s equations in a manner dual to that of the electric currents J. Now, 
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we consider the field due to magnetic sources only, i.e., we set 0=J  and 
0ρ = , and therefore, 0∇⋅ =D . Then, the system of Maxwell’s equations is 

 
,

.
j

j
ωµ
ωε

∇× = − −
∇× =

E H M
H E

 (2.37) 

Since D is solenoidal (i.e. 0∇⋅ =D ), it can be expressed as the curl of a 
vector, namely the electric vector potential F: 

 = −∇×D F . (2.38) 
Equation (2.38) is substituted into (2.37). All mathematical transformations are 
analogous to those made in Section 5.1. Finally, it is shown that a field due to 
magnetic sources is described by the vector F alone, where F satisfies 

 2 2ω µε ε∇ + = −F F M  (2.39) 
provided that the Lorenz gauge is imposed as 

 jωµε∇ ⋅ = − ΨF . (2.40) 
Here, Ψ  is the magnetic scalar potential. 

In a linear medium, a field due to both types of sources (magnetic and 
electric) can be found by superimposing the partial field due to the electric 
sources only and the one due to the magnetic sources only. 

 
TABLE 2.1: FIELD VECTORS IN TERMS OF VECTOR POTENTIALS 
Magnetic vector-potential A 
(electric sources only) 

Electric vector-potential F 
(magnetic sources only) 

= ∇×B A , 1
µ

= ∇×H A  

jjω
ωµε

= − − ∇∇⋅E A A  or 

1
j jωµε ωε

= ∇×∇× −
JE A  

= −∇×D F , 1
ε

= − ∇×E F  

jjω
ωµε

= − − ∇∇⋅H F F  or 

1
j jωµε ωµ

= ∇×∇× −
MH F  

 
 
6.  Retarded Potentials – Review  

Retarded potential is a term usually used to denote the solution of the 
inhomogeneous Helmholtz’ equation (in the frequency domain) or that of the 
inhomogeneous wave equation (in the time domain) in an unbounded region. 

Consider the z-directed electric current density ˆ zJ=J z . According to 
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(2.35), the magnetic vector potential A is also z-directed and is governed by the 
following equation in a lossless medium: 

 2 2
z z zA A Jβ µ∇ + = − . (2.41) 

Eq. (2.41) is a Helmholtz equation and its solution in open space is determined 
by the integral 

 [ ]( ) ( , ) ( )
Q

z z Q
V

A P G P Q J Q dvµ= ⋅ −∫∫∫  (2.42) 

where ( , )G P Q  is the open-space Green’s function of the Helmholtz equation 
(see the Appendix), P is the observation point, and Q is the source point. 
Substituting (2.80) from the Appendix into (2.42) gives 

 ( ) ( )
4

PQ

Q

j R

z z Q
PQV

eA P J Q dv
R

β

µ
π

− 
= ⋅  

 
∫∫∫  (2.43) 

where PQR  is the distance between P and Q. 
 

Q

P

0

x

y

z
PQR

r
′r

 
 
To further generalize the above formula, one assumes the existence of 

source currents of arbitrary directions, which would produce partial magnetic 
vector potentials in any direction. Note that a current element in the ξ̂  direction 
results in a vector potential ˆAξ=A ξ  in the same direction (unless the medium 
is inhomogeneous and/or anisotropic). Thus, 

 ( ) ( )
4

PQ

Q

j R

Q
PQV

eP Q dv
R

β

µ
π

− 
=   

 
∫∫∫A J . (2.44) 

The solution for the electric vector potential due to magnetic current sources 
( )QM  is analogous: 
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 ( ) ( )
4

PQ

Q

j R

Q
PQV

eP Q dv
R

β

ε
π

− 
=   

 
∫∫∫F M . (2.45) 

Finally, we recall that not only volume sources are used to model current 
distributions. A useful approximation, especially for currents on a conductor 
surface, is the surface current density (or simply surface current): 

 
/2

/2

0( , ) lim ( , , )s x y x y z dz
δ

δ

δ
−

→= ∫J J , A/m. (2.46) 

The magnetic vector potential A produced by distributed surface currents is 
then expressed as 

 ( ) ( )
4

PQ

Q

j R

s Q
PQS

eP Q ds
R

β
µ

π

− 
=  

 
∫∫A J . (2.47) 

Currents on a very thin wire are usually approximated by a linear source, 
which is the current I flowing through the wire: 

 0
0

( ) ( ) ( ) lim ( , , )x
y

x y

lz I z z x y z dxdy
δ δ

δ
δ

→
→

= = ∫∫I a J , A. (2.48) 

The vector potential of line currents is 

 ( ) ( )
4

PQ

Q

j R

Q
PQL

eP I Q d
R

β

µ
π

− 
=   

 
∫A l . (2.49) 

 
 
 
 
 
 

z
y

x
δ

(a) surface current on a sheet 

y

x
z

xδ

yδ

 
(b) linear current on a thin wire 
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7. Far Fields and Vector Potentials 
7.1. Potentials 
Antennas are sources of finite physical dimensions. The further away from 

the antenna the observation point is, the more the wave looks like a spherical 
wave and the more the antenna looks like a point source regardless of its actual 
shape. For such observation distances, we talk about far field and far zone. The 
exact meaning of these terms will be discussed later. For now, we will simply 
accept that the vector potentials behave like spherical waves, when the 
observation point is far from the source: 

 


dependence on observation angles only dependence on distance only

ˆˆ ˆ( , ) ( , ) ( , ) ,
jkr

r
eA A A r

rθ ϕθ ϕ θ ϕ θ ϕ
−

 ≈ + + ⋅ →∞ A r θ φ


. (2.50) 

Here, ˆˆ ˆ( , , )r θ φ  are the unit vectors of the spherical coordinate system (SCS) 
centered on the antenna and k ω µε=  is the wave number (or the phase 
constant). The term jkre−  shows propagation along r̂  away from the antenna at 
the speed of light. The term 1/ r  shows the spherical spread of the potential in 
space, which results in a decrease of its magnitude with distance. 

Notice an important feature of the far-field potential: the dependence on the 
distance r is separable from the dependence on the observation angle ( , )θ ϕ , 
and it is the same for any antenna: /jkre r− . 

Formula (2.50) is a far-field approximation of the vector potential at distant 
points. We arrive at it starting from the integral in (2.44). When the observation 
point P is very far from the source, the distance PQR  varies only slightly as Q 
sweeps the volume of the source. It is almost the same as the distance r from 
the origin (the antenna center) to P. The following first-order approximation 
(attributed to Kirchhoff) is made for the integrand: 

 
ˆ( )PQjkR jk r

PQ

e e
R r

− ′− − ⋅
≈

r r
. (2.51) 

Here, r is the position vector of the observation point P and | |r = r  is its length. 
Its direction is given by the unit vector r̂ , so that ˆ r= ⋅r r . The position vector of 
the integration point Q is ′r . Equation (2.51) is called the far-field 
approximation. 

The approximation in the phase term (in the exponent) is illustrated in the 
figures below. The first figure shows the real problem. The second one shows 
the approximated problem, where, in effect, the vectors PQR  and r are parallel. 
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r

PQR

z

x

y0

Q
θ'θ

ϕ

′r

ϕ′

 
(a) original problem  

 
 
 

′r

z

x

y0

Q
θ

ϕ
ϕ′

ˆ ′⋅r r
'θ

( , , )P r θ ϕ

r

PQR

 

(b) far-field approximation of the original problem 
 
 

P
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We now apply the far-field approximation to the vector potential in (2.44): 

 


ˆ

dependence on distance
dependence on source distributionfrom origin
and angular orientation

( ) ( )
4

Q

jkr
jk

Q
v

eP Q e dv
r

µ
π

−
′⋅= ⋅ ∫∫∫ r rA J



. (2.52) 

The integrand in (2.52) no longer depends on the distance r between the origin 
and the observation point. It depends only on the current distribution of the 
source and the angle between the position vector of the integration point ′r  and 
the unit position vector of the observation point r̂ . This finally explains the 
general equation for the far-field vector potential in (2.50) and in particular the 
origin of the term in the square brackets, which is represented by the volume 
integral in (2.52). 

 
7.2. Far-zone field 

The far-field approximation of the vector potential leads to much simpler 
equations for the far-field vectors. Assume that there are only electrical 
currents. Then the field is fully described only by the magnetic vector potential 
A. We have to substitute (2.50) into the equations of Table 2.1, where 0=F : 

 ,jjω
ωµε

= − − ∇∇⋅E A A  (2.53) 

 1 .
µ

= ∇×H A  (2.54) 

The differential operators ∇×  and ∇∇ ⋅  have to be expressed in spherical 
coordinates. All terms decreasing with the distance as 21/ r  and faster are 
neglected. What remains is 

 { } { }2

1 1ˆ ˆ( , ) ( , ) ,jkrj e A A r
r rθ ϕω θ ϕ θ ϕ−  = − + + + →∞ E θ φ  , (2.55) 

 { }2

1 1ˆ ˆ( , ) ( , ) ,jkrj e A A r
r rϕ θ

ω θ ϕ θ ϕ
η

−  = − + + →∞   
H θ φ  . (2.56) 

Here, /η µ ε=  denotes the intrinsic impedance of the medium. We write the 
far-field equations (2.55) and (2.56) in a more compact way as 

 
0

,  where  0
r

A A
r

E
E j A j E
E j A
θ θ

ϕ ϕ

ω ω
ω

≈ 
≈ − ⇒ ≈ − ≈
≈ − 

E A , (2.57) 
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0
1ˆ ˆ

r

A A

H
E

H j A j

EH j A

ϕ
θ ϕ

θ
ϕ θ

ω ω
η η η η
ω
η η


≈ 
≈ + = − ⇒ ≈ − × = ×



≈ − = + 


H r A r E . (2.58) 

In an analogous manner, we obtain the relations between the field vectors 
and the electric vector potential F, when only magnetic sources are present: 

 
0

, 0
r

F F
r

H
H j F j H
H j F

θ θ

ϕ ϕ

ω ω
ω

≈ 
≈ − ⇒ ≈ − ≈
≈ − 

H F , (2.59) 

 

 
0

ˆ ˆ
r

F F

E
E j F H j
E j F H
θ ϕ ϕ

ϕ θ θ

ωη η ωη η
ωη η

≈
≈ − = ⇒ ≈ × = − ×
≈ + = − 

E r F r Η . (2.60) 

In summary, the far field of any antenna has the following important 
features, which follow from equations (2.57) through (2.60): 
• The far field has negligible radial components, 0rE ≈  and 0rH ≈ . Since 

the radial direction is also the direction of propagation, the far field is a 
typical TEM (Transverse Electro-Magnetic) wave. 

• The far-field E vector and H vector are mutually orthogonal, both of them 
being also orthogonal to the direction of propagation. 

• The magnitudes of the electric field and the magnetic field are related 
always as | | | |η=E H . 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

Nikolova 2018 19 

APPENDIX 
Green’s Function for the Helmholtz Equation 

Suppose the following PDE must be solved: 
 ( ) ( )L fΦ =x x  (2.61) 

where x denotes the set of variables, e.g., ( , , )x y z=x . Suppose also that a Green’s function exists such 
that it allows for the integral solution 

 ( ) ( , ) ( )
V

G f dv
′

′ ′ ′Φ = ⋅∫∫∫x x x x . (2.62) 

Applying the operator L to both sides of (2.62), leads to 
 [ ]( ) ( , ) ( ) ( )

V

L LG f dv f
′

′ ′ ′Φ = ⋅ =∫∫∫x x x x x . (2.63) 

Note that L operates on the variable x while the integral in (2.63) is over ′x . This allows for the insertion 
of L inside the integral. From (2.63), we conclude that the Green’s function must satisfy the same PDE as 
Φ with a point source described by Dirac’s delta function: 

 ( , ) ( )LG δ′ ′= −x x x x . (2.64) 
Here, ( )δ ′−x x  is Dirac’s delta function in 3-D space, e.g., ( ) ( ) ( ) ( )x x y y z zδ δ δ δ′ ′ ′ ′− = − − −x x . If the 
Green’s function of a problem is known and the source function ( )f x  is known, the construction of an 
integral solution is possible via (2.62). 

Consider the Green’s function for the Helmholtz equation in open space. It must satisfy 
 2 2 ( ) ( ) ( )G G x y zβ δ δ δ∇ + =  (2.65) 

together with the scalar radiation condition 

 lim 0
r

Gr j G
r

β
→∞

∂ ⋅ + = ∂ 
 (2.66) 

if the source is centered at the origin of the coordinate system, i.e., 0x y z′ ′ ′= = = . Integrate (2.65) within 
a sphere with its center at (0,0,0) and a radius R: 
 

 

 2 2 1
V V

Gdv Gdvβ∇ + =∫∫∫ ∫∫∫  (2.67) 

 

 
The function G is due to a point source and thus has a spherical symmetry, i.e., it depends on r only. 

The Laplacian 2∇  in spherical coordinates is reduced to derivatives with respect to r only: 

 
2

2
2

2 ( ) ( ) ( )d G dG G x y z
r drdr

β δ δ δ+ + = . (2.68) 

Everywhere except at the point ( , , )x y z , G must satisfy the homogeneous equation 

 
2

2
2

2 0d G dG G
r drdr

β+ + =  (2.69) 

whose solution for outgoing waves is well known: 

 ( )
jkreG r C

r

−

= . (2.70) 

Here, C is a constant to be determined. Consider first the integral from (2.67): 
 2

1
V

I Gdvβ= ∫∫∫ . (2.71) 

R V 
[S] 
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2

0 0 0

2 2 2
1 sin

Rj r j r

v

e eI C dv C r d d dr
r r

π πβ β

β β θ θ ϕ
− −

⇒ = =∫∫∫ ∫ ∫ ∫  (2.72) 

 1
1( ) 4

j R
j R eI R j C R e

j j

β
βπβ

β β

−
− 

⇒ = ⋅ + − 
 

. (2.73) 

To evaluate the integral in the point of singularity (0,0,0), we let 0R → , i.e., we let the sphere collapse 
into a point. We see that 

 0 1lim ( ) 0R I R→ = . (2.74) 
Secondly, consider the other integral in (2.67), 
 ( )2

2
V V S

I Gdv G dv G d= ∇ = ∇⋅ ∇ = ∇ ⋅∫∫∫ ∫∫∫ ∫∫ s


. (2.75) 

Here, 2 ˆsind R drd dθ θ ϕ= ⋅s r  is a surface element on S, and 

 2ˆ ˆ
jkr jkrG e eG C jk

r r r

− − ∂
∇ = = − + ∂  

r r . (2.76) 

Substitute (2.76) in (2.75) and carry out the integration over the spherical surface: 

 ( )
2

0 0

2( ) sinjkR jkRI R C jkR e e d d
π π

θ ϕ θ− −= − ⋅ + ∫ ∫  (2.77) 

 0 2lim ( ) 4R I R Cπ→ = − . (2.78) 
Substituting (2.78) and (2.74) into (2.67) and taking 0limR→ , yields 

 1
4

C
π

= − . (2.79) 

Finally, 

 ( )
4

jkreG r
rπ

−

= − . (2.80) 

It is not difficult to show that in the general case when the source is at a point ( , , )Q x y z′ ′ ′ , 

 2 2 ( ) ( ) ( )G G x x y y z zβ δ δ δ′ ′ ′∇ + = − − −  (2.81) 
the Green function is 

 ( , )
4

PQjkR

PQ

eG P Q
Rπ

−

= − , (2.82) 

where PQR  is the distance between the observation point P and the source point Q, 

 2 2 2( ) ( ) ( )PQR x x y y z z′ ′ ′= − + − + − . (2.83) 
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LECTURE 3:  Radiation from Infinitesimal (Elementary) Sources 
(Radiation from an infinitesimal dipole. Duality of Maxwell’s equations. 
Radiation from an infinitesimal loop. Radiation zones.) 
 
1. Radiation from Infinitesimal Dipole (Electric-current Element) 
 
Definition: The infinitesimal dipole is a straight line segment of length l∆ , 
which is much smaller than the wavelength λ of the excited wave, i.e. l λ∆   
(Δl < / 50λ ), and which supports constant current distribution I along its 
length. The assumed positive direction of the current I determines the 
orientation of the line segment: ˆl∆ = ∆l i . 

The infinitesimal dipole is mathematically described by a current element: 
dQId d
dt

= −l l . 

A current element is best illustrated by a very short 
(compared to λ) piece of infinitesimally thin wire with 
constant current I. The ideal current element is difficult to 
realize in practice, but a good approximation of it is the 
short top-hat antenna. To realize a uniform current 
distribution along the wire, capacitive plates are used to 
provide enough charge storage at the end of the wire, so 
that the current is not zero there. 
 
1.1. Magnetic vector potential due to a current element 

The magnetic vector potential (VP) A due to a linear 
source is (see Lecture 2): 

 ( ) ( )
4

PQ

L

j R

Q
PQ

eP I Q d
R

β
µ

π

−
= ∫A l  (3.1) 

 

 0ˆ( )
4

PQj R

PQl

I eP dl
R

βµ
π

−

∆

⇒ = ∫A z . (3.2) 

 
If we assume that the dipole’s length l∆  is much smaller than the distance from 
its center to the observation point P, then PQR r≈  holds both in the exponential 
term and in the denominator. Therefore, 

dl

Q+

Q−

≡ Idl

z

I

I

/2l∆

/2l∆

z
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 0 ˆ
4

j reI l
r

β
µ

π

−
= ∆A z . (3.3) 

Equation (3.3) gives the vector potential due to an electric current element 
(infinitesimal dipole). This is an important result because the field radiated by 
any complex antenna in a linear medium is a superposition of the fields due 
to the current elements on the antenna surface. 

We represent A with its spherical components. In antenna theory, the 
preferred coordinate system is the spherical one. This is because the far field 
radiation is of interest where the field dependence on the distance r from the 
source is decoupled from its angular dependence. This angular dependence is 
described conveniently in terms of the two angles in the spherical coordinate 
system (SCS) ϕ  and θ . Also, this field propagates radially (along r̂ ) when the 
source is located at the origin of the coordinate system.  

The transformation from rectangular to spherical coordinates is given by 

 
sin cos sin sin cos
cos cos cos sin sin

sin cos 0

r x

y

z

A A
A A
A A
θ

ϕ

θ ϕ θ ϕ θ
θ ϕ θ ϕ θ

ϕ ϕ

     
     = −     
   −       

. (3.4) 

Applying (3.4) to A in (3.3) produces 

0

0

cos cos
4

sin sin
4

0

j r
r z

j r
z

eA A I l
r

eA A I l
r

A

β

β

θ

ϕ

θ µ θ
π

θ µ θ
π

−

−

= = ∆

= − = − ∆

=

 (3.5) 

x

y

z

r

ϕ

θ

rA

Aθ

Aϕ
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Note that: 
1) A does not depend on ϕ  (due to the cylindrical symmetry of the dipole); 
2) the dependence on r, /j re rβ− , is separable from the dependence on θ . 
 

1.2. Field vectors due to current element 
Next we find the field vectors H and E from A. 

a) 1
µ

= ∇×H A               (3.6) 

The curl operator is expressed in spherical coordinates to obtain 

 ( )1 ˆrAr A
r r θµ θ

∂ ∂ = ⋅ − ∂ ∂ 
H φ . (3.7) 

Thus, the magnetic field H has only a ϕ -component, i.e., 
1( ) sin 1 ,

4
0 .

j r

r

eH j I l
j r r

H H

β

ϕ

θ

β θ
β π

− 
= ⋅ ∆ ⋅ ⋅ + 

 
= =

 (3.8) 

 

b) 1 jj
j

ω
ωε ωµε

= ∇× = − − ∇∇ ⋅E H Α A           (3.9) 

In spherical coordinates, the E field components are: 

 

( )

( )

2

2

1 12 cos
( ) 4

1 1sin 1
( ) 4

0 .

j r
r

j r

eE j I l
j r r r

eE j I l
j r r r

E

β

β

θ

ϕ

ηβ θ
β β π

ηβ θ
β β π

−

−

 
= ∆ ⋅ ⋅ −  

 
= ∆ ⋅ ⋅ + −  
=

 (3.10) 

 
Notes: 1) Equations (3.8) and (3.10) show that the EM field generated by the 

current element is quite complicated unlike the VP A. The use of the 
VP instead of the field vectors is often advantageous in antenna studies. 
2) The field vectors contain terms, which depend on the distance from 
the source as 1/r, 1/r2 and 1/r3; the higher-order terms can be neglected 
at large distances from the dipole. 
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3) The longitudinal r̂ -component of the E field vector decreases fast as 
the field propagates away from the source (as 1/r2 and 1/r3): it is 
neglected in the far zone. The longitudinal H field component of the 
infinitesimal electric dipole is zero everywhere. 
4) The nonzero transverse field components, Eθ  and Hϕ , are 
orthogonal to each other, and they have terms that depend on the 
distance as 1/r. These terms relate through the intrinsic impedance η  
and they describe a TEM wave. They represent the so-called far field 
which satisfies the Sommerfeld vector radiation boundary conditions. 
The concept of far field will be re-visited later, when the radiation 
zones are defined. 

 
1.3. Power density and overall radiated power of the infinitesimal dipole 

The complex vector of Poynting P describes the complex power density 
flux. In the case of infinitesimal dipole, it is 

 ( ) ( ) ( ) ( )* * * *1 1 1ˆ ˆˆ ˆ ˆ
2 2 2r rE E H E H E Hθ ϕ θ ϕ ϕ= × = + × = −P E H r θ φ r θ . (3.11) 

Substituting (3.8) and (3.10) into (3.11) yields 

( )

( )

2 2

32

2

22 3

sin 11 ,
8

cos sin 11 .
16

r
I lP j

r r

I l
P j

r r
θ

η θ
λ β

θ θ
ηβ

π β

 ∆
= − 

  
 ∆

= + 
  

 (3.12) 

The overall power Π  is calculated over a sphere, and, therefore, only the radial 
component Pr contributes: 
 ( ) 2ˆˆ ˆ sinr

S S

d P P r d dθ θ θ ϕΠ = ⋅ = + ⋅∫∫ ∫∫P s r θ r
 

, (3.13) 

( )

2

31
3

I l j
r

π η
λ β

 ∆
Π = − 

  
, W. (3.14) 

The radiated power is equal to the real part of the complex power (the time-
average of the total power flow, see Lecture 2). Therefore, the radiated power 
of an infinitesimal electric dipole is 
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2

3rad
I lπ η
λ
∆ Π =  

 
, W. (3.15) 

Here, we introduce the concept of radiation resistance rR , which describes 
the power loss due to radiation in the equivalent circuit of the antenna: 

 2
2

1 2
2 r rR I R

I
Π

Π = ⇒ =  (3.16) 

 
22

3
id
r

lR π η
λ
∆ ⇒ =  

 
, Ω . (3.17) 

Note that (3.17) holds only for an infinitesimal dipole, i.e., when the current is 
assumed constant over the length l∆  of the dipole. 
 
2. Duality in Maxwell’s Equations 

Duality in electromagnetics means that the EM field is described by two sets 
of quantities, which correspond to each other in such a manner that substituting 
the quantities from one set with the respective quantities from the other set in 
any given equation produces a valid equation (the dual of the given one). 

We deduce these dual sets by comparing the equations describing two dual 
fields: the field of electric sources and the field of magnetic sources. Note that 
duality exists even if there are no sources present in the region of interest. 
Tables 2.1 and 2.2 summarize the duality of the EM equations and quantities. 
 

TABLE 2.1.  DUALITY IN ELECTROMAGNETIC EQUATIONS 
Electric sources ( )0, 0≠ =J M  Magnetic sources( )0, 0= ≠J M  

jωµ∇× = −E H  
jωε∇× = +H E J  
ρ∇ ⋅ =D  
0∇ ⋅ =B  

jωρ∇ ⋅ = −J  
2 2β µ∇ + = −A A J  

4V

j R
dv

e
R

β
µ

π

−
= ∫∫∫A J  

1µ−= ∇×H A  
1( )j jω ωµε −= − + ∇∇ ⋅E A A  

jωε∇× =H E  
jωµ∇× = − −E H M  

mρ∇ ⋅ =B  
0∇ ⋅ =D  

mjωρ∇ ⋅ = −M  
2 2β ε∇ + = −F F M  

4V

j R
dv

e
R

β
ε

π

−
= ∫∫∫F M  

1ε −= − ∇×E F  
1( )j jω ωµε −= − + ∇∇ ⋅H F F  
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TABLE 2.2.  DUAL QUANTITIES IN ELECTROMAGNETICS 
given E H J M A F ε  µ  η  1 /η  β  
dual H −E M −J F −A µ  ε  1 /η  η  β  
 
 
3. Radiation from Infinitesimal Magnetic Dipole (Electric-current Loop) 

3.1. The vector potential and the field vectors of a magnetic dipole (magnetic 
current element) mI l∆  

Using the duality theorem, the field of a magnetic dipole mI l∆  is readily 
found by a simple substitution of the dual quantities in equations (3.5), (3.8) 
and (3.10) according to Table 2.2. We denote the magnetic current, which is the 
dual of the electric current I, by Im (measured in volts). 

(a) the electric vector potential 

 

( )

( )

0

0

cos cos
4

sin sin
4

0

j r
r z m

j r
z m

eF F I l
r

eF F I l
r

F

β

β

θ

ϕ

θ ε θ
π

θ ε θ
π

−

−

= = ∆

= − = − ∆

=

 (3.18) 

(b) the electric field of the magnetic dipole 

 
1( ) sin 1

4
0

j r
m

r

eE j I l
j r r

E E

β

ϕ

θ

β θ
β π

− 
= − ⋅ ∆ ⋅ ⋅ + 

 
= =

 (3.19) 

(c) the magnetic field of the magnetic dipole 

 

( )

( )

2

2 2

2 cos 1 1
4

sin 1 11
4

0

j rm
r

j rm

I l eH
r j r r

j I l eH
j r r r

H

β

β

θ

ϕ

θ
η β π

β θ
η β β π

−

−

∆  
= + 

 
∆  

= + − 
 

=

 (3.20) 
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3.2. Equivalence between a magnetic dipole (magnetic current element) and an 
electric current loop 

First, we prove the equivalence of the fields excited by particular 
configurations of electric and magnetic current densities. We write Maxwell’s 
equations for the two cases: 
(a) electric current density 

 1 1

1 1

j
j
ωµ
ωε

−∇× =
∇× = +

E H
H E J

 (3.21) 

 2
1 1 jω µε ωµ⇒∇×∇× − = −E E J  (3.22) 

 
(b) magnetic current density 

 2 2

2 2

j
j
ωµ
ωε

−∇× = +
∇× =

E H M
H E

 (3.23) 

 2
2 2ω µε⇒∇×∇× − = −∇×E E M  (3.24) 

 
If the boundary conditions (BCs) for 1E  in (3.22) are the same as the BCs for 

2E  in (3.24), and the excitations of both fields fulfill 
jωµ = ∇×J M ,      (3.25) 

then both fields are identical, i.e., 1 2≡E E  and 1 2≡H H . 
Consider a loop [L] of electric current I. Equation (3.25) can be written in its 

integral form as 

[ ]CS C

j d dωµ ⋅ = ⋅∫∫ ∫J s M l


.     (3.26) 

[ ]C
[ ]CS

mI

mQ

mQ−

+

+

+

0mI =

l∆

lI vρ= ⋅

[ ]L
[ ]LA
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The integral on the left side is the electric current I. M is assumed non-zero and 
constant only at the section l∆ , which is normal to the loop’s plane and passes 
through the loop’s centre. Then, 

j I M lωµ = ∆ .      (3.27) 
The magnetic current mI  corresponding to the loop [L] is obtained by 
multiplying the magnetic current density M by the area of the loop [ ]LA , which 
yields 

[ ]L mj IA I lωµ = ∆ .      (3.28) 
Thus, we show that a small loop of electric current I and of area A[L] creates 
EM field equivalent to that of a small magnetic dipole (magnetic current 
element) mI l∆ , such that (3.28) holds. 

Here, it was assumed that the electric current is constant along the loop, 
which is true only for very small loops ( 0.1a λ< , where a  is the loop’s radius 
and the loop has only 1 turn). If the loop is larger, the field expressions below 
are inaccurate and other solutions should be used. We will discuss the loop 
antennas in more detail in a dedicated lecture. 
 
3.3. Field vectors of an infinitesimal loop antenna 

The expressions below are derived by substituting (3.28) into (3.19)-(3.20): 

 2 1( ) sin 1
4

j reE IA
j r r

β

ϕ ηβ θ
β π

− 
= ⋅ + 

 
, (3.29) 

 
2

1 12 ( ) cos
4

j r
r

eH j IA
r j r r

β
β θ

β π

− 
= ⋅ + 

 
, (3.30) 

 2
2 2

1 1( ) sin 1
4

j reH IA
j r r r

β

θ β θ
β β π

− 
= − ⋅ + − 

 
, (3.31) 

 0rE E Hθ ϕ= = = . (3.32) 
The far-field terms (1/r dependence on the distance from the source) show the 
same behaviour as in the case of an infinitesimal dipole antenna: (1) the electric 
field Eϕ  is orthogonal to the magnetic field Hθ ; (2) Eϕ  and Hθ  relate through 
η ; (3) the longitudinal r̂  components have no far-field terms. 

The dependence of the Poynting vector and the complex power on the 
distance r is the same as in the case of an infinitesimal electric dipole. The 
radiated power can be found to be 

( )24 /12rad IAηβ πΠ = .     (3.33) 
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4. Radiation Zones – Introduction 
The space surrounding the antenna is divided into three regions according to 

the dominant field behaviour. The boundaries between the regions are not 
distinct and the field behaviour changes gradually as these boundaries are 
crossed. In this course, we are mostly concerned with the far-field 
characteristics of the antennas. 

Next, we illustrate the three radiation zones through the field of the small 
electric dipole. 

 
4.1. Reactive near-field region 
This is the region immediately surrounding the antenna, where the reactive 

field dominates and the angular field distribution is different at different 
distances from the antenna. For most antennas, it is assumed that this region is 
a sphere with the antenna at its centre, and with a radius 

3
RNF 0.62 /r D λ≈ ,     (3.34) 

where D is the largest dimension of the antenna, and λ  is the wavelength of the 
radiatiation. The above expression will be derived in Section 5. It must be noted 
that this limit is most appropriate for wire and waveguide aperture antennas 
while it is not valid for electrically large reflector antennas. 

At this point, we discuss the general field behaviour making use of our 
knowledge of the infinitesimal electric-dipole field. When (3.34) is true, r is 
sufficiently small so that 1rβ   (note that D λ  for the infinitesimal dipole). 
Then, the most significant terms in the field expressions (3.8) and (3.10) are 

( )

( )

( )

2

3

3

sin
4

sin
4

cos
2

0

j r

j r

j r

r

r

I l e
H

r
I l e

E j
r

I l e
E j

r
H H E

β

ϕ

β

θ

β

θ ϕ

θ
π

η θ
πβ

η θ
πβ

−

−

−

∆
≈

∆
≈ −

∆
≈ −

= = =

, 1rβ  .  (3.35) 

This approximated field is purely reactive (H and E are in phase quadrature). 
Since 1j re β− ≈  we see that: (1) Hϕ  has the distribution of the magnetostatic 
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field of a current filament I l∆  (remember Bio-Savart’s law); (2) Eθ  and rE  
have the distribution of the electrostatic field of a dipole. 

That the field is almost purely reactive in the near zone is obvious from the 
power equation (3.14). Its imaginary part is 

{ }
( )

2

3
1Im

3
I l

r
π η

λ β
∆ Π = −  

 
.    (3.36) 

{ }Im Π  dominates over the radiated power, 

{ }
2

Re
3rad

I lπ η
λ
∆ Π = Π =  

 
,    (3.37) 

when 0r →  because 1rβ   and radΠ  does not depend on r.  
The radial component of the near-field Poynting vector rP  has negative 

imaginary value and decreases as 1/r5: 
2 2

3 5

sin
8

near
r

I lP j
r

η θ
λ β
∆ = −  

 
.     (3.38) 

The near-field Pθ  component is also imaginary and has the same order of 
dependence on r but it is positive: 

( )
( )

2

22 3

cos sin 1
16

near I l
P j

r r
θ

θ θ
ηβ

π β

∆
= ⋅    (3.39) 

or 
2

3 5

sin(2 )
8

near I lP j
rθ

η θ
λ β
∆ =  

 
. (3.40) 

 
4.2. Radiating near-field (Fresnel) region 
This is an intermediate region between the reactive near-field region and the 

far-field region, where the radiation field is more significant but the angular 
field distribution is still dependent on the distance from the antenna. In this 
region, 1rβ ≥ . For most antennas, it is assumed that the Fresnel region is 
enclosed between two spherical surfaces: 

3 220.62 D Dr
λ λ

≤ ≤ .     (3.41) 

Here, D is the largest dimension of the antenna. This region is called the 
Fresnel region because its field expressions reduce to Fresnel integrals. 
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The fields of an infinitesimal dipole in the Fresnel region are obtained by 
neglecting the higher-order (1/βr)n-terms, n ≥ 2, in (3.8) and (3.10): 

2

( ) sin
4

( ) cos
2
( ) sin

4
0

j r

j r
r

j r

r

j I l eH
r

I l eE
r

I l eE j
r

H H E

β

ϕ

β

β

θ

θ ϕ

β θ
π

βη θ
πβ

βη θ
π

−

−

−

∆ ⋅
≈ ⋅

∆ ⋅
≈ ⋅

∆ ⋅
≈ ⋅

= = =

, 1rβ ≥ .  (3.42) 

The radial component rE  is not negligible yet but the transverse components 
Eθ  and Hϕ  are dominant. 
 
4.3. Far-field (Fraunhofer) region 

Only the terms 1 / r  are considered when 1rβ  . The angular field 
distribution does not depend on the distance from the source any more, i.e., the 
far-field pattern is already well established. The field is a transverse EM wave. 
For most antennas, the far-field region is defined as 

22 /r D λ≥ .      (3.43) 
The far-field of the infinitesimal dipole is obtained as 

( )

( ) sin
4

sin
4

0
0

j r

j r

r

r

j I l eH
r

I l e
E j

r
E
H H E

β

ϕ

β

θ

θ ϕ

β θ
π

β
η θ

π

−

−

⋅ ∆ ⋅
≈ ⋅

⋅ ∆ ⋅
≈ ⋅

≈
= = =

, 1rβ  .   (3.44) 

The features of the far field are summarized below: 
1) no radial components; 
2) the angular field distribution is independent of r; 
3) ⊥E H ; 
4) 0 /Z E Hθ ϕη = = ; 
5) * 2 2ˆ ˆ( ) / 2 0.5 | | / 0.5 | |E Hθ ϕη η= × = =P E H r r .   (3.45) 
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5. Region Separation and Accuracy of the Approximations 
In most practical cases, a closed form solution of the radiation integral (the 

VP integral) does not exist. For the evaluation of the far fields or the fields in 
the Fraunhofer region, standard approximations are applied, from which the 
boundaries of these regions are derived. 

Consider the VP integral for a linear current source: 

( )
4

j R

L

eI l d
R

βµ
π

−

′

′ ′= ∫A l ,    (3.46) 

where 2 2 2( ') ( ') ( ')R x x y y z z= − + − + − . The observation point is at 
( , , )P x y z , and the source point is at ( ', ', ')Q x y z , which belongs to the 

integration contour L′ . 
So far, we have analyzed the infinitesimal dipole whose current is constant 

along L′ . In practical antennas, the current distribution is not constant and the 
solution of (3.46) can be very complicated depending on the vector function 
( )'I l d ′l . Besides, because of the infinitesimal size of this source, the distance R 

between the integration point and the observation point was considered constant 
and equal to the distance from the centre of the dipole, 2 2 2 1/2( )R r x y z≈ = + + . 
However, if maxD  (the maximum dimension of the antenna) is larger and 
commensurate with the wavelength λ , the error, especially in the phase term 

Rβ , due to the above assumption for R would be unacceptable. 
Let us divide the integral kernel /j Re Rβ−  into two factors: (1) the amplitude 

factor ( )1/ R , and (2) the phase factor j Re β− . The amplitude factor is not very 
sensitive to errors in R. In both, the Fresnel and the Fraunhofer regions, the 
approximation 

1 / 1 /R r≈       (3.47) 
is acceptable, provided maxr D>> . 

The above approximation, however, is unacceptable in the phase term. To 
keep the phase term error low enough, the maximum error in ( )Rβ  must be 
kept below / 8 22.5π =  . 

Neglect the antenna dimensions along the x- and y-axes (infinitesimally thin 
wire). Then, 

 ( )22 2' ' 0 'x y R x y z z= = ⇒ = + + − , (3.48) 

 ( ) ( )2 2 2 2 2 2' 2 ' ' 2 ' cosR x y z z zz r z rz θ⇒ = + + + − = + − ⋅ . (3.49) 
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Using the binomial expansion,♣ R is expanded as 

( ) ( ) ( ) ( ) ( ) ( )1/2 1/2 3/2 22 2 2 2 20.5 0.51 ' 2 'cos ' 2 'cos
2 2

R r r z rz r z rzθ θ− −−
= + − + − +, 

2 2 2
3 2 3

2

' ' cos 1'cos cos sin
2 2 2
z zR r z z O

r r r
θθ θ θ′⇒ = − + − + + .  (3.50) 

3O  denotes terms of the order (1/r3) and higher. Neglecting these terms and 
simplifying further leads to the approximation 

2 2 3 2
2

1 1'cos ' sin cos sin
2 2

R r z z z
r r

θ θ θ θ′≈ − + + .   (3.51) 

This expansion is used below to mathematically define the reactive near-field 
region, the radiating near-field region and the far-field region. 
 

(a) Far-field approximation 
Only the first two terms in the expansion (3.51) are taken into account: 

'cosR r z θ≈ − .     (3.52) 
 
 

r

R
dz

z

x

y

( , , )P r θ ϕ

0
/2D

( ')Q z

θ
'θ

'ϕ ϕ=

 

(a) z-oriented dipole of length D 
 
 
                                                 

♣ ( ) 1 2 2 3 3( 1) ( 1)( 2)
2! 3!

n n n n nn n n n na b a na b a b a b− − −− − −
+ = + + + + 
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r

R

dz

z

x

y

( , , )P r θ ϕ

0
/2D

( ')Q z

'θ θ=

'ϕ ϕ=

'cosz θ

 
(b) z-oriented dipole: far-field approximation 

 
The most significant error term in R that was neglected in (3.52) is 

2
21 ( ')( ) sin

2
ze r
r

θ= , 

which has its maximum at / 2θ π=  and max / 2z z D′ ′= = : 

 
2

max
max

( )( )
2

ze r
r

′
= . (3.53) 

The minimum r, at which the phase error ( )Rβ  is below / 8π , is derived from: 
2

max( )
2 8

z
r

πβ
′

⋅ ≤ . 

Thus, the smallest distance from the antenna centre r, at which the phase error 
is acceptable is 

far 2
min 2 /r D λ= .      (3.54) 

This is the far-zone limit defined in (3.43). 
As a word of caution, sometimes equation (3.54) produces too small values, 

which are in conflict with the assumptions made before. For example, in order 
the amplitude-term approximation 1/ 1/R r≈  to hold, the ratio of the maximum 
antenna dimension D and the distance R must fulfill / 1D R . Otherwise, the 
first-order approximation based on the binomial expansion is too inaccurate.   

Besides, in order to neglect all field components except the far-field ones, 
the condition r λ  must hold, too. Therefore, in addition to (3.54), the 
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calculated inner boundary of the far-field region should comply with two more 
conditions: 
 andr D r λ  . (3.55) 
Finally, we can generalize the far-zone limit as 
 ( )far 2

min max 2 / ,  5 ,  5r D Dλ λ=   . (3.56) 
 
(b) Radiating near-field (Fresnel region) approximation 

This region is adjacent to the Fraunhofer region, so its upper boundary is 
specified by 

far 2
min 2 /r r D λ≤ = .      (3.57) 

When the observation point belongs to this region, we must take one more term 
in the expansion of R as given by (3.51) to reduce sufficiently the phase error. 
The approximation this time is 

2 21'cos ' sin
2

R r z z
r

θ θ≈ − + .    (3.58) 

The most significant error term is 
3

2
2

1 ' cos sin
2

ze
r

θ θ= .     (3.59) 

The angles oθ  must be found, at which e has its extrema: 

( )
3

2 2
2

' sin sin 2cos 0
2

e z
r

θ θ θ
θ
∂

= − + =
∂

.   (3.60) 

The roots of (3.60) are 

( )
(1)

(2),(3)

0 min,

arctan 2 54.7 max  .
o

o

θ

θ

= →

= ± ≈ ± →
   (3.61) 

Following a procedure similar to case (a), we obtain: 
3 3

(2) (2)2
max 2 2

3
max 2

2 1 ' ' 1 2( ) cos sin ,
2 33

( ) ,  note: / 2
812 3

o o
z ze r
r r

De r z D
r

π πβ θ θ
λ λ

π πβ
λ

= ⋅ =

′⇒ = ≤ =
 

3 32 0.62
3 3

D Dr
λ λ

⇒ ≥ = .    (3.62) 

Equation (3.62) states the lower boundary of the Fresnel region (for wire 
antennas) and is identical to the left-hand side of (3.41). 
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The radiation pattern (RP) (or antenna pattern) is the representation of the 
radiation properties of the antenna as a function of the angular coordinates. 

LECTURE 4: Fundamental Antenna Parameters 
(Radiation pattern. Pattern beamwidths. Radiation intensity. Directivity. Gain. 
Antenna efficiency and radiation efficiency. Frequency bandwidth. Input 
impedance and radiation resistance. Antenna effective area. Relationship 
between directivity and antenna effective area. Other antenna equivalent 
areas.) 
 
The antenna parameters describe the antenna performance with respect to space 
distribution of the radiated energy, power efficiency, matching to the feed 
circuitry, etc. Many of these parameters are interrelated. There are several 
parameters not described here, in particular, antenna temperature and noise 
characteristics. They are discussed later in conjunction with radio-wave 
propagation and system performance. 
 
1. Radiation Pattern 

The RP is measured in the far-field region, where the angular distribution of 
the radiated power does not depend on the distance. We measure and plot either 
the field intensity, | ( , ) |θ ϕE , or the power 2| ( , ) | /θ ϕ ηE  = 2| ( , ) |η θ ϕH . 
Usually, the pattern describes the normalized field (power) values with respect 
to the maximum value. 

Note: The power pattern and the amplitude field pattern are the same when 
computed and plotted in dB. 

The pattern can be a 3-D plot (both θ  and ϕ  vary), or a 2-D plot. A 2-D plot 
is obtained as an intersection of the 3-D RP with a given plane, usually a 

.constθ =  plane or a .constϕ =  plane that must contain the pattern’s maximum. 

The trace of the angular variation of the received/radiated power at a 
constant radius from the antenna is called the power pattern. 

The trace of the angular variation of the magnitude of the electric (or 
magnetic) field at a constant radius from the antenna is called the amplitude 
field pattern. 
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3-D pattern of a dipole 2-D elevation & azimuth patterns of a dipole 

 
 
 
 

 
Illustration of azimuth and elevation 
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Plotting the pattern: the trace of the pattern is obtained by setting the distance 
from the origin in the direction ( , )θ ϕ  to be proportional to the strength of the 
field | ( , ) |θ ϕE  (in the case of an amplitude field pattern) or proportional to the 
power density 2| ( , ) |θ ϕE  (in the case of a power pattern). 
 
 
 

| | 1/ 2=r
sinθz

Elevation Plane: constϕ =

| | 1=r

45θ = 

 
 

 
Some concepts related to the pattern terminology 

a) Isotropic pattern is the pattern of an antenna having equal radiation in all 
directions. This is an ideal concept, which, strictly speaking, is achievable 
only approximately in a narrow frequency band. However, it is used to 
define other antenna parameters. It is represented simply by a sphere 
whose center coincides with the location of the isotropic radiator. 

b) Directional antenna is an antenna, which radiates (receives) much more 
efficiently in some directions than in others. Usually, this term is applied 
to antennas whose directivity is much higher than that of a half-
wavelength dipole. 

c) Omnidirectional antenna is an antenna, which has a non-directional 
pattern in a given plane, and a directional pattern in any orthogonal plane 
(e.g. single-wire antenna). The pattern in the figure below is that of a 
dipole – it is omnidirectional. 
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Omnidirectional 3-D pattern 

 
d) Principal patterns are the 2-D patterns of linearly polarized antennas, 

measured in the E-plane (a plane parallel to the E vector and containing 
the direction of maximum radiation) and in the H-plane (a plane parallel 
to the H vector, orthogonal to the E-plane, and containing the direction of 
maximum radiation). 

 

[Balanis, 3rd ed.] 
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2-D patterns can be polar or rectangular, depending the way the angle is 
depicted, and linear or logarithmic (in dB), depending on the chosen pattern 
scale. The plots below show the same 2-D pattern in 4 different formats. 
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e) Pattern lobe is a portion of the RP whose local radiation intensity 
maximum is relatively weak. Lobes are classified as: major, minor, side 
lobes, back lobes. 
 
 

 
 

 
 

2. Pattern Beamwidth 
Half-power beamwidth (HPBW) is the angle between two vectors, 

originating at the pattern’s origin and passing through these points of the major 
lobe where the radiation intensity is half its maximum. 
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First-null beamwidth (FNBW) is the angle between two vectors, 
originating at the pattern’s origin and tangent to the main beam at its base. 
Often, the approximation FNBW ≈ 2⋅HPBW is used. 

The HPBW is the best parameter to describe the antenna resolution 
properties. In radar technology as well as in radio-astronomy, the antenna 
resolution capability is of primary importance. 
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Radiation intensity in a given direction is the power per unit solid angle 
radiated in this direction by the antenna. 

3.  Radiation Intensity 
 

 
a) Solid angle 

One steradian (sr) is the solid angle with its vertex at the center of a sphere 
of radius r, which is subtended by a spherical surface of area r2. In a closed 
sphere, there are 4π  steradians. A solid angle is defined as 

 
2

S
r
ΩΩ = , sr (4.1) 

Note: The above definition is analogous to the definition of a 2-D angle in 
radians, /lωω ρ= , where lω  is the length of the arc segment supported by the 
angle ω  in a circle of radius ρ . 
 

  
 
The infinitesimal area ds on a surface of a sphere of radius r in spherical 
coordinates is 

 2 sinds r d dθ θ ϕ= , m2. (4.2) 
Therefore, 
 sind d dθ θ ϕΩ = , sr, (4.3) 
and 
 2ds r d= Ω . (4.4) 
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The power pattern is a trace of the function | ( , ) |U θ ϕ  usually normalized to 
its maximum value. The normalized pattern will be denoted as ( , )U θ ϕ . 

b) Radiation intensity U 
The radiation intensity is the power radiated within unit solid angle: 

 
0

lim rad raddU
d∆Ω→

∆Π Π
= =

∆Ω Ω
, W/sr. (4.5) 

The expression inverse to that in (4.5) is 
 

4
rad Ud

π

Π = Ω∫∫ , W. (4.6) 

From now on, we will denote the radiated power simply by Π . There is a direct 
relation between the radiation intensity U and the radiation power density P 
(that is the Poynting vector magnitude of the far field). Since 

 
2 2

1d dP U
ds r d r
Π Π

= = =
Ω

, W/m2 (4.7) 

then 
 2U r P= ⋅  (4.8) 

It was already shown that the power density of the far field depends on the 
distance from the source as 1/r2, since the far field magnitude depends on r as 
1/r. Thus, the radiation intensity U depends only on the direction ( , )θ ϕ  but not 
on the distance r. 

In the far-field zone, the radial field components vanish, and the remaining 
E and H transverse components are in phase and have magnitudes related by 
 | | | |η=E H . (4.9) 
This is why the far-field Poynting vector has only a radial component and it is a 
real number showing the radiation power-flow density: 

 
2

21 1 | || |
2 2radP P η

η
= = =

EH . (4.10) 

Then, for the radiation intensity, we obtain in terms of the electric field 

 ( )
2

2, | |
2
rU θ ϕ
η

= E . (4.11) 

Equation (4.11) leads to a useful relation between the power pattern and the 
amplitude field pattern: 
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 [ ]
2

2 2 2 21( , ) ( , , ) ( , , ) ( , ) ( , )
2 2 p p

rU E r E r E Eϕθ θ ϕθ ϕ θ ϕ θ ϕ θ ϕ θ ϕ
η η

 = + = +  . (4.12) 

Here, ( , )pEθ θ ϕ  and ( , )pEϕ θ ϕ  denote the far-zone field patterns for the two 
orthogonal polarizations. 
 
Examples: 

1) Radiation intensity and pattern of an isotropic radiator: 

( ) 2
, ,

4
P r

r
θ ϕ

π
Π

=  

( ) 2, .
4

U r P constθ ϕ
π
Π

= ⋅ = =  

( ), 1U θ ϕ⇒ = . 

The normalized pattern of an isotropic radiator is simply a sphere of a 
unit radius. 
 

2) Radiation intensity and pattern of an infinitesimal dipole: 
From Lecture 3, the far-field term of the electric field is: 

( ) sin ( , ) sin
4

j rI l e
E j E

r

β

θ
β

η θ θ ϕ θ
π

−⋅ ∆ ⋅
= ⋅ ⇒ = , 

( )222
2 2

2
| | sin

2 32
I lrU

β
η θ

η π
⋅ ∆

= ⋅ = ⋅E , 

( ) 2, sinU θ ϕ θ⇒ = . 
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Directivity of an antenna (in a given direction) is the ratio of the radiation 
intensity in this direction and the radiation intensity averaged over all 
directions. The radiation intensity averaged over all directions is equal to the 
total power radiated by the antenna divided by 4π . If a direction is not 
specified, then the direction of maximum radiation is implied. 

4. Directivity 
 
4.1. Definitions and examples 
 

 
It can be also defined as the ratio of the radiation intensity (RI) of the antenna 
in a given direction and the RI of an isotropic radiator fed by the same amount 
of power: 

 ( , ) ( , )( , ) 4
av

U UD
U
θ ϕ θ ϕθ ϕ π= =

Π
, (4.13) 

and 
max

max 0 4 UD D π= =
Π

. 

The directivity is a dimensionless quantity. The maximum directivity is always 
1≥ . 

 
Examples: 
 
1) Directivity of an isotropic source: 

( )

( ) ( )

0

0

, .
4

,
, 4 1

U U const
U

U
D

θ ϕ
π

θ ϕ
θ ϕ π

= =

⇒Π =

⇒ = =
Π

 

0 1D⇒ = . 
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The partial directivity of an antenna is specified for a given polarization of 
the field. It is defined as that part of the radiation intensity, which 
corresponds to a given polarization, divided by the total radiation intensity 
averaged over all directions. 

2) Directivity of an infinitesimal dipole: 
( )22

2
2

2 2

( , ) sin
32

( , ) sin ; ( , ) ( , ) sin

I l
U

U U M U M

β
θ ϕ η θ

π
θ ϕ θ θ ϕ θ ϕ θ

⋅ ∆
= ⋅

⇒ = = ⋅ =

 

As shown in (4.6), 
2

2
4

0 0

8sin sin
3

Ud M d d M
π π

π

πθ θ ϕ θΠ = Ω = ⋅ ⋅ = ⋅∫∫ ∫ ∫

 

2
2( , ) sin 3( , ) 4 4 3 sin

8 2
U MD

M
θ ϕ θθ ϕ π π θ

π
= = ⋅ =

Π ⋅
 

0 1.5D⇒ = . 
 
Exercise: Calculate the maximum directivity of an antenna with a radiation 
intensity sinU M θ= . (Answer: 0 4 / 1.27D π= ≈ ) 
 

The total directivity is the sum of the partial directivities for any two orthogonal 
polarizations: 

 D D Dθ ϕ= + , (4.14) 
where: 

4 UD θ
θ

θ ϕ
π=
Π +Π

, 

4 UD ϕ
ϕ

θ ϕ
π=
Π +Π

. 
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The beam solid angle AΩ  of an antenna is the solid angle through which all 
the power of the antenna would flow if its radiation intensity were constant 
and equal to the maximum radiation intensity 0U  for all angles within AΩ . 

4.2. Directivity in terms of normalized radiation intensity ( ),U θ ϕ  

 ( , ) ( , )U M Uθ ϕ θ ϕ= ⋅  (4.15) 

 
2

4 0 0

( , )sinUd M U d d
π π

π

θ ϕ θ ϕ θΠ = Ω = ⋅∫∫ ∫ ∫

 (4.16) 

 2

0 0

( , )( , ) 4
( , )sin

UD
U d d

π π
θ ϕθ ϕ π

θ ϕ θ ϕ θ
=

′ ′ ′ ′ ′∫ ∫
 (4.17) 

 0 2

0 0

14
( , )sin

D
U d d

π ππ
θ ϕ θ ϕ θ

=

∫ ∫
 (4.18) 

 
4.3. Beam solid angle AΩ  

 
2

0 0

( , )sinA U d d
π π

θ ϕ θ ϕ θΩ = ∫ ∫  (4.19) 

The relation between the maximum directivity and the beam solid angle is 
obvious from (4.18) and (4.19): 

 0 4 / AD π= Ω . (4.20) 
In order to understand how (4.19) is obtained, follow the derivations below 

(they reflect the mathematical meaning of the definition above): 
 0 0

4 A

AUd U d U
π Ω

Π = Ω = Ω = Ω∫∫ ∫∫

 

 
2

4

0 4 0 0

( , )sinA

Ud
Ud U d d

U

π π
π

π

θ ϕ θ ϕ θ
Ω

⇒Ω = = Ω =
∫∫

∫∫ ∫ ∫




. 
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4.4. Approximate expressions for directivity 
The complexity of the calculation of the antenna directivity 0D  depends on 

the power pattern ( , )U θ ϕ , which has to be integrated over a spherical surface. 
In most practical cases, this function is not available in closed analytical form 
(e.g., it might be a data set). Even if it is available in closed analytical form, the 
integral in (4.18) may not have a closed analytical solution. In practice, simpler 
although not exact expressions are often used for approximate and fast 
calculations. These formulas are based on the two orthogonal-plane half-power 
beamwidths (HPBW) of the pattern. The approximations for the directivity are 
usually valid for highly directive (pencil-beam) antennas such as large 
reflectors and horns. 

 
a) Kraus’ formula 
For antennas with narrow major lobe and with negligible minor lobes, the 

beam solid angle AΩ  is approximately equal to the product of the HPBWs in 
two orthogonal planes: 

 1 2AΩ = Θ Θ , (4.21) 
where the HPBW angles are in radians. Another variation of (4.21) is 

 0
1 2

41000D
Θ Θ 

 , (4.22) 

where 1Θ  and 1Θ  are in degrees. 
 
b) Formula of Tai and Pereira 

 0 2 2
1 2

32ln 2D
Θ +Θ

  (4.23) 

The angles in (4.23) are in radians. For details see: C. Tai and C. Pereira, “An 
approximate formula for calculating the directivity of an antenna,” IEEE Trans. 
Antennas Propagat., vol. AP-24, No. 2, March 1976, pp. 235-236. 
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The gain G of an antenna is the ratio of the radiation intensity U in a given 
direction and the radiation intensity that would be obtained, if the power fed 
to the antenna were radiated isotropically. 

5. Antenna Gain 
 

 ( , )( , ) 4
in

UG θ ϕθ ϕ π=
Π

 (4.24) 

The gain is a dimensionless quantity, which is very similar to the directivity D. 
When the antenna has no losses, i.e. when inΠ = Π , then ( , ) ( , )G Dθ ϕ θ ϕ= . 
Thus, the gain of the antenna takes into account the losses in the antenna 
system. It is calculated using the input power Πin, which can be measured 
directly. In contrast, the directivity is calculated via the radiated power Π . 

There are many factors that can worsen the transfer of energy from the 
transmitter to the antenna (or from the antenna to the receiver): 

• mismatch losses, 
• losses in the transmission line, 
• losses in the antenna: dielectric losses, conduction losses, polarization 

losses. 
The power radiated by the antenna is always less than the power fed to it, i.e., 

inΠ ≤ Π , unless the antenna has integrated active devices. That is why, usually, 
G D≤ . 

According to the IEEE Standards, the gain does not include losses 
arising from impedance mismatch and from polarization mismatch. 

Therefore, the gain takes into account only the dielectric and conduction losses 
of the antenna itself. 

The radiated power Π is related to the input power Πin through a coefficient 
called the radiation efficiency e: 

 , 1ine eΠ = ⋅Π ≤ , (4.25) 
 ( , ) ( , )G e Dθ ϕ θ ϕ⇒ = ⋅ . (4.26) 
Partial gains with respect to a given field polarization are defined in the 

same way as it is done with the partial directivities; see equation (4.14). 

!
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The beam efficiency is the ratio of the power radiated in a cone of angle 12Θ  
and the total radiated power. The angle 12Θ  can be generally any angle, but 
usually this is the first-null beam width. 

6. Antenna Efficiency 
The total efficiency of the antenna te  is used to estimate the total loss of 

energy at the input terminals of the antenna and within the antenna structure. It 
includes all mismatch losses and the dielectric/conduction losses (described by 
the radiation efficiency e  as defined by the IEEE Standards): 

 


t p r c d p r
e

e e e e e e e e= = ⋅ . (4.27) 

Here:  er is the reflection (impedance mismatch) efficiency, 
           ep is the polarization mismatch efficiency, 
           ec is the conduction efficiency, 
           ed is the dielectric efficiency. 
The reflection efficiency can be calculated through the reflection coefficient Γ  
at the antenna input: 

 21 | |re = − Γ . (4.28) 
Γ  can be either measured or calculated, provided the antenna impedance is 
known: 

 in c

in c

Z Z
Z Z

−
Γ =

+
. (4.29) 

inZ  is the antenna input impedance and cZ  is the characteristic impedance of 
the feed line. If there are no polarization losses, then the total efficiency is 
related to the radiation efficiency as 

 ( )21 | |te e= ⋅ − Γ . (4.30) 
 
 
7. Beam Efficiency 

 

12

0 0
2

0 0

( , )sin

( , )sin

U d d
BE

U d d

π

π π

θ ϕ θ θ ϕ

θ ϕ θ θ ϕ

Θ

=
∫ ∫

∫ ∫
 (4.31) 
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This is the range of frequencies, within which the antenna characteristics 
(input impedance, pattern) conform to certain specifications. 

If the antenna has its major lobe directed along the z-axis ( 0θ = ), formula 
(4.31) defines the main beam efficiency. If 1Θ  is the angle where the first null 
(or minimum) occurs in two orthogonal planes, then the BE will show what 
part of the total radiated power is channeled through the main beam. 

Very high beam-efficiency antennas are needed in radars, radiometry and 
astronomy. 
 
 
8.  Frequency Bandwidth (FBW) 

Antenna characteristics, which should conform to certain requirements, might 
be: input impedance, radiation pattern, beamwidth, polarization, side-lobe level, 
gain, beam direction and width, radiation efficiency. Separate bandwidths may 
be introduced: impedance bandwidth, pattern bandwidth, etc. 

The FBW of broadband antennas is expressed as the ratio of the upper to the 
lower frequencies, where the antenna performance is acceptable: 

 max minFBW /f f= . (4.32) 
Broadband antennas with FBW as large as 40:1 have been designed. Such 
antennas are referred to as frequency independent antennas. 

For narrowband antennas, the FBW is expressed as a percentage of the 
frequency difference over the center frequency: 

 max min

0
FBW 100f f

f
−

= ⋅  %. (4.33) 

Usually, ( )0 max min / 2f f f= +  or 0 max minf f f= . 
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9. Input Impedance 
 A A AZ R jX= +  (4.34) 

Here, AR  is the antenna resistance and AX  is the antenna reactance. Generally, 
the antenna resistance has two terms: 

 A r lR R R= + , (4.35) 
where rR  is the radiation resistance and lR  is the loss resistance. 

The antenna impedance is related to the radiated power radΠ ≡ Π , the 
dissipated (loss) power lΠ , and the stored reactive energy as: 

 
*

0 0

2 ( )
0.5

rad l m e
A

j W WZ
I I
ωΠ +Π + −

= . (4.36) 

Here, 0I  is the current phasor at the antenna terminals; mW  is the time-average 
magnetic energy, and eW  is the time-average electric energy stored in the near-
field region. When the stored magnetic and electric energy values are equal, a 
condition of resonance occurs and the reactive part of AZ  vanishes. For a thin 
dipole antenna, this occurs when the antenna length is close to a multiple of a 
half wavelength. 
 
9.1. Radiation resistance 

The radiation resistance relates the radiated power to the voltage (or current) 
at the antenna terminals. For example, in the Thevenin equivalent of the 
antenna, the following holds: 

 22 / | | ,rR I= Π Ω . (4.37) 
 
Example: Find the radiation resistance of an infinitesimal dipole in terms of 
the ratio ( / )l λ∆ . 

 
We have already derived the radiated power of an infinitesimal dipole in 
Lecture 3, as: 

 
2

3
id I lπη

λ
∆ Π =  

 
 (4.38) 

 
22

3
id
r

lR πη
λ
∆ ⇒ =  

 
. (4.39) 
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9.2. Equivalent circuits of the transmitting antenna 
 
 

antenna

generator

 
 
a

bgV

gR

gX

AX

lR

rR

(a) Thevenin equivalent
 

 

gI gG gB AB lG rG

(b) Norton equivalent  
 
 
 

In the above model, it is assumed that the generator is connected to the antenna 
directly. If there is a transmission line between the generator and the antenna, 
which is usually the case, then g g gZ R jX= +  represents the equivalent 
impedance of the generator transferred to the input terminals of the antenna. 
Transmission lines themselves often have significant losses. 
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Reminder: The impedance transformation by a long transmission line is given 
by 

 0
0

0

tanh( )
tanh( )

L
in in

L

Z Z LZ Z Z
Z Z L

γ
γ

+
= =

+
. (4.40) 

Here, 0Z  is the characteristic impedance of the line, γ  is its propagation 
constant, LZ  is the load impedance, and inZ  is the input impedance. In the case 
of a loss-free line, 

 0
0

0

tan( )
tan( )

L
in

L

Z jZ LZ Z
Z jZ L

β
β

+
=

+
, (4.41) 

where jγ β= . 
 
Maximum power is delivered to the antenna when conjugate matching of 

impedances is achieved: 

 
,

.
A l r g

A g

R R R R
X X

= + =

= −
 (4.42) 

Using circuit theory, we can derive the following formulas in the case of 
matched impedances: 

a) power delivered to the antenna 

 
( )

2| |
8

g
A

r l

V
P

R R
=

+
 (4.43) 

b) power dissipated as heat in the generator 

 
( )

2 2| | | |
8 8

g g
g A

g r l

V V
P P

R R R
= = =

+
 (4.44) 

c) radiated power 

 
( )

2

2
| |

8
g r

r
r l

V RP
R R

Π = =
+

 (4.45) 

d) power dissipated as heat in the antenna 

 
( )

2

2
| |

8
g l

l
r l

V RP
R R

=
+

. (4.46) 
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9.3. Equivalent circuits of the receiving antenna 
 

antenna

load LZ

(b) Norton equivalent

AB lG rGLG LB AI

(a) Thevenin equivalent

lR
a

b

LR

LX

AX

rR

AV

AI

 
 
The incident wave induces voltage AV  at the antenna terminals (measured 

when the antenna is open circuited). Conjugate impedance matching is required 
between the antenna and the load (the receiver) to achieve maximum power 
delivery: 

 
,

.
L A l r

L A

R R R R
X X

= = +
= −

 (4.47) 
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For the case of conjugate matching, the following power expressions hold: 
a) power delivered to the load 

 
2 2| | | |

8 8
A A

L
L A

V VP
R R

= =  (4.48) 

b) power dissipated as heat in the antenna 

 
2

2

| |
8
A l

l
A

V RP
R

=  (4.49) 

c) scattered (re-radiated) power 

 
2

2

| |
8
A r

r
A

V RP
R

=  (4.50) 

d) total captured power 

 
( )

2 2| | | |
4 4

A A
c

r l A

V VP
R R R

= =
+

 (4.51) 

When conjugate matching is achieved, half of the captured power cP  is 
delivered to the load (the receiver) and half is antenna loss. The antenna losses 
are heat dissipation lP  and reradiated (scattered) power rP . When the antenna is 
non-dissipative, half of the power is delivered to the load and the other half is 
scattered back into space. Thus a receiving antenna is also a scatterer. 

The antenna input impedance is frequency dependent. Thus, it is 
matched to its load in a certain frequency band. It can be influenced 
by the proximity of objects, too. 

 
9.4. Radiation efficiency and antenna losses 

The radiation efficiency e  takes into account the conductor and dielectric 
(heat) losses of the antenna. It is the ratio of the power radiated by the antenna 
and the total power delivered to the antenna terminals (in transmitting mode). 
In terms of equivalent circuit parameters, 

 r

r l

Re
R R

=
+

. (4.52) 

Some useful formulas to calculate conduction losses are given below: 
a) dc resistance per unit length 

 1 , Ω/mdcR
Aσ

′ =  (4.53) 

!
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σ  - specific conductivity, S/m 
A – conductor’s cross-section, m2. 

 
b) high-frequency surface resistance 
At high frequencies, the current is confined in a thin layer at the conductor’s 

surface (skin effect). This thin layer, called the skin layer, has much smaller 
cross-section than that of the conductor itself. Its effective thickness, known as 
the skin depth or penetration depth, is 

 1
f

δ
π σµ

= , m, (4.54) 

where f  is the frequency in Hz, and µ  is the magnetic permeability, H/m. 
Remember that (4.54) holds for very good conductors only ( / 1σ ωε >> ). The 
skin depth is inverse proportional to the attenuation constant Re( )α γ=  of the 
conducting medium, 1 /δ α= . Here, jγ ω µε= , ( )' " /jε ε ε σ ω= − + . Due 
to the exponential decay of the current density in the conductor as xe α−

 , 
where x denotes the distance from the surface, it can be shown that the total 
current I flowing along the conductor (along z) is 

 0 0 0
0

1x
s

S C C C C

I d J e dxdc J dc J dc J dcα δ
α

∞
−= ⋅ = = = =∫∫ ∫ ∫ ∫ ∫ ∫J s  (4.55) 

where 0J  is the current density at the conductor surface (in A/m2), 0sJ J δ=  is 
the equivalent surface current density (in A/m), and C is the contour of the 
conductor’s cross-section. If the equivalent surface current density is distributed 
uniformly on the contour of the conductor’s cross-section, then sI J p= , where 
p is the perimeter of the conductor (or the length of its cross-sectional contour). 

The surface resistance sR  (in Ω ) is defined as the real part of the intrinsic 
impedance of the conductor cη , which in the case of very good conductors can 
be found to be 

 1Re
2s cR µωη
σ σδ

= ≈ = , Ω  . (4.56) 

For the case where the current density is uniformly distributed on the 
conductor’s cross-sectional contour, we can find a simple relation between the 
high-frequency resistance per unit length of a conducting rod, its perimeter p 
and its surface resistance sR .  
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 1 1 s
hf

hf

RR
A p pσ σδ

′ = = = , Ω/m . (4.57) 

 
Here the area hfA pδ=  is not the actual area of the 
conducting rod but the effective area through 
which the high-frequency current flows. 

δ

p

hfA pδ=
 

If the surface current distribution is not uniform over the contour of the 
conductor’s cross-section, hfR′  appears as a function of sR  and this distribution. 
The surface density of the loss power in a good conductor is 

 21 | |
2 s sp R= J



 W/m2. (4.58) 

Then, the power loss per unit length is 

 
2

2 21 1| | | |
2 2 2

s
s hf hf s

C C

RP dc R I R dc


′ ′ ′= = =  
 

∫ ∫J J


 W/m. (4.59) 

It then follows that 

 

2

2

| |

| |

s
C

hf s

s
C

dc
R R

dc

′ =

 

 

∫

∫

J

J

 Ω/m . (4.60) 

The above expression reduces to (4.57) if sJ  is constant over C. 
 
Example: A half-wavelength dipole is made of copper ( 75.7 10σ = ×  S/m). 
Determine the radiation efficiency e , if the operating frequency is 100f =  
MHz, the radius of the wire is 43 10b λ−= × ⋅ , and the radiation resistance is 

73rR = Ω . 
 

810f =  Hz 3c
f

λ⇒ = ≈  m 1.5
2

l λ
⇒ = ≈  m 

42 18 10p bπ π −= = × , m 
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If the current along the dipole were uniform, the high-frequency loss power 
would be uniformly distributed along the dipole. However, the current has a 
sine distribution along a dipole as we will discuss in Lecture 9: 

 0( ) sin | | ,
2 2 2
l l lI z I z zβ  = − − ≤ ≤    

. 

Equation (4.57) can be now used to express the high-frequency loss resistance 
per wire differential element of infinitesimal length dz : 

 0
hf hf

dz fdR R dz
p

π µ
σ

′= = . 

The high-frequency loss power per wire element of infinitesimal length dz  is 
then obtained as 

 021( ) ( )
2hf

dz fdP z I z
p

π µ
σ

= ⋅  

The total loss power is obtained by integrating along the whole dipole. Taking 
into account the symmetry in the current distribution, 

/2 2
00 2

0

12 sin
2 2

l

hf
I l fP z dz

p
π µβ
σ

  = − ⋅    ∫ , 

/22
00 2

0

sin
2

l

hf
I f lP z dz
p

π µ β
σ

  ⇒ = ⋅ −    ∫ . 

Changing variable as 

 
2
lx zβ  = − 

 
 

results in 
/2

02
0

0

1 2 1 cos2
2

hf

l

hf

R

l f xP I dx
p l

βπ µ
σ β

  −
= ⋅ ⋅ 

 
∫



, 

2
02

0
1 sin( ) sin( )1 1

4 4
hf

hf hf
I Rl l lP I R

l l l
β β

β β
   

⇒ = ⋅ ⋅ − = −      
. 

In the case of / 2l λ= , 

 
2
0

4
hf

hf
I R

P⇒ =  
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The effective antenna aperture is the ratio of the available power at the 
terminals of the antenna to the power flux density of a plane wave incident 
upon the antenna, which is matched to the antenna in terms of polarization. 
If no direction is specified, the direction of maximum radiation is implied. 

Since the loss resistance lR  is defined through the loss power as 

 
2
0

2hf l
IP R= , 

we obtain that 
00.5 0.5 0.349l hf

l fR R l
p

π µ
σ

′= ⋅ = = Ω . 

The antenna efficiency is: 
73 0.9952

73 0.349
r

r l

Re
R R

= = =
+ +

 (99.52%) 

[dB] 1010log 0.9952 0.02e = = − . 
 

 
 
10. Effective Area (Effective Aperture) Ae 
 

 /e A iA P W= , (4.61) 
where 

eA  is the effective aperture, m2, 
AP  is the power delivered from the antenna to the load, W, 
iW  is the power flux density (Poynting vector value) of the incident wave, 

W/m2. 
 

Using the Thevenin equivalent of a receiving antenna, we can show that 
equation (4.61) relates the antenna impedance and its effective aperture as 

 
( ) ( )

2 2

2 2
| | / 2 | |

2
A L A L

e
i i r l L A L

I R V RA
W W R R R X X

= = ⋅
 + + + + 

. (4.62) 

Under conditions of conjugate matching, 
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( )

2| | 1
8

A L

A
e

i r l

R R

VA
W R R

=

=
+



. (4.63) 

For aperture type antennas, the effective area is smaller than the physical 
aperture area. Aperture antennas with constant amplitude and phase distribution 
across the aperture have the maximum effective area, which is practically equal 
to the geometrical area. The effective aperture of wire antennas is much larger 
than the surface of the wire itself. Sometimes, the aperture efficiency of an 
antenna is estimated as the ratio of the effective antenna aperture and its 
physical area: 

 e
ap

p

A
A

ε = . (4.64) 

 
 
Example: A uniform plane wave is incident upon a very short dipole. Find the 
effective area eA  assuming that the radiation resistance is ( )280 /radR lπ λ=  Ω  
and that the field is linearly polarized along the axis of the dipole. Compare eA  
with the physical surface of the wire if / 50l λ=  and / 300d λ= , where d  is 
the wire’s diameter. 

 
Since the dipole is very short, we can neglect the conduction losses. Wire 
antennas do not have dielectric losses. Therefore, we assume that 0lR = . Under 
conjugate matching (which is implied unless specified otherwise), 

 
2| |

8
A

e
i r

VA
W R

= . 

The dipole is very short and we can assume that the E-field intensity is the 
same along the whole wire. Then, the voltage created by the induced 
electromotive force of the incident wave is 

 | |AV l= ⋅E . 
The Poynting vector has a magnitude of 2| | /(2 )iW η= E . Then, under 
conditions of conjugate matching, see (4.63), 

 
2 2 2

2
2

| | 2 3 0.119
8 | | 8e

r

lA
R
η λ λ

π
⋅ ⋅

= = = ⋅
⋅ ⋅

E
E

. 

The physical surface of the dipole is 
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 3 2 4 210 2.1 10
15pA dl ππ λ λ− −= = = × ⋅ . 

The aperture efficiency of this dipole is then 

4

0.119 568.2
2.1 10

e
ap

p

A
A

ε
−

= = =
×

. 

 
 
It is evident from the above example, that the aperture efficiency is not a 
suitable parameter for wire antennas, which have very small surface area. 
However, the effective area is still a useful parameter for wire antennas as it has 
direct relation with the directivity, as discussed next. 
 
 
11. Relation Between Directivity 0D  and Effective Aperture eA  

The simplest derivation of this relation goes through two stages. 
Stage 1: Prove that the ratio 0 / eD A  is the same for any antenna. 

Consider two antennas: A1 and A2. Let A1 be the transmitting antenna, and 
A2 be the receiving one. Let the distance between the two antennas be R. The 
power density generated by A1 at A2 is 

 1 1
1 24

DW
Rπ
Π

= . 

Here, 1Π  is the total power radiated by A1 and 1D  is the directivity of A1. The 
above follows directly from the definition of directivity: 

 
2

2
( , ) 4 ( , ) ( , )( , ) 4 ( , )

4
U R W DD W

R
θ ϕ π θ ϕ θ ϕθ ϕ π θ ϕ

π
Π

= = ⇒ =
Π Π

. 

The power received by A2 and delivered to its load is 

 2
2

1 1
1 2 1 24

e
e

D AP A W
Rπ→

Π
= ⋅ = , 

where 2eA  is the effective area of A2. 

 2
1 22

1
1

4e
PD A Rπ →⇒ =
Π

. 

Now, let A1 be the receiving antenna and A2 be the transmitting one. We 
can derive the following: 
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 1
2 12

2
2

4e
PD A Rπ →=
Π

. 

If 1 2Π = Π , then, according to the reciprocity principle in 
electromagnetics♣, 1 2 2 1P P→ →= . Therefore, 

 2 1
1 2

1 2
1 2  .e e

e e

D DD A D A
A A

γ= ⇒ = =  

We thus proved that γ  is the same for every antenna. 
 
 
 
Stage 2: Find the ratio 0 / eD Aγ =  for an infinitesimal dipole. 

The directivity of a very short dipole (infinitesimal dipole) is 0 1.5idD =  (see 
Examples of Section 4, this Lecture). The effective aperture of an infinitesimal 
dipole is 23 / (8 )id

eA λ π=  (see the Example of Section 10, this Lecture). Then, 

 0
2

1.5 8
3e

D
A

γ π
λ

= = ⋅ , 

 0
2

4
e

D
A

πγ
λ

= = . (4.65) 

Equation (4.65) is true if there are no dissipation, polarization mismatch, and 
impedance mismatch in the antenna system. If those factors are present, then 

 


0

2
2 2

0ˆ ˆ(1 | | ) | |
4e w a

G

A eDλ
π

 = − Γ ⋅  
 

ρ ρ . (4.66) 

From (4.20) and (4.65), we can obtain a simple relation between the antenna 
beam solid angle AΩ  and Ae: 

 
2 2

04e
A

A Dλ λ
π

= =
Ω

. (4.67) 

 
 
 
 

                                                 
♣ Reciprocity in antenna theory states that if antenna #1 is a transmitting antenna and antenna #2 is a receiving antenna, then 
the ratio of transmitted to received power /tra recP P  will not change if antenna #1 becomes the receiving antenna and antenna 
#2 becomes the transmitting one. 
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12. Other Antenna Equivalent Areas 
Before, we have defined the antenna effective area (or effective aperture) as 

the area, which when multiplied by the incident wave power density, produces 
the power delivered to the load (the terminals of the antenna) AP . In a similar 
manner, we define the antenna scattering area sA . It is the area, which when 
multiplied with the incident wave power density, produces the re-radiated 
(scattered) power: 

 
2| |

2
s A r

s
i i

P I RA
W W

= = , m2. (4.68) 

In the case of conjugate matching, 

 
2 2

2 2

| | | |
8 ( ) 8

A r A r
s

i r l i A

V R V RA
W R R W R

= =
+

, m2. (4.69) 

The loss area is the area, which when multiplied by the incident wave power 
density, produces the dissipated (as heat) power of the antenna. 

 
2| |

2
l A l

l
i i

P I RA
W W

= = , m2. (4.70) 

In the case of conjugate matching, 

 
2 2

2 2

| | | |
8 ( ) 8

A l A l
l

i r l i A

V R V RA
W R R W R

= =
+

, m2. (4.71) 

The capture area is the area, which when multiplied with the incident wave 
power density, produces the total power intercepted by the antenna: 

 
2| | ( )

2
t A r l L

c
i i

P I R R RA
W W

+ +
= = . (4.72) 

In the case of conjugate matching, 

 
2 2 2

2 2

| | ( ) | | ( ) | | 1
8 ( ) 8 4

A r l L A A L A
c

i r l i i AA

V R R R V R R VA
W R R W R W R

+ + +
= = =

+
. (4.73) 

The capture area is the sum of the effective area, the loss area and the 
scattering area: 

 c e l sA A A A= + + . (4.74) 
When conjugate matching is achieved, 
 0.5e l s cA A A A= + = . (4.75) 
If conjugate matching is achieved for a loss-free antenna, then 
 0.5e s cA A A= = . (4.76) 
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The polarization is the locus traced by the extremity of the time-varying field 
vector at a fixed observation point. 

Lecture 5: Polarization and Related Antenna Parameters 
(Polarization of EM fields – revision. Polarization vector. Antenna 
polarization. Polarization loss factor and polarization efficiency.) 
 
1. Introduction and Definition 

The polarization of the EM field describes the orientation of its vectors at a 
given point and how it varies with time. In other words, it describes the way the 
direction and magnitude of the field vectors (usually E) change in time. 
Polarization is associated with TEM time-harmonic waves where the H vector 
relates to the E vector simply by ˆ /η= ×H r E . 

In antenna theory, we are concerned with the polarization of the field in the 
plane orthogonal to the direction of propagation—this is the plane defined by 
the far-zone vectors E and H. Remember that the far field is a quasi-TEM field. 

 

 
According to the shape of the trace, three types of polarization exist for 

harmonic fields: linear, circular and elliptical. Any polarization can be 
represented by two orthogonal linear polarizations, ( ,x yE E ) or ( ,H VE E ), the 
fields of which may, in general, have different magnitudes and may be out of 
phase by an angle Lδ . 
 
 
 

x

y

z

E

x

y

z
ω

x

y

zE E

 
 (a) linear polarization (b) circular polarization (c) elliptical polarization 
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• If 0Lδ =  or nπ , then the field is linearly polarized. 
 
 

   

   
Animation: Linear Polarization, 0Lδ = , x yE E=  

 

( ) onlyHe t 

( )Ve t

( )He t

0tω =0tω =

( ) onlyHe t 

( )Ve t

( )He t

tω π=tω π=
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• If / 2 (90 )Lδ π=   and | | | |x yE E= , then the field is circularly polarized. 
 

    
Animation: Clockwise Circular Rotation 

 
 

• In the most general case, the polarization is elliptical. 
 

   
Animation: Counter-clockwise Elliptical Rotation 

 
 
 

It is also true that any type of polarization can be represented by a right-
hand circular and a left-hand circular polarizations ( LE , RE ). [Animation] 

Next, we review the above statements and definitions, and introduce the 
new concept of polarization vector. 

2 1 / 2t tω ω π= +1tω

/ 2tω π=0tω =
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2. Field Polarization in Terms of Two Orthogonal Linearly Polarized 
Components 
The polarization of any field can be represented by a set of two orthogonal 

linearly polarized fields. Assume that locally a far-field wave propagates along 
the z-axis. The far-zone field vectors have only transverse components. Then, 
the set of two orthogonal linearly polarized fields along the x-axis and along 
the y-axis, is sufficient to represent any TEMz field. We use this arrangement to 
introduce the concept of polarization vector. 

The field (time-dependent or phasor vector) is decomposed into two 
orthogonal components: 
 x y x y= + ⇒ = +e e e E E E , (5.1) 

 
( )
( )

ˆ ˆcos  
ˆ ˆcos .L

j z
x x x x

j z j
y y L y y

E t z E e
E t z E e e

β

β δ

ω β
ω β δ

−

−

= − =
⇒

= − + =
e x E x
e y E y

 (5.2) 

At a fixed position (assume 0z = ), equation (5.1) can be written as 

 
ˆ ˆ( ) cos cos( )

ˆ ˆ L

x y L

j
x y

t E t E t

E E e δ

ω ω δ= ⋅ + ⋅ +

⇒ = ⋅ + ⋅

e x y

E x y
 (5.3) 

 
Case 1:  Linear polarization: , 0,1,2,L n nδ π= =   

 
ˆ ˆ( ) cos( ) cos( )

ˆ ˆ
x y

x y

t E t E t n

E E

ω ω π= ⋅ + ⋅ ±

⇒ = ⋅ ± ⋅

e x y

E x y
 (5.4) 

 

arctan y

x

E
E

τ  = ±  
 

τ

2
0

L kδ π
τ
=

⇒ >

x

y

E

xE

yE

(a)

(2 1)
0

L kδ π
τ
= +

⇒ <

(b)

x

y

τ
xEyEE
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Case 2: Circular polarization: 

and , 0,1,2,
2x y m LE E E n nπδ π = = = ± + = 

 
 

 
ˆ ˆ( ) cos( ) cos[ ( / 2 )]

ˆ ˆ( )
x y

m

t E t E t n

E j

ω ω π π= + ± +

⇒ = ±

e x y

E x y
 (5.5) 

 
 

x

y

0tω =

4
t πω =

2
t πω =

3
4

t πω =

tω π=

5
4

t πω =

3
2

t πω =
7
4

t πω =

ˆ ˆ( )

2
2

m

L

E j

nπδ π

= +

= + +

E x y

z
x

y

0tω =

4
t πω =

2
t πω =

3
4

t πω =

tω π=

5
4

t πω = 3
2

t πω =

7
4

t πω =

ˆ ˆ( )

2
2

m

L

E j

nπδ π

= −

= − −

E x y

z

 
 
 
 

 
Note that the sense of rotation changes if the direction of propagation 

changes. In the example above, if the wave propagates along ˆ−z , the plot to the 
left, where ˆ ˆ( )mE j= +E x y , corresponds to a right-hand (RH) wave, while the 
plot to the right, where ˆ ˆ( )mE j= −E x y , corresponds to a left-hand (LH) wave. 
Vice versa, if the wave propagates along ˆ+z , then the left plot shows a LH 
wave, whereas the right plot shows a RH wave. 

If ˆ+z  is the direction of propagation: 
counterclockwise (CCW) or left-
hand (LH) polarization 

If ˆ+z  is the direction of 
propagation: clockwise (CW) or 
right-hand (RH) polarization 
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A snapshot of the field vector along the axis of propagation is given below 
for a right-hand circularly polarized (RHCP) wave. Pick an observing position 
along the axis of propagation (see the plane defined by the x and y axes in the 
plot below) and imagine that the whole helical trajectory of the tip of the field 
vector moves along the wave vector k . Are you going to see the vector rotating 
clockwise or counter-clockwise as you look along k ? (Ans.: Clockwise, which 
is equivalent to RH sense of rotation.) 

 

 
[Hayt, Buck, Engineering Electromagnetics, 8th ed., p. 399] 

 
Case 3:  Elliptic polarization 
The field vector at a given point traces an ellipse as a function of time. This 

is the most general type of polarization, obtained for any phase difference δ  
and any ratio ( / )x yE E . Mathematically, the linear and the circular 
polarizations are special cases of the elliptical polarization. In practice, 
however, the term elliptical polarization is used to indicate polarizations other 
than linear or circular. 

 
ˆ ˆ( ) cos cos( )
ˆ ˆ L

x y L

j
x y

t E t E t
E E e δ

ω ω δ= + +

⇒ = +

e x y
E x y

 (5.6) 

x
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Show that the trace of the time-dependent vector is an ellipse: 
 ( ) (cos cos sin sin )y y L Le t E t tω δ ω δ= ⋅ − ⋅  

( )cos x

x

e tt
E

ω =  and 
2( )sin 1 x

x

e tt
E

ω  = −  
 

 

22
2 ( ) ( )( ) ( )sin 2 cosy yx x

L L
x x y y

e t e te t e t
E E E E

δ δ
      = − +             

 

or (dividing both sides by 2sin Lδ ), 
 2 21 ( ) 2 ( ) ( )cos ( )Lx t x t y t y tδ= − + , (5.7) 

where 
( ) cos( )

sin sin
x

x L L

e t tx t
E

ω
δ δ

= = , 

( ) cos( )( )
sin sin
y L

y L L

e t ty t
E

ω δ
δ δ

+
= = . 

Equation (5.7) is the equation of an ellipse centered in the xy  plane. It 
describes the trajectory of a point of coordinates x(t) and y(t), i.e., normalized 

( )xe t  and ( )ye t  values, along an ellipse where the point moves with an angular 
frequency ω . 

As the circular polarization, the elliptical polarization can be right-handed 
or left-handed, depending on the relation between the direction of propagation 
and the sense of rotation. 

( )xe t

( )ye t

major axis (2
 OA)

m
inor axis (2 OB)

τ

xE

yE

E

ω
 

The parameters of the polarization ellipse are given below. Their derivation 
is given in Appendix I. 
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a) major axis (2 OA× ) 

 2 2 4 4 2 21OA = 2 cos(2 )
2 x y x y x y LE E E E E E δ + + + +   (5.8) 

b) minor axis (2 OB× ) 

 2 2 4 4 2 21OB = 2 cos(2 )
2 x y x y x y LE E E E E E δ + − + +   (5.9) 

c) tilt angle τ  

 
2 2

21 arctan cos
2 2

x y
L

x y

A

E E
E E

πτ δ


= ± − 


 (5.10) 

Note: Eq. (5.10) produces an infinite number of angles, τ = (arctanA)/2 
/ 2nπ± , n = 1,2,….Thus, it gives not only the angle which the major 

axis of the ellipse forms with the x axis but also the angle of the minor 
axis with the x axis. In spherical coordinates, τ is usually specified 
with respect to the θ̂  direction 

d) axial ratio 

 
major axis OA
minor axis OB

AR = =  (5.11) 

Note: The linear and circular polarizations as special cases of the elliptical 
polarization: 

• If 2
2L nπδ π = ± + 

 
 and x yE E= , then OA OB x yE E= = = ; the ellipse 

becomes a circle. 
• If L nδ π= , then OB 0=  and arctan( / )y xE Eτ = ± ; the ellipse collapses 

into a line. 
 
3. Field Polarization in Terms of Two Circularly Polarized Components 

The representation of a complex vector field in terms of circularly polarized 
components is somewhat less intuitive but it is actually more useful in the 
calculation of the polarization ellipse parameters. This time, the total field 
phasor is represented as the superposition of two circularly polarized waves, 
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The polarization vector is the normalized phasor of the electric field vector. 
It is a complex-valued vector of unit magnitude, i.e., ˆ ˆ 1L L

∗⋅ =ρ ρ . 

one right-handed and the other left-handed. For the case of a wave propagating 
along z−  [see Case 2 and Eq. (5.5)], 
 ˆ ˆ ˆ ˆ( ) ( )R LE j E j= + + −E x y x y . (5.12) 
Here, ER and EL are, in general, complex phasors. Assuming a relative phase 
difference of C R Lδ ϕ ϕ= − , one can write (5.12) as 
 ˆ ˆ ˆ ˆ( ) ( )Cj

R Le e j e jδ= + + −E x y x y , (5.13) 
where Re  and Le  are real numbers. 

The relations between the linear-component and the circular-component 
representations of the field polarization are easily found as 
 ˆ ˆ( ) ( )

x y

R L R L

E E

E E j E E= + + −E x y
 

 (5.14) 

     
( )

x R L
y R L

E E E
E j E E

= +⇒ = −  (5.15) 

 
0.5( )
0.5( ).

R x y

L x y

E E jE
E E jE

= −
⇒

= +
 (5.16) 

 
4. Polarization Vector and Polarization Ratio of a Plane Wave 

 2 2ˆ ˆ ˆ ,Lyx j
L m x y

m m m

EE e E E E
E E E

δ= = + = +
Eρ x y  (5.17) 

The expression in (5.17) assumes a wave decomposition into linearly polarized 
(x and y) components, thereby the subscript L. Polarization vector in terms of 
RHCP and LHCP components is also used. The polarization vector defined in 
(5.17) takes the following specific forms in the cases of linearly, circularly and 
elliptically polarized waves. 

Case 1:  Linear polarization (the polarization vector is real-valued) 

 2 2ˆ ˆ ˆ ,yx
m x y

m m

EE E E E
E E

= ± = +ρ x y  (5.18) 

where xE  and yE  are real numbers. 
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The polarization ratio is the ratio of the phasors of the two orthogonal 
polarization components. In general, it is a complex number: 

Case 2: Circular polarization (the polarization vector is complex-valued) 

 ( )1ˆ ˆ ˆ , 2 2
2

L m x yj E E E= ± = =ρ x y  (5.19) 

 

 or
L

L
j

y y V
L L L

x x H

E E e Er r e r
E E E

δ
δ= = = =




 

 

 (5.20) 

Point of interest: In the case of circular-component representation, the 
polarization ratio is defined as 

 C Rj
C C

L

Er r e
E

δ= =






. (5.21) 

The circular polarization ratio Cr  is of particular interest since the axial ratio of 
the polarization ellipse AR can be expressed as 

 
1
1

C

C

rAR
r
+

=
−

. (5.22) 

Besides, its tilt angle with respect to the y (vertical) axis is simply 
 / 2V C nτ δ π= + , 0, 1,...n = ±  . (5.23) 

Comparing (5.10) and (5.23) readily shows the relation between the phase 
difference δC of the circular-component representation and the linear 
polarization ratio Lj

L Lr r e δ= : 

 
2

2arctan cos
1

L
C L

L

r
r

δ δ 
=  − 

. (5.24) 

We can calculate Cr  from the linear polarization ratio Lr  making use of (5.11) 
and (5.22): 

 
2 4 2

2 4 2

1 1 2 cos(2 )1
1 1 1 2 cos(2 )

LC L L L

C LL L L

r r rrAR
r r r r

δ
δ

+ + + ++
= =

− + − + +
. (5.25) 

Using (5.24) and (5.25) allows for the switching between the representation of 
the wave polarization in terms of linear and circular components. 
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5. Antenna Polarization 
The polarization of a transmitting antenna is the polarization of its 

radiated wave in the far zone. The polarization of a receiving antenna is the 
polarization of an incident plane wave, which, for a given power flux density, 
results in maximum available power at the antenna terminals.  

By convention, the antenna polarization is defined by the polarization 
vector of the wave it transmits. Therefore, the antenna polarization vector is 
determined according to the definition of antenna polarization in a transmitting 
mode. Notice that the polarization vector ˆ t

wρ  of a wave in the coordinate 
system of transmission (the wave moves away from the antenna at the origin, 
i.e., along r̂ ) is the conjugate of its polarization vector ˆ r

wρ  in the coordinate 
system of reception (the wave moves toward the antenna at the origin, i.e., 
along ˆ−r ): 
 ˆ ˆ( )r t

w w
∗=ρ ρ . (5.26) 

The conjugation is without importance for a linearly polarized wave since its 
polarization vector is real. It is, however, important in the cases of circularly 
and elliptically polarized waves. 

This is illustrated in the figure below with a RHCP wave. Let the coordinate 
triplet 1 2 3( , , )t t tx x x  represent the coordinate system of the transmitting antenna 
while 1 2 3( , , )r r rx x x  represents that of the receiving antenna. In antenna analysis, 
the plane of polarization is usually given in spherical coordinates by 

1 2 ˆ ˆˆ ˆ( , ) ( , )≡x x θ φ  and the third axis obeys 1 2 3ˆ ˆ ˆ× =x x x , i.e., 3 ˆˆ =x r . Since the 
transmitting and receiving antennas face each other, their coordinate systems 
are oriented so that 3 3ˆ ˆt r= −x x  (i.e., ˆ ˆr t= −r r ). If we align the axes 1ˆ tx  and 1ˆ rx , 
then 2 2ˆ ˆt r= −x x  must hold. This changes the sign of the respective (2nd) field 
vector component. Upon normalization, this results in a change of sign in the 
imaginary part of the wave polarization vector. 

Bearing in mind the definitions of antenna polarization in transmitting and 
receiving modes, we conclude that in a common coordinate system the 
transmitting-mode polarization vector of an antenna is the conjugate of its 
receiving-mode polarization vector. 

 



 

Nikolova 2018 12 

3
ˆ ˆ t=k x

1 2
1ˆ ˆ ˆ( )
2

t t t
w j= −ρ x x

RHCP wave

1
tx

2
tx

3
tx

1
rx

2
rx

3
rx

3
ˆ ˆ r= −k x

1 2
1ˆ ˆ ˆ( )
2

r r r
w j= +ρ x x

0tω = 0tω =

/ 2tω π=/ 2tω π=

 
 

6. Polarization Loss Factor (Polarization Efficiency) 
Generally, the polarization of the receiving antenna is not the same as the 

polarization of the incident wave. This is called polarization mismatch. The 
polarization loss factor (PLF) characterizes the loss of EM power due to the 
polarization mismatch. The PLF is defined so that it attains a value of 1 (or 
100%, or 0 dB) if there is no polarization mismatch, i.e., the antenna receives 
the maximum possible power for the given incident power density. A PLF 
equal to 0 (−∞  dB) indicates complete polarization mismatch and inability to 
capture power from the incident wave. Thus, 
 0 PLF 1≤ ≤ . (5.27) 

Note that the polarization loss has nothing to do with dissipation. It can be 
viewed as a “missed opportunity” to capture as much power from the incident 
wave as possible. The polarization efficiency has the same meaning as PLF. 

Let us denote the polarization vector of a wave incident upon a receiving 
antenna as ˆ wρ . In the coordinate system where the receiving antenna is at the 
origin, this vector describes a wave propagating along ˆ−r . Assume also that 
the polarization vector of the wave that the receiving antenna would produce if 
it were to operate in transmitting mode is ˆ aρ . In the coordinate system where 
the receiving antenna is at the origin, this vector describes a wave propagating 
along ˆ+r . Then, the PLF is defined as 
 2ˆ ˆPLF | |w a= ⋅ρ ρ . (5.28) 
Note that if ˆ ˆw a

∗ =ρ ρ , i.e., the incident field is 
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 ˆi i
m aE ∗=E ρ , 

PLF = 1, and we obtain maximum possible received power at the antenna 
terminals. Remember that the transmitting-mode and receiving-mode 
polarization vectors of a wave a mutually conjugate? This means that ˆ a

∗ρ  is 
nothing but the wave the receiving antenna would generate if it were to 
transmit in the direction of the incident-wave propagation. Thus, the optimal 
polarization of the incident wave is the one that matches the polarization of the 
wave produced by the receiving antenna if it was the one launching the 
incident wave. 

Here are some simple examples:  
1) if ˆ ˆ ˆ ˆw a a

∗= = =ρ ρ ρ x , then PLF=1;  
2) if ˆ ˆw =ρ x  and ˆ ˆ ˆa a

∗= =ρ ρ y , then PLF=0;  
3) if ˆ ˆ ˆ ˆw a j= = +ρ ρ x y , then PLF=0; 
4) if ˆ ˆ ˆw j= +ρ x y  and ˆ ˆ ˆa j= −ρ x y  ( ˆ ˆw a

∗ =ρ ρ ), then PLF=1. 

 

 
[Balanis, 2nd ed.] 
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In a communication link, the PLF has to be expressed by the polarization 
vectors of the transmitting and receiving antennas, Txρ̂  and Rxρ̂ , respectively. 
Both of these are defined in the coordinate system of the respective antenna as 
the polarization of the transmitted wave. However, these two coordinate 
systems have their radial unit vectors pointing in opposite directions, i.e., 

Rx Txˆ ˆ= −r r  as illustrated in the figure below. Therefore, either Txρ̂  or Rxρ̂  has to 
be conjugated when calculating the PLF (it does not matter which one). For 
example, if the reference coordinate system is that of the receiving antenna, 
then 
 

2
Tx Rxˆ ˆPLF ∗= ⋅ρ ρ . (5.29) 

The expression 
2

Tx Rxˆ ˆPLF ∗= ⋅ρ ρ  is also correct. 

Txr̂ Rxr̂
Txθ̂

Txφ̂

Rxφ̂Rxθ̂

Txρ̂ Txˆ∗ρ
Rxρ̂Rxˆ∗ρ  

 
Examples 

Example 5.1.  The electric field of a linearly polarized EM wave is 
 ˆ ( , )i j z

mE x y e β−= ⋅E x . 
It is incident upon a linearly polarized receiving antenna, which would 
transmit the field  

 ˆ ˆ( ) j z
a e β= + ⋅E x y  

if it were to operate in a transmitting instead of receiving mode. Find the 
PLF. 

 
Notice that aE  propagates along z−  in accordance with the requirement 
that it represents a transmitted wave. 

21 1ˆ ˆ ˆPLF ( )
22

= ⋅ + =x x y  

[dB] 10PLF 10log 0.5 3= = −  dB 
 



 

Nikolova 2018 15 

Example 5.2.  A transmitting antenna produces a far-zone field, which is 
RH circularly polarized. This field impinges upon a receiving antenna, 
whose polarization (in transmitting mode) is also RH circular. Determine 
the PLF. 

 
Both antennas (the transmitting one and the receiving one) are RH 
circularly polarized in transmitting mode. Assume that a transmitting 
antenna is located at the center of a spherical coordinate system. The far-
zone field it would produce is described as 

ˆ ˆcos cos( / 2)far
mE t tω ω π = ⋅ + ⋅ − E θ φ . 

This is a RHCP field with respect to the outward radial direction r̂ . Its 
polarization vector is 

Tx
ˆ ˆˆ

2
j−

=
θ φρ . 

This is exactly the polarization vector of the transmitting antenna in its 
own coordinate system. 
 

x

y

z

r

ϕ

θ Eθ

Eϕ

 
 
Since the receiving antenna is also RHCP, its polarization vector is 

 Rx
ˆ ˆˆ

2
j−

=
θ φρ . 

The PLF is calculated as per (5.29): 
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2
* 2
Tx Rx

ˆ ˆˆ ˆ| ( ) ( ) |ˆ ˆPLF | | 1
4

j j+ ⋅ −
= ⋅ = =

θ φ θ φρ ρ , 

[dB] 10PLF 10log 1 0= = . 
There is no polarization loss. 

 
 
Exercise: Show that an antenna of RH circular polarization (in transmitting 
mode) cannot receive LH circularly polarized incident wave (or a wave 
emitted by a left-circularly polarized antenna). 
 
 
 

Appendix I 
Find the tilt angle τ , the length of the major axis OA, and the length of the 
minor axis OB of the ellipse described by the equation: 

22
2 ( ) ( )( ) ( )sin 2 cosy yx x

x x y y

e t e te t e t
E E E E

δ δ
      = − +             

. 

 

( )xe t

( )ye t

major axis (2
 OA)

m
inor axis (2 OB)

τ

xE

yE

E

ω
 

 
Equation (A-1) can be written as 

2 2 1a x b xy c y⋅ − ⋅ + ⋅ = , 
where 

( )xx e t=  and ( )yy e t=  are the coordinates of a point of the ellipse 
centered in the xy  plane; 

(A-1) 

(A-2) 
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2 2
1

sinx
a

E δ
= ; 

2
2cos

sinx y
b

E E
δ
δ

= ; 

2 2
1

siny
c

E δ
= . 

After dividing both sides of (A-2) by ( )xy , one obtains 
1x ya b c

y x xy
− + = . 

Introducing ( )
( )

y

x

e ty
x e t

ξ = = , one obtains that 

2
2

2
2 2 2 2 2

2

1

1( ) (1 ) .

x
c b a

x y x
c b a

ξ ξ
ξρ ξ ξ

ξ ξ

=
− +

+
⇒ = + = + =

− +

 

Here, ρ  is the distance from the center of the coordinate system to the point on 
the ellipse. We want to know at what values of ξ  the maximum and the 
minimum of ρ  occur ( minξ , maxξ ). This will produce the tilt angle τ . We also 
want to know the values of maxρ  (major axis) and minρ  (minor axis). Then, we 
have to solve 

2( ) 0d
d
ρ
ξ

= , or 

2
m m

2( ) 1 0a c
b

ξ ξ−
− − = , where m min max,ξ ξ ξ≡ . 

(A-5) is solved for the angle τ, which relates to ξmax as 
( )max maxtan /y xξ τ= = . 

Substituting (A-6) in (A-5) yields: 
2sin sin2 1 0

cos cos
Cτ τ

τ τ
   − − =   
   

 

where  

(A-3) 

(A-4) 

(A-5) 

(A-6) 

(A-7) 
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2 2

2 cos
y x

x y

E Ea cC
b E E δ

−−
= = . 

Multiplying both sides of (A-7) by 2cos τ  and re-arranging results in 
2 2

cos(2 ) sin(2 )
cos sin 2 sin cos 0

C
C

τ τ

τ τ τ τ− + ⋅ =
 

. 

Thus, the solution of (A-7) is  
tan(2 ) 1 / Cτ = −  

or 

1 2 12 2

2 cos1 arctan ;
2 2

x y

x y

E E
E E

δ πτ τ τ
 

= = + − 
. 

The angles τ1 and τ2 are the angles between the major and minor axes with the x 
axis. Substituting 1τ  and 2τ  back in ρ  (see A-4) yields the expressions for OA 
and OB. 

(A-8) 
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Lecture 6: Friis Transmission Equation and Radar Range Equation 
(Friis equation. EIRP. Maximum range of a wireless link. Radar cross section. 
Radar equation. Maximum range of a radar.) 
 
1. Friis Transmission Equation 

Friis transmission equation is essential in the analysis and design of wireless 
communication systems. It relates the power fed to the transmitting antenna and 
the power received by the receiving antenna when the two antennas are 
separated by a sufficiently large distance ( 2

max2 /R D λ>> ), i.e., they are in each 
other’s far zones. We derive the Friis equation next. 

A transmitting antenna produces power density ( , )t t tW θ ϕ  in the direction 
( , )t tθ ϕ . This power density depends on the transmitting antenna gain in the 
given direction ( , )t tG θ ϕ , on the power of the transmitter tP  fed to it, and on the 
distance R between the antenna and the observation point as 

 2 2( , ) ( , )
4 4

t t
t t t t t t t t

P PW G e D
R R

θ ϕ θ ϕ
π π

= = . (6.1) 

Here, te  denotes the radiation efficiency of the transmitting antenna and tD  is 
its directivity. The power Pr at the terminals of the receiving antenna can be 
expressed via its effective area rA  and tW : 
 r r tP A W= . (6.2) 
 

R
( , )t tθ ϕ ( , )r rθ ϕ

 
 
 

To include polarization and dissipation in the receiving antenna, we add the 
radiation efficiency of the receiving antenna re  and the PLF: 
 2ˆ ˆPLF | |r r r t r t r t rP e A W A W e ∗= ⋅ ⋅ = ⋅ρ ρ , (6.3) 

 
2

2ˆ ˆ( , ) | |
4

r

r r r r t r t r

A

P D W eλθ ϕ
π

∗⇒ = ⋅ ⋅ ⋅ρ ρ


. (6.4) 
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Here, rD  is the directivity or the receiving antenna. The polarization vectors of 
the transmitting and receiving antennas, ˆ tρ  and ˆ rρ , are evaluated in their 
respective coordinate systems; this is why, one of them has to be conjugated 
when calculating the PLF. 

The signal is incident upon the receiving antenna from a direction ( , )r rθ ϕ , 
which is defined in the coordinate system of the receiving antenna: 

 
2

2
2

ˆ ˆ( , ) ( , ) | |
4 4

t

t
r r r r t t t t r t r

W

PP D e D e
R

λθ ϕ θ ϕ
π π

∗⇒ = ⋅ ⋅ ⋅ ⋅ρ ρ


. (6.5) 

The ratio of the received to the transmitted power is obtained as 

 
2

2ˆ ˆ| | ( , ) ( , )
4

r
t r t r t t t r r r

t

P e e D D
P R

λ θ ϕ θ ϕ
π

∗  = ⋅  
 

ρ ρ . (6.6) 

If the impedance-mismatch loss factor is included in both the receiving and the 
transmitting antenna systems, the above ratio becomes 

 
2

2 2 2ˆ ˆ(1 | | )(1 | | ) | | ( , ) ( , )
4

r
t r t r t r t t t r r r

t

P e e D D
P R

λ θ ϕ θ ϕ
π

∗  = − Γ − Γ ⋅  
 

ρ ρ . (6.7) 

The above equations are variations of Friis’ transmission equation, which is 
widely used in the design of wireless systems as well as the estimation of 
antenna radiation efficiency (when the antenna directivity is known). 

For the case of impedance-matched and polarization-matched transmitting 
and receiving antennas, Friis equation reduces to 

 
2

( , ) ( , )
4

r
t t t r r r

t

P G G
P R

λ θ ϕ θ ϕ
π

=  
 

. (6.8) 

The factor 2( / 4 )Rλ π  is called the free-space loss factor. It reflects two effects: 
(1) the decrease in the power density due to the spherical spread of the wave 
through the term 21/ (4 )Rπ , and (2) the effective aperture dependence on the 
wavelength as 2 / (4 )λ π . 
 
2. Effective Isotropically Radiated Power (EIRP) 

From the Friis equation (6.8), it is seen that to estimate the received power 
Pr we need the product of the transmitter power Pt and the transmitting antenna 
gain Gt. If the transmission line introduces losses in addition to those of the 
antenna system, these need to be accounted for as well. This is why often a 
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transmission system is characterized by its effective isotropically radiated 
power (EIRP): 
 TLt tEIRP PG e= , W (6.9) 
where eTL is the loss efficiency of the transmission line connecting the 
transmitter to the antenna. Usually, the EIRP is given in dB, in which case (6.9) 
becomes 
 dB dB dBi TL,dBt tEIRP P G e= + + . (6.10) 

Bearing in mind that , TLin t tP e P=  and max, ,4 /t t in tG U Pπ= , the EIRP can also 
be written as 
 max,4 tEIRP Uπ= , W. (6.11) 
It is now clear that the EIRP is a fictitious amount of power that an isotropic 
radiator would have to emit in order to produce the peak power density 
observed in the direction of the maximum radiation. As such, and as evident 
from (6.9), the EIRP is greater than the actual power an antenna needs in order 
to achieve a given amount of radiation intensity in its direction of maximum 
radiation. 
 
3. Maximum Range of a Wireless Link 

Friis’ transmission equation is frequently used to calculate the maximum 
range at which a wireless link can operate. For that, we need to know the 
nominal power of the transmitter tP , all the parameters of the transmitting and 
receiving antenna systems (such as polarization, gain, losses, impedance 
mismatch), and the minimum power at which the receiver can operate reliably 

minrP . Then, 

 
2
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max
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4
t
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r
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P
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π

∗   = − Γ − Γ ⋅       
ρ ρ . (6.12) 

The minimum power at which the receiver can operate reliably is dependent on 
numerous factors, of which very important is the signal-to-noise ratio (SNR). 
There are different sources of noise but we are mostly concerned with the noise 
of the antenna itself. This topic is considered in the next lecture. 
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4. Radar Cross-section (RCS) or Echo Area 
The RCS is a far-field characteristic of a radar target, which creates an echo 

by scattering (reflecting) the radar EM wave.  
 

 

 
2

2 2
2

| |lim 4 lim 4
| |

s s

R Ri i

WR R
W

σ π π
→∞ →∞

  = =      

E
E

, m2. (6.13) 

Here, 
R is the distance from the target, m; 

iW  is the incident power density, W/m2; 
sW  is the scattered power density at the receiver, W/m2. 

 
To understand better the above definition, we can re-write (6.13) in an 
equivalent form: 

 2lim ( )
4

i
s

R

W W R
R

σ
π→∞

  =  
. (6.14) 

The product iWσ  represents the equivalent intercepted power, which is 
assumed to be scattered (re-radiated) isotropically to create a fictitious spherical 
wave, the power density Ws of which decreases with distance as 21 / R  in the far 
zone. It is then expected that iWσ  is a quantity independent of distance. sW  
must be equal to the true scattered power density sW  produced by the real 
scatterer (the radar target). 

We note that in general the RCS has little in common with any of the cross-
sections of the actual scatterer. However, it is representative of the reflection 
properties of the target. It depends very much on the angle of incidence, on the 
angle of observation, on the shape and size of the scatterer, on the EM 
properties of the materials that it is built of, and on the wavelength. The RCS of 
targets is similar to the concept of effective aperture of antennas. 

Large RCSs result from large metal content in the structure of the object 
(e.g., trucks and jumbo jet airliners have large RCS, 100σ >  m2). The RCS 
increases also due to sharp metallic or dielectric edges and corners. The 
reduction of the RCS is desired for stealth military aircraft meant to be invisible 

The RCS of a target σ is the equivalent area capturing that amount of power, 
which, when scattered isotropically, produces at the receiver an amount of 
power density, which is equal to that scattered by the target itself: 
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to radars. This is achieved by careful shaping and coating (with special 
materials) of the outer surface of the airplane. The materials are mostly 
designed to absorb EM waves at the radar frequencies (usually S and X bands). 
Layered structures can also cancel the backscatter in a particular bandwidth. 
Shaping aims mostly at directing the backscattered wave at a direction different 
from the direction of incidence. Thus, in the case of a monostatic radar system, 
the scattered wave is directed away from the receiver. The stealth aircraft has 
RCS smaller than 410−  m2, which makes it comparable or smaller than the RCS 
of a penny. 

 
5. Radar Range Equation 

The radar range equation (RRE) gives the ratio of the transmitted power (fed 
to the transmitting antenna) to the received power, after it has been scattered 
(re-radiated) by a target of cross-section σ . 

In the general radar scattering problem, there is a transmitting and a 
receiving antenna, and they may be located at different positions as shown in 
the figure below. This is called bistatic scattering. 

Often, one antenna is used to transmit an EM pulse and to receive the echo 
from the target. This case is referred to as monostatic scattering or 
backscattering. Bear in mind that the RCS of a target may vary considerably as 
the location of the transmitting and receiving antennas change. 

Assume the power density of the transmitted wave at the target location is 

 2 2
( , ) ( , )

4 4
t t t t t t t t t

t
t t

PG Pe DW
R R
θ ϕ θ ϕ
π π

= = , W/m2. (6.15) 
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( , )r rθ ϕ
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The target is represented by its RCS σ , which is used to calculate the captured 
power c tP Wσ=  (W), which when scattered isotropically gives the power 
density at the receiving antenna that is due to the target. The density of the re-
radiated (scattered) power at the receiving antenna is 

 2 2 2
( , )

4 4 (4 )
c t t t t t

r t
r r t r

P W PDW e
R R R R

σ θ ϕσ
π π π

= = = . (6.16) 

The power transferred to the receiver is 

 
2

2
( , )( , )

4 (4 )
t t t t
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t r

PDP e A W e D e
R R

λ θ ϕθ ϕ σ
π π

 
= ⋅ ⋅ = ⋅ ⋅ 

 
. (6.17) 

Re-arranging and including impedance mismatch losses as well as polarization 
losses, yields the complete radar range equation: 
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ρ ρ . (6.18) 

For polarization matched loss-free antennas aligned for maximum directional 
radiation and reception, 
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. (6.19) 

The radar range equation is used to calculate the maximum range of a 
radar system. As in the case of Friis’ transmission equation, we need to know 
all parameters of both the transmitting and the receiving antennas, as well as the 
minimum received power at which the receiver operates reliably. Then, 
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 (6.20) 

Finally, we note that the above RCS and radar-range calculations are only 
basic. The subjects of radar system design and EM scattering are huge research 
areas themselves and are not going to be considered in detail in this course. 
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Lecture 7: Antenna Noise Temperature and System Signal-to-Noise Ratio 
(Noise temperature. Antenna noise temperature. System noise temperature. 
Minimum detectable temperature. System signal-to-noise ratio.) 

 
1. Noise Temperature of Bright Bodies 

The performance of a telecommunication system depends on the signal-to-
noise ratio (SNR) at the receiver’s input. The electronic circuitry of the RF 
front end (amplifiers, mixers, etc.) has a significant contribution to the system 
noise. However, the antenna itself is sometimes a significant source of noise, 
too. The antenna noise can be divided into two types according to its physical 
source: noise due to the loss resistance of the antenna and noise, which the 
antenna picks up from the surrounding environment. 

Any object whose temperature is above the absolute zero radiates EM 
energy. Thus, an antenna is surrounded by noise sources, which create noise 
power at the antenna terminals. Here, we are not concerned with technological 
sources of noise, which are the subject of the EM interference (EMI) science. 
We are also not concerned with intentional sources of EM interference (EM 
jamming). We are concerned with natural sources of EM noise, which is 
thermal in nature, such as sky noise and ground noise. 

The concept of antenna noise temperature is critical in understanding how the 
antenna contributes to the system noise in low-noise radio-astronomy systems. 
It is also important in understanding the relation between an object’s 
temperature and the power it can generate at the receiving antenna terminals. 
This thermal power is the signal used in passive remote sensing (radiometry) 
and imaging. A radiometer can create temperature images of objects. Typically, 
the remote object’s temperature is measured by comparison with the noise due 
to background sources and the receiver itself. 

Every object (e.g., a resistor R) with a physical temperature above zero (0° K 
= 273− ° C) possesses heat energy. The noise power per unit bandwidth ph is 
proportional to the object’s temperature and is given by Nyquist’s relation: 
 h Pp kT= , W/Hz (7.1) 
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where TP is the physical temperature of the object in K (Kelvin degrees) and k  
is Boltzmann’s constant ( ≈ 231.38 10−×  J/K). 

In the case of a resistor, this is the noise power, which can be measured at the 
resistor’s terminals with a matched load. Thus, a resistor can serve as a noise 
generator. Often, we assume that heat energy is evenly distributed in the 
frequency band f∆ . Then, the associated heat power in f∆  is 
 h PP kT f= ∆ , W. (7.2) 

The noise power radiated by the object depends not only on its physical 
temperature but also on the ability of its surface to let the heat leak out. This 
radiated heat power is associated with the so-called equivalent temperature or 
brightness temperature TB of the body via the power-temperature relation in 
(7.2): 
 B BP kT f= ∆ , W. (7.3) 

Note, however, that the brightness temperature BT  is not the same as the 
physical temperature of the body PT . The two temperatures are proportional: 
 2(1 | | )B s P PT T Tε= − Γ ⋅ = , K (7.4) 

where 
sΓ  is the reflection coefficient of the surface of the body; and 

ε  is what is called the emissivity of the body. 
The brightness power BP  relates to the heat power hP  the same way as BT  
relates to PT , i.e., B hP Pε= . 

 
2. Antenna Noise Temperature 

The power radiated by the body BP , when intercepted by an antenna, 
generates power AP  at its terminals. The equivalent temperature associated with 
the received power AP  at the antenna terminals is called the antenna 
temperature AT  of the object, where again A AP kT f= ∆ . Here, f∆  is a 
bandwidth, which falls within the antenna bandwidth and is sufficiently narrow 
to ensure constant noise-power spectral density. 
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2.1. Antenna noise from large bright bodies 
Let us first assume that the entire antenna pattern (beam) “sees” a uniformly 

“bright” or “warm” object. To simplify matters, we also assume that the 
antenna is lossless, i.e., it has no loss resistance, and, therefore, it does not 
generate noise itself. Then, certain noise power can be measured at its 
terminals, which can be expressed as 
 A BP kT f= ∆ , W. (7.5) 

This is the same noise power as that of an equivalent resistor of temperature BT  
(K). The temperature TB is referred to as the brightness temperature of the 
object at the antenna terminals. 

On the other hand, the antenna temperature is related to the measured noise 
power as 
 A AP kT f= ∆ . (7.6) 

Thus, in this case (when the solid angle subtended by the noise source BΩ  is 
much larger than the antenna solid angle AΩ ), the antenna temperature AT  is 
exactly equal to the object’s temperature BT  (if the antenna is loss-free): 
 , ifA B A BT T= Ω Ω . (7.7) 

 
 

AΩ

BΩ

, KBT 

R , K
BT

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2.2. Detecting large bright bodies (antenna incremental temperature) 
The situation described above is of practical importance. When an antenna 

is pointed right at the night sky, its noise temperature is very low: 3AT =   to 5  
K at frequencies between 1 and 10 GHz. This is the microwave noise 
temperature of the night sky. The higher the elevation angle, the lower the sky 
temperature because of the lower physical temperature of the atmosphere 
toward the zenith. The sky noise depends on the frequency. It depends on the 
time of the day, too. Closer to the horizon, it is mostly due to the thermal 
radiation from the Earth’s surface and the atmosphere. Closer to the zenith, it is 
mostly due to cosmic rays from the sun, the moon and other bright sky objects, 
as well as the deep-space background temperature commonly referred to as the 
cosmic microwave background (TCMB ≈ 2.725° K).1 The latter is a left-over 
thermal effect from the very origin of the universe (the big bang).  

An antenna may also be pointed toward the ground, e.g., when it is mounted 
on an airplane or a satellite. The noise temperature of the ground is much 
higher than that of the night sky because of its much higher physical 
temperature. The ground noise temperature is about 300  K and it varies during 
the day. The noise temperature at approximately zero elevation angle (horizon) 
is about 100  to 150  K. 

When a single large bright body is in the antenna beam, (7.7) holds. In 
practice, however, the antenna temperature may include contributions from 
several large sources. The source under observation, although large itself, may 
be superimposed on a background of certain temperature as well as the noise 
temperature due to the antenna losses, which we initially assumed zero. In order 
the antenna and its receiver to be able to discern a bright body while 
“sweeping” the background, this source has to put out more power than the 
noise power of its background, i.e., it has to be “brighter” than the background 
noise. Thus, in practice, to obtain the brightness temperature of a large object at 
the antenna terminals, the antenna temperature is measured with the beam on 
and off the target. The difference is the antenna incremental temperature AT∆ . 
If the bright body is large enough to “fill in” the antenna beam completely, the 
difference between the background-noise antenna temperature and the 

                                      
1 C.T. Stelzried, A.J. Freiley, and M.S. Reid, Low-noise Receiving Systems. Artech, 2010. 



 

Nikolova 2018 5 

temperature when the antenna solid angle is on the object is equal to the 
object’s brightness temperature, 
 A BT T∆ = . (7.8) 
 
2.3. Antenna noise from small bright bodies 

A different case arises in radiometry and radio astronomy. The bright object 
subtends such a small solid angle that it is well inside the antenna solid angle 
when the antenna is pointed at it: B AΩ Ω . 

 

BΩAΩBS

 
 
 

To separate the power received from the bright body from the background 
noise, the difference in the antenna temperature AT∆  is measured with the beam 
on and off the object. This time, AT∆  is not equal to the bright body 
temperature BT , as it was in the case of a large object. However, both 
temperatures are proportional. The relation is derived below. 

The noise power intercepted by the antenna depends on the antenna 
effective aperture eA  and on the power density at the antenna’s location created 
by the noise source BW : 
 BA eP WA= ⋅ , W. (7.9) 
Assuming that the bright body radiates isotropically and expressing the 
effective area by the antenna solid angle, we obtain 

 
2

24A

B
A R

P Pλ
π

= ⋅
Ω

, W. (7.10) 
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The distance R between the noise source and the antenna is related to the 
effective area of the body SB and the solid angle BΩ  it subtends as 

 2 B

B

SR =
Ω

, m2 (7.11) 

 
2

4A A B B
B

P P
S

λ
π

⇒ Ω = Ω . (7.12) 

Next, we notice that 

 
2 1 1

4 B BS G
λ
π

= = . (7.13) 

Here, BG  is the gain of the bright body (viewed as an antenna), which is unity 
because we assumed in (7.10) that the body radiates isotropically. In (7.13), we 
have used the relationship between gain and effective area; see (4.65) in 
Lecture 4); the effective area of the bright body being simply its cross-section 
SB. Finally, substituting (7.13) in (7.12) leads to 
 , ifA A B B B AP PΩ = Ω Ω Ω . (7.14) 

Equation (7.14) leads to the relation between the brightness temperature BT  of 
the object under observation and the antenna incremental temperature AT∆ : 

 B
A B

A
T TΩ

∆ =
Ω

, K. (7.15) 

For a large bright body, where B AΩ =Ω , (7.15) reduces to (7.8). 
 
2.4. Source flux density from noise sources and noise PLF 

The power at the antenna terminals AP , which corresponds to the antenna 
incremental temperature AT∆ , is defined by (7.6). In radio-astronomy and 
remote sensing, it is often convenient to use the flux density S of the noise 
source at the antenna (the effective area of which is Ae): 

 2 1,  Wm Hzh A

e e

p k TS
A A

− −∆
= = . (7.16) 

Notice that S is not the Poynting vector (power flow per unit area) but rather the 
spectral density of the Poynting vector (power flow per unit area per hertz). In 
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radio-astronomy, the usual unit for flux density is jansky, 261 Jy = 10−  
2 1Wm Hz− − .2 

From (7.16), we conclude that the measured incremental antenna 
temperature AT∆  relates to the source flux density as 

 1
A eT A S

k
∆ = ⋅ . (7.17) 

This would be the case indeed if the antenna and the bright-body source were 
polarization matched. Since the bright-body source is a natural noise source, we 
cannot expect perfect match. In fact, an astronomical object is typically 
unpolarized, i.e., its polarization is random. Thus, about half of the bright-body 
flux density cannot be picked up by the receiving antenna, the polarization of 
which is fixed. For this reason, the relation in (7.17) is modified as 

 1
2

e
A

A ST
k
⋅

∆ = ⋅ . (7.18) 

The same correction factor should be inserted in (7.15), where the measured 
AT∆  would actually correspond only to one-half of the noise temperature of the 

bright body: 

 1
2

B
A B

A
T TΩ

∆ =
Ω

. (7.19) 

 
2.5. Antenna noise from a nonuniform noisy background 

In the case of a small bright body (see previous subsection), we have tacitly 
assumed that the gain of the antenna is constant within the solid angle BΩ  
subtended by the bright body. This is in accordance with the definition of the 
antenna solid angle AΩ , which was used to obtain the ratio between AT∆  and 

BT . The solid-angle representation of the directivity of an antenna is actually 
quite accurate for high-directivity antennas, e.g., reflector antennas. 

In general, however, the antenna gain may be strongly dependent on the 
observation angle ( , )θ ϕ . In this case, the noise signals arriving from different 
sectors of space have different contributions to the total antenna temperature. 
Those arriving from the direction of the maximum directivity contribute the 

                                      
2 Karl G. Jansky was the first one to use radio waves for astronomical observations.  



 

Nikolova 2018 8 

most whereas those arriving from the direction of zero directivity will not 
contribute at all. The differential contribution from a sector of space of solid 
angle dΩ  should, therefore, be weighed by the antenna normalized power 
pattern ( , )F θ ϕ  in the respective direction: 

 ( , )( , ) B
A

A

T ddT F θ ϕθ ϕ Ω
= ⋅

Ω
. (7.20) 

The above expression can be understood by considering (7.15) where AT∆  is 
replaced by a differential contribution dTA to the antenna temperature from a 
bright body subtending a differential solid angle B dΩ → Ω . The total antenna 
noise power is finally obtained as 

 
4

1 ( , ) ( , )A B
A

T F T d
π

θ ϕ θ ϕ= ⋅ Ω
Ω ∫∫ . (7.21) 

The expression in (7.21) is general and the previously discussed special 
cases are easily derived from it. For example, assume that the brightness 
temperature surrounding the antenna is the same in all directions, i.e., 

0( , )B BT T constθ ϕ = = . Then, 

 0
0

4

( , )

A

B
A B

A

TT F d T
π

θ ϕ

Ω

= ⋅ Ω =
Ω ∫∫





. (7.22) 

The above situation was already addressed in equation (7.7). 
Assume now that 0( , )B BT const Tθ ϕ = =  but only inside a solid angle BΩ , 

which is much smaller than the antenna solid angle AΩ . Outside BΩ , 
( , ) 0BT θ ϕ = . Since B AΩ Ω , when the antenna is pointed at the noise source, 

its normalized power pattern within BΩ  is ( , ) 1F θ ϕ ≈ . Then, 

 0 0

4

1 1( , ) ( , ) 1
B

B
A B B B

A A A
T F T d T d T

π

θ ϕ θ ϕ
Ω

Ω
= ⋅ Ω = ⋅ ⋅ Ω =
Ω Ω Ω∫∫ ∫∫

. (7.23) 

This case was addressed in (7.15). 
The antenna pattern strongly influences the antenna temperature. High-gain 

antennas (such as reflector systems), when pointed at elevation angles close to 
the zenith at night, have negligible noise level. However, if an antenna has 
significant side and back lobes, which are pointed toward the ground or the 
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horizon, its noise power is much higher. The worst case for an antenna is when 
its main beam points towards the ground or the horizon, as is often the case 
with satellite or airborne antennas pointed toward the earth. 

 
 

Example (modified from Kraus, p. 406): A circular reflector antenna of 500 m2 
effective aperture operating at 20λ =  cm is directed at the zenith. What is the 
total antenna temperature assuming the sky temperature close to zenith is equal 
to 10◦ K, while at the horizon it is 150◦ K? Take the ground temperature equal 
to 300◦ K and assume that one-half of the minor-lobe beam is in the back 
direction (toward the ground) and one-half is toward the horizon. The main 
beam efficiency (BE = /M AΩ Ω ) is 0.7. 

 
Such a large reflector antenna is highly directive and, therefore, its main 

beam “sees” only the sky around the zenith. The main beam efficiency is 70%. 
Thus, substituting in (7.23), the noise contribution of the main beam is 

 ( )1 10 0.7 7MB
AA

A
T = × ×Ω =

Ω
, K. (7.24) 

The contribution from the half back-lobe (which is a half of 30% of the antenna 
solid angle) directed toward ground is 

 ( )1 300 0.15 45GBL
AA

A
T = × ×Ω =

Ω
, K. (7.25) 

The contribution from the half back-lobe directed toward the horizon is 

 ( )1 150 0.15 22.5HBL
AA

A
T = × ×Ω =

Ω
, K. (7.26) 

The total noise temperature is 
 74.5GBLMB HBL

A A A AT T T T= + + =  K. (7.27) 
 

 
3. System Noise Temperature 

The antenna is a part of a receiving system, which consists of several 
cascaded components: antenna, transmission line (or waveguide) assembly and 
receiver (see figure below). All these system components, the antenna included, 
have their contributions to the system noise. The system noise level is a critical 
factor in determining its sensitivity and SNR. 
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3.1. Noise Analysis of Cascaded Matched Two-port Networks3 

To understand the noise analysis of the radio receiver system, we must first 
review the basics of the noise analysis of cascaded two-port networks. For 
simplicity, we will assume that all networks are impedance matched, which is 
close to what is in fact happening in a realistic receiver system.  

In the figure below (case (a)), a generic cascaded network is shown where 
the first component on the left is the noise source (e.g., the antenna pointed at 
the sky) with noise temperature ST . The remaining two-port components are 
characterized by their physical temperatures PiT  and by their loss factors (or 
loss ratios) iL , 1,2i = . In the case of a passive lossy two-port network (such 
as the waveguide), L is the inverse of the efficiency. In some analyses, the 
antenna can be viewed as a two-port network as well such that its “input port” 
is its aperture receiving noise signals from the environment and its output port 
is at its connection to the transmission line. The efficiency is defined as the 
output-to-input power ratio ou in/e P P=  and it is less or equal to 1. In contrast, 

in ou/L P P=  and it is greater or equal to 1. In the case of an antenna, 1
A AL e−= . 

Also, any two-port network component for which 1L ≥ , i.e., it exhibits power 
loss, may be referred to as “attenuator” although this component does not 

                                      
3 From T.Y. Otoshi, “Calculation of antenna system noise temperatures at different ports—revisited,” IPN Progress Report, 
Aug. 15, 2002. 
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necessarily need to be an attenuator; it could be, for example, the entire 
antenna-plus-feed assembly. On the other hand, if 1L < , we have a component 
which exhibits gain and it is referred to as an “amplifier”. In this case, the 
efficiency is replaced by the gain G, which, just like the efficiency is the 
output-to-input power ratio ou in/P P  but it is greater than 1. As with the 
efficiency, the relationship 1L G−=  holds. 

 

ST 1 1, PL T 2 2, PL T 3 3, PL T

1 2 3 4
(a) original network  

2 2, PL T 3 3, PL T

2 3 4
(b) equivalent source noise temperature at location 2

ST ′

 

3 3, PL T

3 4

ST ′′

4

ST ′′′

(c) equivalent source noise temperatures at locations 3 and 4  
 

Case (b) in the figure above, shows a network where an equivalent source of 
temperature ST ′  replaces the original source and its neighboring two-port 
network ( 1 1, PL T ). The equivalent source of temperature ST ′  at location 2 is 
 1 1

11 1(1 )S S PT L T L T− −′ = + − . (7.28) 
From (7.28), it is evident that in addition to the usual “attenuated” source noise-
power term 1

1 SL T−  there is a contribution due to the physical temperature of the 
1st two-port network. This contribution is referred to as the device equivalent 
noise temperature at its output, 
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 ou 1
11 1(1 ) PDT L T−= − . (7.29) 

This contribution is entirely determined by the device physical temperature and 
its loss ratio, i.e., it does not depend on the source. 

To understand where (7.28) comes from, we can re-write is as 

 1
1

1

S P

S P

T TL
T T

−
=

′ −
. (7.30) 

This is indeed the ratio of input-to-output noise power for the 1st network. ST  
represents the power traveling toward the device input while its own noise 
power, represented by 1PT  travels away from it. Thus, the total power at the 
input is represented by 1S PT T− .4 At the same time, at the output, as per case (b) 
in the figure, the total noise power incident toward network #2 is given by ST ′ . 
However, the portion that relates to the attenuation 1L  (i.e., the power at the 
device input) does not include the intrinsic device noise power 1PT , which is 
always present at the device output regardless of whether there is a noise source 
at the input or not. Thus, 1PT  has to be subtracted from ST ′ . 

Using the same methodology, we can find the equivalent source noise 
temperature ST ′′  at location 3 as 
 1 1

22 2(1 )S S PT L T L T− −′′ ′= + −   (7.31) 
where 
 ou 1

22 2(1 ) PDT L T−= −   (7.32) 
is the 2nd device equivalent noise temperature at its output. 

We can repeat this step for the network location 4 where we obtain the 
equivalent source noise temperature ST ′′′ . In each case, in addition to the 
“attenuated” source power we will have to add the respective network 
equivalent output device noise temperature, 
 ou 1(1 )i PiDiT L T−= − , 1,2,i =  . (7.33) 

As an illustration of the general procedure, we show the results for the 
equivalent source noise temperature ST ′′′ at location 4: 
 1 1 1 1 1 1

1 2 3 1 2 3 2 31 2 3 3( ) (1 ) ( ) (1 ) (1 )S S P P PT T L L L L T L L L T L L T− − − − − −′′′ = + − + − + − . (7.34) 
 
 

                                      
4 Remember the expression 2 2| | | |a b−  for the total power at the input of a microwave network where a and b are the incident 
and the scattered (outgoing) root-power waves, respectively. 2| |a  represents the incoming power whereas 2| |b  represents the 
outgoing power. 
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3.2. Transferring System Noise Temperature through a Lossy Network 
The rule of transferring noise temperature from the output port of a lossy 

network to its input port (or vice versa) is simple: 
 in ou ou /T LT T e= =  (7.35) 
where e is the device efficiency. This rule, while simple, is not immediately 
obvious. A formal proof can be found in the Appendix of 
B.L. Seidel and C.T. Stelzried, “A radiometric method for measuring the 
insertion loss of radome materials,” IEEE Trans. Microw. Theory Thech., vol. 
MTT-16, No. 9, Sep. 1968, pp. 625−628. 

We can now define the equivalent noise temperature of a lossy component 
at its input (also known as equivalent input device noise temperature) by 
substituting ou

DiT  from (7.33) as ouT  in (7.35): 
 in ou ( 1)i i PiDi DiT LT L T= = − . (7.36) 
It is worth noting that (7.36) suggests that in

DiT  could be much larger than the 
physical temperature PiT  if the device is very lossy, i.e., if 1iL   ( 1ie  ). 

Finally, we discuss the physical meaning of the equivalent input device 
noise temperature through an alternative way of deriving the relationship in 
(7.36). We omit the subscript i  hereafter. Consider a noise source of 
temperature ST  at the device input. Its noise power is then SkT f∆ . At the output 
of the device, we add the two input contributions − that of the noise source and 
that due to the equivalent input device noise temperature, and then multiply the 
result by the device efficiency: 
 in

N,ou ( )S DP e kT f kT f= ∆ + ∆ . (7.37) 
To find the relation between the equivalent input device noise temperature in

DT  
and its physical temperature TP, we consider the particular case when the 
temperature of the source ST  is equal to the physical temperature PT  of the 
device. In this case, the output noise power must be N,ou PP kT f= ∆  because the 
whole system of the lossy device plus the source is at the physical temperature 

PT . Substituting S PT T=  in (7.37) results in 
 in

N,ou ( )P D PP e kT f kT f kT f= ∆ + ∆ = ∆  (7.38) 
which, when solved for in

DT , produces (7.36). Note that we have not imposed 
any restrictions on the actual values of ST  and PT  but have only required that 

in
DT  depends solely on TP (i.e., it is independent of the noise source at the input) 

and that (7.37) holds in the special case of S PT T= . 
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3.3. The atmosphere as an “attenuator” 
An illustration of the above concepts in noise analysis is the impact of the 

atmosphere on the sky noise, e.g., the cosmic microwave background (TCMB ≈ 
2.725° K). The atmosphere, depending on the time of the day and the weather 
conditions, exhibits loss, which we describe by the loss factor atmL . atmL  can be 
calculated if we know the averaged attenuation constant in the atmosphere atmα  
and its thickness H, e.g., atm atmexp(2 )L Hα≈ . This atmospheric “attenuator” 
lies between the cosmic microwave background noise source and the antenna. 
Therefore, the actual external noise temperature perceived by the antenna is 
 1 1

sky atm CMB atm atm,(1 ) PT L T L T− −= + −   (7.39) 
where atm,PT  is the physical temperature of the atmosphere, as per (7.28). The 
1st term in (7.39) is the space noise whereas the 2nd one is the atmospheric 
noise. The impact of the atmosphere is often considered negligible. For a 
pencil-beam antenna pointed at the sky, skyAT T= . 
 
3.4. Antenna noise due to the antenna physical temperature 

If the antenna has losses, the noise temperature at its terminals includes not 
only the antenna temperature AT  due to the environment surrounding the 
antenna (the external antenna temperature) but also the antenna equivalent 
noise temperature APT  due to its physical temperature PT . Here, we note that 
the antenna acts as an “attenuator” in the cascaded network consisting of the 
external noise, the antenna, the waveguide and the receiver; see Figure on p. 10. 

We first describe the antenna noise contribution at reference location #1, the 
antenna aperture, or, equivalently, its input. Here, we view the antenna as a 
lossy two-port component. Its equivalent input noise temperature APT  is 

 1 1 l
AP P P

A r

RT T T
e R

= − = 
 

, K (7.40) 

where Ae  is the radiation efficiency (0 1)Ae≤ ≤ , Rl is the antenna loss 
resistance and Rr is its radiation resistance. Eq. (7.40) is essentially an 
application of Eq. (7.36) to the case of an antenna. It describes the thermal 
noise contribution of the antenna due to its physical temperature PT . APT  must 
be added to AT  in order to obtain the system operating noise temperature at 
location #1. In fact, additional terms exist due to the noise contributions of the 
lossy TL (or waveguide) and the receiver electronics. 
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3.5. Noise due to the physical temperature of the transmission line 
We now consider the transmission line (TL) as a source of noise when it has 

conduction losses. In a manner analogous to the one applied to the antenna, the 
TL is considered as a two-port “attenuator”. Thus, its noise contribution at the 
antenna terminals (the input to the TL or reference location #2) is 

 2
1 1L LP
L

T T
e

= − 
 

, K. (7.41) 

Here, 2 l
Le e α−=  is the line thermal efficiency (0 1)Le≤ ≤ , LPT  is the physical 

temperature of the TL, α  (Np/m) is the attenuation constant of the TL, and l is 
its length. 

To transfer the TL noise contribution to the reference location #1, we use 
(7.35) which leads to 

 2
1

1 1 1L
L LP

A A L

TT T
e e e

= = − 
 

. (7.42) 

Together with APT , 1LT  must be added to AT  in order to obtain the system 
operating noise temperature at location #1. 

3.6. System noise referred to the antenna aperture (location #1) 
The system temperature referred to the antenna aperture includes the 

contributions of the antenna (external noise temperature plus equivalent input 
antenna thermal noise temperature), the transmission line and the receiver as 

 


antenna
external receiver, antenna internal TL internal

1 1 1 11 1

AP

A
sys A P LP R

A A L A L

T

T T T T T
e e e e e

   = + − + − +   
   



 

. (7.43) 

Here, AT  is the external temperature that corresponds to the antenna 
temperature provided the antenna is loss-free, as discussed in Section 2. RT  is 
the receiver noise temperature (at its input, reference location #3). It is given by 

 2 3
1

1 1 2
R

T TT T
G G G

= + + + , K. (7.44) 

Here, 
1T  is the noise temperature of the first amplifying stage; 
1G  is the gain of the first amplifying stage; 
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2T  is the noise temperature of the second amplifying stage; 
2G  is the gain of the second amplifying stage. 

Notice that RT  is divided by the TL efficiencies Le  and Ae  in order to refer it to 
the TL input (location #2) and then to the antenna aperture (location #1); see 
Eq. (7.35). 
 

3.7. System noise referred to the antenna terminals (TL input, location #2) 
The reference location is changed by taking into account the efficiency of 

the antenna. Using (7.35), we arrive at: 
 TL A

sys sys AT T e= ⋅ . (7.45) 
Therefore, 

 


( )


antenna antennaexternal receiverinternal TL internal

1 11 1TL
sys A A P A LP R

L L
T T e T e T T

e e
= + − + − + 

 



. (7.46) 

 
3.8. System noise referred to the receiver input (location #3) 

The reference location is changed once again by taking into account the 
efficiency of the TL: 
 R TL

sys sys LT T e= ⋅ . (7.47) 
Therefore, 
 ( ) ( )



receiverantenna antenna TL
external internal

1 1R
sys A A L P A L LP L RT T e e T e e T e T= + − + − +



 

, K. (7.48) 

 
 

Example (from Kraus, p. 410, modified): A receiver has an antenna with an 
external noise temperature 50° K, a physical temperature of 300° K, and an 
efficiency of 99%. Its transmission line has a physical temperature of 300° K 
and an efficiency of 90%. The first three stages of the receiver all have 80° K 
noise temperature and 13 dB gain (13 dB is about 20 times the power). Find the 
system temperature at: (a) the antenna aperture, (b) the antenna terminals, and 
(c) the receiver input. 
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The receiver noise temperature is 

 
2

80 8080 84.2
20 20RT = + + =  °K. (7.49) 

(a) Then, the system temperature at the antenna aperture is 

 

1 1 1 11 1 ,

1 300 1 84.250 300 1 1 181.2009 K.
0.99 0.99 0.9 0.99 0.9

A
sys A P LP R

A A L A L

A
sys

T T T T T
e e e e e

T

  = + − + − +   
  

  = + − + − + ≈    ⋅  

 (7.50) 

(b) The system temperature at the antenna terminals is 
 181.2009 0.99 180.3889TL A

sys sys AT T e= ⋅ ≈ ⋅ ≈  °K. 
(c) The system temperature at the receiver input is 
 180.3889 0.9 162.35R TL

sys sys LT T e= ⋅ = ⋅ ≈  °K. 
 

 
4. Minimum Detectable Temperature (Sensitivity) of the System 

The minimum detectable temperature, or sensitivity, of a receiving system 
minT∆  is the RMS noise temperature of the system rmsT∆ , which, when referred 

to the antenna aperture (reference location #1), is 

 min rms
 

A
sysk T

T T
f τ
′

∆ = ∆ =
∆ ⋅

, (7.51) 

where 
k′ is a system constant (commensurate with unity), dimensionless; 

f∆  is the pre-detection bandwidth of the receiver, Hz; 
τ is the post-detection time constant, s. 

The RMS noise temperature rmsT∆  is determined experimentally by pointing 
the antenna at a uniform bright object and recording the signal for a sufficiently 
long time. Assume the output of the receiver is in terms of real-positive 
numbers proportional to the received noise power. Modern receivers are digital 
and their output is actually in the form of integers. Then, the RMS deviation 
Drms of the numbers produced by the receiver represents the RMS noise power: 

 2
rms rms

1

1 ( )
N

R
n av

n
D a a T

N =

= − ≈ ∆∑  where 
1

1 N

av n
n

a a
N =

= ∑ . (7.52) 
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rmsT∆  (at reference location #1) can be obtained from rms
RT∆  by  

 rms
rms min

R

A L

TT T
e e
∆

∆ = = ∆ . (7.53) 

This is the sensitivity of the system in terms of noise temperature. 
In order a source to be detected, it has to create an incremental antenna 

temperature AT∆  which exceeds minT∆ , minAT T∆ > ∆ . The minimum detectable 
power Pmin is thus 
 min min min0.5 eP A p k T f= = ∆ ∆  (7.54) 
where Ae is the effective antenna area, pmin is the power-flux density 
(magnitude of Poynting vector) due to the source at the location of the antenna, 
and the factor of 0.5 accounts for the randomness of the wave polarization. It 
follows that the minimum power-flux density, which can be detected is 

 min
min

2
e

k T fp
A

∆ ∆
= . (7.55) 

The signal-to-noise ratio (SNR) for a signal source of incremental antenna 
temperature AT∆  is given by 

 
min

ATSNR
T
∆

=
∆

. (7.56) 

This SNR is used in radio-astronomy and remote sensing. 
 
5. System Signal-to-Noise Ratio (SNR) in Communication Links 

The system noise power at the antenna terminals (location #2) is 
 TL

N sys rP kT f= ∆ , W. (7.57) 

Here, rf∆  is the bandwidth of the receiver and TL A
sys A sysT e T= . From Friis’ 

transmission equation, we can calculate the received power at the antenna 
terminals as 

 
2

2 2(1 | | )(1 | | )PLF ( , ) ( , )
4r t r t t t r r r tP G G P

R
λ θ ϕ θ ϕ
π

 = − Γ − Γ ⋅ 
 

. (7.58) 

Finally, the SNR becomes 

 

2
2 2(1 | | )(1 | | )PLF

4t r t r t
r

TL
N sys

G G P
P RSNR
P kT f

λ
π

 − Γ − Γ ⋅ 
 = =

∆
. (7.59) 
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The above equation is fundamental for the design of telecommunication 
systems. More specifically, if the SNR necessary for the adequate operation of 
the receiver is known, Eq. (7.59) allows for determining the maximum range 
over which the communication link is stable. 
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LECTURE 8: Basic Methods in Antenna Measurements 
(Antenna ranges and anechoic chambers. Measuring far-field patterns, gain, 
directivity, radiation efficiency, input impedance and polarization.) 
 
1.  Introduction* 

Many of the basic methods for measuring antenna characteristics were 
developed before and during World War II. However, new approaches and 
measurement technologies continue to emerge boosted by the rapid growth of 
mobile communications and wireless networks. The methods for measuring 
antenna far-field patterns, polarization, input impedance, gain and directivity 
have been developed in conjunction with the design of novel radiating 
structures, which are needed in the telecommunications and radar technologies. 

Antenna metrology requires not only sound theoretical background in 
antenna theory and radiation but also sophisticated equipment capable of 
providing the necessary accuracy and purity of the measured data. Commercial 
equipment specifically designed for antenna measurements became available in 
the 1960s due, in part, to the requirements of the aerospace, space and defence 
industries. 

The antenna measurement equipment includes: antenna ranges, antenna 
positioners, pattern recorders, scalar and/or vector network analyzers, signal 
generators, antenna gain standards, etc. Later on, sophisticated computer 
systems were developed to provide automated control of pattern measurements 
as well as fast calculations related to antenna directivity, 2-D to 3-D pattern 
conversion, near-to-far field transformations (in compact antenna ranges), etc. 

 
2.  General Requirements for Antenna Measurement Procedures* 

The ideal condition for measuring the far-field pattern and antenna gain is 
an illumination by a uniform plane wave. This is a wave, which has a plane 
wave front with the field vectors being constant over an area that extends well 
beyond the aperture of the antenna under test (AUT). For example, the E field 
vector of a uniform non-attenuating plane wave propagating in the z+ -direction 
is described by the 1-D wave expression 
 ˆ( ) jkz

w mz E e−=E ρ . (1) 

Here, ˆ wρ  is the wave polarization vector, which must remain constant within 
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the volume of the AUT. The same holds for the magnitude mE , which must 
remain constant across the AUT aperture.  

In practice, antennas generate far fields in 3-D space which are closely 
approximated by spherical wave fronts when the observation point is 
sufficiently far from the source. Also, at large distances from the source 
antenna, the curvature of the phase front is small at the aperture of the AUT and 
it is well approximated by a uniform plane wave. 
 

source test

locally plane

wave front

 
 

If the distance from the source is equal or greater than the inner boundary of 
the far-field region 2

min max,Tx2 /R D λ= , then the maximum phase difference 
between the actual incident field and its far-zone approximation (remember the 
1st order binomial approximation max,Tx / 2R r D≈ − ) does not exceed 

max 22.5 / 8e π≈ =  rad. Here, max,TxD  is the maximum dimension of the source 
(or transmitting) antenna. 

Conversely, we can show that if max,Rx maxD D≡  is the maximum dimension 
of the receiving AUT, a distance  
 2

min max2 /R D λ=  (2) 
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from the source of a spherical wave ensures that the maximum phase difference 
between a plane wave and the spherical wave at the aperture of the AUT is 

max 22.5 / 8e π≈ =  rad. Consider a source of a spherical wave and an AUT 
located a distance R away. 
 

source AUT

spherical
wave front

plane
wave front

R

R

δ

maxD

22.5kδ ≤ 

 
 
The largest phase difference between the spherical wave and the plane wave 
appears at the edges of the AUT, which corresponds to the difference in the 
wave paths δ . This phase difference must fulfil the requirement: 
 / 8kδ π≤ . (3) 
The difference in the wave paths δ  is determined by noticing that 
 2 2 2

max( ) ( / 2)R R Dδ+ = + . (4) 

The real-positive solution of this quadratic equation for δ  is 

 2 2
max( / 2)R D Rδ = + − . (5) 

Next, the above expression is approximated by the use of the binomial 
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expansion (the first two terms only) as 

 
2 2 2

max max max11 1 1 1
2 2 2 4

D D DR R
R R R

δ
       = + − ≈ + − =           

. (6) 

The minimum distance from the source of the spherical wave is now 
determined from the requirement in (3), 

 
2 2
max max2

4 4 8
D Dk

R R
π π
λ

= ≤ . (7) 

Thus, 

 2
min max2 /R D λ= . (8) 

It is now clear that the antenna far-field characteristics must be measured at 
a sufficiently large distance between the source antenna and the AUT. This 
distance must be greater than the larger of the two inner limits of the far 
zones of the transmitting and receiving antennas, i.e., the two antennas must 
be in each other’s far zones. 

The above requirement leads to a major difficulty in antenna measurements 
– large separation distances are required between the source antenna and the 
AUT. The larger the AUT, the larger the measurement site. While the size of 
the site may not be a problem, securing its reflection-free, noise-free, and EM 
interference-free environment is extremely difficult. 

Special attention must be paid to minimizing unwanted reflections from 
nearby objects (equipment, personnel, buildings), from the ground or the walls 
of the site. This makes the open sites for antenna measurements (open ranges) 
a rare commodity since they have to provide free-space propagation. Such ideal 
conditions are found only in unpopulated (desert) areas of predominantly flat 
terrain. The other alternative is offered by indoor chambers (anechoic 
chambers), which minimize reflections by special wall lining with 
RF/microwave absorbing material. They are much preferred to open ranges 
because of their controlled environment. Unfortunately, the anechoic chambers 
are very expensive and often they cannot accommodate large antennas. 

There are cases in which the antenna operates in a very specific environment 
(mounted on an aircraft, mobile system, etc.). Then, it is better to measure the 
antenna as it is mounted, i.e., in its own environment. Such measurements are 
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very specific and usually cannot be performed in anechoic chambers. 
Below is a summary of the challenges in antenna measurements: 
• affected by unwanted reflections; 
• often require too large separation distances; 
• very complicated when a whole antenna system (e.g., on-craft mounted 

antenna) is to be measured; 
• outdoor sites have uncontrollable EM environment, which, besides all, 

depends on the weather; 
• indoor sites cannot accommodate large antenna systems; 
• the instrumentation is expensive. 

 
3.  Antenna Ranges (AR)* 

The antenna measurement sites are called antenna ranges (AR). They can 
be categorized as outdoor ranges and indoor ranges (anechoic chambers). 
According to the principle of measurement, they can be also categorized as 
reflection ranges, free-space ranges, and compact ranges. 

 

DR

ground

source

RR

source image

AUT

0R

th

rh
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The reflection ranges are designed so that the direct and reflected (usually 
from ground) waves interfere constructively and form a uniform (in both 
magnitude and phase) wave front in the region of the AUT. Such a region is 
called the quite zone. Reflection ranges are usually of the outdoor type. They 
are used to measure antennas of moderately broad patterns operating in the 
UHF frequency bands (500 MHz to 1000 MHz). 

The reflection-range design is complicated and depends on the reflection 
coefficient of the ground (the range surface), its smoothness, as well as the 
pattern of the source antenna. The parameter to be determined is the height rh  
of the mast, on which the AUT is to be mounted, provided that the height of the 
transmitting antenna th  is known. More information can be found in 

L.H. Hemming and R.A. Heaton, “Antenna gain calibration on a ground 
reflection range,” IEEE Trans. on Antennas and Propagation, vol. AP-21, 
pp. 532-537, July 1977. 

The free-space ranges provide reflection-free propagation. They can be 
outdoor or indoor. Outdoor free-space ranges are carefully built in such a way 
that reflections from buildings and other objects are minimized. They can be 
realized as elevated ranges and slant ranges. Indoor ranges (anechoic 
chambers) suppress reflections (echoes) by lining the walls, the floor and the 
ceiling with special RF/microwave absorbers.  

The elevated ranges are characterized by the following features: 
• Both antennas (the transmitting and the receiving) are mounted on high 

towers or buildings. 
• The terrain beneath is smooth. 
• The source antenna has very low side lobes so that practically there is 

no energy directed toward the surface below (the ground) or the 
buildings behind. 

• The line-of-sight is always clear. 
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The slant ranges need less space than the elevated ranges. The test antenna 
is mounted at a fixed height on a non-conducting tower (e.g. made of fiber 
glass), while the source antenna is mounted near the ground. The source 
antenna must have its pattern null pointed toward ground. It is desirable that it 
has very low side lobes and narrow beamwidth. Slant ranges still require wide 
open space to minimize reflections from surrounding buildings. 
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The anechoic chambers are the most popular antenna measurement sites 
especially in the microwave frequency range. They provide convenience and 
controlled EM environment. However, they are expensive to build and 
maintain. An anechoic chamber is a large room, the walls, floor and ceiling of 
which are lined with steel sheets. In effect, an anechoic chamber is a huge 
Faraday cage, which provides near ideal protection against external EM noise 
and interference. In addition, all inner surfaces of the chamber are lined with 
RF/microwave absorbers. An anechoic chamber is shown in the photo below. A 
comprehensive description of the EM anechoic chambers can be found in 

L.H. Hemming, Electromagnetic Anechoic Chambers: A Fundamental 
Design and Specifications Guide, IEEE Press/Wiley, 2002. 
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The first EM wave absorbers were developed during World War II in both 
US and German laboratories. The manufacturing of anechoic chambers became 
possible after RF/microwave absorbing materials with improved characteristics 
had become commercially available. The first broadband absorbers were made 
of a material called hairflex consisting of animal fibres sprayed with (or dipped 
in) conducting carbon in neoprene. A historical summary of the development of 
EM wave absorbing materials is given by Emerson in his paper: 

W.H. Emerson, “Electromagnetic wave absorbers and anechoic chambers 
through the years,” IEEE Trans. on Antennas and Propagation, vol. AP-21, 
pp. 484-489, July 1973. 

Nowadays, absorbing elements are with much improved characteristics 
providing reflection coefficients as low as –50 dB at normal incidence. 
Reflection increases as the angle of incidence increases. For example, a typical 
reflection of –25 dB is related to an angle of incidence of about 70 degrees. 

A typical absorbing element has the form of a pyramid or a wedge. 
Pyramids are designed to absorb the waves at normal (nose-on) incidence best. 
They do not perform well at large angles of incidence. They act, in effect, as a 
tapered impedance transition for normal incidence of the EM wave from the 
intrinsic impedance of 377 Ω  to the short of the chamber’s wall. Their 
resistance gradually decreases as the pyramid’s cross-section increases. 

normal
incidence

large angle
of incidence

(377 )Ω

( 377 )< Ω

Pyramids

tip

base
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Wedges, on the other hand, perform much better than pyramids for waves, 
which travel nearly parallel to their ridges. 
 

Wedges

base

ridge

very good
absorption

 
 
For more detailed information on absorbing materials and shapes see: 

John Kraus, Antennas, 2nd edition, McGraw-Hill, Inc. 
B.T. DeWitt and W.D. Burnside, “Electromagnetic scattering by pyramidal 
and wedge absorber,” IEEE Trans. on Antennas and Propagation, 1988. 

An anechoic chamber lined with both types of absorbing shapes is shown 
below. 
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There are two types of anechoic chambers: rectangular and tapered. The 
design of both chamber types is based on the principles of geometrical optics. 
The goal is to minimize the amplitude and phase ripples in the test zone (the 
quiet zone), which are due to the imperfect absorption by the wall lining. The 
tapered chamber has the advantage of tuning by moving the source antenna 
closer to (at higher frequencies) or further from (at lower frequencies) the apex 
of the taper. Thus, the reflected rays are adjusted to produce nearly constructive 
interference with the direct rays at the test location. 

 
 

Source

Apex Test 
zone

l nλ∆ ≈

 
 
 
Anechoic chambers are limited by the distance requirements of the far-field 

measurements of large antennas or scatterers. There are two basic approaches to 
overcome this limitation. One is presented by the Compact Antenna Test 
Ranges (CATRs), which produce a nearly uniform plane wave in a very short 
distance via a system of reflectors (or a single paraboloidal reflector). Another 
approach is based on near-to-far field transformation, where the measurements 
are performed in the near-field zone or in the Fresnel zone of the AUT. 

The CATR utilizes a precision paraboloidal antenna to collimate the energy 
of a primary feed antenna in a short distance (about 10 to 20 m). Typical 
arrangement of a compact range is shown below. 
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Feed
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The linear dimensions of the reflector must be at least three to four times 
those of the AUT so that its illumination is sufficiently close to a uniform plane 
wave. An offset feed is used for the reflector to prevent aperture blockage and 
to reduce the diffraction from the primary feed structure. The paraboloidal 
reflector surface must be fabricated with high precision to obtain fairly uniform 
amplitude distribution of the incident field at the test antenna. 

A perfect plane wave is produced by the CATR if the paraboloidal reflector 
has a perfect surface, infinite size, and if the feed is a point source with a 
pattern which compensates for the space attenuation. Of course, such ideal 
conditions cannot be achieved, and the field distribution in a real CATR 
deviates from the uniform plane wave. However, it is within acceptable 
parameters in the quite zone. 

The quiet zone is typically 50% to 60% the aperture of the reflector. The 
imperfections of the field in the quiet zone are measured in terms of phase 
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errors, ripple-amplitude deviations, and taper-amplitude deviations. 
Acceptable deviations for most CATRs are: less than 10% phase error, less than 
1 dB ripple and taper amplitude deviations. 

Amplitude taper in the quiet zone is due to two reasons: the primary feed 
pattern and the space attenuation. The primary feed cannot be isotropic; 
therefore, its pattern has variations with direction. Usually, the pattern 
gradually decreases as the directional angles point away from the antenna axis. 
This is called feed-amplitude taper. That portion of the feed pattern, which 
illuminates the CATR surface, is directly transferred into the quiet zone, thus 
contributing to the field amplitude-taper deviation from the ideal uniform plane 
wave. 
 

Feed pattern

Uniform plane wave
field distribution

Non-uniform plane wave
field distribution

Parabola  
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It is obvious that if the feed pattern is nearly isotropic for the angles 
illuminating the reflector, the feed-amplitude taper will be very small. That is 
why low-directivity antennas are preferred as feeds. However, the feed cannot 
be omnidirectional because direct illumination of the AUT by the primary feed 
is unacceptable. The careful choice of the feed antenna and its location is of 
paramount importance for the CATR design. 

The 21 / r  power space attenuation occurs with the spherical spreading of the 
uncollimated energy radiated by the primary feed toward the reflector. The 
paths of these primary EM rays from the feed to the reflector are of different 
lengths, which results in different amplitude across the front of the reflected 
collimated EM wave. This is yet another reason for amplitude taper deviations 
in the quiet zone. 
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Amplitude and phase ripples in the quiet zone are primarily caused by 
diffraction from the edges of the reflector. The diffracted field is spread in all 
directions interfering with the major reflected field in constructive and 
destructive patterns. The result is the appearance of maxima and minima of the 
field amplitude across the plane wave front in the quiet zone. Diffraction from 
edges causes deviation of the phase of the plane wave, too. 

 
 
 

Uniform plane wave
field distribution

Amplitude ripple devitions

Diffracted field

Parabola
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There are two common ways to reduce diffraction from reflector edges: 
serrated-edge reflectors and rolled-edge reflectors. Rolled-edge modifications at 
the edge of the reflector are introduced to direct the diffracted field mainly to 
the side and the back of the reflector. 
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Serrated edges of reflectors produce multiple low-amplitude diffractions, 

which are randomized in amplitude, phase and polarization. That is why the 
probability of their cancellation in any point of the quiet zone is high. 
Serrations are typically of irregular triangular shape. To further reduce the 
diffraction in the direction of the test zone, the serrated edges may be also 
rolled backwards. A photograph of a compact range whose reflector has 
serrated edges is shown below. 
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4. Near-to-far Field Transformations for Compact Ranges 

Another approach for measuring far-field patterns, which allows for the 
most compact chambers, is the near-field/far-field (NF/FF) method. The field 
amplitude, phase and polarization are measured in the near field of the AUT, 
which is in radiating mode. The near-field data is transformed to far-field 
patterns via analytical techniques implemented in the sophisticated software run 
by an automated computer system, which controls the measurement procedure. 

The magnitude and phase of the tangential E field are measured at regular 
intervals over a cannonical surface (plane, cylinder, or sphere) located close to 
the AUT. The sampled E field is used to calculate the angular spectrum of the 
plane, the cylindrical or the spherical wave. This spectrum matches closely the 
radiated field angular distribution. This is called modal expansion of the 
radiated field. 
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Here, we consider the simplest data acquisition over a planar surface and its 
modal expansion. We show that the far-field radiation pattern of any aperture 
(surface) is the Fourier transform of the aperture field distribution. We next 
derive the formulas in the case of a planar acquisition aperture. 

Assume that in the near-field measurements, the E vector is measured over a 
planar surface, which is our aperture. According to the equivalence principle, 
we can now assume that the field behind the surface (on the side of the antenna) 
is equal to zero, and its impact on the field on the other side of the surface is 
due to equivalent surface currents: 

 
ˆ

.
s a

s a

= ×
= − ×

J n H
M n E

 (9) 

Here, aE  and aH  represent the field vectors at the aperture (the surface) due to 
the antenna behind it. sJ  is the equivalent electric surface current density, sM  
is the equivalent magnetic surface current density, and n̂  is the surface unit 
normal pointing toward the region of observation (away from the antenna). 

Since the field behind the planar surface is now set to zero, we can as well 
assume that the medium behind the surface is a perfect conductor. In the case of 
a flat surface of size much larger than a wavelength, the image theory can be 
applied. Now the equivalent surface sources become 
 ˆ0; (2 )s s a= = − ×J M n E . (10) 

The equivalent surface magnetic currents sM  create an electric vector 
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potential F, which, in the far zone, is 

 ˆ ˆ( ) 2 ( ) ( )
4 2

a a

j r j r
j j

a a
S S

e eP e ds e ds
r r

β β
ε ε

π π

− −
′ ′⋅ ⋅′ ′ ′ ′≈ − × = − ×∫∫ ∫∫k r k rF n E r n E r  (11) 

where β ω µε=  is the wavenumber, ˆ ˆx y′ ′ ′= +r x y  is the position vector of the 
integration point, and r is the distance from the observation point P to the 
origin. 

 

x∆

y∆

x

y
z

( , )x y′ ′

′r

P

r R

R

 
 

Note that the far-field approximations have been applied to the amplitude 
and phase terms of the vector-potential integral. The propagation vector ˆβ=k r  
shows the direction of propagation and has a magnitude equal to the wave 
number β. The scalar product ˆ ˆrβ′ ′ ′⋅ = ⋅k r r r  yields the familiar phase term 
accounting for the phase delay associated with the source point location. 

We now remember that the far-field E vector is related to the far-field 
vector potential F as  
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 far ˆjωη= − ×E F r . (12) 

Here, /η µ ε=  is the intrinsic impedance of the medium. Substituting (11) in 
(12) yields: 

 far ˆ ˆ( )
2

a

j r
j

a
S

ej e dx dy
r

β
β

π

−
′⋅ ′ ′≈ − × ×∫∫ k rE r n E . (13) 

In the case of a planar surface, the unit normal is constant, and we can assume 
that ˆ ˆ=n z . Having in mind that the rectangular components of the radial unit 
vector are 
 ˆ ˆ ˆ ˆsin cos sin sin cosθ ϕ θ ϕ θ= + +r x y z , (14) 

we can calculate the x and y components of farE  as 

 ( )far cos ( , )
2

x y

a

j r
j k x k y

x xa
S

eE j E x y e dx dy
r

β
β θ

π

−
′ ′+′ ′ ′ ′≈ ⋅ ⋅ ∫∫ , (15) 

 ( )far cos ( , )
2

x y

a

j r
j k x k y

y ya
S

eE j E x y e dx dy
r

β
β θ

π

−
′ ′+′ ′ ′ ′≈ ⋅ ⋅ ∫∫ . (16) 

Here, kx and ky are the spectral variables, which are the components of the 
propagation vector k in the xy plane: 

 
sin cos ,
sin sin  .

x

y

k
k

β θ ϕ
β θ ϕ

=
=

 (17) 

The z-component of the far E field is found as 

far

( ) ( )

sin
2

   cos ( , ) sin ( , ) .x y x y

a a

j r
z

j k x k y j k x k y
xa ya

S S

eE j
r

E x y e dx dy E x y e dx dy

β
β θ

π

ϕ ϕ

−

′ ′ ′ ′+ +

≈ − ⋅ ⋅

 
′ ′ ′ ′ ′ ′ ′ ′+ 

  
∫∫ ∫∫

 (18) 

It is obvious from (15), (16) and (18) that if the components far
xE  and far

yE  are 
known, the far

zE  component can be calculated (if need be) as 

 far far fartan cos sinz x yE E Eθ ϕ ϕ= − ⋅ +   . (19) 

Let us examine the integrals appearing in (15) and (16): 
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 ( )( , ) ( , ) x y

a

j k x k y
x x y xa

S

f k k E x y e dx dy′ ′+′ ′ ′ ′= ∫∫ , (20) 

 ( )( , ) ( , ) x y

a

j k x k y
y x y ya

S

f k k E x y e dx dy′ ′+′ ′ ′ ′= ∫∫ . (21) 

These integrals are the 2-D Fourier transforms of the tangential field 
distribution, ( , )xaE x y′ ′− −  and ( , )yaE x y′ ′− − , over the area of the surface aS . 
The surface is ideally infinite ( x′−∞ < < +∞ , y′−∞ < < +∞ ). In practice, the 
surface where the field is measured is finite and designed so that the field 
components outside of it are negligible. The functions fx and fy depend on the 
spectral variables kx and ky.  

Note that the functions ( , )x x yf k k  and ( , )y x yf k k  give the far-field pattern in 
terms of the field x and y components for small θ  when cos 1θ ≈ : 

 
far

far

( , ) ( , )

( , ) ( , )
x x x y

y y x y

E f k k

E f k k

θ ϕ

θ ϕ

≈ 


≈ 
 for cos 1θ ≈ , where sin cos ,

sin sin  .
x
y

k
k

β θ ϕ
β θ ϕ

=
= . (22) 

This finally clarifies the statement that the far-field pattern is the Fourier 
transform of the aperture field distribution. 

The far-field z-component can be expressed by its spectral counterpart 
( , )z x yf k k  in the same manner as the x and y components: 

 far cos ( , )
jkr

z z x y
eE jk f k k

r
θ

−
= ⋅ ⋅ . (23) 

Having in mind (18) and (19), it becomes clear that ( , )z x yf k k  is not an 
independent function but is related to the other two spectral components as 
 ( , ) tan ( , )cos ( , )sinz x y x x y y x yf k k f k k f k kθ ϕ ϕ= − ⋅ +   . (24) 

We can now define the vector plane-wave spectral function: 
 ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )x y x x y y x y z x yk k f k k f k k f k k= + +f x y z  (25) 

the spatial components of which are calculated via (20), (21) and (24). The far-
field E vector can be calculated from the spectral function as 

 ( , , ) cos ( , )
2

j r
x y

er j k k
r

β
θ ϕ β θ

π

−
≈ ⋅E f . (26) 
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We can express the vector equation (26) in terms of the θ  and ϕ  
components of the far-field E vector: 

 
( , , ) cos ( , ),

2

( , , ) cos ( , ).
2

j r
x y

j r
x y

eE r j f k k
r

eE r j f k k
r

β

θ θ

β

ϕ ϕ

θ ϕ β θ
π

θ ϕ β θ
π

−

−

≈ ⋅

≈ ⋅
 (27) 

Since the spectral function f is derived via its rectangular components during 
the data acquisition over a planar surface, it is desirable to convert fθ  and fϕ  to 

xf  and yf . Following the standard transformation from spherical to rectangular 
components, we obtain 
 ( )cos cos cos cos cos sin sinx y zf f f fθθ θ θ ϕ θ ϕ θ⋅ = + − . (28) 

After substituting zf  from (24), we arrive at 
 cos cos sinx yf f fθθ ϕ ϕ⋅ = + . (29) 

In analogous manner, it can be shown that 
 cos sin cosx yf f fϕθ ϕ ϕ⋅ = − + . (30) 

The substitution of (29) and (30) into (27) finally gives 

 
( , , ) ( cos sin )

2

( , , ) ( sin cos ).
2

jkr
x y

jkr
x y

eE r jk f f
r

eE r jk f f
r

θ

ϕ

θ ϕ ϕ ϕ
π

θ ϕ ϕ ϕ
π

−

−

≈ +

≈ − +
 (31) 

We can now summarize the procedure of the NF/FF pattern measurement in 
three basic steps: 

• Measure the tangential E field components ( , , 0)xaE x y z′ ′ ′ =  and 
( , , 0)yaE x y z′ ′ ′ =  over the near-field aperture (data acquisition). 

• Calculate the plane-wave spectral functions ( , )x x yf k k  and ( , )y x yf k k  
using (20) and (21). 

• Calculate the normalized far-field components using 

 
( , ) cos sin ,

( , ) sin cos ,
x y

x y

E f f

E f f
θ

ϕ

θ ϕ ϕ ϕ

θ ϕ ϕ ϕ

= +

= − +
 (32) 
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and the total normalized field pattern using 

 2 2 2 2( , ) ( , ) ( , ) ( , ) ( , )x x y y x yE E E f k k f k kϕθθ ϕ θ ϕ θ ϕ= + = + . (33) 

In the actual test procedure, a planar surface is chosen a distance 0z  away 
from the test antenna, which is in radiating mode. This surface is called the 
measurement aperture. The distance 0z  is at least three wavelengths away from 
the antenna, so that the measurement is carried out in the radiating near-field 
region (Fresnel zone) rather than in the reactive near-field region where the 
amplitude and phase variations of the field are too rapid and the sampling 
intervals must be very small. 

The measurement aperture is rectangular of dimensions a b× . It is divided 
into M×N points spaced evenly x∆  and y∆  apart. The relation between the 
number of points and the respective spacing is then 

 1,   1a bM N
x y

= + = +
∆ ∆

. (34) 

Thus, the sampling points are located at coordinates ( , ,0)m x n y∆ ∆  where 
0 1m M≤ ≤ −  and 0 1n N≤ ≤ − . The separation distances x∆  and y∆  must be 
less than half a wavelength in order to satisfy Nyquist’s sampling criterion and 
such that the equations in (34) yield integer numbers. The measurement 
aperture must be large enough so that the signal at its edges is at least 45 dB 
down from the maximum measured signal on the acquisition surface. 

The plane-wave spectral function ( , )x yk kf  can be evaluated at a discrete set 
of wave numbers as dictated by the discrete Fourier transform: 

 

2 2
( 1)

2 2  .
( 1)

x

y

x

k

y

k

k m m
a M x

k n n
b N x

π π

π π
∆

∆

= =
− ∆

= =
− ∆





 (35) 

Conventional two-dimensional FFT (Fast Fourier Transform) techniques are 
used to perform this transformation. 

The acquisition of the planar near-field data is done by a computer-
controlled probe antenna (typically a waveguide horn or an open waveguide), 
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which is moved to each grid node over the measurement aperture by a high-
precision positioning system (positioner). The probe’s axis is held stationary 
and normal to the measurement aperture. The probe must be linearly polarized 
so that separate measurements of the two tangential field components xE  and 

yE  become possible. 
As the probe location changes, its pattern orientation with respect to the 

AUT changes, too, as shown below. The probe’s partial directivities in the 
direction of the test antenna must be taken into account using probe 
compensation techniques. 

Probe





Test antenna

  
 

The principal advantage of the planar NF/FF transformation over the 
cylindrical and the spherical one is its mathematical simplicity. Its major 
disadvantage is that it cannot cover all directional angles. In the ideal case of 
infinite planar measurement surface, only one hemisphere of the antenna 
pattern can be measured. Thus, the back lobes and the side lobes of the antenna 
cannot be measured together with the main beam. Of course, the AUT can be 
rotated in different positions, so that the overall pattern can be reconstructed. 

The reader interested in the subject of NF/FF transforms and measurements 
is referred to the following introductory sources: 

R.C. Johnson, H.A. Ecker, and J.S. Hollis, “Determination of far-field 
antenna patterns from near-field measurements,” Proc. IEEE, vol. 61, No. 
12, pp. 1668-1694, Dec. 1973. 
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D.T. Paris, W.M. Leach, Jr., and E.B. Joy, “Basic theory of probe 
compensated near-field measurements,” IEEE Trans. on Antennas and 
Propagation, vol. AP-26, No. 3, pp. 373-379, May 1978. 
E.B. Joy, W.M. Leach, Jr., G.P. Rodrigue, and D.T. Paris, “Applications of 
probe compensated near-field measurements,” IEEE Trans. on Antennas 
and Propagation, vol. AP-26, No. 3, pp. 379-389, May 1978. 
A.D. Yaghjian, “An overview of near-field antenna measurements,” IEEE 
Trans. on Antennas and Propagation, vol. AP-34, pp. 30-45, January 1986. 

 
5.  Far-field Pattern Measurements* 

The far-field patterns are measured on the surface of a sphere of constant 
radius. Any position on the sphere is identified by the directional angles θ  and 
ϕ  of the spherical coordinate system. In general, the pattern of an antenna is 3-
D. However, 3-D pattern acquisition is difficult – it involves multiple 2-D 
pattern measurements. The minimal number of 2-D patterns is two, and these 
two patterns must be in two orthogonal principal planes. A principal plane must 
contain the direction of maximum radiation. A simplified block diagram of a 
pattern measurement system is given below. 
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The total amplitude pattern is described by the vector sum of the two 
orthogonally polarized radiated field components: 

 2 2| | | | | |E Eθ ϕ= +E . (36) 

Rarely, the separate patterns for both components are needed. This is the case 
when the polarization of the test antenna must be characterized in addition to its 
pattern. 

For antennas of low directivity, at least three 2-D pattern cuts are necessary 
in order to obtain good 3-D pattern approximation: in the two elevation planes 
at 0 /180ϕ =    and 90 / 270ϕ =    as well as the azimuth pattern at 90θ =  .  

For high-directivity antennas, only two orthogonal 2-D elevation patterns 
often suffice. Assuming that the antenna boresignt is along the z-axis, these are 
the patterns at 0 /180ϕ =    and 90 / 270ϕ =   . The 3-D pattern approximation 
from 2-D patterns is discussed below. 

High-directivity aperture antennas such as horn and reflector antennas can 
have their far-field components expressed as 

 ( , ) cos sin cos ( cos sin )
4

j r
E E H H
x y y x

eE j
r

β

θ θ ϕ β ϕ ϕ η θ ϕ ϕ
π

−
= + + −  I I I I , (37) 

 ( , ) ( cos sin ) cos ( cos sin )
4

j r
H H E E
x y y x

eE j
r

β

ϕ θ ϕ β η ϕ ϕ θ ϕ ϕ
π

−
= + + −  - I I I I . (38) 

Here, E
xJ , E

yJ , H
xJ  and H

yJ  are the plane-wave spectral functions: 

 ( sin cos sin sin )( , ) ( , )
A

E j x y
x ax

S

E x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= ∫∫I , (39) 

 ( sin cos sin sin )( , ) ( , )
A

E j x y
y ay

S

E x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= ∫∫I , (40) 

 ( sin cos sin sin )( , ) ( , )
A

H j x y
x ax

S

H x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= ∫∫I , (41) 

 ( sin cos sin sin )( , ) ( , )
A

H j x y
y ay

S

H x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= ∫∫I . (42) 

From equations (37) and (38) it follows that the field components in the 
principal planes are 
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 ( ,0) ( ,0) ( ,0) cos
4
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E H
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eE j
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β

θ θ β θ θ η θ
π

−
= + ⋅  J J  (43) 
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H E
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eE j
r

β

ϕ θ β η θ θ θ
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−
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4
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H E
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eE j
r

β

ϕ θ β η θ θ θ
π

−
 = − ⋅ 

  J - J . (46) 

The 3-D field dependence on the directional angles can be approximated 
from the 2-D dependences in the equations (43) through (46) as 

 ( , ) cos ( ,0) sin ( ,90 )
4

j rej
r

β
θ ϕ β ϕ θ ϕ θ

π

−
 ≈ ⋅ + ⋅ E E E  , (47) 

The total 3-D amplitude pattern of the field defined in (47) is obtained as 

 
{

}
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1/2
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E E E E
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θ θ ϕ ϕ

θ ϕ ϕ θ θ ϕ θ θ
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   ≈ ⋅ + + ⋅ +   

 + ⋅ ⋅ + ⋅ 

E  

 

 (48) 

In the pattern calculation, we drop the factor / (4 )j rj e rββ π− . Also, it can be 
shown that the last term in (48) is 

 
2

2

( ,0) ( ,90 ) ( ,0) ( ,90 ) (1 cos )

( ,0) ( ,90 ) ( ,90 ) ( ,0) .E E H H
x y x y

E E E Eθ θ ϕ ϕθ θ θ θ θ

θ θ η θ θ

+ = − ⋅

 + 

 

 J J J J
 (49) 

For high-directivity antennas, the angles θ , at which the antenna has 
significant pattern values, are small, and the term given in (49) can be 
neglected. Thus, the approximation of the 3-D pattern in terms of two 
orthogonal 2-D patterns reduces to the simple expression 

 2 2 2 2| ( , ) | cos | ( ,0) | sin | ( ,90 ) |θ ϕ ϕ θ ϕ θ≈ ⋅ + ⋅E E E  . (50) 

Sometimes, the phase pattern of the far field is also measured. This requires 
phase reference and can be performed using vector network analyzers. 
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6.  Gain Measurements* 
The gain measurements require essentially the same environment as the 

pattern measurements. To measure the gain of antennas operating above 1 GHz, 
usually, anechoic chambers are used. Between 0.1 GHz and 1 GHz, ground-
reflection ranges are used. 

Below 0.1 GHz, directive antennas are very large and the ground effects 
become increasingly pronounced. Usually the gain at these frequencies is 
measured directly in the environment of operation. Same holds for high-
frequency antennas operating in a complicated environment (mounted on 
vehicles or aircrafts). 

We consider three gain-measurement techniques. The first two belong to the 
so-called absolute-gain measurements, and they are: the two-antenna method, 
and the three-antenna method. The third method is called the gain-transfer (or 
gain-comparison) method. 

A. The two-antenna method 
The two-antenna method is based on Friis transmission equation and it 

needs two identical samples of the tested antenna. One is the radiating antenna, 
and the other one is receiving. Assuming that the antennas are well matched in 
terms of impedance and polarization, the Friis transmission equation is 

 
2

, where
4

r
t r t r

t

P G G G G G
P R

λ
π

 = = = 
 

, (51) 

or, in dB, 

 dB 10 10
1 420log 10log
2

r

t

R PG
P

π
λ

   = +       
. (52) 

One needs to know accurately the distance between the two antennas R, the 
received power rP , the transmitted power tP , and the frequency /f c λ= . 

B. The three-antenna method 
The three-antenna method is used when only one sample of the test antenna 

is available. Then, any other two antennas can be used to perform three 
measurements, which allow the calculation of the gains of all three antennas. 
All three measurements are made at a fixed known distance R between the 
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radiating and the transmitting antennas. 
It does not matter whether an antenna is in a transmitting or in a receiving 

mode. What matters is that the three measurements involve all three possible 
pairs of antennas: antenna #1 and antenna #2; antenna #1 and antenna #3; 
antenna #2 and antenna #3. The calculations are again based on Friis 
transmission equation, which in the case of two different antennas (antenna #i 
and antenna #j) measured during experiment #k ( 1,2,3k = ) becomes 

 
( )

dB dB 10 10
420log 10log

k
r

i j
t

R PG G
P

π
λ

  + = +      
. (53) 

The system of equations describing all three experiments is 

 

(1)

1 dB 2 dB 10 10

(2)

1 dB 3 dB 10 10

(3)
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420log 10log ,

420log 10log ,

420log 10log .

r
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r
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t

R PG G
P

R PG G
P

R PG G
P

π
λ

π
λ

π
λ

  + = +      

  + = +      

  + = +      

 (54) 

The right-hand sides of the equations in (54) are known if the distance R and 
the ratios of the received-to-transmitted power are known. Thus, the following 
system of three equations with three unknowns is obtained 

 
1 dB 2 dB

1 dB 3 dB

2 dB 3 dB

G G A
G G B
G G C

+ =
+ =
+ =

 (55) 

The solution to the system of equations in (55) is 

 

1 dB

2 dB

3 dB

,
2

,
2

.
2

A B CG

A B CG

A B CG

+ −
=

− +
=

− + +
=

 (56) 
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C. The gain-comparison method 
The gain-comparison method requires an antenna the gain of which is 

exactly known (called gain standard) and a transmitting antenna the gain of 
which does not need to be known. Two sets of measurements are performed. 

1) The test antenna is in a receiving mode, and its received power AUTP  is 
measured. 

2) The gain standard is in a receiving mode in exactly the same arrangement 
(the distance R and the transmitted power 0P  are kept the same), and its 
received power GSP  is measured. 

In both measurements, the receiving antennas must be matched to their loads 
(the receiver). 

The calculation of the test antenna gain in dB uses Friis’ transmission 
equation. The two measurements lead to the following system of equations: 

 

(1)
AUT

AUT dB 0 dB 10 10
0

(2)
GS

GS dB 0 dB 10 10
0

420log 10log ,

420log 10log .

R PG G
P

R PG G
P

π
λ

π
λ

  + = +      

  + = +      

 (57) 

Here, 

AUT dBG  is the gain of the test antenna; 

GS dBG  is the gain of the gain standard; and 

0 dBG  is the gain of the transmitting antenna. 

From (57), we derive the expression for the gain of the test antenna: 

 AUT
AUT dB GS dB 10

GS
10 log PG G

P
 = + ⋅  
 

. (58) 

If the test antenna is circularly or elliptically polarized, two orthogonal 
linearly polarized gain standards must be used in order to obtain the partial 
gains corresponding to each linearly polarized component. The total gain of the 
test antenna is 
 AUT dB 10 AUT AUT10log ( )v hG G G= + , (59) 
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where AUTvG  is the dimensionless gain of the test antenna measured with the 
vertically polarized gain standard and AUThG  is the dimensionless gain of the 
test antenna measured with the horizontally polarized gain standard. 
 
7.  Directivity Measurements* 

The directivity measurements are directly related to the pattern 
measurements. Once the pattern is found over a sphere, the directivity can be 
determined using the definition: 

 max 0 0
0 2

0 0

( , )4
( , )sin

FD
F d d

π π
θ ϕπ

θ ϕ θ θ ϕ
=

∫ ∫
, (60) 

where ( , )F θ ϕ  is the power pattern of the test antenna and 0 0( , )θ ϕ  is the 
direction of maximum radiation. 

Generally, ( , )F θ ϕ  is measured by sampling the field over a sphere of 
constant radius R. The spacing between the sampling points depends on the 
directive properties of the antenna and on the desired accuracy. The integral 

 
2

0 0

( , )sinF d d
π π

θ ϕ θ θ ϕΠ = ∫ ∫  (61) 

is computed numerically, e.g., 

 
1 1

2 ( , )sin
M N

i j i
j i

F
N M
π π θ ϕ θ

= =

 
Π ≈  

 
∑ ∑ . (62) 

If the antenna is circularly or elliptically polarized, two measurements of the 
above type must be carried out in order to determine the partial directivities, Dθ  
and Dϕ . Then, the total directivity is calculated as 
 0D D Dθ ϕ= + , (63) 

where the partial directivities are defined as 

 max4 FD θ
θ

θ ϕ
π=
Π +Π

, (64) 
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 max4 .
F

D ϕ
ϕ

θ ϕ
π=
Π +Π

 (65) 

 
8.  Radiation Efficiency, cde  * 

In order to calculate the radiation efficiency, the gain and the directivity 
must be measured first. Factors like impedance mismatch and polarization 
mismatch have to be minimized during these measurements. The radiation 
efficiency is then calculated using its definition: 

 Gain
Directivitycde = . (66) 

 
9.  Impedance Measurements* 

The input impedance of an antenna is calculated via the reflection 
coefficient at its terminals Γ , which are connected to a transmission line of 
known characteristic impedance cZ . If the magnitude and the phase of Γ  are 
known, then, the antenna input impedance is calculated as 

 1
1A cZ Z + Γ =  − Γ 

, Ω . (67) 

Γ is usually measured using a vector network analyzer (VNA). The VNA 
measures the complex S-parameters of microwave networks. The antenna is a 
single-port device, therefore, 11SΓ = .  
 
10.  Polarization Measurements* 

A complete description of the antenna polarization is given by the 
polarization ellipse (the axial ratio and the tilt angle), as well as the sense of 
rotation (clockwise, or counter-clockwise). In general, the polarization of an 
antenna is not the same in every direction, i.e., it depends on the observation 
angle. That is why, often, many measurements are required according to the 
desired degree of polarization description. 

The polarization measurement methods are classified into three general 
categories. 
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• Partial methods give incomplete information about the polarization but are 
simple and require conventional equipment. 

• Comparison methods yield complete polarization information; however, 
they require a polarization standard. 

• Absolute methods yield complete polarization information; and, they do 
not require a polarization standard. 

The polarization-pattern method is a common partial method. It produces 
the polarization ellipse parameters (the axial ratio and the tilt angle) in a given 
direction of radiation. It cannot determine however the sense of rotation. The 
AUT can be either in transmitting or in receiving mode. The other antenna (the 
probe) must be linearly polarized, e.g., a dipole, and its pattern must be 
accurately known. A typical arrangement for the polarization-pattern 
measurement is given below. 

( , )θ ϕ

Test Antenna Rotating Probe

probe axis of rotation

 

The signal at the output of the probe depends on two factors: the 
polarization of the test antenna and the angle of the probe’s rotation. The signal 
level is recorded and plotted versus the angle of rotation. Thus, a polarization 
pattern is obtained for the considered direction of radiation.  

Let us assume that the probe is initially in such an orientation that it is 
polarized along the x-axis where x is perpendicular to the line connecting the 
two antennas. The linearly polarized probe rotates and, therefore, its 
polarization vector pρ̂  also rotates forming a time-dependent angle ψ  with the 
x-axis. If the AUT is a linearly polarized antenna with a polarization vector 

AUTˆ ˆ=ρ x , then the PLF is 2
p AUTˆ ˆ| |∗⋅ρ ρ  = 2cos ψ ; see the figure below showing 

the polar plot of this PLF. This PLF pattern is the AUT polarization pattern. 
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xψ

 

In general, if the AUT is linearly polarized, the polarization pattern will be 
the same as the cosine pattern shown above but could be tilted depending on the 
initial angle 0ψ  between the polarization axes of the probe and the AUT; see 
the illustration below.  

0ψ AUTρ̂
pρ̂

 
If the AUT is circularly polarized, the polarization pattern is a circle 

regardless of the initial mutual orientation of the probe and the AUT. 

xψ
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In the general case of elliptically polarized test antenna, the polarization 
pattern is a dumb-bell contour, which allows for the direct calculation of the 
axial ratio and the tilt angle τ  of the polarization ellipse as is shown in the 
figure below. 

x

Polarization Pattern
Polarization Ellipse

major axis

m
in

or
 a

xis τ

 
The polarization-pattern method cannot provide information about the sense 

of rotation. However, this can be easily established by the use of circularly 
polarized probes (e.g. spiral antennas): one of a clockwise polarization, and the 
other one of a counter-clockwise polarization. Whichever receives a stronger 
signal determines the sense of rotation. 

Another partial method is the axial-ratio pattern method. The arrangement 
is very similar to that of the polarization-pattern method. The only difference is 
that now the AUT (which is usually in a receiving mode) is rotated in a desired 
plane by the antenna positioning mechanism. The probe rotates with much 
larger angular frequency than the AUT because it should complete one full turn 
at approximately every degree of rotation of the test antenna. 
 

Test Antenna Rotating Probe

probe axis of rotation

AUT axis of rotation
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As a result of the measurement described above, a 2-D pattern is obtained, 
which allows for the calculation of the axial ratio of the polarization at any 
direction of the measured 2-D pattern. Such a pattern (in dB) of an antenna, 
which is nearly circularly polarized along θ = 0, is shown below. 
 

 
[Balanis] 
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From the plot above, it is obvious that the axial-ratio pattern has an inner 
envelope and an outer envelope. The ratio of the outer envelope to the inner one 
for a given angle gives the axial ratio of the field polarization in this direction. 
For example, the pattern above shows that the test antenna is nearly circularly 
polarized along boresight (θ = 0), where the axial ratio is close to one. At 
greater observation angles, however, its polarization becomes elliptical of 
increasingly larger axial ratio. 

The axial-ratio pattern method yields only the axial ratio of the polarization 
ellipse. It does not give information about the tilt angle and the sense of 
rotation. However, it is very fast and convenient to implement in any antenna 
test range. The tilt angle at selected directional angles can be always clarified 
later with the polarization-pattern method. 

A powerful absolute polarization measurement method is the three-antenna 
method. It yields full polarization information for all three antennas. The only 
a-priori knowledge required is the approximate tilt angle of one of the three 
antennas. 

The method requires the measurement of the amplitude and the phase of the 
normalized received voltage in three experiments, which involve: 1) antenna #1 
and antenna #2; 2) antenna #1 and antenna #3; and 3) antenna #2 and antenna 
#3. All three experiments must use the same measurement set-up. The three 
complex voltage phasors are measured as a function of the angles ϕ  and χ , 
which are the angles of rotation of the antennas about the antenna-range axis 
(usually, this is the line-of-sight between them).  

An example set-up is shown in the figure below. First, the AUT#1 is 
scanned for [0 ,360 ]φ ∈    usually with a step of 1φ∆ =  . Then, the angle of 
AUT#2 is incremented by χ∆  (usually, 15χ∆ ≈  ), and AUT#1 is scanned 
again. This is repeated until the angle χ  sweeps the whole range from 0  to 
360 . 
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line-of-sight

x

y

z

φ

χ

AUT#1

AUT#2

 
 

Three complex quantities ,m nM  are then calculated from the double Fourier 
transform of the voltage phasor patterns: 
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, 2 2
( )

,
0 0

( , )
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∫ ∫





. (68) 

It can be shown (see references [6],[7],[8]) that ,m nM  are equal to the dot 
products of the circular polarization ratios (see reference [3]; for definition of 
polarization ratio refer to Lecture 5, eq. 5.21) of the two antennas used in the 
respective measurement: 

 
1 2 1,2

1 3 1,3

2 3 2,3

ˆ ˆ
ˆ ˆ
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c c

c c

c c

M
M
M

⋅ =
⋅ =
⋅ =

ρ ρ
ρ ρ
ρ ρ

 (69) 
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The system in (69) is used to solve for the three circular polarization ratios: 

 12 13 12 23 23 13
1 2 3

23 13 12
ˆ ˆ ˆ; ;c c c

M M M M M M
M M M

= = =ρ ρ ρ . (70) 

The square root of a complex number implies ambiguity in the phase 
calculations for the polarization vectors. Here, it becomes necessary to have an 
approximate knowledge of the tilt angle of one of the antennas. The circular 
polarization ratios are directly related to the polarization ellipse; see Lecture 5, 
[2], [3]. 
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Lecture 9:  Linear Wire Antennas – Dipoles and Monopoles 
(Small electric dipole antenna. Finite-length dipoles. Half-wavelength dipole. 
Method of images – revision. Vertical infinitesimal dipole above a 
conducting plane. Monopoles. Horizontal infinitesimal dipole above a 
conducting plane.) 
 
The dipole and the monopole are arguably the two most widely used antennas 
across the UHF, VHF and lower-microwave bands. Arrays of dipoles are 
commonly used as base-station antennas in land-mobile systems. The 
monopole and its variations are common in portable equipment, such as 
cellular telephones, cordless telephones, automobiles, trains, etc. It has 
attractive features such as simple construction, sufficiently broadband 
characteristics for voice communication, small dimensions at high 
frequencies. Alternatives to the monopole antenna for hand-held units is the 
inverted F and L antennas, the microstrip patch antenna, loop and spiral 
antennas, and others. The printed inverted F antenna (PIFA) is arguably the 
most common antenna design used in modern handheld phones. 
 
1. Small Dipole 

50 10
l

 
                                  (9.1) 

If we assume that (9.1) holds in addition to R r , 
the maximum phase error in ( )R  that can occur is 

max 18
2 10
l

e
 

    , 

which corresponds to an observation direction at 
0   . Reminder: A maximum total phase error 

less than / 8  is acceptable since it does not affect 
substantially the integral solution for the vector 
potential A. Note that the approximation R r  
implies that r l . 

The current is a triangular function of 'z : 
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                      (9.2) 

The VP integral is obtained as 
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4 / 2 / 2
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z e z e
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l R l R

 


 



           
     

 A z .      (9.3) 

The solution of (9.3) is simple when we assume that R r : 
1ˆ
2 4

j r

m
e

I l
r



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A z .                                    (9.4) 

The further away from the antenna the observation point is, the more 
accurate the expression in (9.4). Note that the result in (9.4) is exactly one-
half of the result obtained for A of an infinitesimal dipole of the same length, 
if Im were the current uniformly distributed along the dipole. This is expected 
because we made the same approximation for R, as in the case of the 
infinitesimal dipole with a constant current distribution, and we integrated a 
triangular function along l, whose average is 0 0.5av mI I I  . 

Therefore, we need not repeat all the calculations of the field components, 
power and antenna parameters; we simply use the infinitesimal-dipole field 
multiplied by a factor of 0.5: 
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, 1r  .                             (9.5) 

The normalized field pattern is the same as that of the infinitesimal dipole: 
 ( , ) sinE    . (9.6) 
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The power pattern:  2( , ) sinU                                                (9.7) 
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The directivity: 

0
4 3 1.5

2A

D


  


.                                     (9.8) 

As expected, the directivity, the beam solid angle as well as the effective 
aperture are the same as those of the infinitesimal dipole because the 
normalized patterns of both dipoles are the same. 

The radiated power is four times less than that of an infinitesimal dipole 
of the same length and current 0 mI I  because the far fields are twice 
smaller in magnitude: 

sin
2sin   

0    

90    
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2 21
4 3 12

m mI l I l  
 

         
   

.                         (9.9) 

As a result, the radiation resistance is also four times smaller than that of the 
infinitesimal dipole: 

2 2
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.                           (9.10) 

 
2. Finite-length Infinitesimally Thin Dipole 

A good approximation of the current distribution along the dipole’s length 
is the sinusoidal one: 
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It can be shown that the VP integral 
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has an analytical (closed form) solution. Here, however, we follow a standard 
approach used to calculate the far field for an arbitrary wire antenna. It is 
based on the solution for the field of the infinitesimal dipole. The finite-
length dipole is subdivided into an infinite number of infinitesimal dipoles of 
length 'dz . Each such dipole produces the elementary far field given by 
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                            (9.13) 

where 2 2 2 1/2[ ( ) ]R x y z z     and ( ')eI z  denotes the value of the current 
element at 'z . Using the far-zone approximations, 
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1 1 , for the amplitude factor

'cos , for the phase factor
R r
R r z 



 
           (9.14) 

the following approximation of the elementary far field is obtained: 
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Using the superposition principle, the total far field is obtained as 
/2 /2

'cos

/2 /2

sin ( )
4

l lj r
j z

e

l l

e
E dE j I z e dz

r


 

   




 

       
   .        (9.16) 

The first factor 
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                               (9.17) 

is called the element factor. The element factor in this case is the far field 
produced by an infinitesimal dipole of unit current element 1 (A m)Il   . 
The element factor is the same for any current element, provided the angle   
is always associated with the axis of the current flow. The second factor 
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l

j z
e
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f I z e dz 
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                            (9.18) 

is the space factor (or pattern factor, array factor). The pattern factor is 
dependent on the amplitude and phase distribution of the current at the 
antenna (the source distribution in space). 

For the specific current distribution described by (9.11), the pattern factor 
is 

0 /2
'cos 'cos

0
/2 0

( ) sin ' ' sin ' '
2 2

.
l

j z j z

l

l l
f I z e dz z e dz     



                          
   (9.19) 

The above integrals are solved having in mind that 

 2 2
sin( ) sin( ) cos( )

cx
c x e

a b x e dx c a bx b a bx
b c

     
 .    (9.20) 
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The far field of the finite-length dipole is obtained as 

0

cos cos cos
2 2( ) ( )

2 sin

j r

l l
e

E g f j I
r





 
  

 



                  
 

.     (9.21) 

Amplitude pattern: 

cos cos cos
2 2( , )

sin

l l

E

 
 



      
    .                   (9.22) 

Patterns (in dB) for some dipole lengths l   [from Balanis]: 
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The 3-D pattern of the dipole 1.25l  : 

  
[Balanis] 
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Power pattern: 
2

2

cos cos cos
2 2( , )

sin

l l

F

 
 



             .                (9.23) 

Note: The maximum of ( , )F    is not necessarily unity, but for 2l   the 
major maximum is always at 90   . 
 
Radiated power 

First, the far-zone power flux density is calculated as 
22

02
2 2

1 cos(0.5 cos ) cos(0.5 )ˆ ˆ| |
2 8 sin

I l l
E

r


  
  

     
P r r .      (9.24) 

The total radiated power is then 
2

2

0 0

sind P r d d
 

        P s


                       (9.25) 

 22
0

0

cos(0.5 cos ) cos(0.5 )
4 sin

l lI
d

   
 

 



  



.             (9.26) 

  is solved in terms of the cosine and sine integrals: 

         

       

1ln sin 2 2
2

1 cos ln / 2 2 2 .
2

i i i

i i

C l C l l S l S l

l C l C l C l

    

   

        

     

    (9.27) 

Here, 
0.5772C   is the Euler’s constant, 

cos cos( )
x

i

x

y y
C x dy dy

y y





     is the cosine integral, 

0

sin( )
x

i
y

S x dy
y

   is the sine integral. 
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Thus, the radiated power can be written as 
2
0

4
I


  .                                             (9.28) 

 

Radiation resistance  
The radiation resistance is defined as 

2
0

2 2

2
2r

m m

I
R

I I





                                       (9.29) 

where Im is the maximum current magnitude along the dipole. If the dipole is 
half-wavelength long or longer ( / 2l  ), 0mI I , see (9.11). However, if 

/ 2l  , then 0mI I  as per (9.11). If / 2l   holds, the maximum current 
is at the dipole center (the feed point 0z  ) and its value is 
 ( 0) 0 sin( / 2)m zI I I l   (9.30) 

where / 2 / 2l  , and, therefore, sin( / 2) 1l  . In summary, 

 0

0

sin( / 2),  if / 2
,                  if / 2.

m

m

I I l l

I I l

 


 
 

 (9.31) 

Therefore,  

 
2

, if / 2
2 sin ( / 2)

               , if / 2.
2

r

r

R l
l

R l

 
 
 



  

  
 (9.32) 

 

Directivity 
The directivity is obtained as 

max max
0 2

0 0

4 4
( , )sin

U F
D

F d d
  

    
 


 

                 (9.33) 

where 
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2cos(0.5 cos ) cos(0.5 )( , )
sin

l l
F

   

    

 

is the power pattern [see (9.23)]. Finally, 

max
0

2F
D 


.                                               (9.34) 

 

Input resistance of center-fed dipoles 
The radiation resistance given in (9.32) is not necessarily equal to the 

input resistance because the current at the dipole center Iin (if its center is the 
feed point) is not necessarily equal to Im. In particular, in mI I  if / 2l   
and (2 1) / 2l n   , n is any integer. Note that when / 2l  , 0mI I .  

To obtain a general expression for the current magnitude Iin at the center 
of the dipole (assumed also to be a feed point), we note that if the dipole is 
lossless, the input power is equal to the radiated power. Therefore, in the case 
of a dipole longer than half a wavelength, 

2 2
0| | | |

2 2
in

in in r
I I

P R R     for / 2l  ,                       (9.35) 

and the input and radiation resistances relate as 

 
2

0
2

| |
| |in r

in

I
R R

I
  for / 2l  . (9.36) 

Since the current at the center of the dipole ( ' 0z  ) is [see (9.11)] 

0 sin( / 2)inI I l ,                                       (9.37) 

then,  

 
2sin ( / 2)

r
in

R
R

l
 . (9.38) 

Using the 2nd expression for Rr in (9.32), we obtain 

22 sin ( / 2)inR
l


 


  , / 2l  .                          (9.39) 

For a short dipole ( / 2l  ), in mI I . It then follows from 
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2 2| | | | and ,  / 2

2 2
in m

in in r in m
I I

P R R I I l l    ,  (9.40) 

that 

 
22 sin ( / 2)in rR R

l


 


   , / 2l  , (9.41) 

where we have taken into account the first equation in (9.32). 
 
In summary, the dipole’s input resistance, regardless of its length, depends on 
the integral  as in (9.39) or (9.41), as long as the feed point is at the center. 

 
Loss can be easily incorporated in the calculation of Rin bearing in mind 

that the power-balance relation (9.35) can be modified as 

 
2 2

loss loss
| | | |

2 2
in m

in in r
I I

P R P R P      . (9.42) 

Remember that in Lecture 4, we obtained the expression for the loss of a 
dipole of length l as: 

 
2
0

loss
sin( )1

4
hfI R l

P
l




 
   

. (9.43) 

 
3. Half-wavelength Dipole 

This is a classical and widely used thin wire antenna: / 2l  . 

0 cos(0.5 cos )
2 sin

/

j rI e
E j

r
H E





 

 
 



 


                            (9.44) 

 
Radiated power flux density: 

22 2
0 02 3
2 2 2 2

( ) normalized power pattern

1 | | cos(0.5 cos ) | || | sin
2 8 sin 8

F

I I
P E

r r




   
   



     


.    (9.45) 
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Radiation intensity: 
22 2

0 02 3
2 2

( ) normalized power pattern

| | cos(0.5 cos ) | | sin
8 sin 8

F

I I
U r P



   
  



     


.           (9.46) 

3-D power pattern (not in dB) of the half-wavelength dipole: 

 
 

Radiated power 
The radiated power of the half-wavelength dipole is a special case of the 

integral in (9.26): 

 
2 2

0

0

| | cos (0.5 cos )
4 sin
I

d
   

 
    (9.47) 

 
22

0

0

| | 1 cos
8
I y

dy
y







    (9.48) 

 0.5772 ln(2 ) (2 ) 2.435iC    I  (9.49) 

 2 2
0 02.435 | | 36.525 | |

8
I I




   . (9.50) 

 
Radiation resistance: 

 
2

0

2 73
| |rR
I


   . (9.51) 

Directivity: 

 max / 90
0

4 44 4 1.643
2.435

U U
D       

  
 . (9.52) 
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Maximum effective area: 

 
2

2
0 0.13

4eA D
 


  . (9.53) 

Input impedance 
Since / 2l  , the input resistance is 

 73in rR R   . (9.54) 

The imaginary part of the input impedance is approximately 42.5j   . 
To acquire maximum power transfer, this reactance has to be removed by 
matching (e.g., shortening) the dipole: 

 thick dipole  0.47l   
 thin dipole  0.48l  . 

The input reactance of the dipole is very frequency sensitive; i.e., it 
depends strongly on the ratio /l  . This is to be expected from a resonant 
narrow-band structure operating at or near resonance such as the half-
wavelength dipole. We should also keep in mind that the input impedance is 
influenced by the capacitance associated with the physical junction to the 
transmission line. The structure used to support the antenna, if any, can also 
influence the input impedance. That is why the curves below describing the 
antenna impedance are only representative. 
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Measurement results for the input impedance of a dipole vs. its electrical 
length 

 
(a) input resistance 

 
 
Note the strong influence of the dipole diameter on its resonant properties. 
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(b) input reactance 

 
 

We can calculate the input resistance as a function of /l   using (9.29) 
and (9.39). These equations, however, are valid only for infinitesimally thin 
dipoles. Besides, they do not produce the reactance. In practice, dipoles are 
most often tubular and they have substantial diameter d. General-purpose 
numerical methods such as the method of moments (MoM) or the finite-
difference time-domain (FDTD) method can be used to calculate the 
complex antenna input impedance. When finite-thickness wire antennas are 
analyzed and no assumption is made for the current distribution along the 
wire, the MoM is applied to Pocklington’s equation or to its variation, the 
Hallen equation. A classical method producing closed form solutions for the 
self-impedance and the mutual impedance of straight-wire antennas is the 
induced electromotive force (emf) method, which is discussed later. 
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4. Method of Images – Revision 
 

magnetic conductor
+

-
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+

-
oJ + -
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5. Vertical Electric Current Element Above Perfect Conductor 
 

1

2

1r

2r

1 1( , ) 

r



direct

refl
ect

ed

image

actual
source

 
 

The field at the observation point P is a superposition of the fields of the 
actual source and the image source, both radiating in a homogeneous medium 
of constitutive parameters 1 1( , )  . The actual (or original) source is a current 
element 0I l  (infinitesimal dipole). Therefore, the image source is also an 
infinitesimal dipole. The respective field components are: 

1

2

0 1
1

0 2
2

( ) sin ,
4

( ) sin  .
4

j r
d

j r
r

e
E j I l

r

e
E j I l

r









 


 






  

  
                            (9.55) 

Expressing the distances 1 1| |r  r  and 2 2| |r  r  in terms of | |r  r  and h (using 
the cosine theorem) gives 

2 2
1

2 2
2

2 cos ,

2 cos( )  .

r r h rh

r r h rh



 

  

   
                        (9.56) 

We make use of the binomial expansions of 1r  and 2r  to approximate the 
amplitude and the phase terms, which simplify the evaluation of the total far 
field and the VP integral. For the amplitude term, 
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1 2

1 1 1
r r r
  .                                             (9.57) 

For the phase term, we use the second-order approximation (see also the 
geometrical interpretation below), 

1

2

cos
cos .

r r h

r r h




 
 

                                          (9.58) 

 

x

y

z

h

h 

2 cosh 

  

1r

2r

r

 
 

The total far field is 
d rE E E                                               (9.59) 

   0 cos cos( ) sin
4

j r h j r hI l
E j e e

r
   

  


                            (9.60) 

   0

array factor ( )element factor ( )

sin 2cos cos , 0
4

0 , 0

j r

f
g

e
E j I l h z

r

E z









   



     

 



            (9.61) 

Note that the far field can be decomposed into two factors: the field of the 
elementary source ( )g   and the pattern factor (also array factor) ( )f  . 
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The normalized power pattern is 

  2( ) sin cos cosF h       .                            (9.62) 

Below, the elevation plane patterns are plotted for vertical infinitesimal 
electric dipoles of different heights above a perfectly conducting plane: 
 

 
[Balanis] 

 
As the vertical dipole moves further away from the infinite conducting 
(ground) plane, more and more lobes are introduced in the power pattern. 
This effect is called scalloping of the pattern. The number of lobes is 

 nint (2 / ) 1n h   . 
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Total radiated power 

 
2 /2

2 2

0 0

1 | | sin
2

d E r d d
 

   


     P s


, 

 
/2

2 2

0

| | sinE r d



  


   , (9.63) 

  
/2

2 2 2 2
0

0

( ) sin cos cosI l h d


        , 

 
2

0
2 3

1 cos(2 ) sin(2 )
3 (2 ) (2 )

I l h h

h h

 
  

           
. (9.64) 

 As 0h  , the radiated power of the vertical dipole above ground 
approaches twice the value of the radiated power of a dipole of the 
same length in free space. 

 As h  , the radiated power of the vertical dipole above ground 
tends toward that of the vertical dipole in open space. 

 
Note: 

  
 

 
 2 30

cos 2 sin 2 1lim
32 2h

h h

h h

 

 

 
   
  

, (9.65) 

  
 

 
 2 3

cos 2 sin 2
lim 0

2 2h

h h

h h

 

 

 
   
  

. (9.66) 

 
Radiation resistance 

 
 

 
 

2

2 32
0

cos 2 sin 22 12
| | 3 2 2

r
h hl

R
I h h

 


  

        
    

.         (9.67) 

 As 0h  , the radiation resistance of the vertical dipole above ground 
approaches twice the value of the radiation resistance of a dipole of the 
same length in free space: 

2 , 0vdp dp
in inR R h  .                                 (9.68) 

 As h  , the radiation resistance of both dipoles becomes the same. 
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Radiation intensity 

 
22

02 2 2 2| | sin cos cos
2 2
E I l

U r P r h    
 

     
 

.         (9.69) 

The maximum of ( )U   occurs at / 2  : 

0
max 2

I l
U



   

 
.                                        (9.70) 

This value is 4 times greater than maxU  of a free-space dipole of the same 
length. 

Maximum directivity 

max
0

2 3

24 1 cos(2 ) sin(2 )
3 (2 ) (2 )

U
D

h h
h h

  
 

 
  

.                (9.71) 

If 0h  , 0 3D  , which is twice the maximum directivity of a free-space 
current element ( 0 1.5idD  ). 

The maximum of 0D  as a function of the height h occurs when h   
2.881 ( 0.4585h  ). Then, 0 / 2.8816.566 hD   . 
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6. Monopoles 

A monopole is a dipole that has been reduced by one-half and is fed against a 
ground plane. It is normally / 4  long (a quarter-wavelength monopole), but 
it might by shorter if there are space restrictions. Then, the monopole is a 
small monopole the counterpart of which is the small dipole (see Section 1). 
Its current has linear distribution with its maximum at the feed point and its 
null at the end. 

The vertical monopole is a common antenna for AM broadcasting (f = 
500 to 1500 kHz,   = 200 to 600 m), because it is the shortest most efficient 
antenna at these frequencies as well as because vertically polarized waves 
suffer less attenuation at close-to-ground propagation. Vertical monopoles 
are widely used as base-station antennas in mobile communications, too. 

Monopoles at base stations and radio-broadcast stations are supported by 
towers and guy wires. The guy wires must be separated into short enough 
( / 8 ) pieces insulated from each other to suppress parasitic currents.  

Special care is taken when grounding the monopole. Usually, multiple 
radial wires or rods, each 0.25 0.35  long, are buried at the monopole base 
in the ground to simulate perfect ground plane, so that the pattern 
approximates closely the theoretical one, i.e., the pattern of the / 2 -dipole. 
Losses in the ground plane cause undesirable deformation of the pattern as 
shown below (infinitesimal dipole above an imperfect ground plane). 
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Monopole fed against a
large solid ground plane

Practical monopole with radial
wires to simulate perfect ground

l

 
 
 
 
 

Several important conclusions follow from the image theory and the 
discussion in Section 5: 

 The field distribution in the upper half-space is the same as that of the 
respective free-space dipole. 

 The currents and charges on a monopole are the same as on the upper 
half of its dipole counterpart but the terminal voltage is only one-half 
that of the dipole. The input impedance of a monopole is therefore only 
half that of the respective dipole: 

1
2

mp dp
in inZ Z .                                         (9.72) 

 The radiation pattern of a monopole is one-half the dipole’s pattern 
since it radiates in half-space and, at the same time, the field normalized 
distribution in this half-space is the same as that of the dipole. As a 
result, the beam solid angle of the monopole is half that of the 
respective dipole and its directivity is twice that of the dipole: 

0 0
4 4 2

0.5
mp dp

mp dp
A A

D D
 

  
 

.                          (9.73) 
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The quarter-wavelength monopole 
This is a straight wire of length / 4l   mounted over a ground plane. 

From the discussion above, it follows that the quarter-wavelength monopole 
is the counterpart of the half-wavelength dipole as far as the radiation in the 
hemisphere above the ground plane is concerned. 

 Its radiation pattern is the same as that of a free-space / 2 -dipole, but 
it is non-zero only for 0 90    (above ground). 

 The field expressions are the same as those of the / 2 -dipole. 
 The total radiated power of the / 4 -monopole is half that of the / 2 -

dipole. 
 The radiation resistance of the / 4 -monopole is half that of the / 2 -

dipole:  0.5 0.5 73 42.5 36.5 21.25,mp dp
in inZ Z j j      . 

 The directivity of the / 4 -monopole is 
0 02 2 1.643 3.286mp dpD D    . 

 
Some approximate formulas for rapid calculations of the input resistance of a 
dipole and the respective monopole: 

Let 
, for dipole

2

2 , for monopole.

l l
G

l
G l

 


 


 

 
 

Approximate formulas: 

 If 0
4

G


  , then 
2

2

20 ,dipole
10 ,monopole

in

in

R G

R G




 

 

 If 
4 2

G
 
  , then 

2.5

2.5

24.7 ,dipole
12.35 ,monopole

in

in

R G

R G




 

 

 If 2
2

G

  , then 

4.17

4.17

11.14 ,dipole
5.57 ,monopole

in

in

R G

R G




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7. Horizontal Current Element Above a Perfectly Conducting Plane 

The analysis is analogous to that of a vertical current element above a 
ground plane. The difference arises in the element factor ( )g   because of the 
horizontal orientation of the current element. Let us assume that the current 
element is oriented along the y-axis, and the angle between r  and the 
dipole’s axis (y-axis) is  . 
 

x

y

z

h

h 

2 cosh 

  

1r

2r

r

P





 
 

 ( ) ( ) ( )d rP P P E E E , (9.74) 

 
1

0
1

( ) sin
4

j r
d e

E j I l
r



  



  , (9.75) 

 
2

0
2

( ) sin
4

j r
r e

E j I l
r



  



   . (9.76) 

We can express the angle   in terms of ( , )  : 
ˆˆ ˆ ˆ ˆ ˆcos ( sin cos sin sin cos )          y r y x y z  
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2 2

cos sin sin

sin 1 sin sin .

  

  

 

  
 (9.77) 

The far-field approximations are: 

1 2

1

2

1 1 1 , for the amplitude term

cos
for the phase term.

cos

r r r

r r h

r r h




 

  
  

 

The substitution of the far-field approximations and equations (9.75), (9.76), 
(9.77) into the total field expression (9.74) yields 

  2 2
0

array factor ( , )element factor ( , )

( , ) ( ) 1 sin sin 2 sin cos
4

j r

f
g

e
E j I l j h

r





  

      



      





. (9.78) 

The normalized power pattern 
    2 2 2( , ) 1 sin sin sin cosF h          (9.79) 

 

 

90  



 

Nikolova 2018 27

As the height increases beyond a wavelength (h  ), scalloping appears 
with the number of lobes being 

 nint 2 h
n


   
 

. (9.80) 

 

 
Following a procedure similar to that of the vertical dipole, the radiated 

power and the radiation resistance of the horizontal dipole can be found: 

    
 

 
 

 

2
0

2 3
sin 2 cos 2 sin 22

2 3 2 2 2
R h

h h hI l

h h h



   
   

        
    



 (9.81) 

  
2

r
l

R R h 

   

 
. (9.82) 

By expanding the sine and the cosine functions into series, it can be shown 
that for small values of ( )h  the following approximation holds: 

 
22

/ 0
32

15h
h

R 



   
 

. (9.83) 

90  
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It is also obvious that if 0h  , then 0rR   and 0  . This is to be expected 
because the dipole is short-circuited by the ground plane. 
 
Radiation intensity 

   
22

02 2 2 2| | 1 sin sin sin cos
2 2
r I l

U h
    

 
      

 
E        (9.84) 

The maximum value of (9.84) depends on whether ( )h  is less than / 2  or 
greater: 

 If 
2

h
   

4
h

  
 

 

 
2

0 2
max / 0sin

2
I l

U h 
 

 

   
 



.                          (9.85) 

 If 
2

h
   

4
h

  
 

 

2
0

max
/ arccos , 0

2
2

h

I l
U

 



    

 

   
  

.                           (9.86) 

 
Maximum directivity 

 If 
4

h


 , then maxU  is obtained from (9.85) and the directivity is 

 
2

max
0

4sin ( )4
( )

U h
D

R h




 


. (9.87) 

 If 
4

h


 , then maxU  is obtained from (9.86) and the directivity is 

 max
0

44
( )

U
D

R h



 


. (9.88) 

For very small h , the approximation   2

0
sin

7.5
h

D
h





 

 
 is often used. 
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LECTURE 10: Reciprocity. Cylindrical Antennas – Analytical Models 
(Reciprocity theorem. Implications of reciprocity in antenna measurements. 
Self-impedance of a dipole using the induced emf method. Pocklington’s 
equation. Hallén’s equation.) 
 
1. Reciprocity Theorem for Antennas 
 
1.1. Reciprocity theorem in circuit theory 

If a voltage (current) generator is placed between any pair of nodes of a 
linear circuit, and a current (voltage) response is measured between any other 
pair of nodes, the interchange of the generator’s and the measurement’s 
locations would lead to the same measurement results. 

 

linear
circuit

AGV

AI
i

i′

j

j′

linear
circuit GV

i

i′

j

j′

AI

A≡

 
 

orji
ji ij

j i

VV Z Z
I I

= = .                                   (10.1) 

 
1.2. Reciprocity theorem in EM field theory (Lorentz’ reciprocity theorem) 

Consider a volume [ ]SV  bounded by the surface S, where two pairs of 
sources exist: 1 1( , )J M  and 2 2( , )J M . The medium is linear. We denote the 
field associated with the 1 1( , )J M  sources as 1 1( , )E H , and the field generated 
by 2 2( , )J M  as 2 2( , )E H . 

 1 1 1 2

1 1 1 2

/
/

j
j
ωµ
ωε

∇× = − − ⋅
∇× = + ⋅

E H M H
H Ε J E

 (10.2) 

 2 2 2 1

2 2 2 1

/
/

j
j
ωµ
ωε

∇× = − − ⋅
∇× = + ⋅

E H M H
H E J E

 (10.3) 
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The vector identity 

2 1 1 2 1 2 2 1 1 2 2 1( )⋅∇× − ⋅∇× − ⋅∇× + ⋅∇× = ∇ ⋅ × − ×H E Ε H H E E H E H E H  
is used along with (10.2) and (10.3) to obtain 

1 2 2 1 1 2 1 2 2 1 2 1( )∇ ⋅ × − × = − ⋅ + ⋅ + ⋅ − ⋅E H E H E J H M E J H M .         (10.4) 

Equation (10.4) is written in its integral form as 

[ ]

1 2 2 1 1 2 1 2 2 1 2 1( ) ( )
SS V

d dv× − × ⋅ = − ⋅ + ⋅ + ⋅ − ⋅∫∫ ∫∫∫E H E H s E J H M E J H M


. (10.5) 

Equations (10.4) and (10.5) represent the general Lorentz reciprocity theorem 
in differential and integral forms, respectively. 

One special case of the reciprocity theorem is of fundamental importance to 
antenna theory, namely, its application to unbounded (open) problems. In this 
case, the surface S is a sphere of infinite radius. Therefore, the fields integrated 
over it are far-zone fields. This means that the left-hand side of (10.5) vanishes: 

1 2 1 2| || | | || |cos cos 0
S

dsγ γ
η η

 
− = 

 
∫∫

E E E E


.                       (10.6) 

Here, γ  is the angle between the polarization vectors of both fields, 1E  and 2E . 
Note that in the far zone, the field vectors are orthogonal to the direction of 
propagation and, therefore are orthogonal to ds. Thus, in the case of open 
problems, the reciprocity theorem reduces to 

[ ] [ ]

1 2 1 2 2 1 2 1( ) ( )
S SV V

dv dv⋅ − ⋅ = ⋅ − ⋅∫∫∫ ∫∫∫E J H M E J H M .                 (10.7) 

Each of the integrals in (10.7) can be interpreted as coupling energy between 
the field produced by some sources and another set of sources generating 
another field. The quantity 

 
[ ]

1 2 1 21,2 ( )
SV

dv= ⋅ − ⋅∫∫∫ E J H M  

is called the reaction of the field 1 1( , )E H  to the sources 2 2( , )J M . Similarly, 

 
[ ]

2 1 2 12,1 ( )
SV

dv= ⋅ − ⋅∫∫∫ E J H M  
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is the reaction of the field 2 2( , )E H  to the sources 1 1( , )J M . Thus, in a 
shorthand notation, the reciprocity equation (10.7) is 1,2 2,1= . 

The Lorentz reciprocity theorem is the most general form of reciprocity in 
linear EM systems. Circuit reciprocity is a special case of lumped element 
sources and responses (local voltage or current measurements).  

To illustrate the above statement, consider the following scenario. Assume 
that the sources in two measurements have identical amplitude-phase 
distributions in their respective volumes: 1J  and 1M  reside in V1 whereas 2J  
and 2M  reside in V2. Note that the volumes 1V  and 2V  may or may not overlap. 
We can associate a local coordinate system with each source volume where the 
position is given by ( , , )i i i ir θ ϕ=x , 1,2i = . If the sources have identical 
distributions, then the source volumes are the same in shape and size, 

1 2 sV V V= = , and 1 1 2 2( ) ( )= =J x J x J , and 1 1 2 2( ) ( )= =M x M x M . Then, 
according to (10.7), 

1 1 2 2 2 1( ) ( )
s sV V

dv dv⋅ − ⋅ = ⋅ − ⋅∫∫∫ ∫∫∫E J H M E J H M .                   (10.8) 

It follows that 1 2=E E  and 1 2=H H . Here, 1E  and 1H  describe the observed 
field in 2V  (the volume where the sources 2J  and 2M  reside but are inactive), 
this field being due to the sources 1J  and 1M  (in 1V ) which are active. 
Conversely, 2E  and 2H  describe the observed field in 1V  (the volume where 1J  
and 1M  reside but are inactive), that field being due to the sources 2J  and 2M  
(in V2) which are active. These are two measurement scenarios which differ 
only in the interchanged locations of the source and the observation: in the 
former scenario, the observation is in 2V  whereas the source is in 1V ; in the 
latter scenario, the observation is in 1V  whereas the source is in 2V . The field 
equality, 1 2=E E  and 1 2=H H , tells us that interchanging the locations of 
excitation and observation leaves the observed field unchanged. This result is 
general in the sense that it holds in a heterogeneous medium. This is essentially 
the same principle that is postulated as reciprocity in circuit theory (see Section 
1.1). Only that Lorentz’ EM reciprocity considers volumes instead of nodes and 
branches, and field vectors instead of voltages and currents. 

The reciprocity theorem can be postulated also as: any network constructed 
of linear isotropic matter has a symmetrical impedance matrix. This “network” 
can be two antennas and the space between them. 
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1.3. Implications of reciprocity for the received-to-transmitted power ratio 
Using the reciprocity theorem, we next prove that the ratio of received to 

transmitted power /r tP P  does not depend on whether antenna #1 transmits 
and antenna #2 receives or vice versa. We should reiterate that the reciprocity 
theorem holds only if the whole system (antennas + propagation environment) 
is isotropic and linear. 

In this case, we view the two antenna system as a two-port microwave 
network; see the figure below. Port 1 (P1) connects to antenna 1 (A1) while 
port 2 (P2) is at the terminals of antenna 2 (A2). Depending on whether an 
antenna transmits or receives, its terminals are connected to a transmitter (Tx) 
or a receiver (Rx), respectively. We consider two measurement setups. In Setup 
#1, A1 transmits and A2 receives whereas in Setup #2 A1 receives and A2 
transmits. 

 
SETUP  #1

SETUP  #2

A1
A2

V

Tx2Rx1

VS

1P
2P

A1
A2

V

Tx1 Rx2

VS

1P
2P1 1,E H

2 2,E H

∞

∞
∞

∞

 
 

The volume V in both setups excludes the power sources in the respective 
transmitters and, therefore, it does not have impressed currents sources, i.e., 

1 2 0= =J J  and 1 2 0= =M M . The reciprocity integral (10.5) becomes 
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 1 2 2 1( ) 0
VS

d× − × ⋅ =∫∫ E H E H s


 (10.9) 

where the subscripts refer to the measurement setups. Part of the surface SV 
extends to infinity away from the antennas (top and bottom lines in the plots 
above) but it also crosses through P1 and P2. At infinity, the surface integration 
in (10.9) produces zero; however, at the cross-sections S1 and S2 of ports 1 and 
2, respectively, the contributions are not zero. Then,  
 

1 2

1 2 2 1 1 2 2 1( ) ( ) 0
S S

d d× − × ⋅ + × − × ⋅ =∫∫ ∫∫E H E H s E H E H s . (10.10) 

Let us now assume that the transmit power in both setups is set to 1 W. This 
is not going to affect the generality of the final result. Let us denote the field 
vectors in the transmission lines of ports 1 and 2 corresponding to 1-W 
transferred power as P1 P1( , )e h  and P2 P2( , )e h , respectively.1 We assume that 
these vectors correspond to power transfer from the antenna (out of V and 
toward the Tx or the Rx circuit). When the power is transferred toward the 
antenna (from the Tx or Rx circuit), due to the opposite direction of 
propagation, we have to change the sign of either the e or the h vector (but not 
both!) in the respective pair.  

At P1, in Setup #1, the incident field is the 1-W field generated by Tx1, 
which is P1 P1( , )−e h . There could be a reflected field due to impedance 
mismatch at the A1 terminals, which can be expressed as 1 P1 P1( , )Γ e h  where Γ1 
is the reflection coefficient at P1. At P1, in Setup #2, there is the field (E2,H2) 
due to the radiation from A2.  

Analogous field components can be identified at P2 in both setups: (i) 
P2 P2( , )−e h  is the field when in Setup #2 the Tx at A2 provides 1 W of power, 

(ii) (E1,H1) is the field at P2 in Setup #1. Equation (10.10) now becomes 

 

[ ]

[ ]
1

2

P1 2 2 P1 1 P1 2 2 P1

1 P2 P2 1 2 1 P2 P2 1

( ) ( )

( ) ( ) 0.
S

S

d

d

× + × + Γ × − × ⋅ +

− × − × + Γ × − × ⋅ =

∫∫

∫∫

e H E h e H E h s

E h e H E h e H s
 (10.11) 

                                                 
1 It can be shown that a propagating mode in a transmission line or a waveguide can be represented by real-valued phasor 
vectors e and h. 
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Next, the received fields in both scenarios, (E1,H1) at P2 and (E2,H2) at P1, 
can be expressed in terms of P2 P2( , )e h  and P1 P1( , )e h , which represent 1-W 
received powers at the respective ports: 

 2 2 1,2 P1 P1P1

1 1 2,1 P2 P2P2

( , ) ( , )
( , ) ( , ).

R
R

=
=

E H e h
E H e h

 (10.12) 

Note that (10.12) implies that the respective received-to-transmitted power 
ratios in Setup #1 and Setup #2 are 
 2

1 1 2,1/r tP P R=  (10.13) 
 2

2 2 1,2/r tP P R= . (10.14) 
Substituting (10.12) into (10.11) leads to 

 
[ ]

[ ]
1

2

1,2 P1 P1 P1 P1 1 P1 P1 P1 P1

2,1 P2 P2 P2 P2 2 P2 P2 P2 P2

( ) ( )

( ) ( ) 0.
S

S

R d

R d

× + × + Γ × − × ⋅ +

− × − × + Γ × − × ⋅ =

∫∫

∫∫

e h e h e h e h s

e h e h e h e h s
 (10.15) 

Since the fields P P( , )n ne h , 1,2n = , correspond to 1 W of transferred power, 
their respective integrals over the port cross-sections (integration over the 
Poynting vector) have the same value: 

 P P
1 ( ) 1, 1,2
2

n

n n
S

d n× ⋅ = =∫∫ e h s . (10.16) 

Note that here we have assumed that the fields P P( , )n ne h , 1,2n = , are 
“magnitude” (not RMS) phasors. It follows from (10.15) and (10.16) that 
 1,2 2,1R R= . (10.17) 
This result together with (10.13) and (10.14) leads to the conclusion that the 
received-to-transmitted power ratio in a two-antenna system does not depend 
on which antenna transmits and which receives. 
 
1.4. Reciprocity of the radiation pattern 

The measured radiation pattern of an antenna is the same in receiving 
and in transmitting mode if the system is linear. Nonlinear devices such as 
diodes and transistors make the system nonlinear, therefore, nonreciprocal. 

In a two-antenna pattern measurement system, the pattern would not depend 
on whether the antenna under test (AUT) receives and the other antenna 
transmits, or vice versa. The pattern depends only on the mutual angular 

= 0 

= 0 

= 4 

= −4 
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orientation of the two antennas (the distance between the two antennas must 
remain the same regardless of the angular orientation of the antennas). It also 
does not matter whether the AUT rotates and the other antenna is stationary, or 
vice versa.  

 

test antenna
(rotating)

probe antenna
(stationary)

 
(a) 

 

test antenna
(stationary)

probe antenna
(rotating)

 
(b) 
 

Scenario (a) is obviously more practical especially because the distance 
between the antennas must be sufficiently large to ensure a measurement in the 
far zone. 
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2. Self-impedance of a Dipole Using the Induced EMF Method 
The induced emf (electro-motive force) method was developed by Carter2 in 

1932, when computers were not available and analytical (closed-form) 
solutions were much needed to calculate the self-impedance of wire antennas. 
The method was later extended to calculate mutual impedances of multiple 
wires (see, e.g., Elliot, Antenna Theory and Design). The emf method is 
restricted to straight parallel wires. 

Measurements and full-wave simulations indicate that the current 
distribution on thin dipoles is nearly sinusoidal (except at the current minima). 
The induced emf method assumes this type of idealized distribution. It results 
in satisfactory accuracy for dipoles with length-diameter ratios as small as 100. 
 
 
 

 
[Balanis] 

                                                 
2 P.S. Carter, “Circuit relations in radiating systems and applications to antenna problems,” Proc. IRE, 20, pp.1004-1041, June 
1932. 
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 a

dz′
a
zJ adϕ

z

y

x ϕ

bI

∆
l

S

 

Consider a tubular dipole the arms of which are made 
of perfect electric conductor (PEC). When excited by a 
voltage-gap source at its base, the dipole supports surface 
current along z, which radiates. This surface current 
density is s ( ) ( )zJ z H zϕ′ ′=  as per the boundary conditions 
at the PEC surface where ( ) 0zE z′ = .  

Using the equivalence principle, we consider an 
equivalent problem where s s( ) ( )a

z zJ z J z′ ′=  is a cylindrical 
current sheet that exists over a closed cylindrical surface 
S tightly enveloping the dipole. It radiates in open space 
generating the field ( , )a aE H  such that 

/ ,  / 2 / 2,
( , )

0,                     elsewhere.
ina

z
V z

E a zρ
′∆ − ∆ ≤ ≤ ∆′≤ = 


 (10.18) 

Here, ∆  is the feed gap length.  

Consider also a linear current source ( )bI z′  along the axis of the cylinder 
(the z axis) where bI  is nonzero only for / 2 / 2l z l′− < < . It also radiates in 
open space and its field is denoted as ( , )b bE H . 

In the volume bound by S, we apply the reciprocity formula (10.7): 

[ ]

( ) 0
S

a b b a

V

dv⋅ − ⋅ =∫∫∫ E J E J .                                  (10.19) 

Bearing in mind the surface nature of source a, the linear nature of source b, 
and equation (10.18), we write (10.19) as 

 
2 /2 /2

s
0 /2 /2

l
b a a b
z z z

l

E J adz d E I dz
π

ϕ
∆

− −∆

′ ′=∫ ∫ ∫ . (10.20) 

In (10.20), we have neglected the edge effects from the disc-like end surfaces 
of S since a (the dipole radius) is at least 100 times smaller than its length l. We 
also assumed that the electric fields of the two sources have only z components.  

Assuming constant current distribution in the feed gap, we obtain 

 
2 /2

s
0 /2

l
b a
z z in in

l

E J adz d I V
π

ϕ
−

′ = −∫ ∫  (10.21) 

where 
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/2

/2

a
in zV E dz

∆

−∆

′= − ∫  (10.22) 

is the voltage at the terminals of the generator driving the current s ( )a
zJ z′ . The 

minus sign in (10.22) reflects the fact that a positive Vin, which implies a 
“positive” current Iin, i.e., current flowing in the positive z direction, relates to a 
“negative” electric field at the dipole’s base, i.e., Ez points in the negative z 
direction. This is illustrated below where the dipole antenna is viewed as a 1-
port network. 
 

inI

inV (0)E
inI

z

 
 

Further, due to the cylindrical symmetry, all quantities in the integral in 
(10.21) are independent of ϕ . Thus, 

 ( )
/2

s
/2

2
l

b a
z z in in

l

E aJ dz I Vπ
−

′ = −∫ . (10.23) 

The quantity in the brackets in (10.23) is the total current Ia at position z′ : 

 
/2

/2

l
b a
z in in

l

E I dz I V
−

′ = −∫ . (10.24) 
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We now require that Ia represents the actual current distribution along the 
dipole’s arms and we drop the superscripts: 

 
/2

/2

l

z in in
l

E Idz I V
−

′ = −∫ . (10.25) 

Note that Ez is the field at the cylindrical surface enveloping the dipole due to 
Ib, the distribution of which along z′ is also representing the actual current 
distribution (i.e., it is identical to Ia). The above result leads to the following 
self-impedance expression: 

 
/2

0 2 2
/2

1 ( ) ( )
l

in in in
in zz

in in in l

V V IZ E z I z dz
I I I′=

−

⋅ ′ ′ ′= = = − ⋅∫ . (10.26) 

In the classical emf method, we assume that the current has a sinusoidal 
distribution: 

 
0

0

sin , 0 / 2
2

( )
sin , / 2 0.

2

lI z z l
I z

lI z l z

β

β

   ′ ′− ≤ ≤      ′ = 
  ′ ′+ − ≤ ≤     

 (10.27) 

So far, we have obtained only the far-field components of the field generated by 
the current in (10.27) (see Lecture 9). However, when the input resistance and 
reactance are needed, the near field must be known. In our case, we are 
interested in zE , which is the field produced by ( )I z′  as if there is no conductor 
surface present. If we know it, we can calculate the integral in (10.26) since we 
already know ( )I z′  from (10.27). 

We use cylindrical coordinates to describe the locations of the integration 
point (primed coordinates) and the observation point. The electric field can be 
expressed in terms of the VP A and the scalar potential φ  (see Lecture 2): 
 jφ ω= −∇ −E A , (10.28) 

 z zE j A
z
φ ω∂

⇒ = − −
∂

. (10.29) 

The VP A is z-polarized, 
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/2

/2

( )
4

l j R

z z
l

eA I z dz
R

βµ
π

−

−

′ ′= ∫ . (10.30) 

The scalar potential is 

 
/2

/2

1 ( )
4

l j R

l
l

eq z dz
R

β
φ

πε

−

−

′ ′= ∫ . (10.31) 

Here, lq  stands for linear charge density (C/m). Knowing that the current 
depends only on z′ , the continuity relation is written as 

 z
l

Ij q
z

ω ∂
= −

′∂
. (10.32) 

 

0

0

cos , 0 / 2
2

( )
cos , / 2 0

2

l

I lj z z l
c

q z
I lj z l z
c

β

β

   ′ ′− − ≤ ≤      ′⇒ = 
   ′ ′+ + − ≤ ≤     

 (10.33) 

where /c ω β=  is the speed of light. Now we express A and φ  as 
0 /2

0
/2 0

sin sin
4 2 2

lj R j R

z
l

l e l eA I z dz z dz
R R

β βµ β β
π

− −

−

        ′ ′ ′ ′= + + −               
∫ ∫ (10.34) 

0 /2
0

/2 0

cos cos
4 2 2

lj R j R

l

I l e l ej z dz z dz
R R

β βηφ β β
π

− −

−

        ′ ′ ′ ′= − + + −               
∫ ∫ . (10.35) 

Here, /η µ ε=  is the intrinsic impedance of the medium.  
The distance between integration and observation point is 

 2 2( )R z zρ ′= + − . (10.36) 

Equation (10.36) is substituted in (10.34) and (10.35). In addition, the resulting 
equations for Az and φ  are modified making use of Moivre’s formulas: 

 
( )

( )

1cos
2
1sin
2

jx jx

jx jx

x e e

x e e
j

−

−

= +

= −
, where 

2
lx zβ  ′= ± 

 
. (10.37) 
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Then, the equations for Az and φ  are substituted in (10.29) to derive the 
expression for zE  valid at any observation point. This is a rather lengthy 
derivation and we give the final result only: 

 
1 20

1 2
2cos

4 2

j R j R j r

z
I e e l eE j

R R r

β β βη β
π

− − −  = − + −     
. (10.38) 

Here, r is the distance from the observation point to the dipole’s center, while 
1R  and 2R  are the distances to the lower and upper edges of the dipole, 

respectively (see figure below). 

 

 

x

y

z

dz′

( , , )P zρ ϕ

R

1R

2R

r

ρϕ

 

 
We need ( )zE z′  at the dipole’s surface where 

 r z′≈ , 1 / 2R z l′= + , and 2 ( / 2)R l z′= − . (10.39) 

Notice the thin-wire approximation! The final goal of this development is to 
find the self-impedance (10.26) of the dipole. We substitute (10.39) in (10.38). 
The result for ( )zE z′  is then substituted in (10.26), and the integration is 
performed. We give the final results for the real and imaginary parts of inZ : 
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[ ]1ln( ) ( ) sin( ) (2 ) 2 ( )
2 2

1       cos( ) ln (2 ) 2 ( )  ,
2 2 2

in i i i

i i

R k C l C l l S l S l

ll C C l C l k

η β β β β β
π

β ηβ β β
π

= ⋅ + − + − +


  + + + − ⋅ℑ    
=

   (10.40) 

[ ]{
2

2 ( ) cos( ) (2 ) 2 ( )
4

sin( ) (2 ) 2 ( ) (2 / ) ,} 
in i i i

i i i

X k S l l S l S l

l C l C l C a l

η β β β β
π

β β β β

= − − +

+ − +  

           (10.41) 

where 21 / sin ( / 2)k lβ=  is the coefficient accounting for the difference 
between the maximum current magnitude along the dipole and the magnitude 
of the input current at the dipole’s center [see Lecture 9, section 2]. Also, C is 
the Euler’s constant, Si is the sine integral and Ci is the cosine integral. 

Equation (10.40) is identical with the expression found for the input 
resistance of an infinitesimally thin wire [see Lecture 9, Eqs. (9.37) and (9.38)]. 
Expression (10.41) for the dipole’s reactance however is new. For a short 
dipole, the input reactance can be approximated by 

 [ ]ln( / ) 1
120

tan( )in
l a

X
lβ
−

≈ − . (10.42) 

The results produced by (10.40) and (10.41) for different ratios /l λ  are 
given in the plots below. 
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INPUT IMPEDANCE OF A THIN DIPOLE (EMF METHOD) OF RADIUS 510a λ−=  

 

 
[Balanis] 
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INPUT REACTANCE OF A THIN DIPOLE (EMF METHOD) FOR DIFFERENT RADII a  

 
 
Note that: 

• the reactance does not depend on the radius a , when the dipole length is a 
multiple of a half-wavelength ( / 2l nλ= ), as follows from (10.41); 

• the resistance does not depend on a  according to the assumptions made in 
the emf method (see equation (10.40)). 

 
3. Pocklington’s Equation 

The assumption of a sinusoidal current distribution along the dipole is 
considered accurate enough for wire diameters 0.05d λ< . The current 
distribution is not quite sinusoidal in the case of thicker wires. The currents 
must be computed using some general numerical approach. Below, we 
introduce two integral equations, which can produce the current distribution on 
any straight wire antenna of finite diameter. These equations are classical in 
wire antenna theory. We do not discuss their numerical solutions here, only 
their derivations and applications. 

To derive Pocklington’s equation, the concepts of incident and scattered 
field are introduced first. 
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The incident wave is a wave produced by 
some external sources. This wave would 
have existed in the location of the scatterer, 
if the scatterer were not present. The 
scatterer however is present, and, since it is 
a conducting body, it requires vanishing 
electric field components tangential to its 
surface, 

0t
τ =E .                   (10.43) 

The vector tE  denotes the so-called total 
electric field. This means that as the non-
zero incident field impinges upon the 
conducting scatterer, it induces on its 
surface currents sJ , which in their turn 
produce a field, the scattered field sE . The 
scattered and the incident fields 
superimpose to produce the total field 

 t i s= +E E E . (10.44) 
The scattered field is such that (10.43) is fulfilled, i.e., 
 s i

τ τ= −E E . (10.45) 
Any object presenting a discontinuity in the wave’s path is a scatterer, and so is 
any receiving antenna. 

The above concepts hold for transmitting antennas, too. In the case of a wire 
dipole, the incident field exists only at the base of the dipole (in its feed gap). In 
the case of a cylindrical dipole with excitation of cylindrical symmetry, the E 
field has no ϕ -component and is independent of the ϕ  coordinate. The only 
tangential component is zE . The boundary condition at the dipole’s surface is 
 / , /2 /2

s i
z z a l z lE E ρ= − ≤ ≤= − . (10.46) 

The scattered field can be expressed in terms of A and φ  as it was already done 
in (10.29): 

2

2

1 zs
z z z

AE j A j j A
z z
φ ω ω

ωµε
∂ ∂

= − − = − −
∂ ∂

,                        (10.47) 

or 

 

z

y

x

2a

ϕ

2
l

2
l

iE

sE
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2
2

2

1 zs
z z

AE j A
z

β
ωµε

∂ = − + ∂ 
.                                       (10.48) 

We assume only z -components of the surface currents and no edge effects: 
/2 2

/2 0

( , , )
4

l j R

z sz
l ds

eA z J ad dz
R

π βµρ ϕ ϕ
π

−

−

′ ′= ∫ ∫


.                   (10.49) 

If the cylindrical symmetry of the dipole and the excitation are preserved, the 
current zJ  does not depend on the azimuthal angle ϕ . It can be shown that the 
field due to a cylindrical sheet of surface currents szJ  is equivalent to the field 
due to a current filament of current zI , 

12 ( ) ( )
2sz z sz zaJ I J z I z

a
π

π
′ ′= ⇒ = .                       (10.50) 

Then, (10.49) reduces to 
/2 2

/2 0

1( , , ) ( )
4 2

l j R

z z
l

eA z I z ad dz
a R

π βµρ ϕ ϕ
π π

−

−

′ ′ ′= ∫ ∫ .            (10.51) 

Here, the distance between observation and integration points is 
2 2 2

2 2 2

( ) ( ) ( )

2 cos( ) ( )  ,

R x x y y z z

a a z zρ ρ ϕ ϕ

′ ′ ′= − + − + − =

′ ′= + − − + −
                (10.52) 

where cosx ρ ϕ= , siny ρ ϕ= , cosx a ϕ′ ′= , siny a ϕ′ ′= .  
The cylindrical geometry of the problem implies the cylindrical symmetry 

of the observed fields, i.e., A does not depend on ϕ . We assume that 0ϕ = . 
Besides, we are interested in the scattered field produced by this equivalent 
current at the dipole’s surface, i.e., the observation point is at aρ = . Then, 

( )
/2 2 /2

/2 0 /2

1( ,0, ) ( ) ( ) ,
2 4

l lj R

z z z
l l

eA a z I z d dz I z G z z dz
R

π β
µ ϕ µ

π π

−

− −

 
′ ′ ′ ′ ′ ′= =  
 

∫ ∫ ∫ , (10.53) 

where 

( )
2

0

1,
2 4

j ReG z z d
R

π β
ϕ

π π

−
′ ′= ∫ ,                                                            (10.54) 
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2 2 2
( , 0) 4 sin ( )

2aR a z zρ ϕ
ϕ

= =
′  ′= + − 

 
.                                           (10.55) 

Substituting (10.53) in (10.48) yields 
/22

2
2

/2

1( ) ( ) ( , )
l

s
z z

l

dE a j I z G z z dz
dz

ρ β
ωε −

  ′ ′ ′= = − + 
  ∫

.              (10.56) 

Imposing the boundary condition (10.46) on the field in (10.56) leads to 
/22

2
2

/2

( ) ( , ) ( )
l

i
z z

l

d I z G z z dz j E a
dz

β ωε ρ
−

  ′ ′ ′+ = − = 
  ∫

.               (10.57) 

The source zI  does not depend on z  and (10.57) can be rewritten as 
/2 2

2
2

/2

( , )( ) ( , ) ( )
l

i
z z

l

d G z zI z G z z dz j E a
dz

β ωε ρ
−

′ ′ ′ ′+ = − = 
 ∫ .         (10.58) 

Equation (10.58) is called Pocklington’s3 integro-differential equation. It is 
used to compute the equivalent filamentary current distribution ( )zI z′  by 
knowing the incident field on the dipole’s surface. 

When the gap of length b is the only place where i
zE  exists, equation (10.58) 

is written as 

/2 2
2

2
/2

,( , ) 2 2( ) ( , )
0, | |

2 2

il z

z
l

b bj E zd G z zI z G z z dz
b ldz z

ωε
β

−

− − ≤ ≤′  ′ ′ ′+ =  
   < <



∫      (10.59) 

If we assume that the wire is very thin, then Green’s function ( , )G z z′  of 
(10.54) simplifies to 

( )
2

0

1,
2 4 4

j R j Re eG z z d
R R

π β β
ϕ

π π π

− −
′ ′= =∫ ,                       (10.60) 

where R  reduces to 2 2 2
( 0) 4 sin ( / 2) ( )aR a z z z zρ ϕ= → ′ ′ ′= + − ≈ − . Assuming 

                                                 
3 H.C. Pocklington, “Electrical oscillation in wires”, Camb. Phil. Soc. Proc., 9, 1897, pp.324-332. 
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(10.60), Richmond4 has differentiated and re-arranged (10.58) in a form more 
convenient for programming: 

 ( )( ) ( )
/2

22 2
5

/2

( ) 1 2 3
4

l j R
i

z z
l

eI z j R R a aR dz j E
R

β
β β ωε

π

+ −

−

 ′ ′+ − + = − ∫ . (10.61) 

Equation (10.61) can be solved numerically by the Method of Moments 
(MoM), after the structure is discretized into small linear segments. 
 
4. Hallén’s equation 

Hallén’s equation5 can be derived as a modification of Pocklington’s 
equation. It is easier to solve numerically, but it makes some additional 
assumptions. Consider again equation (10.59). It can be written in terms of zA  
explicitly as (see also (10.48)): 

2
2

2

,
2 2

0, | |
2 2

i
z

z
z

b bj E zd A A
b ldz z

ωεµ
β

− − ≤ ≤+ = 
 < <


                              (10.62) 

When 0b → , we can express the incident field in the gap via the voltage 
applied to the gap: 
 0lim i

g b zV bE→= . (10.63) 

The ( )i
zE z  function is an impulse function of z , such that 

( )i
z gE V zδ= .                                         (10.64) 

The excitation term in (10.62) collapses into a δ -function: 

 
2

2
2

( )z
z g

d A A j V z
dz

β ωεµ δ+ = − . (10.65) 

If 0z ≠ , 

 
2

2
2

0z
z

d A A
dz

β+ = . (10.66) 

                                                 
4 J.H. Richmond, “Digital computer solutions of the rigorous equations for scattering problems,” Proc. IEEE, 53, pp.796-804, 
August 1965. 
5 E. Hallén, “Theoretical investigation into the transmitting and receiving qualities of antennae,” Nova Acta Regiae Soc. Sci. 
Upsaliensis, Ser. IV, No. 4, 1938, pp. 1-44. 
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Because the current density on the cylinder is symmetrical with respect to z′ , 
i.e., ( ) ( )z zJ z J z′ ′= − , the potential zA  must also be symmetrical. Then, the 
general solution of the ODE in (10.66) along z ( 0x y= = ) has the form: 

 ( ) ( )( ) cos sin | |zA z B z C zβ β= + . (10.67) 

From (10.65) it follows that 

 
0

0

z
g

dA j V
dz

ωµε
+

−

= − . (10.68) 

From (10.67) and (10.68), we calculate the constant C: 

( )
0

0
cos(0 ) cos(0 )z

g
dA C C j V
dz

β β ωµε
+

−

+ −= − − = − , 

 2 gC j Vβ ωµε⇒ = − , 

 
2 2
g gV V

C j j µµε
η

⇒ = − = − . (10.69) 

Equation (10.69) is substituted in (10.67), and zA  is expressed with its integral 
over the currents, to obtain the final form of Hallén’s integral equation: 

 ( )
/2

/2

( ) sin | | cos( )
4 2

l j R g
z

l

VeI z dz j z B z
R

β
β β

π η

+ −

−

′ ′ = − +∫ . (10.70) 

Here, 2 2( )R a z z′= + − . We must reiterate that Hallén’s equation assumes 
that the incident field exists only in the infinitesimal dipole gap, while in 
Pocklington’s equation there are no restrictions on the distribution of the 
incident field at the dipole. 
 
5. Modeling the excitation field 

• Delta-gap source (Pocklington and Hallén) 
• Magnetic frill source (Pocklington) 
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2a

2
l

2
l

b

i
zE

delta-gap

mJ ϕ

magnetic frill

mJ ϕ
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LECTURE 11: Practical Dipole/Monopole Geometries. Matching 
Techniques for Dipole/Monopole Feeds 
(The folded dipole antenna. Conical skirt monopoles. Sleeve antennas. 
Turnstile antenna. Impedance matching techniques. Dipoles with traps.) 
 
Equation Section 11 

1. Folded Dipoles 
 

l
s

 
 
The folded dipole is a popular antenna for reception of TV broadcast 

signals. It has essentially the same radiation pattern as the dipole of the same 
length l but it provides four times greater input impedance when / 2l λ≈ . The 
input resistance of the conventional half-wavelength dipole is 73inR ≈  Ω while 
that of the half-wavelength folded dipole is about 292 Ω. Wire antennas do not 
fit well with coaxial feed lines because of the different field mode; thus, 
balanced-to-unbalanced transition is required. However, they are ideally suited 
for twin-lead (two-wire) feed lines. These lines (two parallel thin wires 
separated by a distance of about 8 to 10 mm) have characteristic impedance 

0 300Z ≈  Ω. Therefore, an input antenna impedance of (4 73)× Ω  matches 
well the 2-wire feed lines. The separation distance between the two wires of the 
folded dipole s should not exceed 0.05λ . 

The folded dipole can be analyzed by decomposing its current into two 
modes: the transmission-line (TL) mode and the antenna mode. This analysis, 
although approximate1, illustrates the four-fold impedance transformation. 

In the TL mode, the source terminals 1 2′−  and 2 1′−  are at the same 
potential and can be connected by a short without changing the mode of 
operation. The equivalent source (of voltage V) is now feeding in parallel two 
2-wire transmission lines, each terminated by a short. 

                                      
1 G.A. Thiele, E.P. Ekelman, Jr., L.W. Henderson, “On the accuracy of the transmission line model for the folded dipole,” IEEE 
Trans. on Antennas and Propagation, vol. AP-28, No. 5, pp. 700-703, Sep. 1980. 
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= +
2
V

2
V+

−
−
+

tItI

1 1′

2 2′ 2
V

2
V+

−
+
−

2
aI

2
aI

3

4

3′

4′

Folded dipole (a) Transmission-
line mode

(b) Antenna mode

l

s

+
−

V

2a

 
 

The input impedance of each shorted transmission line of length / 2l  is 

 0
0

0 0

tan( / 2)
tan( / 2)

L

L
t

L Z

Z jZ lZ Z
Z jZ l

β
β

=

  +
=   +  

, (11.1) 

 0 tan
2t
lZ jZ β ⇒ =  

 
. (11.2) 

Here, 0Z  is the characteristic impedance of the 2-wire transmission line formed 
by the two segments of the folded wire. It can be calculated as 

 
( )2 2

0
/ 2 / 2

arccosh ln
2

s s asZ
a a

η η
π π

 + −   = =    
 

. (11.3) 

s

a
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Usually, the folded dipole has a length of / 2l λ≈ . Then, 
 ( /2) 0 tan( / 2)t lZ jZλ π= = →∞ . (11.4) 

If / 2l λ≠ , the more general expression (11.2) should be used. The current in 
the transmission-line mode is 

 
2t

t

VI
Z

=  (11.5) 

because the voltage applied to the equivalent transmission lines of the upper 
and lower dipole arms is V/2 (see figure (a) on previous page).  

We now consider the antenna mode. The generators’ terminals 3 3′−  (and 
4 4′− ) are with identical potentials. Therefore, they can be connected 
electrically without changing the conditions of operation. The following 
assumption is made: an equivalent dipole of effective radius 

 ea as=  (11.6) 
is radiating excited by / 2V  voltage. Since usually a λ  and s λ , the input 
impedance of the equivalent dipole aZ  is assumed equal to the input impedance 
of an infinitesimally thin dipole of the respective length l . If / 2l λ= , then 

73aZ = Ω . The current in the antenna mode is 

 
2a

a

VI
Z

= . (11.7) 

The current on each arm of the equivalent dipole is 

 
2 4
a

a

I V
Z

= . (11.8) 

The total current of a folded dipole is obtained by superimposing both 
modes. At the input 

 1 1
2 2 4
a

in t
t a

II I V
Z Z

 = + = + 
 

, (11.9) 

 4
2

t a
in

a t

Z ZZ
Z Z

⇒ =
+

. (11.10) 

When / 2l λ=  (half-wavelength folded dipole), then tZ →∞ , and 



Nikolova 2018 4 

 /24 292in a lZ Z λ=⇒ = ≈ Ω . (11.11) 

Thus, the half-wavelength folded dipole is well suited for direct connection to a 
twin-lead line of 0 300Z ≈ Ω . It is often made in a simple way: a suitable 
portion (the end part of the twin-lead cable of length / 2l λ= ) is separated into 
two single wire leads, which are bent to form the folded dipole. 
 
2. Conical (Skirt) Monopoles and Discones 
 

 
 

These monopoles have much broader impedance frequency band (a couple 
of octaves) than the ordinary quarter-wavelength monopoles. They are a 
combination of the two basic antennas: the monopole/dipole antenna and the 
biconical antenna. The discone and conical skirt monopoles find wide 
application in the VHF (30 to 300 MHz) and the UHF (300 MHz to 3 GHz) 
spectrum for FM broadcast, television and mobile communications. 

There are numerous variations of the dipole/monopole/cone geometries, 
which aim at broader bandwidth rather than shaping the radiation pattern. All 
these antennas provide omnidirectional radiation. 

The discone (disk-cone) is the most broadband among these types of 
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antennas. This antenna was first designed by Kandoian2 in 1945. The 
performance of the discone in frequency is similar to that of a high-pass filter. 
Below certain effective cutoff frequency, it has a considerable reactance and 
produces severe standing waves in the feed line. This happens approximately at 
wavelength such that the slant height of the cone is / 4λ≈ . 

 

 
Typical dimensions of a discone antenna at the central frequency are: 

0.4D λ≈ , 1 0.6B λ≈ , 0.7H λ= , 45 2 75hθ≤ ≤   and δ λ . The typical input 
impedance is designed to be 50 Ω . Optimum design formulas are given by 
Nail3: 2 / 75uB λ≈  at the highest operating frequency, 2(0.3 0.5)Bδ ≈ ÷ , and 

10.7D B≈ . 

                                      
2 A.G. Kandoian, “Three new antenna types and their application,” Proc. IRE, vol. 34, pp. 70W-75W, Feb. 1946. 
3 J.J. Nail, “Designing discone antennas,” Electronics, vol. 26, pp. 167-169, Aug. 1953. 
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Measured patterns for a discone: 21.3H =  cm, 19.3B =  cm, 25hθ =  : 
 

 
[Balanis] 

Similar to a short 
dipole 

Similar to an infinite 
conical monopole 
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3. Sleeve (Coaxial) Dipoles and Monopoles 
The impedance of dipole/monopole antennas is very frequency sensitive. 

The addition of a sleeve to a dipole or a monopole can increase the bandwidth 
up to more than an octave and fine-tune the input impedance. 
 

 
 
 
 
This type of antenna closely resembles two asymmetrically fed dipoles and 

can be analyzed using the approximation in (d). The outer shield of the coaxial 
line is connected to the ground plane, but it also extends above it a distance h 
[see (a)] in order to provide mechanical strength, impedance tuning and 
impedance broadband characteristics. The equivalent in (d) consists of two 
dipoles, which are asymmetrically driven at z h′ = +  or z h′ = − . When 
analyzing the field of the two asymmetrically driven dipoles, we can ignore the 
change in diameter occurring at the feed point. 

 

lm 
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The input impedance asZ  of an asymmetric dipole can be related to the 
impedance sZ  of a center-fed (symmetric) dipole of the same length l using the 
assumption for sinusoidal current distribution [see Lecture 9], 

 
( )
( )

0

0

sin 0.5 ' , 0 ' / 2 
( ')

sin 0.5 ' , / 2 ' 0.
I l z z l

I z
I l z l z

β
β

 − ≤ ≤   =  + − ≤ ≤   
 (11.12) 

The impedances Zas and Zs relate to the radiated power Π through their 
respective current magnitudes, ( )I z h′ =  and ( 0)I z′ = . Imposing the condition 
that for a given current distribution the power delivered by the transmitter must 
be equal to the radiated (active) and stored (reactive) power of the antenna, 
leads to 
 2 2

s s as asZ I Z I= . (11.13) 
Thus, 

 
2 2

2

( 0) sin ( / 2)( )
( ) sin

2

as s s
I z lZ h Z Z
I z h l h

β

β

′ =
= = ′ =     −    

. (11.14) 

For a half-wavelength dipole, / 2 / 2lβ π=  and sin(0.5 ) cos( )h hπ β β− = . 
Thus, the relation (11.14) reduces to 

 
2

( )
cos ( )

s
as

ZZ h
hβ

= , for 
2

l λ
= . (11.15) 

The relation between the input impedances of the symmetric and 
asymmetric dipole feeds is illustrated in the figure below. 

z
0z′ =

I
h asI

asZ

z

I
sI

sZ  
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The relation between asZ  and the impedance mZ  associated with the current 
maximum mI  (remember that the radiation resistance of the dipole is 

Rer mR Z= ) can be found through sZ  bearing in mind that 
 2( / )s m m sZ Z I I= . (11.16) 

The input current sI  for the center-fed dipole relates to the maximum in the 
dipole’s current distribution mI  as 

 
,                  if / 2
sin( / 2),  if / 2.

s m

s m

I I l
I I l l

λ
β λ

= ≤
= ≥

 (11.17) 

Remember from Lecture 9 that  

 0

0

sin( / 2),  if / 2
,                  if / 2.

m

m

I I l l
I I l

β λ
λ

= ≤
= >

  (11.18) 

Thus, in terms of 0I , we always have 0 sin( / 2)sI I lβ= . 
From (11.16) and (11.17), it follows that 

 
2

,                if / 2

,  if / 2.
sin ( / 2)

s m

m
s

Z Z l
ZZ l

l

λ

λ
β

= ≤

= ≥
 (11.19) 

Now (11.14) can be written in terms of mZ  as 

 

2

2

2

sin ( / 2) ,  if 
2sin

2
( )

1 ,  if 
2sin

2

m

as

m

lZ l
l h

Z h
Z l

l h

β λ

β

λ

β

 ≤   −     = 
 ≥
   −     

 (11.20) 

It is now obvious that we can tune the input impedance of a dipole by moving 
the feed point off-center. In the case of a sleeve monopole, this is achieved by 
changing h, i.e., shortening or extending the sleeve along the stub. 

Let us examine the equivalent antenna structure in Figure (d). It consists of 
two asymmetrically driven dipoles in parallel. The total input current is 
 ( ) ( )in as asI I z h I z h′ ′= = + + = − . (11.21) 
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The input admittance is 

 ( ) ( ) ( ) ( )1
( )

in as as as as
in

in in in as

I I z h I z h I z h I z hY
V V V I z h

′ ′ ′ ′ = + + = − = = −
= = = + ′ = + 

 (11.22) 

 ( )1
( )

as
in as

as

I z hY Y
I z h

′ = −
⇒ = + ′ = + 

. (11.23) 

Since the two dipoles in (d) are geometrically identical and their currents are 
equal according to image theory, ( ) ( )as asI z h I z h′ ′= − = = + , it follows from 
(11.22) that 
 2in asY Y≈ . (11.24) 
Thus, the impedance of the sleeve antenna in (a) is twice smaller than the 
impedance of the respective asymmetrically driven dipole [one of the dipoles in 
(d)]. This conclusion is in agreement with the general relation between the 
impedance of a monopole above a ground plane and its respective dipole (of 
doubled length) radiating in open space (see Lecture 10). 

The first sleeve-dipole resonance occurs at a length / 4ml λ≈ . The other 
important design variable is the monopole-to-sleeve ratio ( ) /ml h hη = − . It has 
been experimentally established that 2.25η =  yields optimum (nearly constant 
with frequency) radiation patterns over a 4:1 band. The value of η  has little 
effect on the radiation pattern if / 2ml λ≤ , since the current on the outside of 
the sleeve has approximately the same phase as that on the top portion of the 
monopole. However, for longer lengths, the ratio η  has notable effect on the 
pattern since the current on the outside of the sleeve is not necessarily in phase 
with that on the top portion of the monopole. Some practical sleeve dipoles and 
monopoles are shown below. 
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≅

 

 

 

 

(c)  sleeve dipole 
equivalent to 
monopole in (b)

(a) assymertically-fed
      sleeve dipole

2
l λ
≈

2d

coax

1d

h
4

l λ
≈

m

coax

h

2.25m
h


(b)  sleeve monopole

+
−

+

−

feed point

feed point

−

+

V

0.5V

0.5V−

inZ

inZ

 
 

4
l λ
≈

m

coax

h

2.25m
h


(d)  another sleeve
       monopole  

 
 

So far, we have assumed that the cross-section of the wire is circular of 
radius a . An electrically equivalent radius can be obtained for some uniform 
wires of non-circular cross-sections. This is helpful when calculating the 
impedance of dipoles made of non-circular wires. The equivalent radii for 
certain wires are given below. 
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[Balanis] 
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4. Turnstile Antenna 
The turnstile antenna is a combination of two orthogonal dipoles fed in 

phase-quadrature. This antenna is capable of producing circularly polarized 
field in the direction, which is normal to the dipoles’ plane. It produces an 
isotropic pattern in the dipoles’ plane (the θ -plane) of linearly (along θ̂) 
polarized wave. In all other directions, the wave is elliptically polarized. 

 
z
θ

y

dipole #1

dipole #2

ψ

 
 

In the 90 ,270ϕ =    plane (the yz  plane in which the dipoles lie), the field is a 
superposition of the separate dipole fields the patterns of which as a function of 
time are 

 (1) ( ) sin cosE t tθ θ ω= , (11.25) 

 (2) sin sin( / 2( ) cos( / 2) sin cos sin .)E t t t tψ ω π ωψ π θθ ω−= ⋅ ± = ± ⋅ = ± ⋅  (11.26) 

In the yz plane, the ψ -component of a vector is actually a θ -component. 
Equations (11.25) and (11.26) define the total field as 
 ( , ) sin cos cos sinE t t tθ θ θ ω θ ω= ± , (11.27) 

which reduces to 
 ( )( , ) sinE t tθ θ θ ω= ± . (11.28) 

The rms pattern is circular, although the instantaneous pattern rotates. 
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rms pattern

instantaneous
pattern

ω

 
 
3-D Turnstile Total Field Magnitude Pattern: 
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3D Gain Patterns of Trunstile ( /21,  1 j
z yV V e π= = ) 

 

 
 

(a) LH-CP gain pattern (b) RH-CP gain pattern 
 
 
5. Inverted-L and Inverted-F Antennas 

The L-antenna (or inverted-L antenna) can be viewed as a bent monopole. 
The bending of the monopole results in a reduced size and low profile. In fact 
the first designs were made for missile applications (R. King et al., 
“Transmission-line missile antennas,” IRE Trans. Antennas Propagat., Jan. 
1960, pp. 88-90). The reduction of the monopole’s height results in reduced 
radiation resistance and bandwidth. Besides, the main angle of radiation is 
depressed as there is substantial radiation not only from the monopole h but 
also from the arm l. A popular amateur-radio antenna is the / 4λ  inverted-L 
where / 8h l λ= = . 

 

h

l

ground  
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h

l

ground  
 
The inverted-F antenna uses a shifted feed point (a “tap”) along the bent arm 

l, to obtain better impedance match (offset feed). 
Both the inverted-L and the inverted-F antennas can be analyzed using 

equivalent transmission line models. Their patterns in both principal planes are 
not much different from those of a monopole. 

A popular antenna for mobile handsets is the planar inverted-F (PIFA) or its 
variations: 
 

 
 

Figure from M.A. Jensen et al., “EM interaction of handset antennas and a 
human in personal communications,” Proceedings of the IEEE, vol. 83 , No. 1, 
Jan. 1995, pp. 7-17. (Note: BIFA stands for bent inverted F antenna) 
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6. Matching Techniques for Wire Antennas 
There are two major issues when constructing the feed circuit: impedance 

matching and balanced-unbalanced matching. 
6.1. Impedance matching 

 1 | |VSWR
1 | |
+ Γ

=
− Γ

. (11.29) 

The reflected-to-incident power ratio is given by 2| |Γ  where Γ is the reflection 
coefficient). In terms of the VSWR, this is 

2
2 VSWR 1| |

VSWR +1
− Γ =  

 
.                                   (11.30) 

The transmitted-to-incident power ratio is given by 
 2 2| | 1 | |T = − Γ . (11.31) 

Impedance mismatch is undesirable not only because of the inefficient power 
transfer. In high-power transmitting systems, high VSWR leads to maxima of 
the standing wave which can cause arcing. Sometimes, the frequency of the 
transmitter can be affected by severe impedance mismatch (“frequency 
pulling”). Excessive reflections can damage the amplifying stages in the 
transmitter. 

 
TABLE: VSWR AND TRANSMITTED POWER 
VSWR 2| | 100%Γ ×  2| | 100%T ×  
1.0 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 
5.0 
5.83 
10.0 

0.0 
0.2 
0.8 
4.0 
11.1 
25.0 
36.0 
44.4 
50.0 
66.9 

100.0 
99.8 
99.2 
96.0 
88.9 
75.0 
64.0 
55.6 
50.0 
33.1 



Nikolova 2018 18 

A common way to find the proper feed location along a dipole or monopole 
is to feed off-center, which provides increase of the input impedance with 
respect to the center-feed impedance according to (11.14) and (11.15). For 
example, the input resistance of a center-fed half-wavelength dipole is 
approximately 73 Ω, which is well suited for a 75-Ω coaxial line if proper care 
is taken of the balanced-to-unbalanced transition. However, it is not well 
matched to a 300-Ω antenna cable where we do not have to worry about a 
balanced-to-unbalanced transition since both the antenna and the cable are 
balanced. Greater values of the dipole input impedance (close to 300 Ω) are 
easily achieved by moving the feed off center. Similarly, the quarter-
wavelength monopole has an input resistance of approximately 37 Ω  and 
usually the sleeve-type of feed is used to achieve greater values of the antenna 
input impedance such as 50 Ω to achieve better impedance match to a 50-Ω 
coaxial cable. 

As a word of caution, the off-center feed is not symmetrical and can lead to 
undesirable phase reversal in the antenna if / 2l λ> . This may profoundly 
change the radiation pattern. 

 

l λ=

4
l λ
=

l λ=

2
l λ
=

≠

 
 
To avoid current phase reversal, symmetrical feeds for increased impedance 

are used. A few forms of shunt matching (or shunt feed) are shown below: 
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(a) Delta match (b) Tee match (c) Gamma match

D

C

 
 
We explain the principles of operation of the T-match only, which is the 

simplest of all to design and which gives the basic idea for all shunt feeds. 
Similarly to the folded-dipole analysis, the T-match interconnection together 
with the antenna can be viewed as two shorted transmission lines (in TL mode 
of operation) and a dipole (in an antenna mode of operation), which is longer 
than the two shorted TLs. The shorted TLs are less than quarter-wavelength 
long, and, therefore, they have an inductive reactance. This reactance is usually 
greater than the capacitive reactance of the dipole and an additional tuning 
lumped capacitor might be necessary to achieve better match. As the distance D 
increases, the input impedance increases (current magnitude drops). It has a 
maximum at about / 2D l=  (half the dipole’s length). Then, it starts decreasing 
again, and when D l= , it equals the folded-dipole input impedance. In practice, 
sliding contacts are made between the shunt arms and the dipole for impedance 
adjustments and tuning. Note that shunt matches radiate and may alter the 
patterns and the directivity. 

The Gamma-match is essentially the same as the T-match, only that it is 
designed for unbalanced-balanced connection. 

Additional matching devices are sometimes used such as quarter-
wavelength impedance transformers, reactive stubs for compensating antenna 
reactance, etc. These devices are well studied and described in Microwave 
Engineering courses. 
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6.2. Balanced-to-unbalanced feed 
Sometimes, when high-frequency devices are connected, their impedances 

may be well matched and still we may observe significant reflections. This is 
sometimes referred to as “field mismatch.”  

A typical example in antennas is the interconnect between a coaxial line of 
75cZ = Ω  and a half-wavelength dipole of 73inZ = Ω . The reflections are 

much more severe than one would predict using equation (11.30). This is 
because the field and the current distributions in the coaxial line and at the input 
of the wire dipole are very different [see figure below]. The unequal currents on 
the dipole’s arms unbalance the antenna and the coaxial feed and induce 
currents on the outside of the coax shield which are the reason for parasitic 
radiation. To balance the currents, various devices are used, called baluns 
(balanced-to-unbalanced transformer). 

 
 

1I

1I

2I3I

2 3 1I I I− ≠

cZ

unwanted current 
leakage on outside 
of shield unbalances 
current on dipole

1 2| | | |
current in coax
is balanced

I I=

current on dipole
is unbalanced
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A. Sleeve (bazooka) balun 1:1 
The sleeve and the outer conductor of the coaxial feed form another coaxial 

line, which has a characteristic impedance of cZ ′ . This line is shorted quarter-
wavelength away from the antenna input terminals. Thus, its input impedance is 
very large and results in: (i) suppression of the currents on the outer shield (I3), 
and (ii) no interference with the antenna input impedance, which is in parallel 
with respect to the coaxial feed. This is a narrowband balun, which does not 
transform the impedance (1:1 balun). It is not very easy to construct. 

1I

3
0

I
=

2I

cZ

cZ ′ 4
λ

1I

2I

 
 
 

B. Folded balun 1:1 (split-coax balun, / 4λ -coax balun) 
This 1:1 balun is easier to make. It is also narrowband. 
 

4
λ

≈

1I2 3I I−

3I

2I

1 4I I−

4I
wire #1 wire #2

1I

3 4| | | | 0I I= ≈

a b
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The outer shields of the feeding coaxial line and the additional coax-line section 
form a twin-lead transmission line, shorted a distance / 4λ≈  away from the 
antenna input. This line is in parallel with the antenna but does not affect the 
overall impedance because it has infinite impedance at the antenna terminals. 
The additional piece of coaxial line re-directs a portion of the 1I  current, which 
induces the twin-lead current 4I . The currents 3I  and 4I  are well balanced 
( 3 4I I= ) because the current of wire #1 ( )2 3I I−  would induce as much current 
at the outer coaxial shield 3I , as the current of wire #2 ( )1 4I I−  would induce 
in the outer shield of the auxiliary coaxial piece 4I . This is due to the structural 
similarity of the two interconnects; see nodes (a) and (b) in the Figure. Thus, 

 3 4

2 3 1 4

I I
I I I I

=
− −

. 

Since 1 2I I=  in the feeding coaxial line, it is also true that 3 4I I= . Thus, the 
current at the outer coaxial shield is effectively canceled from a certain point on 
( / 4λ≈ ). 
 
 

C. Half-wavelength coaxial balun 1:4 

2Z


(balanced)

2
1 4

ZZ = (unbalanced)

1 2

4
λ

 ⇒

1

2

1R

2R

/ 2
λ

0.5V
0.5V

V

1I 2 10.5I I=

2I

2 14R R=

0.5V

2I

2I

 
 
Typically, a coaxial feed of 75cZ = Ω  would be connected with such a 

balun to a folded dipole of 292AZ ≈ Ω  [see equation (11.11)]. The principle 
of operation is explained by the equivalent circuit on the right. The auxiliary 
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piece of coaxial line (λ/2 long) transforms the input voltage at terminal 1 to a 
voltage of the same magnitude but opposite polarity at terminal 2. It also splits 
the input current into two equal parts (why?). Thus, the load “sees” twice larger 
voltage and twice smaller current compared to the case without balun. Hence 
the 4-fold increase in impedance. 

 
 
D. Broadband baluns 
All baluns described above are narrowband because of the dependence on 

the wavelength of the auxiliary transmission-line sections. Broadband baluns 
for high-frequency applications can be constructed by tapering a balanced 
transmission line to an unbalanced one gradually over a distance of several 
wavelengths (microstrip-to-twin-lead, coax-to-twin-lead). 

At lower frequencies (below UHF), tapered baluns are impractical, and 
transformers are used for impedance adjustment and balancing the feed. Often, 
ferrite-core bifilar wound-wire baluns are preferred for their small dimensions 
and broadband characteristics (bandwidths of 10:1 are achievable). A ferrite-
core transformer 1:1, which is equivalent to the folded balun 1:1, but is much 
more broadband, is shown below. 

 

4
λ

≈

1I2 3I I−

3I

2I

1 4I I−

4I
wire #1 wire #2

   
 
The transmission line formed by the outer shields of the two coaxial cables is 
now a very high-impedance line because of the high relative permeability of the 
ferrite core. Thus, its length does not depend critically on λ , in order not to 
disturb the antenna input impedance. 
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7. Dipoles with Traps 
In many wideband applications, it is not necessary to have frequency-

independent antennas (which are often expensive) but rather antennas that can 
operate at two (or more) different bands. Typical example is the type of multi-
band antennas in cellular communication systems. A dual-band antenna can be 
constructed from a single center-fed dipole (or its respective monopole) by 
means of tuned traps [see figure (a) below]. Each trap is a tuned parallel LC 
circuit. At frequency 1f , for which the whole dipole is / 2λ≈  long, the trap is 
typically an inductor. This reduces slightly the resonant length of the dipole, 
and has to be taken into account. At another frequency 2 1f f> , the traps 
become resonant and effectively cut off the outer portions of the dipole, making 
the dipole much shorter and resonant at this new frequency. If the traps, for 
example, are in the middle of the dipole arms, then 2 12f f=  and the antenna 
can operate equally well at two frequencies separated by an octave. It should be 
noted that the isolation of the outer portions of the dipole depends not only on 
the high impedance of the traps but also on the impedance of this outer portion. 
When the outer portions are about / 4λ  long, they have very low impedance 
compared to the trap’s impedance and are effectively mismatched, i.e., their 
currents are negligible. This is not the case if the outer portions are / 2λ  long. 
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[Figure from Kraus, Antennas, 2nd ed., p. 744] 

 
When the outer portions of the dipole are about / 2λ  each, they represent very 
high impedance themselves in series with the trap. They are no longer isolated 
and support strong current. The trap, however, introduces phase reversal which 
is essential in keeping the current in phase along the whole dipole. 

A coil alone can form a trap at certain (very high) frequency because of its 
own distributed capacitance. It can also act as a 180  phase shifter (the coil may 
be viewed as a coiled-up / 2λ  element). The use of this property is illustrated 
in Figure (b) which shows how one can construct an array of 4 in-phase / 2λ -
elements with a single feed and achieve a gain of 6.4 dBi. Figure (c) shows the 
3 / 4λ  monopole, which is obtained from the dipole in (b) by cutting the dipole 
at point A, and mounting it above a ground plane. This is a common antenna 
for wireless phones and handsets. Its gain can be as high as 8.3 dBi and it has 
an input resistance of 150≈ Ω . 



Nikolova 2018 1 

LECTURE 12: Loop Antennas 
(Radiation parameters of a small loop. Circular loop of constant current. 
Equivalent circuit of the loop antenna. The small loop as a receiving antenna. 
Ferrite loops.) 
Equation Section 12 
1. Introduction 

Loop antennas feature simplicity, low cost and versatility. They may have 
various shapes: circular, triangular, square, elliptical, etc. They are widely used 
in communication links up to the microwave bands (up to ≈ 3 GHz). They are 
also used as electromagnetic (EM) field probes in the microwave bands. 
Electrically small loops are widely used as compact transmitting and receiving 
antennas in the low MHz range (3 MHz to 30 MHz, or wavelengths of about 10 
m to 100 m). 

Loop antennas are usually classified as electrically small ( / 3C λ< ) and 
electrically large (C λ ). Here, C denotes the loop’s circumference.  

The small loops of a single turn have small radiation resistance (< 1 Ω) usually 
comparable to their loss resistance. Their radiation resistance, however, can be 
improved by adding more turns. Also, the small loops are narrowband. Typical 
bandwidths are less than 1%. However, clever impedance matching can provide 
low-reflection transition from a coaxial cable to a loop antenna with a tuning 
frequency range as high as 1:10.1 Moreover, in the HF and VHF bands where the 
loop diameters are on the order of a half a meter to several meters, the loop can 
be made of large-diameter tubing or coaxial cable, or wide copper tape, which 
can drastically reduce the loss.  

 
Fig. 1: Shielded Faraday loops used to inductively feed electrically small loop antennas. [©2012, Frank Dörenberg, used 
with permission; see https://www.nonstopsystems.com/radio/frank_radio_antenna_magloop.htm. Additional resource: L. 
Turner VK5KLT, “An overview of the underestimated magnetic loop HF antenna,”] 

                                      
1 John H. Dunlavy Jr., US Patent 13,588,905: “Wide range tunable transmitting loop antenna”, 1967. 

https://www.nonstopsystems.com/radio/frank_radio_antenna_magloop.htm
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The small loops, regardless of their shape, have a far-field pattern very similar 
to that of a small electric dipole normal to the plane of the loop. This is expected 
because they are equivalent to a magnetic dipole. Note, however, that the field 
polarization is orthogonal to that of the electric dipole. 

As the circumference of the loop increases, the pattern maximum shifts 
towards the loop’s normal, and when C λ≈ , the maximum of the pattern is along 
the loop’s normal. 
 
2. Radiation Characteristics of a Small Loop 

A small loop is by definition a loop of constant current. Its radius satisfies 

 
6

a λ
π

< , (12.1) 

or, equivalently, / 3C λ< . The limit (12.1) is mathematically derived later in this 
Lecture from the first-order approximation of the Bessel function of the first 
order 1( )J x  in the general solution for a loop of constant current. Actually, to 
make sure that the current has near-constant distribution along the loop, a tighter 
limit must be imposed: 
 0.03a λ< , (12.2) 
or, / 5C λ< . A good approximate model of a small loop is provided by the 
infinitesimal loop (or the infinitesimal magnetic dipole). 

The expressions for the field components of an infinitesimal loop of electric 
current of area A were already derived in Lecture 3. Here, we give only the far-
field components of the loop, the axis of which is along z: 
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It is obvious that the far-field pattern, 
 ( ) sinEϕ θ θ= , (12.5) 

is identical to that of a z-directed infinitesimal electric dipole although the 
polarization is orthogonal. The power pattern is identical to that of the 
infinitesimal electric dipole: 
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 2( ) sinF θ θ= . (12.6) 

Radiated power: 
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Radiation resistance: 
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In free space, 120η π=  Ω, and 
 2 231171( / )rR A λ≈ . (12.9) 

Equation (12.9) gives the radiation resistance of a single loop. If the loop antenna 
has N turns, then the radiation resistance increases with a factor of 2N  (because 
the radiated power increases as I2): 
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The relation in (12.10) provides a handy mechanism to increase rR  and the 
radiated power Π . Unfortunately, the losses of the loop antenna also increase 
(although only as N ) and this may result in low efficiency. 

The directivity is the same as that of an infinitesimal dipole: 

 max
0 4 1.5

rad

UD π= =
Π

. (12.11) 

 
3. Circular Loop of Constant Current – General Solution 

So far, we have assumed that the loop is of infinitesimal radius a, which 
allows the use of the expressions for the infinitesimal magnetic dipole. Now, we 
derive the far field of a circular loop, which might not be necessarily very small, 
but still has constant current distribution. This derivation illustrates the general 



Nikolova 2018 4 

loop-antenna analysis as the approach is used in the solutions to circular loop 
problems of nonuniform distributions, too. 

The circular loop can be divided into an infinite number of infinitesimal 
current elements. With reference to the figure below, the position of a current 
element in the xy plane is characterized by 0 360ϕ′≤ <   and 90θ ′ =  . The 
position of the observation point P is defined by ( , )θ ϕ . 

The far-field approximations are 

 
cos ,  for the phase term,

1 1 ,  for the amplitude term.
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≈
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In general, the solution for A does not depend on ϕ  because of the cylindrical 
symmetry of the problem. Here, we set 0ϕ = . The angle between the position 
vector of the source point Q and that of the observation point P is determined as 

ˆ ˆ ˆ ˆ ˆ ˆ ˆcos ( sin cos sin sin cos ) ( cos sin )ψ θ ϕ θ ϕ θ ϕ ϕ′ ′ ′= ⋅ = + + ⋅ +r r x y z x y , 

x

z

y

0I
Q

ϕ′

P

ϕ

θ
ψ

r

R

′r

a

 
 

 cos sin cosψ θ ϕ′⇒ = . (12.13) 

Now the vector potential integral can be solved for the far zone: 
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where ˆd adϕ′ ′=l φ  is the linear element of the loop contour. The current element 
changes its direction along the loop and its contribution depends on the angle 
between its direction and the respective A component. Since all current elements 
are directed along φ̂ , we conclude that the vector potential has only Aϕ  
component, i.e., ˆAϕ=A φ , where 
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the vector potential is 
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We apply the following substitution in the second integral: ϕ ϕ π′ ′′= + . Then, 
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The integrals in (12.18) can be expressed in terms of Bessel functions, which are 
defined as 

 cos

0

cos( ) ( )jz n
nn e d j J z

π
ϕϕ ϕ π=∫ . (12.19) 

Here, ( )nJ z  is the Bessel function of the first kind of order n. From (12.18) and 
(12.19), it follows that 
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Since 
 ( ) ( 1) ( )n

n nJ z J z− = − , (12.21) 

equation (12.20) reduces to 
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The far-zone fields are derived as 
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The patterns of constant-current loops obtained from (12.23) are shown below: 
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[Balanis] 

 
The small-loop field solution in (12.3)-(12.4) is actually a first-order 

approximation of the solution in (12.23). This becomes obvious when the Bessel 
function is expanded in series as 

 3
1

1 1( sin ) ( sin ) ( sin )
2 16

J a a aβ θ β θ β θ= − +. (12.24) 
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For small values of the argument ( 1 / 3aβ < ), the first-order approximation is 
acceptable, i.e., 

 1
1( sin ) ( sin )
2

J a aβ θ β θ≈ . (12.25) 

The substitution of (12.25) in (12.23) yields (12.3)-(12.4). 
It can be shown that the maximum of the pattern given by (12.23) is in the 

direction 90θ =   for all loops, which have circumference 1.84C λ< . 
 

Radiated power and radiation resistance 
We substitute the Eϕ  expression (12.23) in 
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Here, 2A aπ=  is the loop’s area. The integral in (12.26) does not have a closed 
form solution. Often, the following transformation is applied: 
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The second integral in (12.27) does not have a closed form solution either but it 
can be approximated with a highly convergent series: 
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The radiation resistance is obtained as 

 ( )2
2
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I
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The radiation resistance of small loops is very small. For example, for 
/100 / 30aλ λ< <  the radiation resistance varies from 33 10−≈ ×  Ω to 0.5≈  Ω. 
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This is often less than the loss resistance of the loop. That is why small loop 
antennas are constructed with multiple turns and on ferromagnetic cores. Such 
loop antennas have large inductive reactance, which is compensated by a 
capacitor. This is convenient in narrowband receivers, where the antenna itself is 
a very efficient filter (together with the tuning capacitor), which can be tuned for 
different frequency bands. Low-loss capacitors must be used to prevent further 
increase in the loss. 
 
4. Circular Loop of Nonuniform Current 

When the loop radius becomes larger than 0.2λ , the constant-current 
assumption does not hold. A common assumption is the cosine distribution.2,3 
Lindsay, Jr.,4 considers the circular loop to be a deformation of a shorted parallel-
wire line. If sI  is the current magnitude at the “shorted” end, i.e., the point 
opposite to the feed point where ϕ π′ = , then 
 ( ) cosh( )sI I aα γ α=  (12.30) 

where α π ϕ′= −  is the angle with respect to the shorted end, γ  is the line 
propagation constant and a is the loop radius. If we assume loss-free 
transmission-line model, then jγ β=  and cosh( ) cos( )a aγ α β α= . For a loop in 
open space, β  is assumed to be the free-space wave number ( 0 0β ω µ ε= ). 

The cosine distribution is not very accurate, especially close to the terminals, 
and this has a negative impact on the accuracy of the computed input impedance. 
That is why the current is often represented by a Fourier series:5,6 

 0
1

( ) 2 cos( )
N

n
n

I I I nϕ ϕ
=

′ ′= + ∑ . (12.31) 

Here, ϕ′  is measured from the feed point. This way, the derivative of the current 
distribution with respect to ϕ′  at ϕ π′ =  (the point diametrically opposite to the 
feed point) is always zero. This imposes the requirement for a symmetrical 
current distribution on both sides of the diameter from 0ϕ′ =  to ϕ π′ = . The 

                                      
2 E.A. Wolff, Antenna Analysis, Wiley, New York, 1966. 
3 A. Richtscheid, “Calculation of the radiation resistance of loop antennas with sinusoidal current distribution,” IEEE Trans. 
Antennas Propagat., Nov. 1976, pp. 889-891. 
4 J. E. Lindsay, Jr., “A circular loop antenna with non-uniform current distribution,” IRE Trans. Antennas Propagat., vol. AP-8, 
No. 4, July 1960, pp. 439-441. 
5 H. C. Pocklington, “Electrical oscillations in wire,” in Cambridge Phil. Soc. Proc., vol. 9, 1897, pp. 324–332. 
6 J. E. Storer, “Input impedance of circular loop antennas,” Am. Inst. Electr. Eng. Trans., vol. 75, Nov. 1956. 
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complete analysis of this general case will be left out, and only some important 
results will be given. When the circumference of the loop approaches λ , the 
maximum of the radiation pattern shifts exactly along the loop’s normal. Then, 
the input resistance of the antenna is also good (about 50 to 70 Ω). The maximum 
directivity occurs when 1.4C λ≈  but then the input impedance is too large. The 
input resistance and reactance of the large circular loop are given below. 
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(Note: typo in author’s name, read as J. E. Storer) 
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The large circular loop is very similar in its performance to the large square 
loop. An approximate solution of very good accuracy for the square-loop antenna 
can be found in 
W.L. Stutzman and G.A. Thiele, Antenna Theory and Design, 2nd Ed., John 
Wiley & Sons, New York, 1998. 
There, it is assumed that the total antenna loop is exactly one wavelength and has 
a cosine current distribution along the loop’s wire. 
 

4
λ

x

y

 
 
The principal plane patterns obtained through the cosine-current assumption 
(solid line) and using numerical methods (dash line) are shown below: 
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5. Equivalent Circuit of a Loop Antenna 

inZinZ ′

rC

rR

lR

AL

iL

 
rC  - resonance capacitor 

lR  - loss resistance of the loop antenna 

rR  - radiation resistance 

AL  - inductance of the loop 

iL  - inductance of the loop conductor (wire) 
 
(a) Loss resistance 
Usually, it is assumed that the loss resistance of loosely wound loop equals 

the high-frequency loss resistance of a straight wire of the same length as the 
loop and of the same current distribution. In the case of a uniform current 
distribution, the high-frequency resistance is calculated as 

 , ,hf s s
l fR R R
p

π µ
σ

= = Ω  (12.32) 

where l is the length of the wire, and p is the perimeter of the wire’s cross-section. 
We are not concerned with the current distribution now because it can be always 
taken into account in the same way as it is done for the dipole/monopole 
antennas. However, another important phenomenon has to be taken into account, 
namely the proximity effect. 
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⊗1J 2J ⊗

 
 
When the spacing between the turns of the wound wire is very small, the loss 
resistance due to the proximity effect is larger than that due to the skin effect. 
The following formula is used to calculate exactly the loss resistance of a loop 
with N turns, wire radius b, and turn separation 2c: 

 
0

1p
l s

RNaR R
b R

 = + 
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 (12.33) 

where 
, ,sR Ω  is the surface resistance (see (12.32)), 

, / m,pR Ω  is the ohmic resistance per unit length due to the proximity 
effect, 

0 , / m
2

sNRR
bπ

= Ω , is the ohmic resistance per unit length due to the skin 

effect. 
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The ratio 0/pR R  has been calculated for different relative spacings /c b , for 
loops with 2 8N≤ ≤  in: 

G.N. Smith, “The proximity effect in systems of parallel conductors,” J. Appl. 
Phys., vol. 43, No. 5, May 1972, pp. 2196-2203. 

The results are shown below: 
 

 
 

(b) Loop inductance 
The inductance of a single circular loop of radius a made of wire of radius b 

is 

 circ
1

8ln 2A
aL a
b

µ  = −    
 H. (12.34) 
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The inductance of a square loop with sides a  and wire radius b  is calculated as 

 sq
1 2 ln 0.774A

a aL
b

µ
π
 = −    

 H. (12.35) 

The inductance of a multi-turn coil is obtained from the inductance of a single-
turn loop multiplied by 2N , where N is the number of turns. 

The inductance of the wire itself (internal inductance) is very small and is 
often neglected. It can be shown that the HF self-inductance per unit length of a 
straight wire of cylindrical cross-section is 

 
4 2 2 4 4
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int 2 2 2

4 3 4 ln( / )
8 ( )

a a c c c a cL
a c

µ
π
 − + +′ =  − 

 H/m, (12.36) 

where c a δ= −  and δ  is the skin depth. To obtain the total internal inductance 
of the wire, simply multiply intL′  by the overall length of the wire used to 
construct the multi-turn loop antenna. 

 
(c) Tuning capacitor 
The susceptance of the capacitor Br must be chosen to eliminate the 

susceptance of the loop. Assume that the equivalent admittance of the loop is 

 1 1
in

in in in
Y

Z R jX
= =

+
 (12.37) 

where 

in r lR R R= + , 

int( )in AX j L Lω= + . 

The following transformation holds: 
 in in inY G jB= +  (12.38) 

where 
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The susceptance of the capacitor is 
 r rB Cω= . (12.40) 
For resonance to occur at 0 0 / (2 )f ω π=  when the capacitor is in parallel with 
the loop, the condition 
 r inB B= −  (12.41) 
must be fulfilled. Therefore, 
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Under resonance, the input impedance inZ ′  becomes 

 
2 21 1 in in

in in
in in in

R XZ R
G G R

+′ ′= = = =
′

, (12.44) 

 
2

,in
in in

in

XZ R
R

′⇒ = + Ω . (12.45) 

 
5. The Small Loop as a Receiving Antenna 

The small loop antennas have the following features: 
1) high radiation resistance provided multi-turn ferrite-core constructions 

are used; 
2) high losses, therefore, low radiation efficiency; 
3) simple construction, small size and weight. 
Small loops are usually not used as transmitting antennas due to their low 

efficiency cde . However, they are much preferred as receiving antennas in AM 
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radio-receivers because of their high signal-to-noise ratio (they can be easily 
tuned to form a very high-Q resonant circuit), their small size and low cost. 

Loops are constructed as magnetic field probes to measure magnetic flux 
densities. At higher frequencies (UHF and microwave), loops are used to 
measure the EM field intensity. In this case, ferrite rods are not used. 

Since the loop is a typical linearly polarized antenna, it has to be oriented 
properly to optimize reception. The optimal case is a linearly polarized wave with 
the H-field aligned with the loop’s axis. 

x

z

y

ocV

a iθ

iϕ
0

iE

iHψ

optimal

incidence

 
 

The open-circuit voltage at the loop terminals is induced by the time-varying 
magnetic flux through the loop: 
 2

oc m zV j j j H aω ω ωµ π= Ψ = ⋅ = ⋅B s , (12.46) 

 cos sini
z iH H ψ θ= . (12.47) 

Here, 

mΨ  is the magnetic flux, Wb; 
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( ),i iθ ϕ  are the angles specifying the direction of incidence; 
ψ  is the angle between the iH  vector and the plane of incidence. 

Finally, the open-circuit voltage can be expressed as 
 oc cos sin cos sini i

i iV j SH j SEωµ ψ θ β ψ θ= = . (12.48) 

Here, 2S aπ=  denotes the area of the loop, and β ω µε=  is the phase constant. 
ocV  is maximum for 90iθ =   and 0ψ =  . 

6. Ferrite Loops 
The radiation resistance and radiation efficiency can be raised by inserting a 

ferrite core, which has high magnetic permeability in the operating frequency 
band. Large magnetic permeability 0 rµ µ µ=  means large magnetic flux mΨ , and 
therefore large induced voltage ocV . The radiation resistance of a small loop was 
already derived in (12.10) to include the number of turns, and it was shown that 
it increases as 2N . Now the magnetic properties of the loop will be included in 
the expression for rR . 

The magnetic properties of a ferrite core depend not only on the relative 
magnetic permeability rµ  of the material it is made of but also on its geometry. 
The increase in the magnetic flux is then more realistically represented by the 
effective relative permeability (effective magnetic constant) effrµ . We show next 
that the radiation resistance of a ferrite-core loop is 2( )effrµ  times larger than the 
radiation resistance of the air-core loop of the same geometry. When we 
calculated the far fields of a small loop, we used the equivalence between an 
electric current loop and a magnetic current element: 
 ( ) mj IA I lωµ = . (12.49) 

From (12.49) it is obvious that the equivalent magnetic current is proportional to 
µ . The field magnitudes are proportional to mI , and therefore they are 
proportional to µ  as well. This means that the radiated power radΠ  is 
proportional to 2µ , and therefore the radiation resistance increases as 2( )effrµ . 

Finally, we can express the radiation resistance as 
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Here, 2A aπ=  is the loop area, and 0 0 0/η µ ε=  is the intrinsic impedance of 
vacuum. An equivalent form of (12.50) is 

 
4

2 220 ( )effr r
CR Nπ µ
λ
≈  

 
 (12.51) 

where we have used the approximate expression 0 120η π≈  and C is the 
circumference of the loop, 2C aπ= . 

Some notes are made below with regard to the properties of ferrite cores: 
• The effective magnetic constant of a ferrite core is always less than the 

magnetic constant of the ferromagnetic material it is made of, i.e., effr rµ µ<
. Toroidal cores have the highest effrµ , and ferrite-stick cores have the 
lowest effrµ . 

• The effective magnetic constant is frequency dependent. One has to be 
careful when picking the right core for the application at hand. 

• The magnetic losses of ferromagnetic materials increase with frequency. 
At very high (microwave) frequencies, the magnetic losses are very high. 
They have to be calculated and represented in the equivalent circuit of the 
antenna as a shunt conductance mG . 
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LECTURE 13: LINEAR ARRAY THEORY - PART I 
(Linear arrays: the two-element array. N-element array with uniform amplitude 
and spacing. Broad-side array. End-fire array. Phased array.) 
 
1. Introduction 

Usually the radiation patterns of single-element antennas are relatively wide, 
i.e., they have relatively low directivity (gain). In long distance 
communications, antennas with high directivity are often required. Such 
antennas are possible to construct by enlarging the dimensions of the radiating 
aperture (maximum size much larger than  ). This approach however may lead 
to the appearance of multiple side lobes. Besides, the antenna is usually large 
and difficult to fabricate.  

Another way to increase the electrical size of an antenna is to construct it as 
an assembly of radiating elements in a proper electrical and geometrical 
configuration – antenna array. Usually, the array elements are identical. This 
is not necessary but it is practical and simpler for design and fabrication. The 
individual elements may be of any type (wire dipoles, loops, apertures, etc.) 

The total field of an array is a vector superposition of the fields radiated by 
the individual elements. To provide very directive pattern, it is necessary that 
the partial fields (generated by the individual elements) interfere constructively 
in the desired direction and interfere destructively in the remaining space. 

There are five basic methods to control the overall antenna pattern: 
a) the geometrical configuration of the overall array (linear, circular, 

spherical, rectangular, etc.), 
b) the relative placement of the elements, 
c) the excitation amplitude of the individual elements, 
d) the excitation phase of each element, 
e) the individual pattern of each element. 
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2. Two-element Array 

Let us represent the electric fields in the far zone of the array elements in the 
form 

 
1 2

1 1 1 1 1 1
1

ˆ( , )
j kr

n
e

M E
r



 

   
 

E ρ , (13.1) 

 
2 2

2 2 2 2 2 2
2

ˆ( , )
j kr

n
e

M E
r



 

   
 

E ρ . (13.2) 



1

2

P

1r

2r

y

2
d

2
d

r

z

 
 
Here, 

1M , 1M  field magnitudes (do not include the 1/r factor); 
1nE , 2nE  normalized field patterns; 

1r , 2r   distances to the observation point P; 
  phase difference between the feed of the two array elements; 

1ρ̂ , 2ρ̂   polarization vectors of the far-zone E fields. 
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The far-field approximation of the two-element array problem: 
 







P

1r

2r

y
2
d

2
d

r

cos
2
d 

z

 
 
Let us assume that: 

1) the array elements are identical, i.e., 
 1 2( , ) ( , ) ( , )n n nE E E       , (13.3) 

2) they are oriented in the same way in space (they have identical 
polarizations), i.e., 

 1 2ˆ ˆ ˆ ρ ρ ρ , (13.4) 

3) their excitation is of the same amplitude, i.e., 
 1 2M M M  . (13.5) 
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Then, the total field can be derived as 
 1 2 E E E , (13.6) 

  
cos cos

2 2 2 21ˆ ,
d d

jk r j jk r j

nME e e
r

  
 

           
   

 
  

  
E ρ , 

 
cos cos

2 2 2 2ˆ ,
kd kd

j j
jkr

n
M

e E e e
r

  
 

            
 

  
  

E ρ , 

 cosˆ ( , ) 2cos
2

jkr

n

EF AF

e kd
M E

r

  
     

 
E ρ





. (13.7) 

The total field of the array is equal to the product of the field created by a 
single element located at the origin and the array factor (AF): 

 cos2cos
2

kd
AF

    
 

. (13.8) 

Using the normalized field pattern of a single element, ( , )nE   , and the 
normalized AF, 

 coscos
2n

kd
AF

    
 

, (13.9) 

the normalized field pattern of the array is expressed as their product: 
 ( , ) ( , ) ( , )n n nf E AF       . (13.10) 

The concept expressed by (13.10) is the so-called pattern multiplication rule 
valid for arrays of identical elements. This rule holds for any array consisting of 
decoupled identical elements, where the excitation magnitudes, the phase shift 
between the elements and the displacement between them are not necessarily 
the same. The total pattern, therefore, can be controlled via the single–element 
pattern ( , )nE    or via the AF. The AF, in general, depends on the: 

 number of elements, 
 mutual placement, 
 relative excitation magnitudes and phases. 
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Example 1: An array consists of two horizontal infinitesimal dipoles located at 
a distance / 4d   from each other. Find the nulls of the total field in the 
elevation plane 90    , if the excitation magnitudes are the same and the 
phase difference is: 
a) 0   
b) / 2   
c) / 2    

90  

z

8


y

180  

0

0  

8


90   

 
 

The element factor 2 2( , ) 1 sin sinnE       does not depend on  , and it 
produces in all three cases the same null. For 90    , ( , ) | cos |nE     and 
the null is at 
 1 / 2  . (13.11) 
The AF depends on   and produces different results in the 3 cases: 
a) 0   

coscos 0   cos cos 0
2 4

n
n n

kd
AF

           
   

, 

cos (2 1)     cos (2 1) 2
4 2n nn n
         ,  0, 1, 2,n    . 
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A solution with a real-valued angle does not exist. In this case, the total field 
pattern has only 1 null at 90   . 
 

 
Fig. 6.3, p. 255, Balanis 
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b) / 2   

 cos cos 0   cos 1 (2 1)
4 4 4 2n n nAF n
            

 
, 

( 0) 2cos 1 (2 1) 2   cos 1   0n nn           .  

The solution for 0n   is the only real-valued solution. Thus, the total field 
pattern has 2 nulls: at 1 90    and at 2 0   : 

 
Fig. 6.4, p. 256, Balanis 
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c) / 2    

cos cos 0    (cos 1) (2 1)
4 4 4 2n n nAF n
            

 
, 

( 1) 2cos 1 (2 1) 2   cos 1   n nn             . 

The total field pattern has 2 nulls: at 1 90    and at 2 180   . 

 
Fig. 6.4b, p. 257, Balanis 
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Example 2: Consider a 2-element array of identical (infinitesimal) dipoles 
oriented along the y-axis. Find the angles of observation where the nulls of the 
pattern occur in the plane 90     as a function of the distance d between the 
dipoles and the phase difference  . 

 

The normalized total field pattern is 

 coscos cos
2n

kd
f

      
 

. (13.12) 

In order to find the nulls, the equation 

 coscos cos 0
2n

kd
f

      
 

 (13.13) 

is solved. 
The element factor | cos |  produces one null at 

 1 / 2  . (13.14) 
The AF leads to the following solution: 

cos coscos 0 (2 1)
2 2 2

kd kd
n

           
 

, 0, 1, 2...n     

  arccos 2 1
2n n

d

  


        
. (13.15) 

When there is no phase difference between the two element feeds ( 0)  , the 
separation d must satisfy 

 
2

d


  

in order at least one null to occur due to (13.15). 
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3. N-element Linear Array with Uniform Amplitude and Spacing 

We assume that each succeeding element has a   progressive phase lead in 
the excitation relative to the preceding one. An array of identical elements with 
identical magnitudes and with a progressive phase is called a uniform array. 
The AF of the uniform array can be obtained by considering the individual 
elements as point (isotropic) sources. Then, the total field pattern can be 
obtained by simply multiplying the AF by the normalized field pattern of the 
individual element (provided the elements are not coupled). 

The AF of an N-element linear array of isotropic sources is 

       cos 2 cos 1 cos1 j kd j kd j N kdAF e e e             . (13.16) 
 
 
 

to P


cosd 

z

y

r


d

d

d






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Phase terms of the partial fields: 

 

 

  

st

cosnd

2 cosrd

1 costh

1

2

3

jkr

jk r d

jk r d

jk r N d

e

e

e

N e









 

 

  











 

Equation (13.16) can be re-written as 

   1 cos

1

N
j n kd

n

AF e   



 , (13.17) 

  1

1

N
j n

n

AF e 



 , (13.18) 

where coskd    . 
From (13.18), it is obvious that the AFs of uniform linear arrays can be 

controlled by the relative phase   between the elements. The AF in (13.18) 
can be expressed in a closed form, which is more convenient for pattern 
analysis: 

 
1

N
j jn

n

AF e e 



  , (13.19) 

 1j jNAF e AF e     ,  

 
2 2 2

2 2 2

1
1

N N N
j j j

jN

j
j j j

e e e
e

AF
e

e e e

  



  





 
 

   
  

 
 

,  

  
 

1
2

sin / 2
sin / 2

N
j N

AF e
 



 
 
   . (13.20) 

Here, the phase factor  exp ( 1) / 2j N   reflects a phase advancement 
associated with the last (Nth) array element relative to the center of the linear 
array. It also represents the phase shift of the array’s centre relative to the 
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origin, and it would be equal to one if the origin were to coincide with the array 
centre. This factor is not important unless the array output signal is further 
combined with the output signal of another antenna. As we aim at obtaining the 
normalized AF, we neglect this phase factor, leading to 

  
 

sin / 2
sin / 2

N
AF




 . (13.21) 

For small values of  , (13.21) reduces to 

 
 sin / 2

/ 2
N

AF



 . (13.22) 

To normalize (13.22) or (13.21), we need the maximum of the AF. We re-write 
(13.21) as 

  
 

sin / 2
sin / 2

N
AF N

N




  . (13.23) 

The function 

 sin( )( )
sin( )

Nx
f x

N x
  

has its maximum at 0, ,x  , and the value of this maximum is max 1f  . 
Therefore, maxAF N . The normalized AF is thus obtained as 

  
 

sin / 2
sin / 2n

N
AF

N




 . (13.24) 

The function | ( ) |f x  is plotted below. 
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3N 
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10N 

sin( )( )
sin( )

Nx
f x

N x


 
 
For small  , 

  sin / 21
/ 2n

N
AF

N




 
  

 
. (13.25) 

 
Nulls of the AF 

To find the nulls of the AF, equation (13.24) is set equal to zero: 

  sin 0     cos
2 2 2 n
N N N

n kd n               
 

, (13.26) 

 2arccos ,  1,2,3 ( 0, ,2 ,3 )
2n

n
n n N N N

d N

  


           
 .(13.27) 

When 0, ,2 ,3n N N N , the AF attains its maximum values not nulls (see the 
case below). The values of n determine the order of the nulls. For a null to 
exist, the argument of the arccosine must be between –1 and +1. 
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Major maxima of the AF 
They are studied in order to determine the maximum directivity, the 

HPBWs, the direction of maximum radiation. The maxima of (13.24) occur 
when (see the plot in page 13, note that / 2x  ) 

  1 cos
2 2 mkd m
       , (13.28) 

  arccos 2 , 0,1,2
2m m m

d

  


      
 . (13.29) 

When (13.28) is true, 1nAF  , i.e., these are not maxima of minor lobes. The 
index m shows the maximum’s order. It is usually desirable to have a single 
major lobe, i.e. m = 0 only. This can be achieved by choosing /d   sufficiently 
small. Then the argument of the arccosine function in (13.29) becomes greater 
than unity for 1,2m    and equation (13.29) has a single real-valued solution: 

 0 arccos
2 d




   
 

. (13.30) 

The HPBW of a major lobe 
The HPBW of a major lobe is calculated by setting the value of AFn equal to 

1 / 2 . For the approximate AFn  in (13.25), 

  cos 1.391
2 2 h
N N

kd      . 

See the plot of (sin ) /x x  below. 

 2.782arccos
2h

d N

 


         
. (13.31) 

For a symmetrical pattern around m  (the angle at which maximum 
radiation occurs), the HPBW is calculated as 
 2 | |m hHPBW    . (13.32) 

For a broadside array, for example, 0 / 2m    . 
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Maxima of minor lobes (secondary maxima) 

They are the maxima of AFn, where 1nAF  . These are illustrated in the plot 
below, which shows the array factors as a function of coskd     for a 
uniform equally spaced linear array  with N = 3, 5, 10. 

The secondary maxima occur where the numerator attains a maximum and 
the AF is beyond its 1st null: 

  sin 1   cos (2 1)
2 2 2
N N

kd s
           

 
, (13.33) 

 2 1arccos or
2s

s

d N

  


             
 (13.34) 

 2 1arccos
2 2s

s

d N

   


             
. (13.35) 
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sin( / 2)( )
sin( / 2)

N
f

N






coskd   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

3N 

5N 

10N 

 
 

4. Broadside Array 

A broadside array is an array, which has maximum radiation at 90    
(normal to the axis of the array). For optimal solution, both the element factor 
and the AF, should have their maxima at 90   . 

From (13.28), it follows that the maximum of the AF occurs when 
 cos 0mkd     . (13.36) 

Equation (13.36) is valid for the 0th order maximum, 0m  . If / 2m  , then 

 0  . (13.37) 

The uniform linear array has its maximum radiation at 90   , if all array 
elements have their excitation with the same phase. 

To ensure that there are no maxima in other directions (grating lobes), the 
separation between the elements d must be smaller than the wavelength: 
 d  . (13.38) 
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To illustrate the appearance of additional maxima, 1nAF  , let us consider the 
case of d  , where 1  . Then, 

 0
2cos cos 2 coskd
     
    . (13.39) 

The condition for 1nAF   from (13.28), 
 2 , 0, 1, 2m m m        (13.40) 

is then fulfilled not only for 0 / 2   but also for 
  arccos / , 1, 2g m m      . (13.41) 

As long as m  , real-valued solutions for g  exist and grating lobes appear.  
If, for example, d   ( 1)  , equation (13.41) results in two additional 

major lobes at 
   1,2arccos 1 0 ,180g g       . 

The resulting AF is illustrated in figure (b) below.  

  
 

If 2d   ( 2)  , equation (13.41) results in four additional major lobes at 
   1,2,3,4arccos 0.5, 1 0 ,60 ,120 ,180g g          . 

If 1.25d   ( 1.25)  , 

   1,2arccos 0.8 37 ,143g g      . 
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5. Ordinary End-fire Array 

An end-fire array is an array, which has its maximum radiation along the 
axis of the array ( 0 ,180 )    . It may be required that the array radiates only in 
one direction – either 0   or 180   . For an AF maximum at 0  , 
 0cos 0kd kd         , (13.42) 

 max, for 0kd      . (13.43) 

For an AF maximum at 180   , 

180cos 0kd kd          , 

 max, for 180kd     . (13.44) 

If the element separation is multiple of a wavelength, d n , then in addition 
to the end-fire maxima there also exist maxima in the broadside direction 
( 90   ). As with the broadside array, in order to avoid grating lobes, the 
maximum spacing between the element should be less than  : 
 d  . 
(Show that an end-fire array with / 2d   has 2 maxima for kd   : at 

0    and at 180   .) 
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AF pattern of an EFA: N = 10, / 4d   

 
Fig. 6-11, p. 270, Balanis 
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6. Phased (Scanning) Arrays 

It was already shown that the 0th order maximum (m=0) of AFn occurs when 
 0cos 0kd     . (13.45) 

This gives the relation between the direction of the main beam 0  and the phase 
difference  . The direction of the main beam can be controlled by the phase 
shift  . This is the basic principle of electronic scanning for phased arrays. 

When the scanning is required to be continuous, the feeding system must be 
capable of continuously varying the progressive phase   between the elements. 
This is accomplished by ferrite or diode shifters (varactors). 

 
Example: Derive the values of the progressive phase shift   as dependent on 
the direction of the main beam 0  for a uniform linear array with / 4d  . 

From equation (13.45): 

0 0 0
2cos cos cos

4 2
kd

     


       

 

0    

0˚ -90˚ 

60˚ -45˚ 

120˚ +45˚ 

180˚ +90˚ 

 
 

The approximate HPBW of a scanning array is obtained using (13.31) with 
0coskd   : 

  1,2

2.782arccos
2h

d N

 


        
. (13.46) 

The total beamwidth is 
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 1 2h hHPBW    , (13.47) 

0 0
2.782 2.782arccos cos arccos cos

2 2
HPBW kd kd

d N d N

  
 

                     
 

  (13.48) 
Since 2 /k   , 

 0 0
2.782 2.782arccos cos arccos cosHPBW
Nkd Nkd

             
. (13.49) 

We can use the substitution ( ) /N L d d   to obtain 

 
0

0

arccos cos 0.443

             arccos cos 0.443  .

HPBW
L d

L d





        
       

 (13.50) 

Here, L is the length of the array. 
Equations (13.49) and (13.50) can be used to calculate the HPBW of a 

broadside array ( 0 90 const    ). However, they are not valid for end-fire 
arrays, where 

 2.7822arccos 1HPBW
Nkd

   
 

. (13.51) 
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LECTURE 14: LINEAR ARRAY THEORY - PART II 
(Linear arrays: Hansen-Woodyard end-fire array, directivity of a linear array, 
linear array pattern characteristics – recapitulation; 3-D characteristics of an 
N-element linear array.) 
 
1. Hansen-Woodyard End-fire Array (HWEFA) 

The end-fire arrays (EFA) have relatively large HPBW as compared to 
broadside arrays. 

 
[Fig. 6-11, p. 270, Balanis] 
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To enhance the directivity of an end-fire array, Hansen and Woodyard 
proposed that the phase shift of an ordinary EFA 
 kdβ = ±  (14.1) 

be increased as 

 2.94kd
N

β  = − + 
 

 for a maximum at 0θ = °, (14.2) 

 2.94kd
N

β  = + + 
 

 for a maximum at 180θ = ° . (14.3) 

Conditions (14.2)–(14.3) are known as the Hansen–Woodyard conditions for 
end-fire radiation. They follow from a procedure for maximizing the directivity, 
which we outline below. 

The normalized pattern AFn of a uniform linear array is 

 
( )

( )

sin cos
2

cos
2

n

N kd
AF N kd

θ β

θ β

 +  ≈
+

 (14.4) 

if the argument coskdψ θ β= +  is sufficiently small (see previous lecture). We 
are looking for an optimal β , which results in maximum directivity. Let 
 pdβ = − , (14.5) 

where d is the array spacing and p is the optimization parameter. Then, 

 
( )

( )

sin cos
2

cos
2

n

Nd k p
AF Nd k p

θ

θ

 −  =
−

. 

For brevity, use the notation / 2Nd q= . Then, 

 [ ]sin ( cos )
( cos )n
q k p

AF
q k p

θ
θ

−
=

−
, (14.6) 

 or sin
n

ZAF
Z

= , where ( cos )Z q k pθ= − . 



Nikolova 2016 3 

The radiation intensity becomes 

 
22

2

sin( ) n
ZU AF

Z
θ = = , (14.7) 

 [ ] 2
sin ( )

( 0)
( )
q k p

U
q k p

θ
 −

= =  
− 

, (14.8) 

 
2( ) sin( )

( 0) sinn
U z ZU

U z Z
θθ

θ
 = = ⋅ =  

, (14.9) 

where 
( )z q k p= − , 
( cos )Z q k pθ= − , and 

( )nU θ  is normalized power pattern with respect to 0θ = °. 
 

The directivity at 0θ = ° is 

 0
4 ( 0)

rad

UD
P

π θ =
=  (14.10) 

where ( )rad nP U dθ
Ω

= Ω∫∫ . To maximize the directivity, 0 / 4radU P π=  is 

minimized. 

 
22

0
0 0

1 sin sin
4 sin

z ZU d d
z Z

π π

θ θ θ
π

 =  
 ∫ ∫ , (14.11) 

 [ ] 22

0
0

sin ( cos )1 sin
2 sin ( cos )

q k pzU d
z q k p

π θ
θ θ

θ
 − =    −   
∫ , (14.12) 

 
2

0
1 cos2 1 1Si(2 ) ( )

2 sin 2 2 2
z zU z g z

kq z z kq
π −   = + + =      

. (14.13) 

Here, ( )
0

Si (sin / )
z

z t t dt= ∫ . The minimum of ( )g z  occurs when 

 ( ) 1.47z q k p= − ≈ − , (14.14) 
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 ( ) 1.47
2

Nd k p⇒ − ≈ − . 

 1.47, where
2 2

Ndk Ndp dp β⇒ − ≈ − = −  

 ( ) 1.47
2
N dk β⇒ + ≈ −  

 2.94 2.94kd kd
N N

β  ≈ − − = − + 
 

. (14.15) 

Equation (14.15) gives the Hansen-Woodyard condition for improved directivity 
along 0θ = °. Similarly, for 180θ = ° , 

 2.94 kd
N

β  = + + 
 

. (14.16) 

Usually, conditions (14.15) and (14.16) are approximated by 

 kd
N
πβ  ≈ ± + 

 
, (14.17) 

which is easier to remember and gives almost identical results since the curve 
( )g z  at its minimum is fairly flat. 

Conditions (14.15)-(14.16), or (14.17), ensure minimum beamwidth 
(maximum directivity) in the end-fire direction. There is, however, a trade-off in 
the side-lobe level, which is higher than that of the ordinary EFA. Besides, 
conditions (14.15)-(14.16) have to be complemented by additional requirements, 
which would ensure low level of the radiation in the direction opposite to the 
main lobe. 

(a) Maximum at 0θ = ° [reminder: coskdψ θ β= + ] 

 
0

0
180

2.94
2.94

2.942 .

Nkd
N kd

N

θ

θ
θ

ψ
β

ψ

= °

= °
= °

= −
= − + ⇒ 

  = − −
 (14.18) 

Since we want to have a minimum of the pattern in the 180θ = ° direction, we 
must ensure that 
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 180| |θψ π= °≈ . (14.19) 

It is easier to remember the Hansen-Woodyard conditions for maximum 
directivity in the 0θ = ° direction as 

 0 180
2.94| | ,   | |

N Nθ θ
πψ ψ π= ° = °= ≈ ≈ . (14.20) 

 
(b) Maximum at 180θ = °  

 
180

180
0

2.94
2.94

2.942 .

Nkd
N kd

N

θ

θ
θ

ψ
β

ψ

= °

= °
= °

=
= + ⇒

= +
 (14.21) 

In order to have a minimum of the pattern in the 0θ = °  direction, we must ensure 
that 
 0| |θψ π= °≈ . (14.22) 

We can now summarize the Hansen-Woodyard conditions for maximum 
directivity in the 180θ = °  direction as 

 180 0
2.94| | ,   | |

N Nθ θ
πψ ψ π= ° = °= ≈ ≈ . (14.23) 

If (14.19) and (14.22) are not observed, the radiation in the opposite of the 
desired direction might even exceed the main beam level. It is easy to show that 
the complementary requirement | |ψ π=  at the opposite direction can be met if 
the following relation is observed: 

 1
4

Nd
N

λ− ≈  
 

. (14.24) 

If N is large, / 4d λ≈ . Thus, for a large uniform array, Hansen-Woodyard 
condition can yield improved directivity only if the spacing between the array 
elements is approximately / 4λ . 
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ARRAY FACTORS OF A 10-ELEMENT UNIFORM-AMPLITUDE HW EFA 

 
Solid line: / 4d λ=  
Dash line: / 2d λ=  
N = 10 

kd
N
πβ  = − + 

 
 

Fig. 6.12, p. 273, Balanis 
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2. Directivity of a Linear Array 
2.1. Directivity of a BSA 

 

2

2
2

sin cos
sin2( )

cos
2

n

N kd
ZU AF N Zkd

θ
θ

θ

  
      = = =  

  
  

 (14.25) 

 0 0
0 4

rad av

U UD
P U

π= = , (14.26) 

where / (4 )av radU P π= . The radiation intensity in the direction of maximum 
radiation / 2θ π=  in terms of nAF  is unity: 
 0 max ( / 2) 1U U U θ π= = = = , 

 1
0 avD U −⇒ = . (14.27) 

The radiation intensity averaged over all directions is calculated as 

 

2

2 2

2
0 0 0

sin cos
1 sin 1 2sin sin

4 2 cos
2

av

N kd
ZU d d dNZ kd

π π π θ
θ θ φ θ θ

π θ

 
 
 = =∫ ∫ ∫ . 

Change variable: 

 cos sin
2 2
N NZ kd dZ kd dθ θ θ= ⇒ = − . (14.28) 

Then, 

 
22

2

1 2 sin
2

Nkd

av
Nkd

ZU dZ
N kd Z

−

 = −  
 ∫ , (14.29) 

 
22

2

1 sin
Nkd

av
Nkd

ZU dZ
Nkd Z

−

 =  
 ∫ . (14.30) 
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The function 1 2( sin )Z Z−  is a relatively fast decaying function as Z increases. 
That is why, for large arrays, where / 2Nkd  is big enough ( )20≥ , the integral 
(14.30) can be approximated by 

 
21 sin

av
ZU dZ

Nkd Z Nkd
π∞

−∞

 ≈ = 
 ∫ , (14.31) 

 0
1 2
av

Nkd dD N
U π λ

= ≈ =  
 

. (14.32) 

Substituting the length of the array ( )1L N d= −  in (14.32) yields 

 0 2 1

N

L dD
d λ
  ≈ +  

  


. (14.33) 

For a large array ( )L d , 
 0 2 /D L λ≈ . (14.34) 
 

2.2. Directivity of ordinary EFA 
Consider an EFA with maximum radiation at 0θ = °, i.e., kdβ = − . 

 
( )

( )

2

2
2

sin cos 1
sin2( )

cos 1
2

n

N kd
ZU AF

N Zkd

θ
θ

θ

  −      = = =       −    

, (14.35) 

where (cos 1)
2
NZ kd θ= − . The averaged radiation intensity is 

 
2 22

0 0 0

1 sin 1 sinsin sin
4 4 2
rad

av
P Z ZU d d d

Z Z

π π π

θ θ φ θ θ
π π

   = = =   
   ∫ ∫ ∫ . 

Since 

 (cos 1)
2
NZ kd θ= −  and sin

2
NdZ kd dθ θ= − , (14.36) 
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it follows that 
2/2

0

1 2 sin
2

Nkd

av
ZU dZ

Nkd Z

−
 = −  
 ∫ , 

 
2/2

0

1 sinNkd

av
ZU dZ

Nkd Z
 =  
 ∫ . (14.37) 

If ( Nkd ) is sufficiently large, the above integral can be approximated as 

 
2

0

1 sin 1
2av

ZU dZ
Nkd Z Nkd

π∞
 ≈ = ⋅ 
 ∫ . (14.38) 

The directivity then becomes 

 0
1 2 4
av

Nkd dD N
U π λ

 ⇒ ≈ = =  
 

. (14.39) 

The comparison of (14.39) and (14.32) shows that the directivity of an EFA is 
approximately twice as large as the directivity of the BSA.  

Another (equivalent) expression can be derived for D0 of the EFA in terms of 
the array length L = (N−1)d: 

 0 4 1 L dD
d λ

  = +  
  

. (14.40) 

For large arrays, the following approximation holds: 
 0 4 / ifD L L dλ=  . (14.41) 

 
2.3. Directivity of HW EFA 
If the radiation has its maximum at 0θ = °, then the minimum of avU  is 

obtained as in (14.13): 

 
2

min minmin
min

min min

1 2 cos(2 ) 1 Si(2 )
2 sin 2 2av

Z ZU Z
k Nd Z Z

π −   = + +      
, (14.42) 

where min 1.47 / 2Z π= − ≈ − . 
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2

min 1 2 0.8781.8515
2 2avU

Nkd Nkd
π π

π
   ⇒ = + − =      

. (14.43) 

The directivity is then 

 0 min

1 1.789 4
0.878av

Nkd dD N
U λ

  = = =     
. (14.44) 

From (14.44), we can see that using the HW conditions leads to improvement of 
the directivity of the EFA with a factor of 1.789. Equation (14.44) can be 
expressed via the length L of the array as 

 0 1.789 4 1 1.789 4L d LD
d λ λ

       = + =              
. (14.45) 

 
Example: Given a linear uniform array of N isotropic elements (N = 10), find the 
directivity 0D  if: 

a) 0β =  (BSA) 

b) kdβ = −  (Ordinary EFA) 

c) /kd Nβ π= − −  (Hansen-Woodyard EFA) 

In all cases, / 4d λ= . 
 

a) BSA 

 ( )0 2 5 6.999 dBdD N
λ

 ≈ = 
 

 

b) Ordinary EFA 

 ( )0 4 10 10 dBdD N
λ

 ≈ = 
 

 

c) HW EFA 

 ( )0 1.789 4 17.89 12.53 dBdD N
λ

  ≈ =    
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3. Pattern Characteristics of Linear Uniform Arrays – Recapitulation  

A. Broad-side array 
NULLS ( 0nAF = ): 

arccosn
n
N d
λθ  = ± 

 
, where  1,2,3,4,...n =  and ,2 ,3 ,...n N N N≠  

MAXIMA ( 1nAF = ): 

 arccosn
m
d
λθ  = ± 

 
, where  0,1,2,3,...m =  

HALF-POWER POINTS: 

 1.391arccosh Nd
λθ

π
 ± 
 

 , where d 1π
λ
  

HALF-POWER BEAMWIDTH: 

 1.3912 arccos , 1
2h

d
Nd

π λ πθ
π λ

  ∆ = −     
  

MINOR LOBE MAXIMA: 

 2 1arccos
2s

s
d N
λθ  +  ±     

 , where 1,2,3,...s =  and d 1π
λ
  

FIRST-NULL BEAMWIDTH (FNBW): 

 2 arccos
2n Nd
π λθ   ∆ = −     

 

FIRST SIDE LOBE BEAMWIDH (FSLBW): 

 32 arccos , 1
2 2s

d
Nd

π λ πθ
λ

  ∆ = −     
  
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B. Ordinary end-fire array 

NULLS ( 0nAF = ): 

 arccos 1n
n
N d
λθ  = − 

 
, where 1,2,3,...n =  and ,2 ,3 ,...n N N N≠  

MAXIMA ( 1nAF = ): 

 arccos 1n
m
d
λθ  = − 

 
, where 0,1,2,3,...m =  

HALF-POWER POINTS: 

 1.391arccos 1h Nd
λθ

π
 = − 
 

, where d 1π
λ
  

HALF-POWER BEAMWIDTH: 

 1.3912arccos 1 , 1h
d

Nd
λ πθ

π λ
 ∆ = − 
 

  

MINOR LOBE MAXIMA: 

 ( )2 1
arccos 1

2s
s

Nd
λ

θ
+ 

= − 
 

, where 1,2,3,...s =  and 1dπ
λ
  

FIRST-NULL BEAMWIDTH: 

 2arccos 1n Nd
λθ  ∆ = − 

 
 

FIRST SIDE LOBE BEAMWIDH: 

 32arccos 1 , 1
2s

d
Nd
λ πθ

λ
 ∆ = − 
 

  
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C. Hansen-Woodyard end-fire array 

NULLS: 

( )arccos 1 1 2
2n n

Nd
λθ  = + −  

, where 1,2,...n =  and ,2 ,...n N N≠  

MINOR LOBE MAXIMA: 

 arccos 1s
s
Nd
λθ  = − 

 
, where 1,2,3,...s =  and 1dπ

λ
  

SECONDARY MAXIMA: 

arccos 1 [1 (2 1)]
2m m

Nd
λθ  = + − + 

 
, where 1,2,...m =  and 1dπ

λ
  

HALF-POWER POINTS: 

 arccos 1 0.1398h Nd
λθ  = − 

 
, where 1, -larged Nπ

λ
  

HALF-POWER BEAMWIDTH: 

 2arccos 1 0.1398h Nd
λθ  ∆ = − 

 
, where 1, -Larged Nπ

λ
  

FIRST-NULL BEAMWIDTH: 

 2arccos 1
2n Nd
λθ  ∆ = − 

 
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4. 3-D Characteristics of a Linear Array 

In the previous considerations, it was always assumed that the linear-array 
elements are located along the z-axis, thus, creating a problem, which is 
symmetrical around the z-axis. If the array axis has an arbitrary orientation, the 
array factor can be expressed as 

 ( )( ) ( )1 cos 1

1 1

N N
j n kd j n

n n
n n

AF a e a eγ β ψ− + −

= =

= =∑ ∑ , (14.46) 

where na  is the excitation amplitude and coskdψ γ β= + . 
The angle γ  is subtended between the array axis and the position vector to 

the observation point. Thus, if the array axis is along the unit vector â , 
 ˆ ˆ ˆ ˆsin cos sin sin cosa a a a aθ φ θ φ θ= + +a x y z  (14.47) 

and the position vector to the observation point is 
 ˆ ˆ ˆ ˆsin cos sin sin cosθ φ θ φ θ= + +r x y z  (14.48) 

the angle γ  can be found as 
ˆ ˆ ˆ ˆ ˆcos sin cos sin cos sin sin sin sin cos cos  ,a a a a aγ θ φ θ φ θ φ θ φ θ θ= ⋅ = + +a r x y z  

 cos sin sin cos( ) cos cosa a aγ θ θ φ φ θ θ⇒ = − + . (14.49) 

If ˆ ˆ ( 0 )aθ= = °a z , then cos cos ,γ θ γ θ= = . 
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LECTURE 15: LINEAR ARRAYS – PART III 
(N-element linear arrays with uniform spacing and non-uniform amplitude: 
Binomial array; Dolph–Tschebyscheff array. Directivity and design.) 

 
1. Advantages of Linear Arrays with Nonuniform Amplitude Distribution 

The most often met BSAs, classified according to the type of their excitation 
amplitudes, are: 

a) the uniform BSA – relatively high directivity, but the side-lobe levels are 
high; 

b) Dolph–Tschebyscheff (or Chebyshev)1 BSA – for a given number of 
elements, maximum directivity is next after that of the uniform BSA; side-
lobe levels are the lowest in comparison with the other two types of arrays 
for a given directivity; 

c) binomial BSA – does not have good directivity but has very low side-lobe 
levels (when / 2d λ= , there are no side lobes at all). 

 
2. Array Factor of Linear Arrays with Nonuniform Amplitude 
Distribution 

Let us consider a linear array with an even number (2M) of elements, 
located symmetrically along the z-axis, with excitation, which is also 
symmetrical with respect to 0z = . For a broadside array ( 0)β = , 

 

1 3 2 1cos cos cos
2 2 21 2
1 3 2 1cos cos cos
2 2 21 2  ,

Mj kd j kd j kde
M

Mj kd j kd j kd
M

AF a e a e a e

a e a e a e

θ θ θ

θ θ θ

−

−
− − −

= + + + +

+ + + +





 (15.1) 

 
1

2 12 cos cos
2

M
e

n
n

nAF a kd θ
=

 −  ⇒ =     
∑ . (15.2) 

If the linear array consists of an odd number (2M+1) of elements, located 
symmetrically along the z-axis, the array factor is 

 
cos 2 cos cos

1 2 3 1
cos 2 cos cos

2 3 1

2 ...
       ... ,

o jkd j kd jMkd
M

jkd j kd jMkd
M

AF a a e a e a e
a e a e a e

θ θ θ

θ θ θ

+

− − −
+

= + + + + +

+ + + +
 (15.3) 

                                      
1 Russian spelling is Чебышёв. 
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 ( )
1

1
2 cos 1 cos

M
o

n
n

AF a n kd θ
+

=

⇒ = −  ∑ . (15.4) 

 
 

EVEN- AND ODD-NUMBER ARRAYS 
 

 
Fig. 6.17, p. 291, Balanis 
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The normalized AF derived from (15.2) and (15.4) can be written in the form 

 [ ]
1

cos (2 1) ,
M

e
n

n
AF a n u

=

= −∑  for 2N M= , (15.5) 

 [ ]
1

1
cos 2( 1) ,

M
o

n
n

AF a n u
+

=

= −∑  for 2 1N M= + , (15.6) 

where 1 cos cos
2

du kd πθ θ
λ

= = . 

 
Examples of AFs of arrays of nonuniform amplitude distribution 
 

a) uniform amplitude distribution (N = 5, / 2d λ= , max. at 0 90θ = °) 

 
pp. 148-149, Stutzman 
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b) triangular (1:2:3:2:1) amplitude distribution (N = 5, / 2d λ= , max. at 
0 90θ = °) 

 
 

 
pp. 148-149, Stutzman 
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c) binomial (1:4:6:4:1) amplitude distribution (N = 5, / 2d λ= , max. at 
0 90θ = °) 

 
 

 
pp. 148-149, Stutzman 
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d) Dolph-Tschebyschev (1:1.61:1.94:1.61:1) amplitude distribution (N = 5, 
/ 2d λ= , max. at 0 90θ = °) 

 
 
 

 
pp. 148-149, Stutzman 
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e) Dolph-Tschebyschev (1:2.41:3.14:2.41:1) amplitude distribution (N = 5, 
/ 2d λ= , max. at 0 90θ = °) 

 

 
pp. 148-149, Stutzman 

 
 

Notice that as the current amplitude is tapered more gradually toward the 
edges of the array, the side lobes tend to decrease and the beamwidth tends to 
increase. 
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3. Binomial Broadside Array 
The binomial BSA was investigated and proposed by J. S. Stone2 to 

synthesize patterns without side lobes. First, consider a 2–element array (along 
the z-axis). 

z

y

x

d

 
The elements of the array are identical and their excitations are the same. The 
array factor is of the form 
 1AF Z= + , where ( )cosj kdjZ e e θ βψ += = . (15.7) 
If the spacing is / 2d λ≤  and 0β =  (broad-side maximum), the array pattern 
|AF| has no side lobes at all. This is proven as follows. 
 2 2 2 2| | (1 cos ) sin 2(1 cos ) 4cos ( / 2)AF ψ ψ ψ ψ= + + = + =  (15.8) 

where coskdψ θ= . The first null of the array factor is obtained from (15.8) as 

 1,2 1,2
1 2 cos    arccos
2 2 2n nd

d
π π λθ θ
λ

 ⋅ ⋅ = ± ⇒ = ±  
 

. (15.9) 

As long as / 2d λ< , the first null does not exist. If / 2d λ= , then 1,2 0,nθ =  
180°. Thus, in the “visible” range of θ, all secondary lobes are eliminated. 

Second, consider a 2–element array whose elements are identical and the 
same as the array given above. The distance between the two arrays is again d. 

                                      
2 US Patents #1,643,323, #1,715,433. 
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d

z

y

x  
This new array has an AF of the form 
 2(1 )(1 ) 1 2AF Z Z Z Z= + + = + + . (15.10) 

Since (1 )Z+  has no side lobes, 2(1 )Z+  does not have side lobes either. 
Continuing the process for an N-element array produces 

 1(1 )NAF Z −= + . (15.11) 

If / 2d λ≤ , the above AF does not have side lobes regardless of the number of 
elements N. The excitation amplitude distribution can be obtained easily by the 
expansion of the binome in (15.11). Making use of Pascal’s triangle, 
 

1
1 1

1 2 1
1 3 3 1

     1 4 6 4 1
  1 5 10 10 5 1
..............................

 

 
the relative excitation amplitudes at each element of an (N+1)-element array 
can be determined. An array with a binomial distribution of the excitation 
amplitudes is called a binomial array. The excitation distribution as given by 
the binomial expansion gives the relative values of the amplitudes. It is 
immediately seen that there is too wide variation of the amplitude, which is a 
disadvantage of the BAs. The overall efficiency of such an antenna would be 
low. Besides, the BA has relatively wide beam. Its HPBW is the largest as 
compared to the uniform BSA or the Dolph–Chebyshev array. 
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An approximate closed-form expression for the HPBW of a BA with 
/ 2d λ=  is 

 1.06 1.06 1.75
1 2

HPBW
N L Lλ λ

≈ = =
−

, (15.12) 

where ( 1)L N d= −  is the array’s length. The AFs of 10-element broadside 
binomial arrays (N = 10) are given below. 

The directivity of a broadside BA with spacing / 2d λ=  can be calculated 
as 

 0 2( 1)

0

2

cos cos
2

ND

d
π π θ θ

−=
  

    ∫
, (15.13) 

 0
(2 2) (2 4) ... 2
(2 3) (2 5) ... 1

N ND
N N
− ⋅ − ⋅ ⋅

=
− ⋅ − ⋅ ⋅

, (15.14) 

 0 1.77 1.77 1 2D N L λ≈ = + . (15.15) 
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Fig. 6.18, p.293, Balanis 
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4. Dolph–Chebyshev Array (DCA) 
Dolph proposed (in 1946) a method to design arrays with any desired side-

lobe levels and any HPBWs. This method is based on the approximation of the 
pattern of the array by a Chebyshev polynomial of order m, high enough to 
meet the requirement for the side-lobe levels. A DCA with no side lobes (side-
lobe level of −∞ dB) reduces to the binomial design. 
4.1. Chebyshev polynomials 

The Chebyshev polynomial of order m is defined by 

 ( )
( )

( 1) cosh( arccosh | |), 1,
( ) cos arccos( ) , 1 1,

cosh arccosh( ) , 1.

m

m

m z z
T z m z z

m z z

 − ⋅ ≤ −


= ⋅ − ≤ ≤
 ⋅ ≥

 (15.16) 

A Chebyshev polynomial Tm(z) of any order m can be derived via a recursion 
formula, provided Tm−1(z) and Tm−2(z) are known: 
 1 2( ) 2 ( ) ( )m m mT z zT z T z− −= − . (15.17) 

Explicitly, from (15.16) we see that 

00, ( ) 1m T z= =  

11, ( )m T z z= = . 

Then, (15.17) produces: 
2

22, ( ) 2 1m T z z= = −  
3

33, ( ) 4 3m T z z z= = −  
4 2

44, ( ) 8 8 1m T z z z= = − +  
5 3

55, ( ) 16 20 5 , etc.m T z z z z= = − +  

If | | 1z ≤ , then the Chebyshev polynomials are related to the cosine 
functions, see (15.16). We can always expand the function cos(mx) as a 
polynomial of cos(x) of order m, e.g., for 2m = , 
 2cos2 2cos 1x x= − . (15.18) 
The expansion of cos(mx) can be done by observing that ( )jx m jmxe e=  and by 
making use of Euler’s formula as 
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 (cos sin ) cos( ) sin( )mx j x mx j mx+ = + . (15.19) 

The left side of the equation is then expanded and its real and imaginary parts 
are equated to those on the right. Similar relations hold for the hyperbolic 
cosine function cosh.  

Comparing the trigonometric relation in (15.18) with the expression for 
2 ( )T z  above (see the expanded Chebybshev polynomials after (15.17)), we see 

that the Chebyshev argument z is related to the cosine argument x by 
 cos or arccosz x x z= = . (15.20) 

For example, (15.18) can be written as: 

 [ ]2cos(2arccos ) 2 cos(arccos ) 1z z= − , 

 2
2cos(2arccos ) 2 1 ( )z z T z⇒ = − = . (15.21) 

Properties of the Chebyshev polynomials: 
1) All polynomials of any order m pass through the point (1,1). 
2) Within the range 1 1z− ≤ ≤ , the polynomials have values within [–1,1]. 
3) All nulls occur within 1 1z− ≤ ≤ . 
4) The maxima and minima in the [ 1,1]z∈ −  range have values +1 and –1, 

respectively. 
5) The higher the order of the polynomial, the steeper the slope for | | 1z > . 

 



Nikolova 2016 14 

 
Fig. 6.19, pp. 296, Balanis 
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4.2. Chebyshev array design 
The main goal is to approximate the desired AF with a Chebyshev 

polynomial such that 
• the side-lobe level meets the requirements, and 
• the main beam width is as small as possible. 

An array of N elements has an AF approximated with a Chebyshev polynomial 
of order m, which is 
 1m N= − . (15.22) 

In general, for a given side-lobe level, the higher the order m of the 
polynomial, the narrower the beamwidth. However, for m > 10, the difference 
is not substantial – see the slopes of ( )mT z  in the previous figure. The AF of an 
N-element array (15.5) or (15.6) is shaped by a Chebyshev polynomial by 
requiring that 

 
[ ]

[ ]

1
1 1

1

cos (2 1) , / 2,   even
( )

cos 2( 1) , ( 1) / 2, odd

M

n
n

N M

n
n

a n u M N
T z

a n u M N

=
− +

=


− =

= 
 − = −

∑

∑
 (15.23) 

Here, ( / )cosu dπ λ θ= . Let the side-lobe level be 

 max
0

1
sl sl

ER
E AF

= =  (voltage ratio). (15.24) 

Then, we require that the maximum of 1NT −  is fixed at an argument 0z  
( 0| | 1z > ), where 

 max
0 01 ( )NT z R− = . (15.25) 

Equation (15.25) corresponds to max
0( ) ( )AF u AF u= . Obviously, 0z  must 

satisfy the condition: 
 0| | 1z > , (15.26) 

where 1 1NT − > . The maxima of 1| ( ) |NT z−  for | | 1z ≤  are equal to unity and they 
correspond to the side lobes of the AF. Thus, ( )AF u  has side-lobe levels equal 
to 0R . The AF is a polynomial of cosu , and the 1( )NT z−  is a polynomial of z 
where z is limited to the range 
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 01 z z− ≤ ≤ . (15.27) 
Since 
 1 cos 1u− ≤ ≤ , (15.28) 
the relation between z and cosu  must be normalized as 
 0cos /u z z= . (15.29) 
 
Design of a DCA of N elements – general procedure: 

1) Expand the AF as given by (15.5) or (15.6) by replacing each cos( )mu  
term ( 1,2,...,m M= ) with the power series of cosu . 

2) Determine 0z  such that 0 01( )NT z R− =  (voltage ratio). 

3) Substitute 0cos /u z z=  in the AF found in step 1. 
4) Equate the AF found in Step 3 to 1( )NT z−  and determine the coefficients 

for each power of z. 
 
Example: Design a DCA (broadside) of N=10 elements with a major-to-minor 
lobe ratio of 0 26R =  dB. Find the excitation coefficients and form the AF. 

 
Solution: 
The order of the Chebyshev polynomial is 1 9m N= − = . The AF for an even-
number array is: 

[ ]
5

2
1

cos (2 1) , cosM n
n

dAF a n u u π θ
λ=

= − =∑ , 5M = . 

Step 1: Write 10AF  explicitly: 

10 1 2 3 4 5cos cos3 cos5 cos7 cos9AF a u a u a u a u a u= + + + + . 
Expand the cos( )mu  terms as powers of cosu : 

3coscos3 4 3cosuu u= − , 
5 3coscos5 16 20 5coscosu uuu = − + , 
7 35cocos7 64 s112 56 7cos sco cosuu uu u= − + − , 

9 57 3coscos co9 256 576 4 cos32 120 9coos ss cu uuu uu= − + − + . 
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Note that the above expansions can be readily obtained from the recursive 
Chebyshev relation (15.17), 01 z z− ≤ ≤ , and the substitution cosz u= . For 
example,  

3
33, ( ) 4 3m T z z z= = −  

translates into 

 3cos(3 ) 4cos 3cosu u u= − . 

 
Step 2: Determine 0z : 

0 26 dBR =   26
200 10 20R⇒ = ≈   9 0( ) 20T z⇒ = , 

[ ]0cosh 9arccosh( ) 20z = , 
09arccosh( ) arccosh20 3.69z = = , 

0arccosh( ) 0.41z = , 
0 cosh 0.41z =    0 1.08515z⇒ = . 

 
Step 3: Express the AF from Step 1 in terms of 0cos /u z z=  and make equal to 
the Chebyshev polynomial: 

( )

( )

( )

( )

( )

9

7
4 57

10 1 2 3 4

0

5

5
3 4 55

0

5

0

(

3
2 3 4 53

0

9
5

)

9
0

93 7

64

256

3 5 7 9

        =9 25

4

16

576

57

20 56 120

12 60

112 432

43 62
T z

z a a

zAF a a a a a
z

z

z a a a a
z

z

z a

z

a a
z

z

z a

zz
z

= − + − +

+

+

+

+ =

−

− +

+

− +−+

− −


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Step 4: Find the coefficients by matching the power terms: 
9

5 0 5256 256 2.0860a z a= ⇒ =  
7

4 5 4064 576 576 2.8308a a z a− = − ⇒ =  
5

3 4 5 3016 112 432 432 4.1184a a a z a− + = ⇒ =  
7

2 3 4 5 204 20 56 120 120 5.2073a a a a z a− + − = − ⇒ =  
9

1 2 3 4 5 103 5 7 9 9 5.8377a a a a a z a− + − + = ⇒ =  

Normalize coefficients with respect to edge element (N=5): 

5 4 3 2 11; 1.357; 1.974; 2.496; 2.789a a a a a= = = = =  

10 2.789cos( ) 2.496cos(3 ) 1.974cos(5 ) 1.357cos(7 ) cos(9 )AF u u u u u⇒ = + + + +  

where cosdu π θ
λ

= . 

 
 

 
Fig. 6.20b, p. 298, Balanis 
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Fig. 6.21, p. 300, Balanis 
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4.3. Maximum affordable d for Dolph-Chebyshev arrays 
This restriction arises from the requirement for a single major lobe – see 

also equation (15.27), 01 z z− ≤ ≤ : 

 1z ≥ − , 0cos /u z z= , cosdu π θ
λ

= , 

 0 cos cos 1dz z π θ
λ

⇒ = ≥ − 
 

. (15.30) 

For a given array, when θ  varies from 0° to 180° , the argument z assumes 
values 

 from 0( 0 ) cos dz zθ
π
λ=
=  

 


 (15.31) 

 through 0( 90 )z zθ = =


 (15.32) 

 to 0( 180 ) ( 0 )cos dz z zθ θ
π
λ= =

 = − = 
 

 
. (15.33) 

The extreme value of z to the left on the abscissa corresponds to the end-fire 
directions of the AF. This value must not go beyond 1z = − . Otherwise, end-
fire lobes of levels higher than 1 (higher than 0R ) will appear. Therefore, the 
inequality (15.30) must hold for 0θ = ° or 180° : 

 0
0

1cos 1 cosd dz
z

π π
λ λ
  ≥ − ⇒ ≥ −   

  
. (15.34) 

Let 

 ( )1
0arccos zγ −= . (15.35) 

Remember that 0 1z > ; thus γ  is a real-valued angle. Then, 

 
0

1arccosd
z

π π γ π
λ

< − = −  
 

 (15.36) 

or 

 ( )max max1
0

0

1 1arccos 1 arccosd dz
z

γ

π π
λ λ π

− = − ⇒ = −  
 

  (15.37) 



Nikolova 2016 21 

0

1
z

− cos( / )dπ λ

1

1

1−

maxdπ
λ

γcosγ

 
ILLUSTRATION OF EQUATION (15.34) AND THE REQUIREMENT IN (15.36) 

 
 
For the case of the previous example, 

1 1 0.398791 arccos 1 0.873
1.08515

d
λ π π

< − = − = 
 

, 

max 0.873d λ= . 
 
5. Directivity of Non-uniform Arrays 

It is difficult to derive closed form expressions for the directivity of non-
uniform arrays. Here, we derive expressions in the form of series in the most 
general case of a linear array when the excitation coefficients are known. 

The non-normalized array factor is 

 
1

cos

0

n n

N
j jkz

n
n

AF a e eβ θ
−

=

= ∑ , (15.38) 

where 
na  is the amplitude of the excitation of the n-th element; 
nβ  is the phase angle of the excitation of the n-th element; 
nz  is the z-coordinate of the n-th element. 

The maximum AF is 
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1

max
0

N

n
n

AF a
−

=

= ∑ . (15.39) 

The normalized AF is 

 

1
cos

0
1

max

0

n n

N
j jkz

n
n

n N

n
n

a e e
AFAF

AF a

β θ
−

=
−

=

= =
∑

∑
. (15.40) 

The beam solid angle of a linear array is 

 ( ) 2

0

2 sinA nAF d
π

π θ θ θΩ = ∫ , 

 ( )
1 1

( )cos
21 0 0 0

0

2 sinm p m p
N N

j jk z z
A m p

N m p
n

n

a a e e d

a

π
β β θπ θ θ

− −
− −

− = =

=

Ω =
 
 
 

∑ ∑ ∫
∑

, (15.41) 

where 

( )cos

0

2sin ( )
sin

( )
m p m pjk z z

m p

k z z
e d

k z z

π
θ θ θ− −  =

−∫ . 

 ( )
1 1

21 0 0

0

sin ( )4
( )

m p
N N m pj

A m p
N m pm p

n
n

k z z
a a e

k z z
a

β βπ − −
−

− = =

=

−  ⇒Ω = ⋅
− 

 
 

∑ ∑
∑

. (15.42) 

From 
 0 4 / AD π= Ω , 
we obtain 

 
( )

21

0
0 1 1

0 0

sin ( )
( )

m p

N

n
n

N N
m pj

m p
m pm p

a
D

k z z
a a e

k z z
β β

−

=
− −

−

= =

 
 
 ⇒ =

−  ⋅
−

∑

∑∑
. (15.43) 
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For equispaced linear ( nz nd= ) arrays, (15.43) reduces to 

 
( ) [ ]

21

0
0 1 1

0 0

sin ( )
( )

m p

N

n
n

N N
j

m p
m p

a
D

m p kd
a a e

m p kd
β β

−

=
− −

−

= =

 
 
 =

−
⋅

−

∑

∑∑
. (15.44) 

For equispaced broadside arrays, where m pβ β=  for any (m,p), (15.44) 
reduces to 

 [ ]

21

0
0 1 1

0 0

sin ( )
( )

N

n
n

N N

m p
m p

a
D

m p kd
a a

m p kd

−

=
− −

= =

 
 
 =

−
⋅

−

∑

∑∑
. (15.45) 

For equispaced broadside uniform arrays, 

 [ ]
2

0 1 1

0 0

sin ( )
( )

N N

m p

ND
m p kd

m p kd

− −

= =

=
−

−∑∑
. (15.46) 

When the spacing d is a multiple of / 2λ , equation (15.45) reduces to 

 

21

0
0 1

2

0

, , ,...
2( )

N

n
n

N

n
n

a
D d

a

λ λ

−

=
−

=

 
 
 = =
∑

∑
. (15.47) 

 
 
Example: Calculate the directivity of the Dolph–Chebyshev array designed in 
the previous example if / 2d λ= . 

 
The 10-element DCA has the following amplitude distribution: 

 5 4 3 2 11; 1.357; 1.974; 2.496; 2.798a a a a a= = = = = . 
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We make use of (15.47): 

 ( )

25

2
1

0 5
2

1

4
9.625

2 8.9090 (9.5 dB)
20.7972 ( )

n
n

n
n

a
D

a

=

=

 
 
 = = ⋅ =
∑

∑
. 

Output from ARRAYS.m: 0 8.9276D = . 
 
6. Half-power Beamwidth of a BS DCA 

For large DCAs with side lobes in the range from –20 dB to –60 dB, the 
HPBW DCAHPBW  can be found from the HPBW of a uniform array UAHPBW  
by introducing a beam-broadening factor f given by 

 
2

2 2
0

0

21 0.636 cosh (arccosh )f R
R

π  = + −   
, (15.48) 

so that 
 DCA UAHPBW f HPBW= × . (15.49) 

In (15.48), 0R  denotes the side-lobe level (the voltage ratio). 
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LECTURE 16: PLANAR ARRAYS AND CIRCULAR ARRAYS 
 
1. Planar Arrays 

Planar arrays provide directional beams, symmetrical patterns with low side 
lobes, much higher directivity (narrow main beam) than that of their individual 
element. In principle, they can point the main beam toward any direction. 

Applications – tracking radars, remote sensing, communications, etc. 
 
A. The array factor of a rectangular planar array 

 

 
Fig. 6.23b, p. 310, Balanis 
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The AF of a linear array of M elements along the x-axis is 

 ( )( )1 sin cos
1 1

1

x x
M

j m kd
x m

m
AF I e θ φ β− +

=

= ∑  (16.1) 

where sin cos cos xθ φ γ=  is the directional cosine with respect to the x-axis (γx is 
the angle between r and the x axis). It is assumed that all elements are equispaced 
with an interval of xd  and a progressive shift xβ . 1mI  denotes the excitation 
amplitude of the element at the point with coordinates ( 1) xx m d= − , 0y = . In 
the figure above, this is the element of the m-th row and the 1st column of the 
array matrix. Note that the 1st row corresponds to x = 0. 

If N such arrays are placed at even intervals along the y direction, a 
rectangular array is formed. We assume again that they are equispaced at a 
distance yd  and there is a progressive phase shift yβ  along each row. We also 
assume that the normalized current distribution along each of the x-directed 
arrays is the same but the absolute values correspond to a factor of 1nI  
( 1,..., )n N= . Then, the AF of the entire M×N array is 

 ( )( ) ( )( )1 sin sin1 sin cos
1 1

1 1

y yx x
N M

j n kdj m kd
n m

n m
AF I I e e θ φ βθ φ β − +− +

= =

 
= ⋅ 

 
∑ ∑ , (16.2) 

or 
 M Nx yAF S S= ⋅ , (16.3) 

where 

( )( )1 sin cos
1 1

1

x x
M

M
j m kd

x x m
m

S AF I e θ φ β− +

=

= = ∑ , and 

( )( )1 sin sin
1 1

1

y y
N

N
j n kd

y y n
n

S AF I e θ φ β− +

=

= =∑ . 

In the array factors above, 

 
ˆˆsin cos cos ,
ˆˆsin sin cos .

x

y

θ φ γ
θ φ γ

= ⋅ =
= ⋅ =

x r
y r

 (16.4) 

Thus, the pattern of a rectangular array is the product of the array factors of the 
linear arrays in the x and y directions. 
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In the case of a uniform planar rectangular array, 1 1 0m nI I I= =  for all m and 
n, i.e., all elements have the same excitation amplitudes. Thus, 

 ( )( ) ( )( )1 sin sin1 sin cos
0

1 1

y yx x
M N

j n kdj m kd

m n
AF I e e θ φ βθ φ β − +− +

= =

= ×∑ ∑ . (16.5) 

The normalized array factor is obtained as 

 
sinsin

22( , )
sin sin

2 2

yx

n
x y

NM
AF

M N

ψψ

θ φ
ψ ψ

  
        = ⋅ 

              

, (16.6) 

where 
sin cos ,
sin sin .

x x x

y y y

kd
kd

ψ θ φ β
ψ θ φ β

= +
= +

 

The major lobe (principal maximum) and grating lobes of the terms 

 
sin

2

sin
2

M

x

x
x

M
S

M

ψ

ψ


 
 =


 
 

 (16.7) 

and 

 
sin

2

sin
2

N

y

y
y

N
S

N

ψ

ψ


 
 =


 
 

 (16.8) 

are located at angles such that 
 sin cos 2 , 0,1,x m m xkd m mθ φ β π+ = ± = , (16.9) 

 sin sin 2 , 0,1,y n n ykd n nθ φ β π+ = ± =  . (16.10) 

The principal maximum corresponds to 0m = , 0n = . 
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In general, xβ  and yβ  are independent from each other. But, if it is required 
that the main beams of MxS  and NyS  intersect (which is usually the case), then 
the common main beam is in the direction: 
 0θ θ=  and 0φ φ= , 0m n= = . (16.11) 

If the principal maximum is specified by 0 0( , )θ φ , then the progressive phase 
shifts xβ  and yβ  must satisfy 
 0 0sin cosx xkdβ θ φ= − , (16.12) 

 0 0sin siny ykdβ θ φ= − . (16.13) 

If xβ  and yβ  are specified, then the direction of the main beam can be found by 
simultaneously solving (16.12) and (16.13): 

 0tan y x

x y

d
d

β
φ

β
= , (16.14) 

 
22

0sin yx

x ykd kd
ββθ

  = ± +   
   

. (16.15) 

The grating lobes can be located by substituting (16.12) and (16.13) in (16.9) 
and (16.10): 

 
0 0

0 0

sin sin
tan

sin cos
y

mn

x

n
d

m
d

λθ φ
φ λθ φ

±
=

±
, (16.16) 

 
0 00 0 sin sinsin cos

sin
cos sin

yx
mn

mn mn

nm dd
λλ θ φθ φ

θ
φ φ

±±
= = . (16.17) 

To avoid grating lobes, the spacing between the elements must be less than λ , 
i.e., xd λ<  and yd λ< . In order a true grating lobe to occur, both equations 
(16.16) and (16.17) must have a real solution ( , )mn mnθ φ . 

The array factors of a 5 by 5 uniform array are shown below for two spacing 
values: / 4d λ=  and / 2d λ= . Notice the considerable decrease in the 
beamwidth as the spacing is increased from / 4λ  to / 2λ . 
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DIRECTIVITY PATTERNS OF A 5-ELEMENT SQUARE PLANAR UNIFORM ARRAY 
WITHOUT GRATING LOBES 0x yβ β= = : (a) / 4d λ= , (b) / 2d λ=  

  

0 10.0287 (10.0125 dB)D =  0 33.2458 (15.2174 dB)D =  

(a) (b) 
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B. The beamwidth of a planar array 
 

x

y

z

hφ

hθ

0θ

0φ

hφ  
 

A simple procedure, proposed by R.S. Elliot1 is outlined below. It is based on 
the use of the beamwidths of the linear arrays building the planar array. 

For a large array, the maximum of which is near the broad side, the elevation 
plane HPBW is approximately 

 
2 2 2 2

0 0 0

1
cos cos sin

h
x y

θ
θ θ φ θ φ− −

=
∆ + ∆

 (16.18) 

where 

                                      
1 “Beamwidth and directivity of large scanning arrays”, The Microwave Journal, Jan. 1964, pp.74-82. 
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 0 0( , )θ φ  specifies the main-beam direction; 

 xθ∆  is the HPBW of a linear BSA of M elements and an amplitude 
distribution which is the same as that of the x-axis linear arrays 
building the planar array; 

 yθ∆  is the HPBW of a linear BSA of N elements and amplitude 
distribution is the same as those of the y-axis linear arrays 
building the planar array. 

 
The azimuth HPBW is the HPBW, which is in the plane orthogonal to the 

elevation plane and contains the maximum. It is 

 
2 2 2 2

0 0

1
sin cosh

x y
φ

θ φ θ φ− −
=

∆ + ∆
. (16.19) 

For a square array ( )M N=  with the same amplitude distributions along the x 
and y axes, equations (16.18) and (16.19) reduce to 

 
0 0cos cos

yx
h

θθθ
θ θ

∆∆
= = , (16.20) 

 h x yφ θ θ= ∆ = ∆ . (16.21) 

From (16.20), it is obvious that the HPBW in the elevation plane very much 
depends on the elevation angle 0θ  of the main beam. The HPBW in the azimuthal 
plane hφ  does not depend on the elevation angle 0θ . 

The beam solid angle of the planar array can be approximated by 
 A h hθ φΩ = ⋅ , (16.22) 

or 

 
2 2

2 2 2 2
0 0 0 0 02 2

cos sin cos sin cos

x y
A

y x

x y

θ θ

θ θθ φ φ φ φ
θ θ

∆ ∆
Ω =

 ∆  ∆+ +  ∆ ∆   

. (16.23) 
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C. Directivity of planar rectangular array 
The general expression for the calculation of the directivity of an array is 

 
2

0 0
0 2

2

0 0

| ( , ) |4
| ( , ) | sin

AFD
AF d d

π π
θ φπ

θ φ θ θ φ
=

∫ ∫
. (16.24) 

For large planar arrays, which are nearly broadside, (16.24) reduces to 
 0 0cosx yD D Dπ θ=  (16.25) 

where 
 xD  is the directivity of the respective linear BSA, x-axis; 
 yD  is the directivity of the respective linear BSA, y-axis. 

We can also use the array solid beam angle AΩ  in (16.23) to calculate the 
approximate directivity of a nearly broadside planar array: 

 
2

2
0

[Sr] [deg ]

32400
A A

D π
≈ ≈
Ω Ω

.2 (16.26) 

 
Remember:  

1) The main beam direction is controlled through the phase shifts, xβ  and yβ . 

2) The beamwidth and side-lobe levels are controlled through the amplitude 
distribution. 

                                      
2 A steradian relates to square degrees as 1 sr = (180/π)2 ≈ 3282.80635 deg. Note that this formula is only approximate and the 
relationship between the exact values of D0 and ΩA is D0 = 4π/ΩA. 
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2. Circular Array 
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A. Array factor of circular array 
The normalized field can be written as 

 
1

( , , )
nN jkR

n
nn

eE r a
R

θ φ
−

=

=∑ , (16.27) 

where 

 2 2 2 cosn nR r a ar ψ= + − . (16.28) 

For r a , (16.28) reduces to 
 ˆ ˆcos ( )nn nR r a r a ρψ≈ − = − ⋅a r . (16.29) 

In a rectangular coordinate system, 

 
ˆ ˆ ˆcos sin
ˆ ˆ ˆ ˆsin cos sin sin cos .

n n nρ φ φ
θ φ θ φ θ

= +

= + +

a x y
r x y z

 

Therefore, 
 ( )sin cos cos sin sinn n nR r a θ φ φ φ φ≈ − + , (16.30) 

or 
 ( )sin cosn nR r a θ φ φ≈ − − . (16.31) 

For the amplitude term, the approximation 

 1 1 ,
nR r
≈  all n (16.32) 

is made. 
Assuming the approximations (16.31) and (16.32) are valid, the far-zone 

array field is reduced to 

 sin cos( )

1
( , , ) n

Njkr
jka

n
n

eE r a e
r

θ φ φθ φ
−

−

=

= ∑ , (16.33) 

where 
 na  is the complex excitation coefficient (amplitude and phase); 
 2 /n n Nφ π= is the angular position of the n-th element. 



Nikolova 2016 11 

In general, the excitation coefficient can be represented as 
 nj

n na I e α= , (16.34) 
where nI  is the amplitude term, and nα  is the phase of the excitation of the n-th 
element relative to a chosen array element of zero phase, 

 ( ) ( )sin cos

1
, , n n

Njkr
j ka

n
n

eE r I e
r

θ φ φ αθ φ
−

− +  

=

⇒ = ∑ . (16.35) 

The AF is then 

 ( )sin cos

1
( , ) n n

N
j ka

n
n

AF I e θ φ φ αθ φ − +  

=

=∑ . (16.36) 

Expression (16.36) represents the AF of a circular array of N equispaced 
elements. The maximum of the AF occurs when all the phase terms in (16.36) 
equal unity, or, 
 ( )sin cos 2 , 0, 1, 2, alln nka m m nθ φ φ α π− + = = ± ± . (16.37) 

The principal maximum ( 0m = ) is defined by the direction 0 0( , )θ φ , for which 
 ( )0 0sin cos , 1,2,...,n nka n Nα θ φ φ= − − = . (16.38) 

If a circular array is required to have maximum radiation along 0 0( , )θ φ , then the 
phases of its excitations have to fulfil (16.38). The AF of such an array is 

 [ ]0 0sin cos( ) sin cos( )

1
( , ) n n

N
jka

n
n

AF I e θ φ φ θ φ φθ φ − − −

=

=∑ , (16.39) 

 0(cos cos )

1
( , ) n n

N
jka

n
n

AF I e ψ ψθ φ −

=

⇒ =∑ . (16.40) 

Here, 

[ ]arccos sin cos( )n nψ θ φ φ= −  is the angle between r̂  and ˆ nρa ; 

[ ]0 0 0arccos sin cos( )n nψ θ φ φ= −  is the angle between ˆ nρa  and maxr̂  
pointing in the direction of maximum radiation. 
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As the radius of the array a becomes large compared to λ, the directivity of 
the uniform circular array ( 0 , allnI I n= ) approaches the value of N. 

UNIFORM CIRCULAR ARRAY 3-D PATTERN (N = 10, 2 / 10ka aπ λ= = ): 
MAXIMUM AT 0 ,180θ = ° ° 

 
0 11.6881 (10.6775 dB)D =  
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UNIFORM CIRCULAR ARRAY 3-D PATTERN (N = 10, 2 / 10ka aπ λ= = ): 
MAXIMUM AT 90 , 0θ φ= ° = °  

 
0 10.589 (10.2485 dB)D =  
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LECTURE 17:  Radiation from Apertures 
(The uniqueness theorem. The equivalence principle. The application of the 
equivalence principle to aperture problem. The uniform rectangular aperture 
and the radiating slit. The tapered rectangular aperture.) 
 
1. Introduction Equation Section 17 

Aperture antennas constitute a large class of antennas, which emit EM waves 
through an opening (or aperture). These antennas have close analogs in acoustics, 
namely, the megaphone and the parabolic microphone. The pupil of the human 
eye is a typical aperture receiver for optical radiation. At radio and microwave 
frequencies, horns, waveguide apertures, reflectors and microstrip patches are 
examples of aperture antennas. Aperture antennas are commonly used at UHF 
and above where their size is reasonable. Their gain increases as 2f . For an 
aperture antenna to be efficient and to have high directivity, it has to have an area 

2λ≥ . Thus, these antennas are impractical at low frequencies.  
To facilitate the analysis of these antennas, the equivalence principle is 

applied. This allows for carrying out the far-field analysis in the outer 
(unbounded) region only, which is external to the antenna. This requires the 
knowledge of the tangential field components at the aperture. 

 
2. Uniqueness Theorem 

A solution is said to be unique if it is the only one possible among a given 
class of solutions. The EM field in a given region [ ]SV  is unique if 

- all sources are given; 
- either the tangential tanE  components or the tangential tanH  components 

are specified at the boundary S. 1 
The uniqueness theorem follows from Poynting’s theorem in its integral form: 

 * 2 2 2 * *( ) ( | | | | ) | | ( )
S S S

i i

S V V V

d j dv dv dvω µ ε σ× ⋅ + − + =− ⋅ + ⋅∫∫ ∫∫∫ ∫∫∫ ∫∫∫E H s H E E E J H M


. (17.1) 

                                      
1 A more general statement of the theorem asserts that any one of the following boundary conditions at S ensure the solution’s 
uniqueness: (1) tan SE , or (2) tan SH , or (3) tan1 SE  and tan1 SH , or (4) tan2 SE  and tan2 SH . Here, tan =E ˆ− ⋅E E n  is the tangential 
component of E  at the surface S while tan1E  and tan2E  are its components. The same notations hold for H . 
[N.K. Nikolova, “Electromagnetic boundary conditions and uniqueness revisited,” IEEE Antennas & Propagation Magazine, 
vol. 46, no. 5, pp. 141–149, Oct. 2004.] 
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We start with the supposition that a given EM problem has two solutions (due to 
the same sources and the same boundary conditions): ( , )a aE H  and ( , )b bE H . 
The difference field is then formed: 

 
,
.

a b

a b

δ
δ

= −

= −

E E E
H H H

 (17.2) 

The difference field has no sources; thus, it satisfies the source-free form of 
(17.1): 

 * 2 2 2( ) ( | | | | ) | | 0
S SS V V

d j dv dvδ δ ω µ δ ε δ σ δ× ⋅ + − + =∫∫ ∫∫∫ ∫∫∫E H s H E E


. (17.3) 

Since both fields satisfy the same boundary conditions, then tan 0δ =E  or 
tan 0δ =H  over S, which makes the surface integral in (17.3) zero. This results in 

 2 2 2

imaginary real

( | | | | ) | | 0
S SV V

j dv dvω µ δ ε δ σ δ− + =∫∫∫ ∫∫∫H E E
 

, (17.4) 

which is true only if 

 

2 2

2

( | | | | ) 0,

| | 0.
S

S

V

V

dv

dv

ω µ δ ε δ

σ δ

− =

=

∫∫∫

∫∫∫

H E

E
 (17.5) 

If we assume some dissipation ( 0σ > ), however slight, equations (17.5) are 
satisfied only if 0δ δ= =E H  everywhere in the volume SV . This implies the 
uniqueness of the solution. If 0σ =  (a common approximation), multiple 
solutions ( , )δ δE H  may exist in the form of resonant modes. However, these 
resonant modes can be derived using eigenvalue analysis and they are not 
considered as the particular solution for the given sources. The particular unique 
solution for the loss-free case can be obtained from a problem where σ  is 
assumed nonzero and then the limit is found as 0σ → .  

 
3. Equivalence Principles 

The equivalence principle follows from the uniqueness theorem. It allows for 
the simplification of certain EM problems. As long as a problem is re-formulated 
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so that it preserves the boundary conditions at S, it is going to produce the only 
one possible solution for the region SV  bounded by S. Such a re-formulated 
problem is referred to as an equivalent problem. 
 

⇒ ⇒

n̂

SV

S sources

( , )o oE H

(a) Original problem

( , )o oE H
S

(b) General equivalent
      problem

no sources

esJ
SV

( , )o oE H

( , )e eE H

n̂

esM S

(c) Equivalent problem
     with zero fields

no sources
no fields

( , )o oE H

SV
sJ

sM

n̂

 
 
For the equivalent problem in (b), 

 
ˆ ( ),

ˆ( ) .
e

e

s o e

s o e

= × −

= − ×

J n H H
M E E n

 (17.6) 

For the equivalent problem in (c), 

 
ˆ ,

ˆ.
s o

s o

= ×
= ×

J n H
M E n

 (17.7) 

The zero-field formulation is often referred to as Love’s equivalence principle. 
We can apply Love’s equivalence principle in three different ways. 
(a) We can assume that the boundary S is a perfect conductor. As per image 

theory, in an equivalent open problem, this eliminates the surface electric 
currents, i.e., 0s =J , and leaves just surface magnetic currents of double 
strength 2 sM . Such an equivalent problem is illustrated below. 
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⇒

(a) Original problem

n̂

( , )o oE H

sources

SSV

(b) Equivalent problem
      - electric wall

S

no sources

no fields

sM

0s =J

⇒

(c) Equivalent problem
      - images

S

no sources

no fields( , )o oE H ( , )o oE H ( , )o oE H

n̂ n̂

2 sM

0s =J

 
 
(b) We can assume that the boundary S is a perfect magnetic conductor. As per 

image theory, in an equivalent open problem, this eliminates the surface 
magnetic currents, i.e., 0s =M , and leaves just surface electric currents of 
double strength 2 sJ . This approach is illustrated below. 

⇒

(a) Original problem

sources

S

⇒

(b) Equivalent problem
      - magnetic wall

S

no sources

no fields

(c) Equivalent problem
      - images

S

no sources

no fields

0s =M

( , )o oE H ( , )o oE H ( , )o oE H ( , )o oE H

SV
n̂ n̂ n̂

0s =M

sJ 2 sJ

 

(c) Make no assumptions about the materials inside S, and define both sJ  and 
sM  currents, which radiate in free space (no fictitious conductors behind 

them). It can be shown that these equivalent currents create zero fields 
inside SV . [Ewald-Oseen extinction theorem: A. Ishimaru, Electro-
magnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, 
1991, p. 173] 
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The first two approaches are not very accurate in the general case of a curved 
boundary surface S because the image theory can be applied to curved surfaces 
only if the curvature radius is large compared to the wavelength. However, in the 
case of flat infinite planes (walls), the image theory holds exactly and all three 
approaches should produce the same external field according to the uniqueness 
theorem.  

The above approaches are used to compute fields in half-space as excited by 
apertures. The field behind S is assumed known and are used to define the 
equivalent surface currents. The open-region far-zone solutions for the vector 
potentials A (resulting from sJ ) and F (resulting from sM ) are 

 ˆ( ) ( )
4

j r
j

s
S

eP e ds
r

β
βµ

π

−
′⋅′ ′= ∫∫ r rA J r , (17.8) 

 ˆ( ) ( )
4

j r
j

s
S

eP e ds
r

β
βε

π

−
′⋅′ ′= ∫∫ r rF M r . (17.9) 

Here, r̂  denotes the unit vector pointing from the origin of the coordinate system 
to the point of observation P. The integration point Q is specified through the 
position vector ′r . In the far zone, it is assumed that the field propagates radially 
away from the antenna. It is convenient to introduce the propagation vector or 
wave vector, 
 ˆβ=β r , (17.10) 

which characterizes both the phase constant and the direction of propagation of 
the wave. The vector potentials can then be written as 

 ( ) ( )
4

j r
j

s
S

eP e ds
r

β
µ

π

−
′⋅′ ′= ∫∫ β rA J r , (17.11) 

 ( ) ( )
4

j r
j

s
S

eP e ds
r

β
ε

π

−
′⋅′ ′= ∫∫ β rF M r . (17.12) 

The relations between the far-zone field vectors and the vector potentials are 

 ˆ ˆ( )far
A j A Aθ ϕω= − +E θ φ , (17.13) 

 ˆ ˆ( )far
F j F Fθ ϕω= − +H θ φ . (17.14) 
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Since 

 ˆfar far
F Fη= ×E H r , (17.15) 

the total far-zone electric field (due to both A and F) is found as 

 ˆ ˆ( ) ( )far farfar
FA j A F A Fθ ϕ ϕ θω η η = + = − + + − E E E θ φ . (17.16) 

Equation (17.16) involves both vector potentials as arising from both types of 
surface currents. Computations are reduced in half if image theory is used in 
conjunction with an electric or magnetic wall assumption. 
 
4. Application of the Equivalence Principle to Aperture Problems 

The equivalence principle is widely used in the analysis of aperture antennas. 
To calculate exactly the far field, the exact field distribution at the (infinite) 
aperture is needed. In the case of exact knowledge of the aperture field 
distribution, all three approaches given above produce the same results. 
However, the aperture field distribution is usually not known exactly and 
approximations are used. Then, the three equivalence-principle approaches 
produce slightly different results, the consistency being dependent on how 
accurate our knowledge about the aperture field is. Usually, it is assumed that the 
field is to be determined in half-space, leaving the feed and the antenna behind 
an infinite wall S. The aperture of the antenna AS  is this portion of S where we 
have an approximate knowledge of the field distribution based on the type of the 
feed line or the incident wave illuminating the aperture. This is the so-called 
physical optics approximation, which is more accurate than the geometrical 
optics approach of ray tracing. The larger the aperture (as compared to the 
wavelength), the more accurate the approximation based on the incident wave. 

Let us assume that the field at the aperture AS  is known: ,a aE H , and it is zero 
everywhere on S except at SA. The equivalent current densities are: 

 
ˆ ,

ˆ.
s a

s a

= ×
= ×

J n H
M E n

 (17.17) 

The substitution of (17.17) into (17.11) and (17.12) produces 

 ˆ( )
4

A

j r
j

a
S

eP e ds
r

β
µ

π

−
′⋅ ′= ×∫∫ β rA n Η , (17.18) 
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 ˆ( )
4

A

j r
j

a
S

eP e ds
r

β
ε

π

−
′⋅ ′= − ×∫∫ β rF n E . (17.19) 

We can work with the general vector expression for the far field E [see (17.16)] 
written as 
 ˆfar j jω ωη= − − ×E A F r , (17.20) 

where the longitudinal rA  component is to be neglected. Substituting (17.18) 
and (17.19) into (17.20) yields 

 [ ]ˆ ˆ ˆ ˆ( )
4

A

j r
far j

a a
S

ej e ds
r

β
β η

π

−
′⋅ ′= − × × − × ×∫∫ β rE r n E r n H . (17.21) 

This is the full vector form of the radiated field resulting from the aperture field, 
and it is referred to as the vector diffraction integral (or vector Kirchhoff 
integral). 

We now consider a practical case of a flat aperture lying in the xy  plane with 
ˆ ˆ≡n z . For brevity, the radiation integrals in (17.18) and (17.19) are denoted as 

 ˆ ˆH H H j
x y a

S

I I e ds′⋅ ′= + = ∫∫ β rI x y H , (17.22) 

 ˆ ˆE E E j
x y a

S

I I e ds′⋅ ′= + = ∫∫ β rI x y E . (17.23) 

Then, 

 ˆ ˆ( )
4

j r
H H
y x

e I I
r

β
µ

π

−
= − +A x y , (17.24) 

 ˆ ˆ( )
4

j r
E E
y x

e I I
r

β
ε

π

−
= − − +F x y . (17.25) 

The integrals in the above expressions can be explicitly written for the case ˆ ˆ≡n z
bearing in mind that the source-point position is ˆ ˆx y′ ′ ′= +r x y : 

 ( sin cos sin sin )( , ) ( , )x

A

E j x y
x a

S

I E x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= ∫∫ , (17.26) 

 ( sin cos sin sin )( , ) ( , )y

A

E j x y
y a

S

I E x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= ∫∫ , (17.27) 
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 ( sin cos sin sin )( , ) ( , )x

A

H j x y
x a

S

I H x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= ∫∫ , (17.28) 

 ( sin cos sin sin )( , ) ( , )y

A

H j x y
y a

S

I H x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= ∫∫ . (17.29) 

Note that the above integrals can be viewed as 2-D Fourier transforms of the 
aperture field components where x transforms into sin cosxβ β θ ϕ= −  and y 
transforms into sin sinyβ β θ ϕ= − . 

The transverse components of the magnetic vector potential in spherical terms 
are obtained from (17.24) as 

 ( )cos cos cos sin
4

j r
H H
y x

eA I I
r

β

θ µ θ ϕ θ ϕ
π

−
= − ⋅ + ⋅ , (17.30) 

 ( )sin cos
4

j r
H H
y x

eA I I
r

β

ϕ µ ϕ ϕ
π

−
= ⋅ + ⋅ , (17.31) 

which can also be written in the vector form: 

 ˆ ˆcos ( sin cos ) ( cos sin )
4

j r
H H H H
x y x y

e I I I I
r

β
µ θ ϕ ϕ ϕ ϕ

π

−

⊥  = − + + A θ φ . (17.32) 

Analogously, 

 ˆ ˆcos ( sin cos ) ( cos sin )
4

j r
E E E E
x y x y

e I I I I
r

β
ε θ ϕ ϕ ϕ ϕ

π

−

⊥  = − − + + F θ φ . (17.33) 

By substituting the above expressions in (17.16), we obtain the far-zone E field: 

 cos sin cos ( cos sin )
4

j r
E E H H
x y y x

eE j I I I I
r

β

θ β ϕ ϕ η θ ϕ ϕ
π

−
= + + ⋅ −   , (17.34) 

 ( cos sin ) cos ( cos sin )
4

j r
H H E E
x y y x

eE j I I I I
r

β

ϕ β η ϕ ϕ θ ϕ ϕ
π

−
= + + ⋅ −  - . (17.35) 

For apertures mounted on a conducting plane (e.g., slot antennas), the 
preferred equivalent model is the one using an electric wall with doubled 
magnetic current density 
 ˆ2 ( )s a= ⋅ ×M E n , (17.36) 

radiating in open space. The solution, of course, is valid only for 0z ≥ . In this 
case, 0H =I  and the field is given by 
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 ( )( , ) cos sin
4

j r
E E
x y

eE j I I
r

β

θ θ ϕ β ϕ ϕ
π

−
= + , (17.37) 

 ( )( , ) cos cos sin
4

j r
E E
y x

eE j I I
r

β

ϕ θ ϕ β θ ϕ ϕ
π

−
= − . (17.38) 

For apertures illuminated from open space (e.g., reflector antennas), the dual 
current formulation is used. Then, the usual assumption is that the aperture field 
resembles that of a locally-plane wave, i.e., 
 ˆ /a a η= ×H z E . (17.39) 

This implies that 

 1 ˆH E
η

= ×I z I  or 
E
yH

x
I

I
η

= − , 
E
xH

y
II
η

= . (17.40) 

This assumption is valid for apertures that are at least a couple of wavelengths in 
extent. Then, (17.34)-(17.35) reduce to 

 ( )(1 cos )( , ) cos sin
4 2

j r
E E
x y

eE j I I
r

β

θ
θθ ϕ β ϕ ϕ

π

− +
= + , (17.41) 

 ( )(1 cos )( , ) cos sin
4 2

j r
E E
y x

eE j I I
r

β

ϕ
θθ ϕ β ϕ ϕ

π

− +
= − . (17.42) 

Compare (17.41)-(17.42) to (17.37)-(17.38). The terms in the brackets are 
identical. If the aperture has high gain, the factors containing cosθ  are not going 
to affect the pattern significantly and the two sets of formulas are going to be 
nearly equivalent. 
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5. The Uniform Rectangular Aperture on an Infinite Ground Plane 
A rectangular aperture is defined in the xy  plane as shown below. 
 

x

y

xL

yL

aE

 
 

If the field is uniform in amplitude and phase across the aperture, it is referred to 
as a uniform rectangular aperture. Let us assume that the aperture field is y-
polarized: 

 0 ˆ ,  for | | and | | ,
2 2

0, elsewhere .

yx
a

a

LLE x y= ≤ ≤

=

E y

E
 (17.43) 

According to the equivalence principle, we assume an electric wall at 0z = , 
where the equivalent magnetic current density is given by , 0 ˆs e = ×M E n . 
Applying image theory, we double the equivalent source radiating in open space: 
 , 0 0ˆ ˆ ˆ2 2 2s s e E E= = × =M M y z x . (17.44) 

The only non-zero radiation integral is [see (17.27)] 

 
/2/2

sin cos sin sin
0

/2 /2

( , ) 2
yx

x y

LL
E j x j y
y

L L

I E e dx e dyβ θ ϕ β θ ϕθ ϕ ′ ′

− −

′ ′= ⋅∫ ∫ , (17.45) 

the solution of which yields 
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 0

sin sin sinsin sin cos
22( , ) 2 .

sin cos sin sin
2 2

yx

E
y x y

x y

LL

I E L L
L L

ββ θ ϕθ ϕ
θ ϕ

β βθ ϕ θ ϕ


   
  = ⋅

  
      

 (17.46) 

To shorten the notations, let us introduce the pattern variables: 

 
( , ) 0.5 sin cos ,
( , ) 0.5 sin sin  .

x

y

u L
v L
θ ϕ β θ ϕ
θ ϕ β θ ϕ

=
=

 (17.47) 

The complete radiation field is found by substituting (17.46) in (17.37)-(17.38): 

 
0

0

sin sin( , ) sin ,
2

sin sin( , ) cos cos .
2

j r
x y

j r
x y

e u vE j E L L
r u v

e u vE j E L L
r u v

β

θ

β

ϕ

θ ϕ β ϕ
π

θ ϕ β θ ϕ
π

−

−

  =   
  

  =   
  

 (17.48) 

The total-field amplitude pattern is, therefore, 

 

2 2 2

2 2

sin sin| ( , ) | ( , ) sin cos cos

sin sin1 sin cos .

u vE F
u v

u v
u v

θ ϕ θ ϕ ϕ θ ϕ

θ ϕ

  = = + ⋅ =  
  
  = − ⋅  

  

 (17.49) 

The principal plane patterns are: 
E-plane pattern ( / 2)ϕ π=  

 
( )

( )
sin 0.5 sin

( )
0.5 sin

y

y

L
E

Lθ
β θ

θ
β θ

=  (17.50) 

H-plane pattern ( 0)ϕ =  

 ( )
( )

sin 0.5 sin
( ) cos

0.5 sin
x

x

L
E

Lϕ
β θ

θ θ
β θ

= ⋅  (17.51) 
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PRINCIPLE PATTERNS FOR APERTURE OF SIZE: 3xL λ= , 2yL λ=  

 
 

For electrically large apertures, the main beam is narrow and the 
2 2 1/2(1 sin cos )θ ϕ−  in (17.49) is negligible, i.e., it is roughly equal to 1 for all 

observation angles within the main beam. That is why, in the theory of large 
apertures and arrays, it is assumed that the amplitude pattern is 

 sin sin( , ) u vf u v
u v

≈ ⋅ , (17.52) 

where 0.5 sin cosxu Lβ θ ϕ=  and 0.5 sin sinyv Lβ θ ϕ= . 

  0.2  0.4  0.6  0.8

30

150

60

120

90 90

120

60

150

30

180

0

  1

E-plane  
H-plane  
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Below is a view of the | (sin ) / |u u  function for 20xL λ=  and 0ϕ =   (H-plane 
pattern): 
 
 

 
-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

sin(theta)

|sin[20*pi*sin(theta)]/[20*pi*sin(theta)]|
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Here is a view of the | sin / |v v  function for 10yL λ=  and 90ϕ =   (E-plane 
pattern): 
 
 

 
  

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

sin(theta)

|sin(10 π sin(theta))/(10 π sin(theta))|
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Point for Discussion: The field of a narrow slot (a slit) ( yL λ ). 

 

x
y

z

L

0 ˆa E=E y

 
 
The radiation integral for the case of a slit is a particular case of (17.46): 

( ) ( )
( )

( )
( )0slit 0

sin 0.5 sin sinsin 0.5 sin cos
2 lim

0.5 sin cos 0.5 sin siny

yxE
y x y

Lx y

LL
I E L L

L L
β θ ϕβ θ ϕ

β θ ϕ β θ ϕ→

 
= ⋅  

  
, (17.53) 

which leads to 

 ( ) ( )
( )0slit

sin 0.5 sin cos
2

0.5 sin cos
xE

y x y
x

L
I E L L

L
β θ ϕ

β θ ϕ
= . (17.54) 

The total field pattern of the slit is then 

 ( )2 2 sin 0.5 sin cos
( , ) 1 sin cos

0.5 sin cos
x

x

L
F

L
β θ ϕ

θ ϕ θ ϕ
β θ ϕ

 
= − ⋅  

 
  (17.55) 

The principal plane patterns are: 
E-plane pattern ( / 2)ϕ π=  - omnidirectional! 

 1Eθ =  (17.56) 
H-plane pattern ( 0)ϕ =  

 ( )
( )

sin 0.5 sin
cos

0.5 sin
x

x

L
E

Lϕ
β θ

θ
β θ

= ⋅  (17.57) 
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Beamwidths 
(a) First-null beamwidth (FNBW) 
We need the locations of the first nulls in the pattern in order to calculate the 
FNBW. The nulls of the E-plane pattern are determined from (17.50) as 

 /sin , 1,2,
2 n

yL
n nθ θ

β
θ π= = = , (17.58) 

 arcsinn
y

n
L
λθ

 
⇒ =  

 
, rad. (17.59) 

The first null occurs at 1n = . 

 2 2arcsinE n
y

FNBW
L
λθ

 
⇒ = =  

 
, rad. (17.60) 

In a similar fashion, HFNBW  is determined to be 

 2arcsinH
x

FNBW
L
λ =  

 
, rad. (17.61) 

It is apparent that larger aperture widths lead to narrower beams. 
 
(b) Half-power beamwidth (HPBW) 
The half-power point in the E-plane occurs when 

 ( )
( )

sin 0.5 sin 1
0.5 sin 2

y

y

L
L
β θ

β θ
= , (17.62) 

or 
 /0.5 sin 1.391hyL θ θβ θ = ≈ , (17.63) 

 0.443arcsinh
yL
λθ


⇒ ≈ 
 

, rad, (17.64) 

 0.4432arcsinE
y

HPBW
L

λ 
≈ 

 
. (17.65) 
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A first-order approximation is possible for very small arguments in (17.65), i.e., 
when 0.443yL λ  (large aperture): 

 0.886E
y

HPBW
L
λ

≈ . (17.66) 

The half-power beamwidth in the H-plane is analogous: 

 0.4432arcsinH
x

HPBW
L

λ ≈  
 

. (17.67) 

Side-lobe level 
It is obvious from the properties of the | sin / |x x  function that the first side lobe 
has the largest maximum of all side lobes, and it is 

 sin 4.494| ( ) | 0.217 13.26
4.494sEθ θ θ= ≈ ≈ ≈ − , dB. (17.68) 

When evaluating side-lobe levels and beamwidths in the H-plane, one has to 
include the cosθ  factor. The larger the aperture, the less important this factor is. 

Directivity 
The antenna solid angle AΩ  is needed to calculate the directivity from 
 0 4 / AD π= Ω . (17.69) 
The radiation intensity in any direction can be expressed through the normalized 
field pattern as 
 2

max( , ) | ( , ) |U U Fθ ϕ θ ϕ= ⋅ . (17.70) 

The far-field pattern | ( , ) |F θ ϕ  is available from (17.49), namely, 

 2 2 sin sin| | ( , ) 1 sin cos .u vE F
u v

θ ϕ θ ϕ   = = − ⋅  
  

  (17.71) 

The antenna solid angle is then calculated as 

 
2 /2

2

0 0

| ( , ) | sinA F d d
π π

θ ϕ θ θ ϕΩ = ∫ ∫ , (17.72) 

which, in turn, is used to compute the directivity from (17.69). 
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However, in the case of an aperture illuminated by a TEM wave, we can use 
a simpler approach. Generally, for all aperture antennas, the assumption of a 
uniform TEM wave at the aperture ( 0ˆE=E y ), 
 0ˆ /a E η= −H x , (17.73) 

is quite accurate (although η  is not necessarily the intrinsic impedance of the 
medium; could be the wave impedance of a waveguide). The far-field 
components in this case were already derived in (17.41) and (17.42). They lead 
to the following expression for the radiation intensity, 

 ( )
2

2 2 2
2

( , ) (1 cos ) | ( , ) | | ( , ) |
32

E E
x yU I Iβθ ϕ θ θ ϕ θ ϕ

π η
= + + . (17.74) 

The maximum value of the function in (17.74) is derived after substituting the 
radiation integrals from (17.26) and (17.27): 

 
22

max 28 A
aS

U dsβ
π η

′= ∫∫ E . (17.75) 

The integration of the radiation intensity (17.74) over a closed sphere is not 
easy. It can be avoided by observing that the total power reaching the far zone 
must have passed through the aperture in the first place. In an aperture, where the 
field obeys (17.73), this power is determined as 

 21 | |
2

A

av a
S S

d ds
η

Π = ⋅ =∫∫ ∫∫P s E


. (17.76) 

Substituting (17.75) and (17.76) into (17.69) finally yields 

 

2

0 2 2

4
| |
A

A

aS

aS

ds
D

ds
π
λ

′
= ×

′

∫∫
∫∫

E

E
. (17.77) 

In the case of a uniform rectangular aperture, 

 
2

0| |
2x y
EL L
η

Π = , (17.78) 

 
2 2

0
max

| |
2

x yL L EU
λ η

 =  
 

. (17.79) 

effA
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Thus, the directivity is found to be 

 max
0 2 2 2

4 4 44 x y p eff
UD L L A Aπ π ππ

λ λ λ
= = = =

Π
. (17.80) 

Note that the physical and effective areas of a uniform aperture are equal. 

6. The Uniform Rectangular Aperture in Open Space 
Now the rectangular aperture is not mounted on a ground plane. The field 

distribution is the same as in (17.43) but now the H field must be defined, too, in 
order to apply the equivalence principle with both types of surface currents, 

 0

0

ˆ / 2 / 2 
,

ˆ / 2 / 2./
x xa

y ya

L x LE
L y LE η

′− ≤ ≤= 
 ′− ≤ ≤= − 

E y
H x

 (17.81) 

Again, an assumption was made that there is a simple relation between the 
electric and the magnetic field components through the impedance η. 

To form the equivalent problem, an infinite surface is chosen to extend in the 
0z =  plane. Over the entire surface, the equivalent sJ  and sM  surface currents 

must be defined. Both sJ  and sM  are not really zero outside the aperture in the 
0z =  plane because the respective tangential field is not zero. Moreover, the field 

is not known a priori outside the aperture. Thus, an exact equivalent problem 
cannot be built. 

The usual assumption is that aE  and aH  are zero outside the aperture in the 
0z =  plane, and, therefore, so are the equivalent currents sJ  and sM , 

 



0
ˆ

0

ˆ

ˆ ˆ ˆ
/ 2 / 2 

for
/ 2 / 2.ˆ ˆ ˆ( )

0 for | | / 2,  | |

s a

x x

y ys a

s s x y

E
L x L

E L y L

x L y L

η
−

= − × = − × 
 ′− ≤ ≤
  ′− ≤ ≤= × = × − 


′ ′= = > >

x

y

M n E z y

J n H z x

J M



 (17.82) 

Since the equivalent currents are related via the impedance assumption (17.81), 
only the integral ( , )E

yI θ ϕ  is needed for substitution in the far-field expressions 
(17.41)-(17.42). ( , )E

yI θ ϕ  is the same as in (17.46), i.e., 
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 ( )
( )

( )
( )0

sin 0.5 sin sinsin 0.5 sin cos
( , ) 2

0.5 sin cos 0.5 sin sin
yxE

y x y
x y

LL
I E L L

L L
β θ ϕβ θ ϕ

θ ϕ
β θ ϕ β θ ϕ

= ⋅ . (17.83) 

The far-field components are obtained by substituting (17.83) into (17.41) and 
(17.42): 

 

( )

( )

1 cos sin sinsin ,
2

1 cos sin sincos ,
2

u vE C
u v

u vE C
u v

θ

ϕ

θ
ϕ

θ
ϕ

+
=

+
=

 (17.84) 

where 

0 2

j r

x y
eC j L L E

r

β
β

π

−
= , 

0.5 sin cosxu Lβ θ ϕ= , 

0.5 sin sinyv Lβ θ ϕ= . 

The far-field expressions in (17.84) are very similar to those of the aperture 
mounted on a ground plane, see (17.48). For small values of θ , the patterns of 
both apertures are practically identical. 

An exact analytical evaluation of the directivity is difficult. However, 
according to the approximations made, the directivity formula derived in (17.77) 
should provide accurate enough value. According to (17.77), the directivity is the 
same as in the case of the aperture mounted on a ground plane. 
 
7. The Tapered Rectangular Aperture on a Ground Plane 

The uniform rectangular aperture has the maximum possible effective area 
(for an aperture-type antenna) equal to its physical area. This also implies that it 
has the highest possible directivity for all constant-phase excitations of a 
rectangular aperture. However, the directivity is not the only important factor in 
the design of an antenna. A factor that often is in conflict with the directivity is 
the side-lobe level (SLL). The uniform distribution excitation produces the 
highest SLL of all constant-phase excitations of a rectangular aperture. It is 
shown below that a reduction of the SLL can be achieved by tapering the 
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equivalent sources distribution from a maximum at the aperture’s center to zero 
values at its edges. 

One practical aperture of tapered source distribution is the open rectangular 
waveguide. The dominant TE10 mode has the following distribution: 

 0
/ 2 / 2

ˆ cos ,
/ 2 / 2

x x
a

y yx

L x L
E x

L y LL
π ′− ≤ ≤ ′=   ′− ≤ ≤  

E y  (17.85) 

 

yE x

y

 
 
The general procedure for the far-field analysis is the same as before (Sections 5 
and 6). The only difference is in the field distribution. Again, only the integral 

( , )E
yI θ ϕ  is evaluated: 

 
/2/2

sin cos sin sin
0

/2 /2

( , ) 2 cos
yx

x y

LL
E j x j y
y

xL L

I E x e dx e dy
L

β θ ϕ β θ ϕπθ ϕ ′ ′

− −

 ′ ′ ′= ⋅ 
 ∫ ∫ . (17.86) 

The integral of the y′  variable was already encountered in (17.45)-(17.46): 

 
( )

( )

/2
sin sin

/2

sin 0.5 sin sin
( , )

0.5 sin sin

y

y

L
yj y

y y
yL

L
I e dy L

L
β θ ϕ

β θ ϕ
θ ϕ

β θ ϕ
′

−

′= =∫ . (17.87) 

The integral of the x′  variable is also easily solved: 
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/2
sin cos

/2

( , ) cos
x

x

L
j x

x
xL

I x e dx
L

β θ ϕπθ ϕ ′

−

 ′ ′= = 
 ∫  

( ) ( )
/2

/2

/2

/2

cos cos sin cos sin sin cos

1 cos sin cos cos sin cos
2

sin sin cos cos sin cos
2

x

x

x

x

L

xL

L

x xL

x

x x j x dx
L

x x dx
L L

j x
L L

π β θ ϕ β θ ϕ

π πβ θ ϕ β θ ϕ

π πβ θ ϕ β θ ϕ

−

−

 ′ ′ ′ ′= + =    
 

        ′ ′ ′= − + + +       
        

   ′+ − + +  
  

∫

∫
/2

/2

x

x

L

xL

x dx
−

    ′ ′   
    

∫

 

 
2

cos sin cos
2( , )

2
sin cos

2 2

x

x
x

x

L
LI

L

β θ ϕ
πθ ϕ

π β θ ϕ


 
 ⇒ =

  −  
   

  (17.88) 

The substitution of (17.87) and (17.88) in (17.86) leads to 

 0
2

( , )
( , )

sin sin sincos sin cos
22( , )

sin sin
2sin cos

2 2

yx

E
y x y

y

x

v
u

LL

I E L L
L

L
θ ϕ

θ ϕ

ββ θ ϕθ ϕ
θ ϕ π

β
θ ϕπ β θ ϕ

 
     = ×

  
    −    

 





 (17.89) 

To derive the far-field components, (17.89) is substituted in (17.34)-(17.35): 

 

2
2

2
2

cos sin( , ) sin
2

2

cos sin( , ) cos cos
2

2

u vE C
v

u

u vE C
v

u

θ

ϕ

πθ ϕ ϕ
π

πθ ϕ θ ϕ
π

= − ⋅ ⋅
 −  

   

= − ⋅ ⋅
 −  

   

 (17.90) 
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where 

0 2

j r

x y
eC j L L E

r

β
β

π

−
= , 

0.5 sin cosxu Lβ θ ϕ= , 

0.5 sin sinyv Lβ θ ϕ= . 

 
Principle plane patterns 

In the E-plane, the aperture is not tapered. As expected, the E-plane principal 
pattern is the same as that of a uniform aperture. 

 
E-plane ( 90ϕ =  ): 

 
sin sin

2

sin
2

y

y

L

E
Lθ

β
θ

β
θ

 
 
 =

 
 
 

 (17.91) 

H-plane ( 0ϕ = ): 

 2 2

cos sin
2cos

sin
2 2

x

x

L

E
L

ϕ

β θ
θ

β πθ

 
 
 =

   −   
   

 (17.92) 
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H-PLANE PATTERN – UNIFORM VS. TAPERED ILLUMINATION ( 3xL λ= ): 
 

 
 
The lower SLL of the tapered-source pattern is obvious. It is better seen in the 
rectangular plot given below. The price to pay for the lower SLL is the decrease 
in directivity (the beamwidth of the major lobe increases). 
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The above example of 3xL λ=  illustrates well the effect of source distribution 
on the far-field pattern. However, a more practical example is the rectangular-
waveguide open-end aperture, where the waveguide operates in a dominant 
mode, i.e. 0 0/ 2 xLλ λ< < . Here, 0λ  is the wavelength in open space. Consider 
the case 00.75xL λ= . The principal-plane patterns for an aperture on a ground 
plane look like this: 
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In the above example, a practical X-band waveguide was considered whose 
cross-section has the following size: 2.286xL =  cm, 1.016yL =  cm. ( 0 3.048λ =  
cm and 0 9.84f =  GHz) 

The case of a dominant-mode open-end waveguide radiating in free space can 
be analyzed following the approaches outlined in this Section and in Section 6. 

The calculation of the beamwidths and the directivity is analogous to the 
previous cases. Only the final results will be given here for the case of the x-
tapered (cosine taper) aperture on a ground plane. 

Directivity: 0 2 2

4 8
x yD L Lπ

λ π
= ⋅                                                                   (17.93) 

Effective area: 
2

8 0.81eff x y pA L L A
π

= ≈                                                     (17.94) 

Note the decrease in the effective area compared to the uniform-aperture case. 
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Half-power beamwidths: 
50.6

/E
y

HPBW
L λ

= , deg. (= EHPBW  of the uniform aperture)                    (17.95) 

68.8
/H

x
HPBW

L λ
= , deg. (> HHPBW  of the uniform aperture)                   (17.96) 

 
The above results are approximate. Better results are obtained if the following 

factors are taken into account: 
• the phase constant of the waveguide gβ  and its wave impedance gZ  are not 

equal to the free-space phase constant 0 0 0β ω µ ε=  and intrinsic 
impedance 0 0 0/Z µ ε= ; they are dispersive; 

• the abrupt termination at the waveguide open end introduces reflection, 
which affects the field at the aperture; 

• there are strong fringe currents at the waveguide walls, which contribute to 
the overall radiation. 
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LECTURE 18:  Horn Antennas 
(Rectangular horn antennas. Circular apertures.)      
 
1 Rectangular Horn Antennas 

Horn antennas are popular in the microwave bands (above 1 GHz). Horns 
provide high gain, low VSWR (with waveguide feeds), relatively wide 
bandwidth, and they are not difficult to make. There are three basic types of 
rectangular horns. 

 
 
The horns can be also flared exponentially. This provides better impedance 

match in a broader frequency band. Such horns are more difficult to make, which 
means higher cost. 

The rectangular horns are ideally suited for rectangular waveguide feeds. The 
horn acts as a gradual transition from a waveguide mode to a free-space mode of 
the EM wave. When the feed is a cylindrical waveguide, the antenna is usually a 
conical horn. 
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Why is it necessary to consider the horns separately instead of applying the 
theory of waveguide aperture antennas directly? It is because the so-called phase 
error occurs due to the difference between the lengths from the center of the feed 
to the center of the horn aperture and the horn edge. This makes the uniform-
phase aperture results invalid for the horn apertures. 
 
1.1 The H-plane sectoral horn 

The geometry and the respective parameters shown in the figure below are 
used in the subsequent analysis. 

H-plane (x-z) cut of an H-plane 
sectoral horn

a

Hl

HR

0R

R x

A zHα

 
 

 
2

2 2
0 2H

Al R  = +  
 

, (18.1) 

 
0

arctan
2H

A
R

α  =  
 

, (18.2) 

 ( ) 1
4

H
H

lR A a
A

 = − − 
 

. (18.3) 

The two required dimensions for the construction of the horn are A and HR . 
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The tangential field arriving at the input of the horn is composed of the 
transverse field components of the waveguide dominant mode TE10: 

 0( ) cos

( ) ( ) /

gj z
y

x y g

E x E x e
a

H x E x Z

βπ −=  
 

= −
 (18.4) 

where 

2
01

2

gZ

a

η

λ
=

−  
 

 is the wave impedance of the TE10 waveguide mode; 

2
0

0 1
2g a
λβ β = −  

 
 is the propagation constant of the TE10 mode. 

Here, 0 02 /β ω µε π λ= = , and 0λ  is the free-space wavelength. The field that 
is illuminating the aperture of the horn is essentially a spatially expanded version 
of the waveguide field. Note that the wave impedance of the flared waveguide 
(the horn) gradually approaches the intrinsic impedance of open space η , as A 
(the H-plane width) increases.  

The complication in the analysis arises from the fact that the waves arriving 
at the horn aperture are not in phase due to the different path lengths from the 
horn apex. The aperture phase variation is given by 
 0( )j R Re β− − . (18.5) 
Since the aperture is not flared in the y-direction, the phase is uniform along y. 
We first approximate the path of the wave in the horn: 

 
2 2

2 2
0 00

0 0

11 1
2

x xR R x R R
R R

    = + = + ≈ +    
     

. (18.6) 

The last approximation holds if 0x R , or 0/ 2A R . Then, we can assume that 

 
2

0
0

1
2

xR R
R

− ≈ . (18.7) 

Using (18.7), the field at the aperture is approximated as 
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2

020( ) cosy

j x
RaE x E x e

A

βπ −≈  
 

. (18.8) 

The field at the aperture plane outside the aperture is assumed equal to zero. The 
field expression (18.8) is substituted in the integral for E

yI  (see Lecture 17): 

 ( sin cos sin sin )( , ) ( , )y

A

E j x y
y a

S

I E x y e dx dyβ θ ϕ θ ϕθ ϕ ′ ′+′ ′ ′ ′= ∫∫ , (18.9) 

 
2

0

/2 /2
sin cos sin sin20

/2 /2
( , )

( , ) cos
A bj x

E j x j yRy
A b

I

I E x e e dx e dy
A

β
β θ ϕ β θ ϕ

θ ϕ

πθ ϕ
+ +′−

′ ′

− −

 ′ ′ ′= × 
 ∫ ∫





.(18.10) 

The second integral has been already encountered. The first integral is 
cumbersome and the final result only is given below: 

 ( )
( )

0
0

sin 0
( , )

.5 sin sin1( , )
2 0.5 sin sin

E
y

RI E b
b

I
bβ

θ
θ ϕπθ ϕ

β β θ
ϕ

ϕ
   ⋅ ⋅

= ⋅ ×    ⋅ ⋅   
, (18.11) 

where 

[ ]

[ ]

2
0

2
0

sin cos
2 2 2 1 1

sin cos
2 2 2 1 1

( ) ( ) ( ) ( )

    ( ) (

( , )

) ( ) ( )

Rj
A

Rj
A

e C s jS s C s jS s

e C t jS t C t jS t

I
πβ θ ϕ

β

πβ θ ϕ
β

θ ϕ
 + 

 

 − 
 

′ ′ ′ ′= ⋅ − − +

′ ′ ′ ′+ ⋅ − − +

 (18.12) 

and 

0
1 0

0

1
2
A Rs R u

R A
β πβ

πβ
 ′ = − − − 
 

; 

0
2 0

0

1
2
A Rs R u

R A
β πβ

πβ
 ′ = + − − 
 

; 

0
1 0

0

1
2
A Rt R u

R A
β πβ

πβ
 ′ = − − + 
 

; 

0
2 0

0

1
2
A Rt R u

R A
β πβ

πβ
 ′ = + − + 
 

; 
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sin cosu θ ϕ= . 

 
( )C x  and ( )S x  are Fresnel integrals, which are defined as 

 

2

0

2

0

( ) cos ; ( ) ( ),
2

( ) sin ; ( ) ( ).
2

x

x

C x d C x C x

S x d S x S x

π τ τ

π τ τ

 = − = − 
 

 = − = − 
 

∫

∫
 (18.13) 

We note that more accurate evaluation of ( , )E
yI θ ϕ  can be obtained if the 

approximation in (18.6) is not made, and yaE  is substituted in (18.9) as 

 ( )2 2 2 200 0 00 0( ) cos cosy
j R x R j R xj R

aE x E x e E e x e
A A

β ββπ π− + − − ++  = =   
  

. (18.14) 

The far field can be calculated from ( , )E
yI θ ϕ  as (see Lecture 17): 

 
(1 cos )sin ( , ),

4

(1 cos )cos ( , ),
4

j r
E
y

j r
E
y

eE j I
r

eE j I
r

β

θ

β

ϕ

β θ ϕ θ ϕ
π

β θ ϕ θ ϕ
π

−

−

= + ⋅

= + ⋅
 (18.15) 

or 

 

( )
( )

( )

0
0

sin 0.5 sin sin1 cos
4 2 0.5 sin sin

ˆ ˆ                                     ( , ) sin cos .

j r bR ej E b
r b

I

β β θ ϕπ θβ
β π β θ ϕ

θ ϕ ϕ ϕ

−  ⋅ ⋅+ = ×   ⋅ ⋅   

+

E

θ φ

 (18.16) 

The amplitude pattern of the H-plane sectoral horn is obtained as 

 ( )
( )

sin 0.5 sin sin1 cos( , ) ( , )
2 0.5 sin sin

b
E I

b
β θ ϕθθ ϕ θ ϕ

β θ ϕ
 ⋅ ⋅+ = ⋅ ⋅   ⋅ ⋅   

. (18.17) 

 
Principal-plane patterns 
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E-plane ( 90ϕ = °): ( )
( )

sin 0.5 sin sin1 cos( )
2 0.5 sin sinE

b
F

b
β θ ϕθθ

β θ ϕ
 ⋅ ⋅+ =    ⋅ ⋅   

 (18.18) 

The second factor in (18.18) is exactly the pattern of a uniform line source of 
length b along the y-axis. 
 
H-plane ( 0ϕ = ° ): 

 

1 cos( ) ( )
2

1 cos ( , 0 ) 
2 ( 0 , 0 )

H HF f

I
I

θθ θ

θ θ ϕ
θ ϕ

+ = ⋅ = 
 
+ = ° = ⋅  = ° = ° 

 (18.19) 

The H-plane pattern in terms of the ( , )I θ ϕ  integral is an approximation, which 
is a consequence of the phase approximation made in (18.7). Accurate value for 

( )Hf θ  is found by integrating numerically the field as given in (18.14), i.e., 

 2 2
0

/2
sin

/2

( ) cos
A

j R x j x
H

A

xf e e dx
A

β β θπθ
+

′− + ′

−

′  ′∝  
 ∫ . (18.20) 
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E- AND H-PLANE PATTERN OF H-PLANE SECTORAL HORN 
 

 
Fig. 13-12, Balanis, p. 674 
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The directivity of the H-plane sectoral horn is calculated by the general 
directivity expression for apertures (for derivation, see Lecture 17): 

 

2

0 2 2

4
| |
A

A

aS

aS

ds
D

ds
π
λ

′
= ⋅

′

∫∫
∫∫

E

E
. (18.21) 

The integral in the denominator is proportional to the total radiated power, 

 
/2 /2

22 2 2
0 0

/2 /2

2 | | cos | |
2

A

b A

rad a
S b A

Abds E x dx dy E
A
πη

+ +

− −

 ′ ′ ′ ′Π = = = 
 ∫∫ ∫ ∫E . (18.22) 

In the solution of the integral in the numerator of (18.21), the field is substituted 
with its phase approximated as in (18.8). The final result is 

 
2

32 4 ( )H H
H tph ph

b AD Abπε ε ε
λ π λ λ

 = = 
 

, (18.23) 

where 

2

8 ;tε π
=  

[ ] [ ]{ }2 2 2
1 2 1 2( ) ( ) ( ) ( )

64
H
ph C p C p S p S p

t
πε = − + − ; 

1 2
1 12 1 , 2 1
8 8

p t p t
t t

   = + = − +      
; 

2

0

1 1
8 /

At
Rλ λ

 =  
 

. 

The factor tε  explicitly shows the aperture efficiency associated with the aperture 
cosine taper. The factor H

phε  is the aperture efficiency associated with the aperture 
phase distribution. 

A family of universal directivity curves is given below. From these curves, it 
is obvious that for a given axial length 0R  and at a given wavelength, there is an 
optimal aperture width A corresponding to the maximum directivity. 
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[Stutzman&Thiele, Antenna Theory and Design] 

 
It can be shown that the optimal directivity is obtained if the relation between A 
and 0R  is 

 03A Rλ= , (18.24) 

or 

 03A R
λ λ
= . (18.25) 

0 100R λ=
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1.2 The E-plane sectoral horn 
 

E-plane (y-z) cut of an E-plane 
sectoral horn

b

El

ER

0R

R y

B zEα

 
 

The geometry of the E-plane sectoral horn in the E-plane (y-z plane) is 
analogous to that of the H-plane sectoral horn in the H-plane. The analysis is 
following the same steps as in the previous section. The field at the aperture is 
approximated by [compare with (18.8)] 

 
2

020 cosy

j y
RaE E x e

a

βπ − =  
 

. (18.26) 

Here, the approximations 

 
2 2

2 2
0 00

0 0

11 1
2

y yR R y R R
R R

    = + = + ≈ +    
     

 (18.27) 

and 

 
2

0
0

1
2

yR R
R

− ≈  (18.28) 

are made, which are analogous to (18.6) and (18.7). 
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The radiation field is obtained as 

 

( )

[ ]

2
0 sin sin0 2 20

2 2 1 12

4 ˆ ˆsin cos
4

cos sin cos
(1 cos ) 2    ( ) ( ) ( ) ( ) .

2
1 sin cos

2

R Bj r ja R ej E e
r
a

C r jS r C r jS r
a

β ββ θ ϕπβ ϕ ϕ
π β π

β θ ϕ
θ

β θ ϕ

  −   
  = ⋅ +

 
 +  × − − +

  −  
   

E θ φ

 (18.29) 

The arguments of the Fresnel integrals used in (18.29) are 

 
1 0

0

2 0
0

sin sin ,
2 2

sin sin .
2 2

B Br R
R

B Br R
R

β β θ ϕ
π

β β θ ϕ
π

 = − − 
 

 = + − 
 

 (18.30) 

 
Principal-plane patterns 

The normalized H-plane pattern is found by substituting 0ϕ =  in (18.29): 

 2

cos sin
1 cos 2( )

2
1 sin

2

a

H
a

β θ
θθ

β θ

 
 +   = × 

   −  
 

. (18.31) 

The second factor in this expression is the pattern of a uniform-phase cosine-
amplitude tapered line source. 

The normalized E-plane pattern is found by substituting 90ϕ = °  in (18.29)
: 

 [ ] [ ]2 2
2 1 2 1

2 2
0 0

( ) ( ) ( ) ( )(1 cos ) (1 cos )( ) ( )
2 2 4 ( ) ( )E

C r C r S r S r
E f

C r S rθ θ

θ θθ θ
= =

− + −+ +
= =

+  
. (18.32) 

Here, the arguments of the Fresnel integrals are calculated for 90ϕ = ° : 
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1 0

0

2 0
0

sin ,
2 2

sin ,
2 2

B Br R
R

B Br R
R

β β θ
π

β β θ
π

 = − − 
 

 = + − 
 

 (18.33) 

and 

 0 2
0

( 0)
2
Br r

Rθ
βθ

π= = = = . (18.34) 

Similar to the H-plane sectoral horn, the principal E-plane pattern can be 
accurately calculated if no approximation of the phase distribution is made. Then, 
the function ( )Ef θ  has to be calculated by numerical integration of (compare 
with (18.20)) 

 2 2
0

/2
sin

/2

( )
B

j R y j y
E

B

f e e dyβ β θθ ′− + ′⋅

−

′∝ ∫ . (18.35) 
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E- AND H-PLANE PATTERN OF E-PLANE SECTORAL HORN 

 
Fig. 13.4, Balanis, p. 660 
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Directivity 
The directivity of the E-plane sectoral horn is found in a manner analogous to 

the H-plane sectoral horn: 

 
2

32 4E E
E tph ph

a BD aBπε ε ε
λ π λ λ

= = , (18.36) 

where 

2

8
tε π
= , 

2 2

2
0

( ) ( ) ,
2

E
ph

C q S q Bq
q R

ε
λ

+
= = . 

A family of universal directivity curves /  vs. /ED a Bλ λ  with R0 being a 
parameter is given below. 

 
[Stutzman&Thiele, Antenna Theory and Design] 

0 100R λ=
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The optimal relation between the flared height B and the horn apex length 0R  
that produces the maximum possible directivity is 

 02B Rλ= . (18.37) 

 
1.3 The pyramidal horn 

The pyramidal horn is probably the most popular antenna in the microwave 
frequency ranges (from 1≈  GHz up to 18≈  GHz). The feeding waveguide is 
flared in both directions, the E-plane and the H-plane. All results are 
combinations of the E-plane sectoral horn and the H-plane sectoral horn analyses. 
The field distribution at the aperture is approximated as 

 
2 2

2 2
0 02

0 cos E H

y

x yj
R R

aE E x e
A

β
π


− + 

 ≈  
 

. (18.38) 

The E-plane principal pattern of the pyramidal horn is the same as the E-plane 
principal pattern of the E-plane sectoral horn. The same holds for the H-plane 
patterns of the pyramidal horn and the H-plane sectoral horn. 

The directivity of the pyramidal horn can be found by introducing the phase 
efficiency factors of both planes and the taper efficiency factor of the H-plane: 

 
2

4 ( )E H
P t ph phD ABπ ε ε ε

λ
= , (18.39) 

where 

2

8
tε π
= ; 

[ ] [ ]{ }2 2 2
1 2 1 2( ) ( ) ( ) ( )

64
H
ph C p C p S p S p

t
πε = − + − ; 

1 2
1 12 1 , 2 1 ,
8 8

p t p t
t t

   = + = − +      
 

2

0

1 1
8 /H

At
Rλ λ

 =  
 

; 

2 2

2
0

( ) ( ) ,
2

E
ph E

C q S q Bq
q R

ε
λ

+
= = . 

The gain of a horn is usually very close to its directivity because the radiation 
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efficiency is very good (low losses). The directivity as calculated with (18.39) is 
very close to measurements. The above expression is a physical optics 
approximation, and it does not take into account only multiple diffractions, and 
the diffraction at the edges of the horn arising from reflections from the horn 
interior. These phenomena, which are unaccounted for, lead to only very minor 
fluctuations of the measured results about the prediction of (18.39). That is why 
horns are often used as gain standards in antenna measurements. 

The optimal directivity of an E-plane horn is achieved at 1q =  [see also 
(18.37)], 0.8E

phε = . The optimal directivity of an H-plane horn is achieved at 
3 / 8t =  [see also (18.24)], 0.79H

phε = . Thus, the optimal horn has a phase 
aperture efficiency of 
 0.632P H E

ph ph phε ε ε= = . (18.40) 

The total aperture efficiency includes the taper factor, too: 
 0.81 0.632 0.51P H E

tph ph phε ε ε ε= = ⋅ = . (18.41) 

Therefore, the best achievable directivity for a rectangular waveguide horn is 
about half that of a uniform rectangular aperture.  

We reiterate that best accuracy is achieved if H
phε  and E

phε  are calculated 
numerically without using the second-order phase approximations in (18.7) and 
(18.28). 
 
Optimum horn design 

Usually, the optimum (from the point of view of maximum gain) design of a 
horn is desired because it results in the shortest axial length. The whole design 
can be actually reduced to the solution of a single fourth-order equation. For a 
horn to be realizable, the following must be true: 
 E H PR R R= = . (18.42) 
The figures below summarize the notations used in describing the horn’s 
geometry. 
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z

HR

0
HR

x
A

Hα
ab

ER

0
ER

y
B

Eα

 
It can be shown that 

 0 / 2
/ 2 / 2

H

H

R A A
R A a A a

= =
− −

, (18.43) 

 0 / 2
/ 2 / 2

E

E

R B B
R B b B b

= =
− −

. (18.44) 

The optimum-gain condition in the E-plane (18.37) is substituted in (18.44) to 
produce 
 2 2 0EB bB Rλ− − = . (18.45) 
There is only one physically meaningful solution to (18.45): 

 ( )21 8
2 EB b b Rλ= + + . (18.46) 

Similarly, the maximum-gain condition for the H-plane of (18.24) together with 
(18.43) yields 

 
2 ( )

3 3H
A a A A aR A

A λ λ
− − = = 

 
. (18.47) 

Since E HR R=  must be fulfilled, (18.47) is substituted in (18.46), which gives 
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 21 8 ( )
2 3

A A aB b b
 −

= + + 
 

. (18.48) 

Substituting in the expression for the horn’s gain, 

 
2

4
apG ABπ ε

λ
= , (18.49) 

gives the relation between A, the gain G, and the aperture efficiency apε : 

 2
2

4 1 8 ( )
2 3ap

A a aG A b bπ ε
λ

 −
= + + 

 
, (18.50) 

 
2 2 4

4 3
2 2

3 3 0
8 32ap ap

bG GA aA Aλ λ
πε π ε

⇒ − + − = . (18.51) 

Equation (18.51) is the optimum pyramidal horn design equation. The optimum-
gain value of 0.51apε =  is usually used, which makes the equation a fourth-order 
polynomial equation in A. Its roots can be found analytically (which is not 
particularly easy) and numerically. In a numerical solution, the first guess is 
usually set at (0) 0.45A Gλ= . Once A is found, B can be computed from (18.48) 
and E HR R=  is computed from (18.47). 

Sometimes, an optimal horn is desired for a known axial length R0. In this 
case, there is no need for nonlinear-equation solution. The design procedure 
follows the steps: (a) find A from (18.24), (b) find B from (18.37), and (c) 
calculate the gain G using (18.49) where 0.51apε = . 

Horn antennas operate well over a bandwidth of 50%. However, gain 
performance is optimal only at a given frequency. To understand better the 
frequency dependence of the directivity and the aperture efficiency, the plot of 
these curves for an X-band (8.2 GHz to 12.4 GHz) horn fed by WR90 waveguide 
is given below ( 0.9a =  in. = 2.286 cm and 0.4b =  in. = 1.016 cm). 
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[Stutzman&Thiele, Antenna Theory and Design] 

 
 
The gain increases with frequency, which is typical for aperture antennas. 
However, the curve shows saturation at higher frequencies. This is due to the 
decrease of the aperture efficiency, which is a result of an increased phase 
difference in the field distribution at the aperture. 
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The pattern of a “large” pyramidal horn ( 10.525f =  GHz, feed is waveguide 
WR90): 
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Comparison of the E-plane patterns of a waveguide open end, “small” pyramidal 
horn and “large” pyramidal horn: 

 
 
 
Note the multiple side lobes and the significant back lobe. They are due to 

diffraction at the horn edges, which are perpendicular to the E field. To reduce 
edge diffraction, enhancements are proposed for horn antennas such as 

• corrugated horns 
• aperture-matched horns 

The corrugated horns achieve tapering of the E field in the vertical direction, 
thus, reducing the side-lobes and the diffraction from the top and bottom edges. 
The overall main beam becomes smooth and nearly rotationally symmetrical 
(esp. for A B≈ ). This is important when the horn is used as a feed to a reflector 
antenna. 
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Comparison of the H-plane patterns of a waveguide open end, “small” pyramidal 
horn and “large” pyramidal horn: 
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2 Circular apertures 
2.1 A uniform circular aperture 

The uniform circular aperture is approximated by a circular opening in a 
ground plane illuminated by a uniform plane wave normally incident from 
behind. 
 

x

y

z

E
a

 
 
The field distribution is described as 
 0ˆ ,a E aρ′= ≤E x . (18.52) 

The radiation integral is 

 ˆ
0

a

E j
x

S

I E e dsβ ′⋅ ′= ∫∫ r r . (18.53) 

The integration point is at 
 ˆ ˆcos sinρ ϕ ρ ϕ′ ′ ′ ′ ′= +r x y . (18.54) 

In (18.54), cylindrical coordinates are used, therefore, 
 ˆ sin (cos cos sin sin ) sin cos( ) .ρ θ ϕ ϕ ϕ ϕ ρ θ ϕ ϕ′ ′ ′ ′ ′ ′⋅ = + = −r r  (18.55) 

Hence, (18.53) becomes 

 
2

sin cos( )
0 0 0

0 0 0

2 ( sin )
a a

E j
xI E e d d E J d

π
βρ θ ϕ ϕ ϕ ρ ρ π ρ βρ θ ρ′ ′−

 
′ ′ ′ ′ ′ ′= = 

  
∫ ∫ ∫ . (18.56) 

Here, 0J  is the Bessel function of the first kind of order zero. Applying the 
identity 
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 0 1( ) ( )xJ x dx xJ x=∫  (18.57) 

to (18.56) leads to 

 0 12 ( sin )
sin

E
x

aI E J aπ β θ
β θ

= . (18.58) 

Note that in this case the equivalent magnetic current formulation of the 
equivalence principle is used [see Lecture 17]. The far field is obtained as 

 
( )
( ) 12

0

ˆ ˆcos cos sin
2

2 ( sin )ˆ ˆcos cos sin .
2 sin

j r
E
x

j r

ej I
r

e J aj E a
r a

β

β

ϕ θ ϕ β
π

β θϕ θ ϕ β π
π β θ

= − =

= −

E θ φ

θ φ
 (18.59) 

Principal-plane patterns 

E-plane ( 0ϕ = ):  12 ( sin )( )
sin

J aE
aθ
β θθ

β θ
=                                                   (18.60) 

 

H-plane ( 90ϕ = °): 12 ( sin )( ) cos
sin

J aE
aϕ
β θθ θ

β θ
= ⋅                                      (18.61) 

 
The 3-D amplitude pattern: 

 12 2

( )

2 ( sin )( , ) 1 sin sin
sin

f

J aE
a

θ

β θθ ϕ θ ϕ
β θ

= − ⋅


 (18.62) 

 
The larger the aperture, the less significant the cosθ  factor is in (18.61) because 
the main beam in the 0θ =  direction is very narrow and in this small solid angle 
cos 1θ ≈ . Thus, the 3-D pattern of a large circular aperture features a fairly 
symmetrical beam. 
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Example plot of the principal-plane patterns for 3a λ= : 

 
 

The half-power angle for the ( )f θ  factor is obtained at sin 1.6aβ θ = . So, the 
HPBW for large apertures (a λ ) is given by 

 1/2
1.6 1.62 2arcsin 2 58.4

2
HPBW

a a a
λθ

β β
 

= ≈ = 
 

 , deg. (18.63) 

For example, if the diameter of the aperture is 2 10a λ= , then 5.84HPBW = °. 
The side-lobe level of any uniform circular aperture is 0.1332 (-17.5 dB). 
Any uniform aperture has unity taper aperture efficiency, and its directivity 

can be found directly in terms of its physical area, 

 2
2 2

4 4
u pD A aπ π π

λ λ
= = . (18.64) 
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2.2 Tapered circular apertures 
Many practical circular aperture antennas can be approximated as radially 

symmetric apertures with field amplitude distribution, which is tapered from the 
center toward the aperture edge. Then, the radiation integral (18.56) has a more 
general form: 

 0 0
0

2 ( ) ( sin )
a

E
xI E J dπ ρ ρ βρ θ ρ′ ′ ′ ′= ∫ . (18.65) 

In (18.65), we still assume that the field has axial symmetry, i.e., it does not 
depend on ϕ′ . Often used approximation is the parabolic taper of order n: 

 
2

0( ) 1
n

aE E
a
ρρ

 ′ ′ = −  
   

 (18.66) 

where E0 is a constant. This is substituted in (18.65) to calculate the respective 
component of the radiation integral: 

 
2

0 0
0

( ) 2 1 ( sin )
na

E
xI E J d

a
ρθ π ρ βρ θ ρ

 ′  ′ ′ ′= −  
   

∫ . (18.67) 

The following relation is used to solve (18.67): 

 
1

2
0 11

0

2 !(1 ) ( ) ( )
n

n
nn

nx xJ bx dx J b
b ++

− =∫ . (18.68) 

In our case, /x aρ′=  and sinb aβ θ= . Then, ( )E
xI θ  reduces to  

 
2

0( ) ( , )
1

E
x

aI E f n
n
πθ θ=
+

, (18.69) 

where 

 
( )

1
1

1
2 ( 1)! ( sin )( , )

sin

n
n

n
n J af n

a
β θθ

β θ

+
+

+

+
=  (18.70) 

is the normalized pattern (neglecting the angular factors such as cosϕ  and 
cos sinθ ϕ ). 

The aperture taper efficiency is calculated to be 
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2

2
2

1
1

2 (1 ) (1 )
1 2 1

t

CC
n

C C CC
n n

ε

− + + =
− −+ +
+ +

. (18.71) 

Here, C denotes the pedestal height. The pedestal height is the edge field 
illumination relative to the illumination at the center. 

The properties of several common tapers are given in the tables below. The 
parabolic taper ( 1n = ) provides lower side lobes in comparison with the uniform 
distribution ( 0n = ) but it has a broader main beam. There is always a trade-off 
between low side-lobe levels and high directivity (small HPBW). More or less 
optimal solution is provided by the parabolic-on-pedestal aperture distribution. 
Moreover, this distribution approximates very closely the real case of circular 
reflector antennas, where the feed antenna pattern is intercepted by the reflector 
only out to the reflector rim. 

 

 
[Stutzman&Thiele] 
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[Stutzman&Thiele] 
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LECTURE 19:  Reflector Antennas 
 
1. Introduction 

High-gain antennas are required for long-distance radio communications 
(radio-relay links and satellite links), high-resolution radars, radio-astronomy, 
etc. Reflector systems are probably the most widely used high-gain antennas. 
They can easily achieve gains of above 30 dB for microwave and higher 
frequencies. Reflector antennas operate on principles known long ago from 
geometrical optics (GO). The first RF reflector system was made by Hertz back 
in 1888 (a cylindrical reflector fed by a dipole). However, the art of accurately 
designing such antenna systems was developed mainly during the days of WW2 
when numerous radar applications evolved. 
 

18.3 M INTELSAT EARTH STATION (ANT BOSCH TELECOM), DUAL 
REFLECTOR 
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AIRCRAFT RADAR 

 
RADIO RELAY TOWER 
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FEED-HORN IS IN FOCAL POINT 

 
 
 

CONICAL HORN PRIMARY FEED 
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The simplest reflector antenna consists of two components: a reflecting 
surface and a much smaller feed antenna at the reflector’s focal point. 
Constructions that are more complex involve a secondary reflector (a 
subreflector) at the focal point, which is illuminated by a primary feed. These are 
called dual-reflector antennas. The most common main reflector is the parabolic 
one. Other common reflectors are: cylindrical, corner, and spherical. 
 
2. Principles of parabolic reflectors 

 
[Stutzman&Thiele] 

 
A paraboloidal surface is described by the equation (see plot b) 

 2 4 ( ),fF F z aρ ρ′ ′= − ≤ . (19.1) 

Here, ρ′  is the distance from a point A to the focal point O, where A is the 
projection of the point R on the reflector surface onto the axis-orthogonal plane 
(the aperture plane) at the focal point. For a given displacement ρ′  from the axis 
of the reflector, the point R on the reflector surface is a distance fr  away from 
the focal point O. The position of R can be defined either by ( , )fzρ′ , which is a 
rectangular pair of coordinates, or by ( , )f fr θ , which is a polar pair of 
coordinates. A relation between ( , )f fr θ  and F is readily found from (19.1): 
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2

2
1 cos cos ( / 2)f

f f

F Fr
θ θ

= =
+

. (19.2) 

This is the equation of the paraboloidal surface in polar coordinates. Other 
relations to be used later are: 

 
2 sin

sin 2 tan
1 cos 2

f f
f f

f

F
r F

θ θ
ρ θ

θ
 ′ = = =  +  

. (19.3) 

The axisymmetric (rotationally symmetric) paraboloidal reflector is entirely 
defined by the respective parabolic line, i.e., by two basic parameters: the 
diameter D and the focal length F (see plot b). Often, the parabola is specified in 
terms of D and the ratio F/D. When F/D approaches infinity, the reflector 
becomes flat. Some parabolic curves are shown below. When / 0.25F D = , the 
focal point lies in the plane passing through the reflector’s rim. 

 
The angle from the feed (focal) point to the reflector’s rim is related to /F D  as 
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 0
12arctan

4( / )F D
θ

 
=  

 
. (19.4) 

The focal distance F of a given reflector can be calculated after measuring its 
diameter D and its height 0H  (see plot b): 

 
2

016
DF
H

= . (19.5) 

Eq. (19.5) is found by solving (19.1) with / 2Dρ′ =  and 0fz F H= − . For 
example, if / 1 / 4F D = , then 0 0/ 4H D H F= ⇒ = , i.e., the focal point is on 
the reflector’s rim plane. 

The reflector design problem aims at matching the feed antenna pattern to the 
reflector. Usually, the feed pattern must be at about a –10 dB level in the direction 
of the rim, i.e. 0( ) 10fF θ θ= = −  dB (0.316 of the normalized amplitude pattern).  

The geometry of the paraboloidal reflector has two valuable features: 
• All rays leaving the focal point O are collimated along the reflector’s axis 

after reflection. 
• All overall ray path lengths (from the focal point to the reflector and on to 

the aperture plane) are the same and equal to 2F . 
The above properties are proven by the GO methods, therefore, they are true only 
if the following conditions hold: 

• The radius of the curvature of the reflector is large compared to the 
wavelength and the local region around each reflection point can be treated 
as planar. 

• The radius of the curvature of the incoming wave from the feed is large and 
can be treated locally at the reflection point as a plane wave. 

• The reflector is a perfect conductor, i.e., 1Γ = − . 
The collimating property of the parabolic reflector is easily established after 

finding the unit normal of the parabola, 

 ˆ p

p

C
C

∇
=
∇

n . (19.6) 

Here, 
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 ( )2cos / 2 0p f fC F r θ= − =  (19.7) 

is the parabolic curve equation [see (19.2)]. After applying the ∇  operator in 
spherical coordinates, pC∇  is obtained as 

 2 ˆˆ cos cos sin
2 2 2
f f f

p f fC θ θ θ    ∇ = − + ⋅     
    

r θ , (19.8) 

and, therefore, 

 ˆˆ ˆ cos sin
2 2
f f

f f
θ θ

= − +n r θ . (19.9) 

The angle between n̂  and the incident ray is 

 ˆ ˆcos cos
2
f

i f
θ

α  = − ⋅ =  
 

r n . (19.10) 

According to Snell’s law, i rα α= . It is easy to show that this is fulfilled only if 
the ray is reflected in the z-direction: 

ˆ
ˆ

ˆ ˆˆ ˆ ˆˆcos ( cos sin ) cos sin
2 2

cos cos sin sin cos  .
2 2 2

f f
r f f f f f f

f f f
f f

θ θ
α θ θ

θ θ θ
θ θ

   = ⋅ = − + ⋅ − + =    
   

    = ⋅ + ⋅ =     
    

z
n

z n r θ r θ




 (19.11) 

Thus, we proved that for any angle of incidence fθ  the reflected wave is z-
directed. 

The equal-path-length property follows from (19.2). The total path-length L 
for a ray reflected at the point R is 

 cos (1 cos ) 2f f f f fL OR RA r r r Fθ θ= + = + = + = . (19.12) 

Notice that L is a constant equal to 2F regardless of the angle of incidence. 
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3. Aperture distribution analysis via GO (aperture integration) 
There are two basic techniques for the analysis of the radiation characteristics 

of reflectors. One is called the current distribution method, which is a physical 
optics (PO) approximation. It assumes that the incident field from the feed is 
known, and that it excites surface currents on the reflector’s surface as 

ˆ2 i
s = ×J n H . This current density is then integrated to yield the far-zone field. It 

is obvious that the PO method assumes that the reflector has a perfectly 
conducting surface and makes use of image theory. Besides, it assumes that the 
incident wave coming from the primary feed is a locally plane far-zone field. 

With the aperture distribution method, the field is first found over a plane, 
which is normal to the reflector’s axis, and lies at its focal point (the antenna 
aperture). GO (ray tracing) is used to do that. Equivalent sources are formed over 
the aperture plane. It is assumed that the equivalent sources are zero outside the 
reflector’s aperture. We first consider this method. 

The field distribution at the aperture of the reflector antenna is necessary in 
order to calculate the far-field pattern, directivity, etc. Since all rays from the 
feed travel the same physical distance to the aperture, the aperture distribution is 
of uniform phase. However, there is a non-uniform amplitude distribution. This 
is because the power density of the rays leaving the feed falls off as 21 / fr . After 
the reflection, there is practically no spreading loss since the rays are collimated 
(parallel). The aperture field-amplitude distribution varies as 1 / fr . This is 
explained in detail below. 
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GO assumes that the power density in free space follows straight paths. 

Applied to the power transmitted by the feed, the power in a conical wedge stays 
confined within as it progresses along the cone’s axis. Consider a conical wedge 
of solid angle dΩ  whose cross-section angle is fdθ . It confines power, which 
after being reflected from the paraboloid, arrives at the aperture plane confined 
within a cylindrical ring of thickness dρ′  and area 2dA dπρ ρ′ ′= . 

Let us assume that the feed is isotropic and it has radiation intensity 
/ 4tU π= Π , where tΠ  is the transmitted power. The power confined in the 

conical wedge is ( / 4 )td Ud dπΠ = Ω = Π Ω . This power reaches the aperture 
with a density of 

 ( )
4

t
a

d dP
dA dA

ρ
π

Π Π Ω′ = = . (19.13) 

The generic relation between the solid angle increment and the directional-angle 
increments is 
 sind d dθ θ ϕΩ = , (19.14) 

(see Lecture 4). In this case, the structure is rotationally symmetric, so we define 
the solid angle of the conical wedge as 

 

 

 
 

 

z 
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2

0
(sin ) 2 sinf f f f fd d d d

π
θ θ ϕ π θ θΩ = =∫ . (19.15) 

The substitution of (19.15) and 2dA dπρ ρ′ ′=  in (19.13) produces 

 
2 sin sin

( )
4 2 4

f f f ft t
a

d d
P

d d
π θ θ θ θ

ρ
π πρ ρ π ρ ρ
Π Π′ = =

′ ′ ′ ′
. (19.16) 

From (19.3), it is seen that 

 
2cos ( / 2) f

f f

d F r
d
ρ
θ θ
′
= = , (19.17) 

 1f

f

d
d r
θ
ρ

⇒ =
′

, (19.18) 

 
2

sin 1 1( )
4 sin 4

ft t
a

f f f f
P

r r r
ρ

θ
ρ

π θ π
′

Π Π′⇒ = =


. (19.19) 

Equation (19.19) shows the spherical nature of the feed radiation, and it is 
referred to as spherical spreading loss. Since a aE P∝ , 

 1
a

f
E

r
∝ . (19.20) 

If the primary feed is not isotropic, the effect of its normalized field pattern 
( , )f f fF θ ϕ  is easily incorporated in (19.20) as 

 
( , )f f f

a
f

F
E

r
θ ϕ

∝ . (19.21) 

Thus, we can conclude that the field at the aperture is described as 

 2 ( , )
( , ) f f fj F

a f f m
f

F
E E e

r
β θ ϕ

θ ϕ −= ⋅ . (19.22) 

The coordinates ( , )ρ ϕ′ ′  are more suitable for the description of the aperture field. 
Obviously, fϕ ϕ′ ≡ . As for fr  and fθ , they are transformed as 

 
2 24
4f

Fr
F
ρ′+

= , (19.23) 
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 2arctan
2f F
ρθ
′

= . (19.24) 

The last thing to be determined is the polarization of the aperture field 
provided the polarization of the primary-feed field is known. The law of 
reflection at a perfectly conducting wall states that n̂  bisects the incident and the 
reflected rays, and that the total electric field has zero tangential component at 
the surface, i.e., 
 0i r

τ τ+ =E E , (19.25) 
and 
 ˆ ˆ ˆ ˆ2( )  2( ) .r i i r i i+ = ⋅ ⇒ = ⋅ −E E n E n E n E n E  (19.26) 

 

iE rE
n̂

 
 

Since | | | |i r=E E , from (19.26), it follows that 
 ˆ ˆ ˆ ˆ ˆ2( )r i i= ⋅ −e n e n e . (19.27) 

Here, ˆ ie  is the polarization vector of the incident field, and ˆ re  is the polarization 
vector of the reflected field. 

The aperture field distribution is fully defined by (19.22) and (19.27). The 
radiation integral over the electric field can now be found. For example, a circular 
paraboloid would have a circular aperture (see Lecture 18), and the radiation 
integral becomes 

 [ ]
2 /2

sin cos( )

0 0

( , )ˆ ˆˆ ˆ ˆ ˆ( ) ( )
D

fE j
r r m

f

F
E e d d

r

π
βρ θ ϕ ϕρ ϕ

ρ ρ ϕ′ ′−
′ ′

′ ′ ′= ⋅ + ⋅ ∫ ∫I e x x e y y . (19.28) 

In the above considerations, it was assumed that the aperture field has uniform 
phase distribution. This is true if the feed is located at the focal point. However, 
more sophisticated designs often use an offset feed. In such cases, the PO method 
(i.e., the current distribution method) is preferred. 
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4. The current distribution (PO) method (surface integration) 
The basic description of this approach and its assumptions were already given 

in the previous section. Once the induced surface currents sJ  are found on the 
reflector’s surface, the magnetic vector potential A and the far-zone field can be 
calculated. In practice, the electric far field is calculated directly from sJ  by 

 [ ]
ˆ,

ˆˆ ˆ( )
4

r s

j r
far j

s s
S

ej e ds
r

β
βωµ

π
⊥

−
′⋅ ′= − − ⋅∫∫

r

r r

J

E J J r r


. (19.29) 

Equation (19.29) follows directly from the relation between the far-zone electric 
field and the magnetic vector potential A, 
 far jω ⊥= −E A , (19.30) 

which can written formally as 

 ˆˆ ˆ ˆ( ) ( )far j j j A Aθ ϕω ω ω= − − − ⋅ = − +E A A r r θ φ . (19.31) 

This approach is also known as Rusch’s method. The integral in (19.29) is usually 
evaluated numerically by computer codes in order to render the approach 
versatile with respect to any aperture shape and any aperture current distribution. 

In conclusion, we note that both the GO and the PO methods produce very 
accurate results for the main beam and first side lobe. The pattern far out the main 
beam can be accurately predicted by including diffraction effects (scattering) 
from the reflector’s rim. This is done by augmenting GO with the use of 
geometrical theory of diffraction (GTD) (J.B. Keller, 1962), or by augmenting 
the PO method with the physical theory of diffraction (PTD) (P.I. Ufimtsev, 
1957). 
 
5. The focus-fed axisymmetric parabolic reflector antenna 

This is a popular reflector antenna, whose analysis is used here to illustrate 
the general approach to the analysis of any reflector antenna. Consider a linearly 
polarized feed, with the E field along the x-axis. As before, the reflector’s axis is 
along z. Let us also assume that the field of the feed is represented by 

 ˆ ˆ( , ) ( )cos ( )sin
fj r

f f f m f E f f f H f f
f

eE C C
r

β
θ ϕ θ ϕ θ ϕ

−
 ≈ − E θ φ . (19.32) 
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Here, ( )E fC θ  and ( )H fC θ  denote the principal-plane patterns. The expression 
in (19.32) is a common approximation of a 3-D pattern of an x-polarized antenna 
by knowing only the two principal-plane 2-D patterns. This approximation is 
actually very accurate for aperture-type antennas because it directly follows from 
the expression of the far-zone fields in terms of the radiation integrals (see 
Lecture 17, Section 4): 

 [ sicos n cos ( cos sin )]
4

j r
E H H
y

E
y xx

eE j I I I
r

I
β

θ β ϕ ϕϕ η θ ϕ
π

−
= + + − , (19.33) 

 ( )[ ( cos sin ) cos c sinos
4

j r
H H E
x y y

E
xIeE j I I I

r

β

ϕ β η ϕ ϕ θ ϕ
π

ϕ
−

= + + −- . (19.34) 

The aperture field is now derived in terms of x- and y-components. To do this, 
the GO method of Section 2 is used. An incident field of ˆˆ i f=e θ  polarization 
produces an aperture reflected field of the following polarization [see (19.9) and 
(19.27)]: 

 ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2( ) 2sin 2sin cos sin
2 2 2 2
f f f f

r f f f f f f
θ θ θ θ θ     = ⋅ − = − = ⋅ − + −     

     
e n θ n θ n θ r θ θ  

 2ˆ ˆˆ ˆ ˆ2sin cos 1 2sin sin cos
2 2 2
f f f

r f f f f f f
θ θ θ θ

θ θ   ⇒ =− ⋅ − − =− −   
   

e r θ r θ . (19.35) 

Similarly, an incident field of ˆ ˆi f=e φ  polarization produces an aperture reflected 
field of the following polarization: 

 ˆ ˆr f
ϕ = −e φ . (19.36) 

Transforming (19.35) and (19.36) to rectangular (x and y) coordinates at the 
aperture plane gives: 

 
ˆ ˆ ˆcos sin ,

ˆ ˆ ˆsin cos .
r f f

r f f

θ

ϕ

ϕ ϕ

ϕ ϕ

= − −

= + −

e x y

e x y
 (19.37) 

Superimposing the contributions of the ˆ fθ  and ˆ fφ  components of the field in 
(19.32) to the aperture field x and y components produces 
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{

}

2
2 2ˆ( , ) ( )cos ( )sin

ˆ                           ( ) ( ) sin cos .

j F
a f f m E f f H f f

f

E f H f f f

eE C C
r

C C

β
θ ϕ θ ϕ θ ϕ

θ θ ϕ ϕ

−
= × − +  

− − ⋅  

E x

y
 (19.38) 

In (19.38), the magnitude and phase of the vector are expressed as in (19.22). 
Note that a y-component appears in the aperture field, despite the fact that the 
feed generates only xE  field. This is called cross-polarization. If the feed has 
rotationally symmetric pattern, i.e. ( ) ( )E f H fC Cθ θ= , there is no cross-
polarization. From equation (19.38), it is also obvious that cross-polarization is 
zero at 0fϕ =   (E-plane) and at 90fϕ =   (H-plane). Cross-polarization is 
maximum at 45 ,  135fϕ =   . Cross-polarization in the aperture means cross-
polarization of the far field, too. Cross-polarization is usually unwanted because 
it leads to polarization losses depending on the transmitting and receiving 
antennas. 

It is instructive to examine (19.38) for a specific simple example: reflector 
antenna fed by a very short x-polarized electric dipole. Its principal-plane 
patterns are ( ) cosE f fC θ θ=  and ( ) 1H fC θ = . Therefore, it generates the 
following aperture field: 

2
2 2ˆ ˆ(cos cos sin ) (cos 1)sin cos

j F
a m f f f f f f

f

eE
r

β
θ ϕ ϕ θ ϕ ϕ

−
= − + − − E x y .(19.39) 

An approximate plot of the aperture field of (19.39) is shown below. 
x

y

E-plane

H-plane
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We also note that cross-polarization decreases as the ratio /F D  increases. 
This follows from (19.4), which gives the largest feed angle max 0( )fθ θ= . As 

/F D  increases, 0θ  decreases, which makes the cross-polarization term in 
(19.39) smaller. Unfortunately, large /F D  ratios are not very practical. 

Finally, we add that a similar analysis for a y-polarized small dipole feed leads 
to an expression for the aperture field similar to the one in (19.39) but with a 
polarization vector 

 
2 2

2 2

ˆ ˆsin cos (1 cos ) (cos sin cos )ˆ
1 sin sin

f f f f f f
a

f f

ϕ ϕ θ θ ϕ ϕ
θ ϕ

− − +
=

−

x y
e . (19.40) 

An example is presented in W.L. Stutzman, G. Thiele, Antenna Theory and 
Design, of an axisymmetric parabolic reflector with diameter 100D λ=  and 

/ 0.5F D = , fed by a half-wavelength dipole located at the focus. 
 

CO-POLARIZATION 

 
[Stutzman&Thiele] 
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CROSS-POLARIZATION 

 
[Stutzman&Thiele] 

 
The results above are obtained using commercial software (GRASP) using PO 
methods (surface current integration). 

Cross-polarization of reflectors is measured as the ratio of the peak cross-
polarization far-field component to the peak co-polarization far field. For 
example, the above graph shows a cross-polarization level of XPOL=−26.3 dB. 
 
6. Offset parabolic reflectors 

One disadvantage of the focus-fed reflector antennas is that part of the 
aperture is blocked by the feed. To avoid this, offset-feed reflectors are 
developed, where the feed antenna is away from the reflector’s aperture. The 
reflectors are made as a portion of the so-called parent reflector surface. The 
price to pay is the increase of cross-polarization. That is why such reflectors are 
usually fed with primary feeds of rotationally symmetrical patterns, where 

E HC C≈ . This effectively eliminates cross-polarization. 

45 ,135ϕ =  
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[Stutzman&Thiele] 

 
The analysis techniques given in the previous sections are general and can be 

applied to these reflectors, too. Generally, the PO method (surface currents 
integration) is believed to yield better accuracy. Both, the PO and the GO 
methods are accurate only at the main beam and the first couple of side-lobes. 

Offset reflectors are popular for antenna systems producing contoured 
beams. A contoured beam is a beam, the cross-section (or footprint) of which has 
a shape that conforms to a desired Earth region such as a country. To obtain such 
beams, multiple primary feeds (usually horns) are needed to illuminate the 
reflector at different angles. Such multiple-antenna feeds may constitute a 
significant obstacle at the antenna aperture and offset reflectors are indeed 
necessary. 
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[Stutzman&Thiele] 

 
7. Dual-reflector antennas 

The dual-reflector antenna consists of two reflectors and a feed antenna. The 
feed is conveniently located at the apex of the main reflector. This makes the 
system mechanically robust, the transmission lines are shorter and easier to 
construct (especially in the case of waveguides). The virtual focal point F is the 
point from which the rays transmitted toward the reflector appear to emanate 
after reflection from the subreflector. 

The most popular dual reflector is the axisymmetric Cassegrain antenna. The 
main reflector is parabolic and the subreflector is hyperbolic (convex). 

A second form of the dual reflector is the Gregorian reflector. It has a concave 
elliptic subreflector. The Gregorian subreflector is more distant from the main 
reflector and, thus, it requires more support.  

Dual-reflector antennas for Earth terminals have another important advantage 
beside the location of the main feed. They have almost no spillover toward the 
noisy ground, as do the single-feed reflector antennas. Their spillover (if any) is 
directed toward the much less noisy sky region. Both, the Cassegrain and the 
Gregorian reflector systems have their origins in optical telescopes and are 
named after their inventors. 

The subreflectors are rotationally symmetric surfaces obtained from the 
curves shown below (a hyperbola and an ellipse). 
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[Stutzman&Thiele] 

 

The subreflector is defined by its diameter sD  and its eccentricity e . The shape 
(or curvature) is controlled by the eccentricity: 

 
1, hyperbola

< 1, ellipse
ce
a

>
= 


 (19.41) 

Other special cases include: 
• e = ∞ , straight line (plane) 
• 0e = , circle (sphere) 
• 1e = , parabola 

Both, the ellipse and the hyperbola, are described by the equation 

 
2 2

2 2 2
1s sz x

a c a
− =

−
. (19.42) 

The function of a hyperbolic subreflector is to convert the incoming wave 
from a feed antenna located at the focal point F ′  to a spherical wave front w that 
appears to originate from the virtual focal point F. This means that the optical 
path from F ′  to w must be constant with respect to the angle of incidence: 

 


F V
F R F V VB c a BRA V

′

′ ′+ = + = + + . (19.43) 
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Since 

 FA FRRA FB FR= − = − , (19.44) 
( FA FB=  because the reflected wave must be spherical) 

 ( ) ( ) 2F R FR c a FB VB c a c a a′⇒ − = + − − = + − − = . (19.45) 

Note: Another definition of a hyperbola is: a hyperbola is the locus of a point 
that moves so that the difference of the distances from its two focal points, 
F R FR′ − , is equal to a constant, 2a . In contrast, an ellipse is defines as the locus 
traced by a point moving in a plane so that the sum of its distances from its two 
foci is constant. 

 
The dual axisymmetric Cassegrain reflector can be modeled as a single 

equivalent parabolic reflector as shown below. 
 

 
[Stutzman&Thiele] 

 
The equivalent parabola has the same diameter, eD D= , but its focal length is 
longer than that of the main reflector: 
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 1
1e

eF F M F
e
+ = ⋅ = ⋅ − 

. (19.46) 

Here, ( 1) / ( 1)M e e= + −  is called magnification. 
The increased equivalent focal length has several advantages: 
• less cross-polarization; 
• less spherical-spread loss at the reflector’s rim, and therefore, improved 

aperture efficiency. 
The synthesis of dual-reflector systems is an advanced topic. Many factors 

are taken into account when shaped reflectors are designed for improved aperture 
efficiency. These are: minimized spillover, less phase error, improved amplitude 
distribution in the reflector’s aperture. 
 
8. Gain of reflector antennas 

The maximum achievable gain for an aperture antenna is 

 max 2

4
u pG D Aπ

λ
= = . (19.47) 

This gain is possible only if the following is true: uniform amplitude and phase 
distribution, no spillover, no ohmic losses. In practice, these conditions are not 
achievable, and the effective antenna aperture is less than its physical aperture: 

 
2

4
ap u ap pG D Aπε ε

λ
= = , (19.48) 

where 1apε ≤  is the aperture efficiency. The aperture efficiency is expressed as 
a product of sub-efficiencies: 
 ap r t s aeε ε ε ε= , (19.49) 

where: 
re  is the radiation efficiency (loss), 
tε  is the aperture taper efficiency, 
sε  is the spillover efficiency, and 
aε  is the achievement efficiency. 

The taper efficiency can be found using the directivity expression for aperture 
antennas (see Lecture 17, Section 5): 
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2

0 2 2

4
| |
A

A

aS

aS

ds
D

ds
π
λ

′
=

′

∫∫
∫∫

E

E
. (19.50) 

 

2

2| |
A

A

aS
eff

aS

ds
A

ds

′
⇒ =

′

∫∫
∫∫

E

E
 (19.51) 

 

2

2

1
| |
A

A

aSeff
t

p p aS

dsA
A A ds

ε
′

⇒ = =
′

∫∫
∫∫

E

E
. (19.52) 

Expression (19.52) can be written directly in terms of the known feed antenna 
pattern. If the aperture is circular, then 

 

22

0 0
22

2

0 0

( , )
1

| ( , ) |

a

a

t a

a

d d

a
d d

π

π

ρ ϕ ρ ρ ϕ

ε
π

ρ ϕ ρ ρ ϕ

′ ′ ′ ′ ′

=
′ ′ ′ ′ ′

∫ ∫

∫ ∫

E

E
. (19.53) 

Substituting sin 2 tan( / 2)f f fr Fρ θ θ′ = =  and / f fd d rρ θ′ =  in (19.53) yields 

 

22

2
0 0
22

2

0 0

( , ) tan
24

| ( , ) | sin

o

o

f
f f f

t

f f f f

d d
F
a

d d

θπ

θπ

θ
θ ϕ θ ϕ

ε
π

θ ϕ θ θ ϕ

 ′ ′ 
 

=
′ ′

∫ ∫

∫ ∫

F

F
. (19.54) 

All that is needed to calculate the taper efficiency is the feed pattern ( , )f fθ ϕ′F . 
If the feed pattern extends beyond the reflector’s rim, certain amount of power 

is not redirected by the reflector, i.e., it is lost. This power-loss is referred to as 
spillover. The spillover efficiency measures that portion of the feed pattern, 
which is intercepted by the reflector relative to the total feed power: 
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0 0
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f f f f

s

f f f f
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d d
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∫ ∫
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F

F
. (19.55) 

The reflector design problem includes a trade-off between aperture taper and 
spillover when the feed antenna is chosen. Taper and spillover efficiencies are 
combined to form the so-called illumination efficiency i t sε ε ε= . Multiplying 
(19.54) and (19.55), and using 02 tan( / 2)a F θ=  yields 

 
22

02
2

0 0

cot ( , ) tan
4 2 2

o
f f

i f f f
D

d d
θπ θθε θ ϕ θ ϕ

π
′ ′= ∫ ∫ F . (19.56) 

Here, 

 2
2

0 0

4

| ( , ) | sin
f

f f f f

D
d d

π π
π

θ ϕ θ θ ϕ
=

′ ′∫ ∫ F
, (19.57) 

is the directivity of the feed antenna. An ideal feed antenna pattern would 
compensate for the spherical spreading loss by increasing the field strength as 

fθ  increases, and then would abruptly fall to zero in the direction of the 
reflector’s rim in order to avoid spillover: 

 

2

2

cos ( / 2) ,
cos ( / 2)( , )
0,

o
f o

ff f

f o

F
θ θ θ
θθ ϕ

θ θ

 ≤′ = 
 >

 (19.58) 

This ideal feed is not realizable. For practical purposes, (19.56) has to be 
optimized with respect to the edge-illumination level. The function specified by 
(19.56) is well-behaved with a single maximum with respect to the edge-
illumination. 

The achievement efficiency aε  is an integral factor including losses due to: 
random surface error, cross-polarization loss, aperture blockage, reflector phase 
error (profile accuracy), feed phase error. 

A well-designed and well-made aperture antenna should have an overall 
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aperture efficiency of 0.65apε ≈  or more, where “more” is less likely. 
The gain of a reflector antenna also depends on phase errors, which 

theoretically should not exist but are often present in practice. Any departure of 
the phase over the virtual aperture from the uniform distribution leads to a 
significant decrease of the directivity. For paraboloidal antennas, phase errors 
result from: 

• displacement of the feed phase centre from the focal point; 
• deviation of the reflector surface from the paraboloidal shape, 

including surface roughness and other random deviations; 
• feed wave fronts are not exactly spherical. 

Simple expression has been derived1 to predict with reasonable accuracy the loss 
in directivity for rectangular and circular apertures when the peak value of the 
aperture phase deviations is known. Assuming that the maximum radiation is 
along the reflector’s axis, and assuming a maximum aperture phase deviation 
m, the ratio of the directivity without phase errors 0D  and the directivity with 
phase errors D is given by 

 
22

0
1

2
D m
D

 ≈ − 
 

. (19.59) 

The maximum phase deviation m is defined as 

 | | | | mφ φ φ∆ = − ≤ , (19.60) 

where φ  is the aperture’s phase function, and φ  is its average value. The aperture 
phase deviation should be kept below / 8π  if the gain is not to be affected much. 
Roughly, this translates into surface profile deviation from the ideal shape (e.g. 
paraboloid) of no more than /16λ . 

                                      
1 D.K. Cheng, “Effects of arbitrary phase errors on the gain and beamwidth characteristics of radiation pattern,” IRE Trans. AP, 
vol. AP-3, No. 3, pp. 145-147, July 1955. 
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LECTURE 20: MICROSTRIP ANTENNAS – PART I 
(Introduction. Construction and geometry. Feeding techniques. Substrate 
properties. Loss calculation.)     
 
1. Introduction 

Microstrip antennas (MSA) received considerable attention in the 1970’s, 
although the first designs and theoretical models appeared in the 1950’s. They 
are suitable for many mobile applications: handheld devices, aircraft, satellite, 
missile, etc. The MSA are low profile, mechanically robust, inexpensive to 
manufacture, compatible with MMIC designs and relatively light and compact. 
They are quite versatile in terms of resonant frequencies, polarization, pattern 
and impedance. They allow for additional tuning elements like pins or varactor 
diodes between the patch and the ground plane. 

Some of the limitations and disadvantages of the MSA are: 
• relatively low efficiency (due to dielectric and conductor losses) 
• low power 
• spurious feed radiation (surface waves, strips, etc.) 
• narrow frequency bandwidth (at most a couple of percent) 
• relatively high level of cross polarization radiation 

 
MSA are applicable in the GHz range (f > 0.5 GHz). For lower frequencies 

their dimensions become too large. 
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2. Construction and Geometry 
Generally the MSA are thin metallic patches of various shapes etched on 

dielectric substrates of thickness h, which usually is from 0.003λ0 to 0.05λ0. 
The substrate is usually grounded at the opposite side. 
 
 

 
 
 

The dimensions of the patch are usually in the range from λ0/3 to λ0/2. The 
dielectric constant of the substrate rε  is usually in the range from 2.2 to 12. 
The most common designs use relatively thick substrates with lower rε  
because they provide better efficiency and larger bandwidth. On the other 
hand, this implies larger dimensions of the antennas. The choice of the 
substrate is limited by the RF or microwave circuit coupled to the antenna, 
which has to be built on the same board. The microwave circuit together with 
the antenna is usually manufactured by photo-etching technology. 
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Types of microstrip radiators: 
(a) single radiating patches 

 

 
 

(b) single slot radiator 
 

 
 

The feeding microstrip line is beneath (etched on the other side of the substrate) 
– see dash-line. 
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(c) microstrip traveling wave antennas (MTWA) 
 

 
Comb MTWA 
 
 
 
 
Meander Line Type MTWA 
 
 
 
 
 
 
Rectangular Loop Type MTWA 
 
 
 
 
 
Franklin – Type MTWA 
 
 
 
 
 
 
 
 

 
The open end of the long TEM line is terminated in a matched resistive load. 
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(d) microstrip antenna arrays 
 

 
 
 

 



Nikolova 2016 6 

3. Feeding Methods 
1) Microstrip feed – easy to fabricate, simple to match by controlling the 

inset position and relatively simple to model. However, as the substrate 
thickness increases, surface waves and spurious feed radiation increase. 

 

 
 

2) Coaxial probe feed – easy to fabricate, low spurious radiation; difficult 
to model accurately; narrow bandwidth of impedance matching. 
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3) Aperture coupling (no contact), microstrip feed line and radiating patch 
are on both sides of the ground plane, the coupling aperture is in the 
ground plane – low spurious radiation, easy to model; difficult to match, 
narrow bandwidth. 

 

 
 

4)  Proximity coupling (no contact), microstrip feed line and radiating patch 
are on the same side of the ground plane – largest bandwidth (up to 13%), 
relatively simple to model, has low spurious radiation. 
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More examples of microstrip and coaxial probe feeds: 
 
 

STRIP FEEDS 

 

COAX FEEDS 
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4. Surface Waves 
Surface waves can be excited at the dielectric-to-air interface. They give 

rise to end-fire radiation. In addition, they can lead to unwanted coupling 
between array elements. The phase velocity of the surface waves is strongly 
dependent on the dielectric constant rε  and the thickness h of the substrate. 
The excitation of surface waves in a dielectric slab backed by a ground plane 
has been well studied (Collin, Field Theory of Guided Waves). The lowest-
order TM mode, TM0, has no cut-off frequency. The cut-off frequencies for 
the higher-order modes (TMn and TEn) are given by 

 ( ) , 1,2,
4 1

n
c

r

n cf n
h ε

⋅
= =

−
 , (1) 

where c is the speed of light in vacuum. The cut-off frequencies for the TEn 
modes are given by the odd n = 1, 3, 5,…, and the cut-off frequencies for the 
TMn modes are given by the even n. For the TE1 mode, the calculated values 
of (1)/ ch λ  are [ (1) (1)/c cc fλ = , (1)/ / (4 1)c rh nλ ε= − ]: 

a) 0.217 for duroid (εr = 2.32), 
b) 0.0833 for alumina (εr = 10). 

Thus, the lowest-order TE1 mode is excited at 41 GHz for 1.6 mm thick duroid 
substrate, and at about 39 GHz for 0.635 mm thick alumina substrate. The 
substrate thickness is chosen so that the ratio 0/h λ  is well below (1)/ ch λ  ( 0λ  
is the free-space wavelength at the operating frequency), i.e., [3] 

 
4 1u r

ch
f ε

<
−

, (2) 

where uf  is the highest frequency in the band of operation. Note that h should 
be chosen as high as possible under the constraint of (2), so that maximum 
radiation efficiency is achieved. Also, h has to conform to the commercially 
available substrates. Another practical formula for h is given in [2]: 

 0.3
2 u r

ch
fπ ε

≤ . (3) 

The TM0 mode has no cut-off frequency and is always present to some 
extent. The surface TM0 wave excitation becomes appreciable when h/λ > 0.09 
(εr ≅ 2.3) and when h/λ > 0.03 (εr ≅ 10). Generally, to suppress the TM0 mode, 
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the dielectric constant should be lower and the substrate height should be 
smaller. Unfortunately, decreasing rε  increases the antenna size, while 
decreasing h leads to smaller antenna efficiency and narrower frequency band. 
 
5. Criteria for Substrate Selection 
1) surface-wave excitation 
2) dispersion of the dielectric constant and loss tangent of the substrate 
3) copper loss 
4) anisotropy in the substrate 
5) effects of temperature, humidity, and aging 
6) mechanical requirements: conformability, machinability, solderability, 

weight, elasticity, etc. 
7) cost 

The first 3 factors are of special concern in the millimeter-wave range (f ≥  30 
GHz). 
 

ELECTRICAL PROPERTIES OF COMMONLY USED SUBSTRATE MATERIALS 
FOR MICROSTRIP ANTENNAS 

Material Dielectric 
Constant 

Loss 
Tangent 

Unreinforced PTFE, Cuflon 2.1 0.0004 
Reinforced PTFE, RT Duroid 5880 2.20 (1.5%) 0.0009 
Fused Quartz 3.78 0.0001 
96% Alumina 9.40 (5%) 0.0010 
99.5% Alumina 9.80 (5%) 0.0001 
Sapphire 9.4, 1.6 0.0001 
Semi-Insulating GaAs 12.9 0.0020 
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NON-ELECTRICAL PROPERTIES OF COMMONLY USED SUBSTRATE MATERIALS 
FOR MICROSTRIP ANTENNAS 

Properties PTFE Fused 
Quartz 

Alumina Sapphire GaAs 

temperature 
range (°C) 

-55 – 260 < +1100 < +1600 -24 – 370 -55 – 260 

Thermal 
conductivity 
(W/cm⋅K) 

0.0026 0.017 0.35 to 
0.37 0.42 0.46 

coefficient of 
thermal 
expansion 
(ppm/K) 

16.0 to 108.0 0.55 6.30 to 
6.40 6.00 5.70 

Temperature 
coefficient of 
dielectric 
constant 
(ppm/K) 

+350.0 to 
+480.0 +13.0 +136.0 +110 to 

+140 
- 

minimum 
thickness 
(mil) 

4 2 5 4 4 

Machinability Good Very 
poor 

Very 
poor Poor Poor 

Solderability Good Good Good Good Good 

Dimensional 
Stability 

Poor for 
unreinforced, 
very good for 
others 

Good Excellent Good Good 

Cost Very low High Low - Very high 
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6. Dispersion Effects in the Substrate 
The dependence of the dielectric constant rε  and the loss tangent on the 

frequency is referred to as frequency dispersion. For frequencies up to 100 
GHz (the typical range for printed antennas is < 30 GHz), the dispersion of rε  
is practically negligible. The losses, however, display noticeable changes with 
frequency. In general, the loss increases with frequency. 
 
7. Dielectric Loss and Copper Loss 

The loss in the feed lines and the patches themselves are usually computed 
with formulas, which were first derived for microstrip transmission lines, i.e., 
the patch is treated as a wide piece of a microstrip line. 

a) Dielectric loss (in dB per unit length, length is in the units used for 0λ ) 

 
0

( ) 1 tan27.3
( 1)( )
eff

eff

rr
d

rr

f

f

εε δα
ε λε

 − = ⋅ ⋅ ⋅
−

 (4) 

 
b) Copper loss (in dB per unit length) 

 

2

2
0

05

32
1.38 ,                                 for  1

32

0.667( )
6.1 10 ,   for 1

1.444

eff

s

c

s r

W
R Wh

hZ hW
h

W
R Z f W Wh

Wh h h
h

α

ε
−

  ′ −   ′    ⋅ ⋅ Λ ≤
  ′ +      = 
 ′ 
 ′  ′
 × ⋅ ⋅ + Λ ≥ ′  +
  

 (5) 
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In the above equations: 
 

• ( )effr fε  is the effective dielectric constant (generally, dispersive). 
Its quasi-static (low frequency) expression [2] is 

 

1/2

1/2 2

1 1 1 12 ,                               for / 1
2 2

(0)
1 1 1 12 0.04 1 ,   for 1

2 2

eff

r r

r
r r

h W h
W

h W W
W h h

ε ε

ε
ε ε

−

−

 + −  + ⋅ + >  
 

=   + −     + ⋅ + + − ≤          

 (6) 

Alternative expression for the quasi-static approximation of effrε  can 
be found in [5]. 
The quasi-static expressions need a dispersion correction for 
frequencies higher than 8 GHz. One possible correction is based on an 
empirical formula for the dispersive phase velocity in a microstrip line 
[5]. We first compute a normalized frequency (normalized with respect 
to the cut-off of the TE1 mode): 

 (1)
0

4 1r

c

f hf
f

ε
λ

−
= = . (7) 

Then, the dispersive phase velocity is calculated as 

 
2

2
0

(0)1
1(0)

eff

eff

r r
p

r

f
v

f
ε ε

ε ε

+
= ⋅

+
. (8) 

Finally, 
 2( ) ( / )effr pf c vε = . (9) 

For alternative formulas, refer to [5]. 

• Z0 is the characteristic impedance of the microstrip line (generally, 
dispersive): 
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 0

120
,     for 1

1.393 0.667ln 1.444

60 8ln 0.25 ,                   for 1

eff

eff

r

r

W
W W h
h hZ

h W W
W h h

π ε

ε


 ≥

  + + +  =  
   ⋅ + ≤ 

 

 (10) 

• Λ  is a constant dependent on the strip thickness t: 

 

1.25 1.25 4 11 1 ln ,  for 
2

1.25 1.25 2 11 1 ln ,      for 
2

h t W W
W W t h

h t t W
W W t h

π
π π π

π π π

   + + + ≤   ′    Λ = 
   + − + ≥   ′   

 (11) 

• W ′  is the effective strip width: 

 

1.25 4 ' 11 ln ,  for 
2'

1.25 2 ' 11 ln ,     for 
2

W t W W
h h t hW

h W t h W
h h t h

π
π π

π π

   + + ≤      = 
   + + ≥     

 (12) 

• sR′  is the effective surface resistance of the conductor: 

 
221 arctan 1.4s sR R

π δ

  ∆  ′ = +    
     

, Ω  (13) 

where /sR fπ µ σ=  is the high-frequency surface resistance of the 
conductor. sR  relates to the skin-depth δ  as 1( )sR δσ −= . For a uniform 
surface current distribution over a conducting rod of length l and 
perimeter of its cross-section P, the resultant resistance is 

 /hf sR R l P= ⋅ , Ω . (14) 

Finally, the total loss is the sum of the conduction and dielectric losses: 
 t d cα α α= + . (15) 
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SURFACE RESISTANCE AND SKIN-DEPTH OF COMMONLY USED CONDUCTORS 
Metal Rs [Ohm/square x10-7f] Skin-depth at 2 GHz [µm] 
Silver Ag 2.5 σ = 6.1x107S/m 1.4 
Copper Cu 2.6 σ = 5.8x107S/m 1.5 
Gold Au 3.0 σ = 4.1x107S/m 1.7 
Aluminum Al 3.3 σ = 3.5 x107S/m 1.9 
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LECTURE 21: MICROSTRIP ANTENNAS – PART II  
(Transmission-line model. Design procedure for a rectangular patch. Cavity 
model for a rectangular patch.) 
 
1. Transmission Line Model – The Rectangular Patch 

The TL model is the simplest of all, representing the rectangular patch as a 
parallel-plate transmission line connecting two radiating slots (apertures), each 
of width W and height h. In the figure below, z is the direction of propagation 
of the transmission line. 

 

W

h

Slot #2

Slot #1

L

y
zx

 
 

 
The TL model is not accurate and lacks versatility. However, it gives a 

relatively good physical insight into the nature of the patch antenna and the 
field distribution for all TM00n modes. 

The slots represent very high-impedance terminations on both sides of the 
transmission line (almost an open circuit). Thus, the patch has highly resonant 
characteristics depending crucially on its length L along z. The resonant length 
of the patch, however, is not exactly equal to the physical length due to the 
fringing effect. The fringing effect makes the effective electrical length of the 
patch longer than its physical length, effL L> . Thus, the resonance condition 
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( ) / 2n
effL nβ π= ⋅ , 1,2,n = , depends on effL , not L. A sketch of the E-field 

distribution for the first (dominant) resonant mode, 1n = , is shown in the 
figure below. 

 

x

z

patch (side view)

h

ground

effL L>

L

001E

 
 
A. Computing the effective patch length 

 
( )

( )

0.3 0.264
0.412

0.258 0.8

eff

eff

r

r

W
L h

Wh
h

ε

ε

 + + ∆  =
 − + 
 

. (21.1) 

For the computation of effrε , see previous Lecture. The effective length is 

 2effL L L= + ∆ . (21.2) 

 
L∆LL∆
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B. Resonant frequency of the dominant TM001 mode 

 0 (001)
(001) (001)2 2 2 2eff eff

eff r
r eff r

v c cL f
f f L

λ
ε ε

= = = ⇒ =  (21.3) 

The resonant frequency of a patch depends strongly on L, therefore, the 
exact calculation of Leff  is necessary to predict the antenna resonance: 

 
( )

(001)

2 2eff

r
r

cf
L Lε

=
+ ∆

. (21.4) 

The field of the TM001 mode does not depend on the x and y coordinates but it 
strongly depends on the z coordinate, along which a standing wave is formed. 
The figure below shows the vertical E-field distribution along z when the patch 
is in resonance. 

 

z

/ 2effz L=

cosx
eff

E z
L
π 

  
 



-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 effz L=
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C. The patch width W 

 
0 0

1 2 2
1 2 12 r r rr

cW
ff ε εµ ε

= =
+ +

 (21.5) 

Expression (21.5) makes the width W equal to about half a wavelength. It 
leads to good radiation efficiencies and acceptable dimensions. 
D. Equivalent circuit of the patch 

The dominant TM001 mode has a uniform field distribution along the y-axis 
at the slots formed at the front and end edges of the patch. The equivalent 
conductance G is obtained from the theory of uniform apertures while B is 
related to the fringe capacitance: 

  
2

0 0 0

1 2 11 , for 
120 24 10

W h hG π
λ λ λ

  = − <  
   

, (21.6) 

 
2

0 0 0

2 11 0.636ln , for 
120 10

W h hB π
λ λ λ

  = − <  
   

. (21.7) 

The limitation 0( / ) 0.1h λ <  is necessary since a uniform field distribution 
along the x-axis is assumed. The patch has two radiating slots (see the figure 
below). 
 
 

x

z
y

L

W
(001)E

slo
t #

1

slo
t #

2

 
 
The equivalent circuit of a slot is constructed as a parallel R-C circuit, using 
the values computed by (21.6) and (21.7): 
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B G

 
1 /G R=  represents the radiation loss, while B j Cω=  is the equivalent 

susceptance, which represents the capacitance of the slot. 
More accurate values for the conductance G can be obtained through the 

cavity model: 
 2/ (120 )G I π= , (21.8) 

where 

 
( ) 2

0 3

0

sin 0.5 cos sinsin 2 cos ( )
cos i
k W XI d X X S X

X

π θ
θ θ

θ
 

= = − + + ⋅ + 
 
∫ , (21.9) 

and X = k0W, 0 0 0k ω µ ε= . iS  denotes the sine integral, ( )iS x =  

0
(sin ) /

x
y ydy∫ . 

The equivalent circuit representing the whole patch in the TM001 mode 
includes the two radiating slots as parallel R-C circuits and the patch 
connecting them as a transmission line, the characteristics of which are 
computed in the same way as those of a microstrip line. 

 

B G BG

/ 2eff gL λ≈

0 0,  effc g rZ β ω µ ε ε=

 
Here, cZ  is the characteristic impedance of the line, and gβ  is its phase 
constant. When the losses are not neglected, we must include also the 
attenuation constant α  (see Lecture 20). For each slot, G represents the 
radiation loss and B Cω=  represents the capacitance associated with the fringe 
effect. 
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E. Resonant input resistance 
When the patch is resonant, the susceptances of both slots cancel out at the 

feed point regardless of the position of the feed along the patch. Thus, the input 
admittance is always purely real. This real value, however, strongly depends 
on the feed position along z. This is easily shown through the Smith chart for 
the admittance transformation through a transmission line. 
At the feed point, the impedance of each slot is transformed by the respective 
transmission line representing a portion of the patch: 

B G BG

/ 2eff gL λ≈

inY

1L 2L

1Y 2Y

 
 1 2inY Y Y= +  (21.10) 
The admittance transformation is given by 

 1tan( ) ,   
tan( ) g

L c g
in c L c cL

c L g

Y jY LY Y Y Y Z
Y jY L β π

β
β

−
=

 +
= = = + 

 (21.11) 

if the line is loss-free. Below, the Smith charts illustrate the slot-impedance 
transformations and their addition, which produces a real normalized 
admittance, in three cases: (1) the patch is fed at one edge ( 1 0L = , 2L L= ), (2) 
the patch is fed at the center ( 1 2 / 2L L L= = ), and (3) the patch is fed at a 
distance (feed inset) 0 0.165z λ= . 
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feed-point at the edge of cavity

0.46L λ≈

slot #1
1Y

2Y
slot #2

2Y ′

2 0.46L L λ= ≈

1 2 2 0.09 0.18inY Y Y ′= + = × =

line to slot #2

1(0.18/50) 278inZ −= ≈ Ω
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feed-point at the middle of cavity

0.46L λ≈

slot #1

slot #2

1Y

2Y

2Y ′ 1Y ′

1 2 / 2 0.23L L L λ= = ≈

1 2 2 15 30inY Y Y′ ′= + = × =
1(30/50) 1.67inZ −= ≈ Ω
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slot #1

1 0 0.165L z λ= ≈

line to slot #2

0.46L λ≈

line to slot #1

2 0 (0.46 0.165) 0.315L L z λ λ= − ≈ − =

slot #2

1 2 2 0.5 1inY Y Y′ ′= + = × =

1Y

2Y

2Y ′
1Y ′

0feed-point at inset z

50inZ ≈ Ω
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The edge feed and the inset feed are illustrated below. 
 

0z

L

slot #1 slot #2

inY inY  
 

The two slots are separated by an electrical distance of 180° . However, 
because of the fringe effect the physical length L is slightly less than λ/2. The 
reduction of the length is not much. Typically, it is 0.48λ ≤  L ≤  0.49λ. 

Ideally, the resonant input impedance of the patch for the dominant TM001 
mode is entirely resistive and equal to half the transformed resistance of each 
slot: 

 
1

1 1
2in in

in
Z R

Y G
= = =

′
. (21.12) 

In reality, there is some mutual influence between the two slots, described by 
a mutual conductance and it should be included for more accurate calculations: 

 
1 12

1
2( )inR

G G
=

′ ±
, (21.13) 

where the “+” sign relates to the odd modes, while the “–” sign relates to the 
even modes. Normally, 12 1G G′

 . 
For most patch antennas fed at the edge, Rin is greater than the characteristic 

impedance Zc of the microstrip feed line (typically Zc = 50 to 75 Ω). That is 
why, the inset-feed technique is widely used to achieve impedance match. 

The figure below illustrates the normalized input impedance of a 1-D (along 
the y axis) loss-free open-ended transmission-line, the behavior of which is 
very close to that of the dominant mode of the patch. 
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Fig 14.14, pp 735, C. Balanis 

Using modal expansion, the input resistance for the inset-feed at 0z z=  is 
given approximately by 

 
( )

2 2
11 12 2

0 0 02
1 12

1 2cos sin sin
2in

c c

G B BR z z z
G G L Y L Y L

π π π+     = + −      ±      
. (21.14) 

Here, 1G  and 1B  are calculated using (21.6) and (21.7). For most feeding 
microstrips, 1 / 1cG Y   and 1 / 1cB Y  . Then, 

 
( ) ( )

2 2
0 00

1 12

1 cos cos
2in in zR y R y

G G L L
π π

=
   = =   ±    

. (21.15) 

Notice that the inset feeding technique for impedance match of the microstrip 
antennas is conceptually analogous to the off-center or asymmetrical feeding 
techniques for dipoles. In both cases, a position is sought along a resonant 
structure, where the current magnitude has the desired value. 
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2. Designing a Rectangular Patch Using the Transmission Line Model 
Input data: εr, h, fr 

1) Calculate W using (21.5). 
2) Calculate εreff  using (21.5) and equation (6) from Lecture 20. 
3) Calculate the extension ∆L due to the fringing effect using (21.1). 
4) Calculate the actual (physical) length of the patch using 

 0 2
2

L Lλ
= − ∆  or 

0 0

1 2
2 r reff

L L
f ε µ ε

= − ∆ . (21.16) 

5) Calculate radiating slot admittance using (21.6) and (21.7). 
6) Calculate resonant input resistance at patch edge using (21.12) or 

(21.13) with 1G G′ =  from (21.6). 
7) If Rin calculated in step 6 is too large, calculate the inset distance 0z  

using (21.14) or (21.15). 
 
3. Cavity Model for the Rectangular Patch 

The TL model is very limited in its description of the real processes taking 
place when a patch is excited. It takes into account only the 00TMx

n  modes 
where the energy propagates only in the longitudinal z direction. The field 
distribution along the x and y axes is assumed uniform. It is true that the 
dominant 001TMx  is prevalent but the performance of the patch is also affected 
by higher-order modes. 

The cavity model is a more general model of the patch which imposes open-
end conditions at the side edges of the patch. It represents the patch as a 
dielectric-loaded cavity with: 

- electrical walls (above and below), and 
- magnetic walls (around the perimeter of the patch. 

The magnetic wall is a wall at which 

 
ˆ 0 (the -field is purely normal)
ˆ 0 (the -field is purely tangential)
× =
⋅ =

n H H
n E E

 

It is analogous to the open end termination in the theory of transmission lines. 
If we treat the microstrip antenna only as a cavity, we can not represent 
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radiation because an ideal loss-free cavity does not radiate and its input 
impedance is purely reactive. To account for the radiation, a loss mechanism 
is introduced. This is done by introducing an effective loss tangent, δeff. 

The thickness of the substrate is very small. The waves generated and 
propagating beneath the patch undergo considerable reflection at the edges of 
the patch. Only a very small fraction of them is being radiated. Thus, the 
antenna is quite inefficient. The cavity model assumes that the E field is purely 
tangential to the slots formed between the ground plane and the patch edges 
(magnetic walls). Moreover, it considers only TMx  modes, i.e., modes with no 
Hx component. These assumptions are, basically, very much true. 
 

W

h
L

y
zx

magnetic wall

magnetic wall
electric wall

 
 

The TMx modes are fully described by a single scalar function Ax – the x-
component of the magnetic vector potential: 
 ˆxA=A x . (21.17) 
In a homogeneous source-free medium, Ax satisfies the wave equation: 
 2 2 0x xA k A∇ + = . (21.18) 
For regular shapes (like the rectangular cavity), it is advantageous to use the 
separation of variables: 

 
2 2 2

2
2 2 2

0x x x
x

A A A k A
x y z

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 (21.19) 

 ( ) ( ) ( )xA X x Y y Z z=  (21.20) 
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2 2 2

2
2 2 2

X Y ZYZ XZ XY k XYZ
x x x

∂ ∂ ∂
+ + = −

∂ ∂ ∂
 

 
2 2 2

2
2 2 2

1 1 1X Y Z k
X x Y y Z z
∂ ∂ ∂

+ + = −
∂ ∂ ∂

 (21.21) 

 
2 2 2

2 2 2
2 2 2

0,  0,  0x y z
d X d Y d Zk X k Y k Z
dx dy dz

+ = + = + =  (21.22) 

The eigenvalue equation is 
 2 2 2 2

x y zk k k k+ + = . (21.23) 

The solutions of (21.22) are harmonic functions: 
 ( ) cos( ) sin( )c s

n xn n xn
n

X x A k x A k x= +∑ , 

 ( ) cos( ) sin( )c s
n yn n yn

n
Y y B k y B k y= +∑ , (21.24) 

 ( ) cos( ) sin( )c s
n zn n zn

n
Z z C k z C k z= +∑ . 

When the functions in (21.24) are substituted in (21.20), they give the general 
solution of (21.18). The particular solution of (21.18) depends on the boundary 
conditions. 

In our case, there are electric walls at 0x =  and x h= . There, the tangential 
E-field components must vanish, i.e., 

0,
0y z x h

E E
=

= = . Having in mind that 

 
2 2 2

2
2

1 1 1,  ,  x x z
x x y z

A A AE k A E E
j x j x y j x zωµε ωµε ωµε

 ∂ ∂ ∂   = + = =    ∂ ∂ ∂ ∂ ∂    
,(21.25) 

we set xA  at the top and bottom walls as 

 
0,

0x

x h

A
x =

∂
=

∂
. (21.26) 

At all side walls, we set a vanishing normal derivative for xA : 

 
0, 0,

0,  0x x

z L y W

A A
z y= =

∂ ∂
= =

∂ ∂
. (21.27) 
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This ensures vanishing xH  and yH  at 0z =  and z L= , as well as vanishing 
xH  and zH  at 0y =  and y W=  (magnetic walls), as follows from the relation 

between the H-field and xA , 

 1 10,  ,  x x
x y x

A AH H H
z yµ µ

 ∂ ∂ = = =   ∂ ∂   
. (21.28) 

It is now obvious that the solution must appear in terms of the functions 

 

( ) cos( ),  ,

( ) cos( ),  ,

( ) cos( ),  .

c
n xn xn

n

c
n yn yn

n

c
n zn zn

n

X x A k x k n
h

Y y B k y k n
W

Z z C k z k n
L

π

π

π

= =

= =

= =

∑

∑

∑

 (21.29) 

The spectrum of the eigenmodes in the cavity is discrete. The frequencies of 
those modes (the resonant frequencies) can be calculated from (21.23) as 

 ( )
2 2 2 2( )mnp

r
m n p
h W L
π π π ω µε     + + =     

     
, (21.30) 

 
2 2 2

( ) 1
2

mnp
r

m n pf
h W L
π π π

π µε
     = + +     
     

. (21.31) 

The mode with the lowest resonant frequency is the dominant mode. Since 
usually L > W, the lowest-frequency mode is the 001TMx  mode, for which 

 (001) 1
2 2

r
r

cf
L L
π

π µε ε
= = . (21.32) 

The dominant 001TMx  mode is exactly the mode considered by the 
transmission-line model (see previous sections). The field distribution of some 
low-order modes is given in the following figure. 
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Fig. 14.13, pp. 741, Balanis 

 
The general solution for the ( )mnp

xA  [see (21.20) and (21.24)] is 

 ( ) cos cos cosmnp c c c
x x x xA A m x B n y C p z

h W L
π π π          =                     

, (21.33) 

or 

 ( ) cos cos cosmnp
x mnpA A m x n y p z

h L W
π π π     = ⋅ ⋅ ⋅     

     
. (21.34) 

The respective field solution for the (m,n,p) mode is 

 
2 2( ) cos( ) cos( ) cos( )x

x mnp x y z
k kE j A k x k y k z
ωµε
−

= − ⋅ ⋅ ⋅ , (21.35) 

 sin( ) sin( ) cos( )x y
y mnp x y z

k k
E j A k x k y k z

ωµε
= − ⋅ ⋅ ⋅ , (21.36) 
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 sin( ) cos( ) sin( )x z
z mnp x y z

k kE j A k x k y k z
ωµε

= − ⋅ ⋅ ⋅ , (21.37) 

 0xH = , (21.38) 

 cos( ) cos( ) sin( )z
y mnp x y z

kH A k x k y k z
µ

= − ⋅ ⋅ ⋅ , (21.39) 

 cos( ) sin( ) cos( )y
z mnp x y z

k
H A k x k y k z

µ
= ⋅ ⋅ ⋅ . (21.40) 

For the dominant 001TMx  mode, 

 2 2 2
001( / ) / ( ) cos( / ),  0,x y zE j k h A z L E Eπ ωµε π= − − = =    (21.41) 

 001( / ) sin( / ),  0.y x zH L A z L H Hπ µ π= − = =  (21.42) 

 
4. Cavity Model for the Radiated Field of a Rectangular Patch 

The microstrip patch is represented by the cavity model reasonably well 
assuming that the material of the substrate is truncated and does not extend 
beyond the edges of the patch. The four side walls (the magnetic walls) 
represent four narrow apertures (slots) through which radiation takes place. 

The equivalence principle is used to calculate the radiation fields. The field 
inside the cavity is assumed equal to zero, and its influence on the field in the 
infinite region outside is represented by the equivalent surface currents on the 
surface of the cavity. 
 
 

y
zx

electric wall

,s sJ M

ˆ
ˆ

s

s

= ×
= − ×

J n H
M n E

,s sJ M

 



Nikolova 2016 18 

Because of the very small height h of the substrate, the field is concentrated 
beneath the patch. There is some actual electrical current at the top metallic 
plate, however, its contribution to radiation is negligible. That is because: (1) 
it is backed by a conductor, and (2) it is very weak compared to the equivalent 
currents at the slots. The actual electrical current density of the top patch is 
maximum at the edges of the patch. 

In the cavity model, the side walls employ magnetic-wall boundary 
condition, which sets the tangential H components at the slots equal to zero. 
Therefore, 
 ˆ 0s = × =J n H . (21.43) 
Only the equivalent magnetic current density 
 ˆs = − ×M n E  (21.44) 
has substantial contribution to the radiated field. 
 

sM
y

zx

electric wall

0
ˆ2

s

s

=
= − ×

J
M n E

sM

 
 
The influence of the infinite ground plane is accounted for by the image theory, 
according to which the currents sM  in the presence of the infinite plane radiate 
as if magnetic currents of double strength radiate in free space: 
 ˆ2s = − ×M n E . (21.45) 
Note that an xE  field at the slots corresponds to sM  density vector, which is 
tangential to the ground plane. Thus, its image is of the same direction. The 
equivalent magnetic current densities for the dominant 001TMx  mode are 
sketched below. 
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x

zy

L

sM
(001)E

slo
t #

1

slo
t #

2
sM

 
 
 

At slots #1 and #2, the equivalent sM  currents are co-directed and with 
equal amplitudes. They are constant along x and y. 
 
Radiation from a slot with constant current density 

W

h

( , )Q x z′ ′

( , , )P x y z

P′

PQr

r
z

y

x

φsM
′r θ

 
The radiation from an (x-y) slot of constant sM  currents is found using the 

electric vector potential F. Since sM  has only a y  component, so does F: 
ˆyF=F y . 

 0

/2 /2

/2 /2

( , , )
4

PQ

h W
y jk r

y
PQh W

M
F r e dx dy

r
εθ φ
π

−

− −

′ ′= ∫ ∫ . (21.46) 
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Here, 02yM E= − , 0E  being the phasor of the E-field at the radiating slot, and 
ˆ sin cos sin sinPQr r r x yθ φ θ φ′ ′ ′= − ⋅ = − −r r . 

 
0

/2 /2

0 0 0
/2 /2

2 exp( sin cos ) exp( sin sin )
4

h Wjk r
y

h W

eF E jk x dx jk y dy
r

ε θ φ θ φ
π

−

− −

′ ′ ′ ′=− ⋅∫ ∫  (21.47) 

 00 sin sin
2

jk r
y

E Wh X YF e
r X Y

ε
π

−⇒ = − ⋅ ⋅ ⋅  (21.48) 

where 

0 sin cos
2

k hX θ φ= , 

0 sin sin
2

k WY θ φ= . 

According to the relation between the far-zone E-field and the vector potential, 
 0,  ,  rE E j F E j Fφ θ θ φωη ωη≈ = = − , (21.49) 

where 0 0/η µ ε= , cos sinyF Fθ θ φ= , and cosyF Fφ φ= . 

 00
0

sin sincos sin
2

jk rWhE X YE j e
r X Yφ ωηε θ φ

π
−⇒ = , (21.50) 

 00
0

sin sincos
2

jk rWhE X YE j e
r X Yθ ωηε φ

π
−⇒ = − . (21.51) 

Since 0 0kωηε = , 

 00
0

sin sincos sin
2

jk rV X YE jk W e
r X Yφ θ φ

π
−  =  

 
, (21.52) 

 00
0

sin sincos
2

jk rV X YE jk W e
r X Yθ φ

π
−  = −  

 
. (21.53) 

Here 0 0V hE=  is the voltage between the patch edge and the ground plane. 
Slots #1 and #2 form an array of two elements with excitation of equal 

magnitude and phase, separated by the physical distance L. Their AF is 

 0
12 2cos cos

2
effk L

AF θ =  
 

. (21.54) 
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Here 2effL L L= + ∆  is the effective patch length. Thus, the total radiation field 
is 

 0
00 0 sin sincos sin cos cos
2

efft jk r k Lk WV X YE j e
r X Yφ θ φ θ

π
−    = ×        

, (21.55) 

 0
00 0 sin sincos cos cos
2

efft jk r k Lk WV X YE j e
r X Yθ φ θ

π
−    = − ×        

. (21.56) 

Introducing 0( / 2)coseffZ k L θ= , the pattern of the patch is obtained as 

 ( ) 2 2 2 2 sin sin, 1 sin sin cosX Yf E E Z
X Yφ θθ φ φ θ= + = − ⋅ ⋅ . (21.57) 

 
E-plane pattern (xz plane, φ = 0°, 0° ≤  θ ≤  180°) 

 ( )
0

0

0

sin sin
2 cos cos

2sin
2

eff
E

k h
k L

f k h

θ
θ θ

θ

 
    = ⋅  

 
. (21.58) 
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H-plane pattern (xy plane, θ = 90°, 0°≤  φ  ≤  90° and 270°≤  φ  ≤  360°) 

 ( )
0 0

0 0

sin cos sin sin
2 2cos
cos sin

2 2

H

k h k W

f k h k W

φ φ
θ φ

φ φ

   
   
   = ⋅ ⋅  (21.59) 
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Fig. 14.17, p. 746, Balanis 
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Fig. 14.18, p. 747, Balanis 

 
 

Non-radiating slots: It can be shown that the slots at / 2y W= −  and 
/ 2y W=  do no radiate in the principle E- and H-planes. In general, these two 

slots do radiate away from the principle planes, but their field intensity is 
everywhere small compared to that radiated by slots #1 and #2. 
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LECTURE 22: MICROSTRIP ANTENNAS – PART III 
(Circular patch antennas: the cavity model. Radiation field of the circular 
patch. Circularly polarized radiation from patches. Arrays and feed 
networks.) 
 
1. Circular patch: the cavity model 
 

a

z

y

x
 

 
 

The circular patch cannot be analyzed using the TL method, but can be 
accurately described by the cavity method. It is again assumed that only TMz 
modes are supported in the cavity. They are fully described by the VP 

ˆzA=A z . The Az VP function satisfies the Helmholtz equation, 
 2 2 0z zA k A∇ + =  (22.1) 
which now is solved in cylindrical coordinates: 

 
2 2

2
2 2 2

1 1 0z z z
z

A A A k A
z

ρ
ρ ρ ρ ρ φ

 ∂ ∂ ∂ ∂
+ + + = ∂ ∂ ∂ ∂ 

, (22.2) 

 
2 2 2

2
2 2 2 2

1 1 0z z z z
z

A A A A k A
zρ ρ ρ ρ φ

∂ ∂ ∂ ∂
⇒ + + + + =

∂ ∂ ∂ ∂
. (22.3) 

Using the method of separation of variables, 
 ( ) ( ) ( )zA R F Z zρ φ= , (22.4) 

 ⇒
2 2 2

2
2 2 2 2

1 0R R RZ F ZFZ FZ RF k RFZ
zρ ρ ρ ρ φ

∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂
, (22.5) 
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 ⇒
2 2 2

2
2 2 2 2

1 1 1 1R R F Z k
R R F Z zρ ρ ρ ρ φ
∂ ∂ ∂ ∂

+ + + = −
∂ ∂ ∂ ∂

. (22.6) 

The 4th term is independent of ρ and φ, and is being separated: 

 
2

2
2

1
z

Z k
Z z
∂

= −
∂

. (22.7) 

Then, 

 
2 2

2 2
2 2 2

1 1 1 ( ) const.z
R R F k k

R R Fρ ρ ρ ρ φ
∂ ∂ ∂

+ + = − − =
∂ ∂ ∂

 (22.8) 

 
2 2 2

2 2 2
2 2

1 ( ) 0z
R R F k k

R R F
ρ ρ ρ

ρ ρ φ
∂ ∂ ∂

⇒ + + + − =
∂ ∂ ∂

. (22.9) 

Now, the 3rd term is independent of ρ , and the other terms are independent 
of φ. Thus, (22.9) is separated into two equations: 

 
2

2
2

1 F k
F φφ
∂

=
∂

 (22.10) 

and 

 
2 2

2 2 2 2
2

( ) 0z
R R k k k

R R φ
ρ ρ ρ

ρ ρ
∂ ∂

+ + − − =
∂ ∂

. (22.11) 

We define 
 2 2 2

zk k kρ = − . (22.12) 

Then (22.11) can be written as [note that (22.11) depends only on ρ]: 

 2 2( ) 0R k k Rρ φρ ρ ρ
ρ ρ
 ∂ ∂

+ − ⋅ =    ∂ ∂ 
. (22.13) 

Thus, equation (22.1) has been separated into three ordinary differential 
equations — (22.7), (22.10) and (22.13). 
 
A. The Z-equation 

Equation (22.7) is complemented by the Neumann BC at the top patch 
and the grounded plane (electric walls): 
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 0 0zA Z
z z

∂ ∂
= ⇒ =

∂ ∂
. (22.14) 

Its solution, therefore, is in the form 

 ( ) cosp
p

Z z c p z
h
π =  

 
∑  (22.15) 

with the eigenvalues are /zk p hπ= . Here, p is an integer. 
 
B. The F-equation 

The solution of (22.10) is also a harmonic function. We are interested in 
real-valued harmonic functions, i.e., 
 ( ) cos( ) sin( )n nc s

n n
n

F b k b kφ φφ φ φ= +∑ . (22.16) 

Since there are no specific BC’s to be imposed at certain angular positions, 
the only requirement for the eigenvalues nkφ  comes from the condition that 
the ( )F φ  must be periodic in φ, 
 ( ) ( 2 )F Fφ φ π= + . (22.17) 

Equation (22.17) is true only if nkφ  are integers. That is why the usual 
construction of a general solution for ( )F φ  for a complete cylindrical region 
( 0φ =  to 2π ) is in the form 
 ( ) cos( ) sin( )c s

n n
n

F b n b nφ φ φ= +∑ ,  (22.18) 

where n is an integer. This is the well-known Fourier-series expansion. 
 
C. The R-equation 

Equation (22.13) is a Bessel equation in which kφ  is an integer (kφ  = n). 
Solutions are of the form of the following special functions: 

( )nJ kρ ρ  — Bessel function of the first kind, 
( )nN kρ ρ  — Bessel function of the second kind (Neumann function), 

(1) ( )nH kρ ρ  — Hankel function of the first kind, 
(2) ( )nH kρ ρ  — Hankel function of the second kind. 

Note: (1) (2);n n n n n nH J jN H J jN= + = − . 
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Fig. D-1, Harrington, p. 461 

 

 
Fig. D-2, Harrington, p. 462 
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The eigenvalues are determined according to the boundary conditions. In 
the cavity model, it is required that (magnetic wall) 

 0 0z

a

A R

ρρ ρ =

∂ ∂
= ⇒ =

∂ ∂
, (22.19) 

and that the field is finite for aρ = . The Bessel functions of the first kind 
( )nJ kρ ρ  are the suitable choice. The eigenvalues kρ  are determined from 

(22.19): 

 
( )

0n

a

J kρ
ρ

ρ
ρ =

∂
=

∂
, nmnmk

aρ
χ′

⇒ = , (22.20) 

where nmχ′  is the mth null of the derivative of the Bessel function of the nth 
order nJ ′ . Thus, the solution of the Helmholtz equation for Az can be given in 
a modal form as, see (22.4), 

 ( ) ( )( ) cos sin cosmnp c s
z mnp m nm n nA M J b n b n p z

a h
ρ πχ φ φ   ′= ⋅ + ⋅        

. (22.21) 

The characteristic equation (22.12) is finally obtained as 
 2 2 2 2

zk k kρω µε= = + . (22.22) 

From (22.22), the resonant frequencies of the patch can be obtained: 

 
2 2

2 nm
mnp p

a h
χ πµεω
′   = +   

   
, (22.23) 

 
2 2

( )
1

2
nm

r mnpf p
a h
χ π

π µε
′   = +   

   
. (22.24) 

Equation (22.24) does not take into account the fringing effect of the circular 
patch. To account for the effective increase of the patch size due to fringing, 
the actual radius a is replaced by an effective one, 

 
1/2

21 ln 1.7726
2e

r

h aa a
a h

π
π ε

   = + +      
. (22.25) 

The first four modes in ascending order are TMz110, TMz210, TMz010, 
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TMz310 where the respective nulls nmχ′  are 

11 1.8412χ′ =  01 3.8318χ′ =  

21 3.0542χ′ =  31 4.2012χ′ =  

The resonant frequency of the dominant TMz110 mode can be determined 
from (22.25) as 

 (110)
1.8412
2

r
e r

cf
aπ ε

⋅
=  (22.26) 

where c is the speed of light in vacuum. 
The VP of the dominant TMz110 mode is 

 (110)
110 1 11 ( cos sin )c s

z n nA M J b b
a
ρχ φ φ ′= ⋅ + 

 
. (22.27) 

Assuming excitation at 0φ =  ( zA  has vanishing angular first derivative), we 
set 0s

nb = . The field components are computed from zA  according to the 
field-potential relations 
 

2
zj AE
zρ ωµε ρ

∂
= −

∂ ∂
 1 1 zAHρ µ ρ φ

∂
=

∂
 

21 zj AE
zφ ωµε ρ φ

∂
= −

∂ ∂
 

1 zAHφ µ ρ
∂

= −
∂

 

2
2

2
z

z z
j AE k A

zωµε
∂ = − + ∂ 

 0zH =  

 
For the dominant TMz110 mode, 

 
 
 
 

 
0E Eρ φ= =  0

1 11
0

1 ( / )sinEH j J aρ χ ρ φ
ωµ ρ

′=  

0 1 11( / )coszE E J aχ ρ φ′=  0
1 11

0
( / )cosEH j J aφ χ ρ φ

ωµ
′ ′=  

(22.28) 

(22.29) 
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From the field components, we can compute the cavity modal impedance for 
any feed point specified by ρ and φ . In view of the closed-wall nature of the 
BCs, the impedance will be reactive. To obtain the real part of the antenna 
impedance, the radiated power has to be computed. 
 
2. Radiated fields and equivalent surface currents of the circular patch 
 

a

z

y

x

φ′
ρ′

Mφ

rε

 
 

As with the rectangular patch, the field radiated by the circular slot is 
determined using the equivalence principle. The circumferential wall of the 
cavity is replaced by an equivalent circular sheet of magnetic current density 
 2s z aM Eφ ρ=

= , V/m, (22.30) 

radiating in free space. The factor of 2 accounts for the ground plane. Since 
the height of the slot h is very small and the slot field is independent of z, we 
can substitute the surface magnetic current density over the slot with a 
filamentary magnetic current m sI M hφ= : 
 

0

0 1 11

2

2 ( )cosm

V

I hE J χ φ′=


, V. (22.31) 

Here, 0 0 1 11( )V hE J χ′=  is the voltage between ground and the top plate of the 
patch at the feed ( 0φ = ). 

Using the theory for the radiation field of a circular slot, the following 
expressions are obtained for the far field of the circular patch: 
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 02 020,  ( ) cos ,  ( ) cos sin ,rE E C r J E C r Jθ φφ θ φ′= = − ⋅ ⋅ = ⋅ ⋅  (22.32) 

where 
00 0( )

2

jk r
ek a V eC r j

r

−
= , 

02 0 0 2 0( sin ) ( sin )e eJ J k a J k aθ θ= + , 

02 0 0 2 0( sin ) ( sin )e eJ J k a J k aθ θ′ = − . 

 
E-plane amplitude pattern: 

02(0 90 , 0 ,180 )E Jθ θ ϕ ′≤ ≤ = =    ,  0Eφ =  

 
H-plane amplitude pattern: 

02(0 90 , 90 ,270 ) cosE Jϕ θ ϕ θ≤ ≤ = = ⋅    ,  0Eθ =  

 

 
Fig. 14.23, p. 758, Balanis 
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3. Circular polarization with patch antennas 
Circular polarization can be obtained if two orthogonal modes are excited 

with a 90° time-phase difference between them. This can be accomplished by 
adjusting the physical dimensions of the patch and using either one or two 
feed points. 
 
A. Square patch with circularly polarized field 
 

 

L

W

11
t

L W
Q

 
= + 

 
 

(c) Nearly square patch with microstrip-line feed for CP accounting for 
losses; 1 / tant effQ δ=  

W W

y y

L

z

L

z

(y',z')
Feed 
Point

Right-hand

(y',z')

Feed 
Point

Left-hand

 
(d) Coax-feeds for CP 
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Right-hand Left-hand

W L= W L=

L L
c

d
c

d

 
 

(e) CP for square patches with thin slots: / 2.72 / 2.72c L W= = , /10d c=  
 
B. Circular patch with circularly polarized field 
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FEED-PROBE ANGULAR SPACING OF DIFFERENT MODES FOR CIRCULAR 
POLARIZATION 

 TM110 TM210 TM310 TM410 TM510 TM610 

 
α 

 
90° 

45°  
or  

135° 

30°  
or  

90° 

22.5°  
or  

67.5° 

18°, 54°  
or 

 90° 

15°, 45°  
or  

75° 
 
4. Array and feed networks 
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