
© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 1!

Chapter 6: Advanced Pipelining !
(class text - Fig 2.31, pg. 116)!

Recall:!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 2!

Compiler Scheduling for Instruction Parallelism "

•  to improve performance further, we need to extract more “instruction level
parallelism”; Recall!
 pipeline CPI = Ideal CPI (1) + structural stalls* + data hazard stalls* + control stalls*!
(* = average stalls per instruction)!
•  for now, we assume the following latencies in the TABLE below (pg 304, ref text); (these
change according to the design of each pipelined machine)!

inst. producing result !inst. consuming result ! !latency in cc!
FP ALU op ! !another FP ALU op ! !3 cc!
Load double ! !FP ALU op ! ! !1 cc!
FP ALU op ! !store double / FP ! ! !2 cc !
Load double ! !store double ! ! !0 cc!
•  in this context, latency = # of extra cc after the producing instruction enters its EX
stage, before the result can be used, which is equal to the # of cc needed to avoid data
hazard stalls between the producing and consuming instructions !
•  Note: this lecture material is not covered in the class textbook, so take notes!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 3!

Comparison Hardware to Detect Data
hazards in ID Stage"

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 4!

Technique # 1: Loop Unrolling"

•  consider a loop to add a scalar “s” to a vector:!

for (i=1000; i > 0; i=i-1)!
!x[i] = x[i] + s;!

•  before “unrolling” the loop, the unscheduled code looks like this:!

Loop: !LD !F0, 0(R1) !; load element x[i] into F0!
! !ADDD !F4, F0, F2 !; add scalar in F2 to F0, store in F4!
! !SD !0(R1), F4 !; store result back to memory !!
! !SUBI !R1, R1, #8 !; dec. pointer by 8 bytes = size of doubleFP!
! !BNEZ !R1, Loop !!
! !!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 5!

Regular Loop, Unscheduled"
(ref text - pp. 305) "

•  the “unscheduled” code executes like this:!
Loop: !LD !F0, 0(R1) !1 cc!

! !stall ! ! !2 cc!
! !ADDD !F4, F0, F2 !3 cc ! ; 1 cc stall from table 1 !
! !stall ! ! !4 cc !!
! !stall ! ! !5 cc!
! !SD !0(R1), F4 !6 cc ! ; 2 cc stall from table 1 !!
! !SUBI !R1, R1, #8 !7 cc!
! !stall ! ! !8 cc ; the earliest forward still creates a stall!

! !BNEZ !R1, Loop !9 cc!
! !no-op ! ! !10 cc !; branch delay slot unused!

•  10 cc per vector element. At a 1 GHz clock, performance = 100 MFLOP / sec!
•  1 MFlop = 1 million floating point operations per second!
•  MFLOP rating = (1 GHz)*(1 FLOP/10cc) = 100 MFLOP/sec!

! !!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 6!

Timing Diagram - Regular Loop - Branch Hazard!

•  The events in cc 9 are interesting:!
•  The BNEZ instruction moves into the ID unit, but it cant make a decision since R1
is being computed in the EX stage!
•  we have 2 options:!
•  => (1) stall the BNEZ in the ID stage, add forwarding hardware from the EX stage
back into the ID stage, and resolve the BNEZ instruction in next cc (which
introduces a stall)!
•  (2) don’t stall the BNEZ in the ID stage, add forwarding hardware from the EX
stage back into the ID stage, and resolve the BNEZ instruction in the same cc (which
stretches the clock)!
•  lets choose the 1st option, to avoid stretching the clock!
•  here, we choose to allow 2 instructions into the MEM stage, and WB stage, per cc!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 7!

Timing Diagram - Regular Loop - ME,WB Hazard !

•  Here we assume the MEM and WB units accept only 1 instruction per cc!
•  The events in cc 9 are interesting:!
•  in this example, to avoid adding hardware, we chose to keep a structural hazard: we
only let one instruction into the MEM stage, or the WB stage, per clock cycle!
•  however, now we have to add forwarding hardware from the MEM stage, back
intro the MEM stage: see clock cycle 9-10: the ADDD instruction is in the MEM
stage, and it needs to supply F4 to the SD, which will enter the MEM stage in clock
cycle 10!
•  given that we need to add this forwarding hardware in this example, it may be
better to allow 2 instructions into the MEM unit and WB unit per cc!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 8!

Regular Loop, Compiler Scheduled "
(ref text - pp. 306) "

Loop: !LD !F0, 0(R1) !1 cc!
! !SUBI !R1, R1, #8 !2 cc!
! !ADDD !F4, F0,F2 !3 cc!
! !stall ! ! !4 cc ; this stall caused by SD!
! !BNEZ !R1, Loop !5 cc !
! !SD !F4, 8(R1) !6 cc !; move SD into branch delay slot!
! !!

•  here is a version of the same loop, after ‘compiler scheduling’!
•  by moving SD into the branch delay slot, 2 stalls are eliminated!
•  SUBI moved earlier, and memory address (relative to R1) adjusted by compiler!
•  performance = 1 FLOP / 6 cc !
•  at 1 GHz clock, performance =(1 GHz)*(1 FLOP/6 cc) = 167 MFLOPS / sec!
•  a 67 % improvement over the unscheduled code (100 MFLOP performance)!
•  to expose even more parallelism, compiler can “unroll” loop to expose 4 iterations at
once!

! !!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 9!

Loop Unrolled 4 Times, Unscheduled (ref text - pp. 307) "
Loop: !LD !F0, 0(R1) !; 1st element into F0!

! !ADDD !F4, F0, F2 !!
! !SD !0(R1), F4!
! !LD !F6,-8(R1) !; 2nd element into F6!
! !ADDD !F8, F6, F2 !!
! !SD !-8(R1), F8!
! !LD !F10,-16(R1) !; 3rd element into F10!
! !ADDD !F12, F10, F2 !!
! !SD !-16(R1), F12!
! !LD !F14,-24(R1) !; 4th element into F14!
! !ADDD !F16, F14, F2 !!
! !SD !-24(R1), F16!
! !SUBI !R1, R1, #32 !; dec pointer by 4 double FPs = 32 bytes!
! !BNEZ !R1, Loop !!
! !branch delay slot!

•  without scheduling, many stalls : (3 inst + 3 stalls per element) * 4 elements + 2 loop control +
1 branch delay slot + 1 stall = 28 cc per pass; performance = (1 GHz clock)*(4 FLOPS/28 cc) =
143 MFLOPS /sec (Effective rate is now slower than scheduled single loop iteration on last slide
= 167 MFLOP/sec)!

! !!

1 stall!
2 stalls!

1 stall!
2 stalls!

1 stall!

1 stall!

2 stall!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 10!

Loop Unrolled 4 Times, Scheduled (ref text - pp. 308) "
Loop: !LD !F0, 0(R1) !; 1st element into F0!

! !LD !F6,-8(R1) !; 2nd element into F6!
! !LD !F10,-16(R1) !; 3rd element into F10!
! !LD !F14,-24(R1) !; 4th element into F14!
! !ADDD !F4, F0, F2!
! !ADDD !F8, F6, F2 !
! !ADDD !F12, F10, F2 !!
! !ADDD !F16, F14, F2!
! !SD !0(R1), F4 !!
! !SD !-8(R1), F8 ! ! !!
! !SUBI !R1, R1, #32 !; dec pointer by 4 double FP #s!
! !SD !+16(R1), F12!
! !BNEZ !R1, Loop !!
! !SD !+8(R1), F16!

•  with scheduling, (4 FLOP/14 cc); effective rate of (1 FLOP/3.5 cc)!
•  at 1 GHz clock, performance = (1 GHz)*(1 FLOP/3.5 cc) = 286 MFLOP / sec !!
•  much faster than all prior methods !!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 11!

Loop Unrolled 4 Times, Scheduled "

Loop: !LD !F0, 0(R1) !; 1st element into F0!
! !LD !F1,-8(R1) !; 2nd element into F1!
! !LD !F2,-16(R1) !; 3rd element into F2!
! !LD !F3,-24(R1) !; 4th element into F3!
! !ADDD !F4, F0, F31 !; scalar now in F31!
! !ADDD !F5, F1, F31 !
! !ADDD !F6, F2, F31 !!
! !ADDD !F7, F3, F31!
! !SUBI !R1, R1, #32 !; dec pointer by 4 double FP #s (32 bytes)!
! !SD !+32(R1), F4 !; adjust effective address by +32!
! !SD !+24(R1), F5 ! ! !!
! !SD !+16(R1), F6!
! !BNEZ !R1, Loop !!
! !SD !+8(R1), F16!

•  here is another way of writing the scheduled code. We used registers in a linear order
(F0, F1, f2 etc, and we put the scalar constant in F31)!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 12!

•  to achieve the performance of 14 cc, observe that the M and W stages must be ‘widened’ to
allow 2 instructions to enter and exit per cc. We must add extra hardware to allow this.!

•  Also observe that in the MEM stage, only 1 instruction ever Reads or Writes to Memory per
cc, which is good (the data-cache does not have to be widened).!

Hardware Cost of Previous Slide "

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 13!

Summary, Loop Unrolling and Scheduling"

•  regular loop, unscheduled and with all stalls : 10 cc per FLOP, 100 MFLOP/s!
•  regular loop, compiler scheduled to reduce stalls : 6 cc per FLOP, 167 MFLOP/s!
•  unrolled loop, unscheduled and with all stalls : 6.8 cc per FLOP, 143 MFLOP/s!
•  unrolled loop, compiler scheduled to reduce stalls : 3.5 cc per FLOP, 286 MFLOP/s!

•  Observations: Unrolling to loop to expose more parallelism can improve
performance, when the compiler schedules the code to reduce / eliminate stalls!
•  the key to improving performance is doing multiple loads early, so that FP ops can
proceed without stalls once data is loaded!
•  to avoid data hazards, the compiler must use many FP registers; basically each
unrolled loop iteration uses 2 new FP registers to store its results without data hazards
(if we used the same FP registers as other loop iterations, we would have many data
hazards and stalls)!
•  one limitation to loop unrolling is the number of FP registers required!
•  Q: if we had an infinite # of FP registers, what is the best performance of the
unrolled loop ? (Answer: 3 instructions per vector element).!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 14!

Notes "

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 15!

•  In a “static multiple issue” pipeline, n instructions issue together in each clock cycle!
•  in an ideal n-issue machine, effective CPI = 1/n < 1 !!
•  all instructions that issue together are arranged in “Issue-Slots” and together form an
“Issue-Packet” (pg 436) (like race horses which are given starting slots)!

•  usually, there is a restriction on which types of instructions can fit into an Issue-Packet!

•  If an Issue-Slot cannot be filled with a useful instruction due to hazards, a No-Op is
inserted into the slot!

•  This architecture is called by several names, “Static Multiple Issue”, or
“SuperScalar”, or “Very Long Instruction Word” (VLIW), or “Explicitly Parallel
Instruction Computer” (EPIC - Intel’s name)!

•  the first implementations of the Intel IA-64 architecture, the Itanium-1 and Itanium-2,
are static multiple issue machines, called ‘EPIC’ by Intel!

Static Multiple-Issue Pipelines !
(class text -section 6.9, pg 433) "

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 16!

Some Existing Multiple-Issue Machines!
(ref text - fig. 3.23, pg 216) "

(We’ll study dynamic multiple-issue machines in a few lectures. They are quite different from
static multiple-issue machines.)!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 17!

•  consider a simple “static multiple issue” pipeline: 2 instructions issued per cc!
•  RESTRICTION: • 1 slot reserved for ALU or BRANCH instructions, !

•  1 slot reserved for LOAD or STORE instructions!
•  these restrictions simplifies ID stage, since they eliminate the hazards that might appear if
multiple instructions of any type where allowed to issue together!
•  also, not too much more hardware is required, since we have an integer ALU pipeline stage
which can be now be kept busy in parallel with the MEM pipeline stage anyway!
•  Recall our Basic Loop to add scalar in F31 to a vector in memory (see pg 438 class text)!

Loop: !LD !F0, 0(R1)! !; fetch array element!
! !ADDD !F4, F0, F31 !; add FP scalar!
! !SD !0(R1), F4! !; store array element!
! !SUBI !R1, R1, #8!
! !BNEZ !R1, Loop!

•  this code sequence benefits slightly with dual issue, and with loop unrolling it will benefit
alot!

A Dual-Issue MIPS Processor!
(class text -section 6.9, pg 433) "

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 18!

Space-Time Diagram (class text - fig. 6.44, pp. 433)!

•  dual-issue significantly increases rate of LOAD/STORE issues, but requires separate caches
for instructions (for the IF stage) and data (for the MEM stage)!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 19!

2-Issue MIPS Datapath (class text - fig. 6.45, pp. 437)!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 20!

No Unrolling, Just Scheduled on Dual-Issue Machine!

•  In this example, assume: (1) a 4-stage FP-ADD pipeline, (2) we can let 2 instructions
into the MEM unit per clock cycle, provided only 1 instruction accesses MEM, (3) we
can let 2 instructions into the WB unit per clock cycle!
•  EXAMPLE #1: No Unrolling!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 21!

No Unrolling, Just Scheduled on Dual-Issue Machine!

•  here is the timing diagram: Note that we must add extra hardware so that No-Op instructions
do not enter the MEM or WB stages, otherwise there would be 3 instructions in the MEM unit
in clock cycle 10!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 22!

Unrolled 4 times and Scheduled on Dual-Issue Machine!
(Example completed in class)!

!  in 10 cc, there are 20 slots and 6 no-ops: the slot-usage efficiency is 14/20 = 70%,
and there are no stalls: 4 FLOPs take 10 cc, for an effective MFLOP rate of (1 GHz)
*(4 Flops/10cc) = 400 MFLOP/sec. !

!  Dual-Issue is about 50 % faster than best scheduled single issue (286 MFLOP/sec)!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 23!

Unrolled 8 times and Scheduled on Dual-Issue Machine!
(Example completed in class)!

!  effective MFLOP rate of (1 GHz)*(8 Flops/16cc) = 500 MFLOP/sec. !
!  Dual-Issue is about 180 % faster than best scheduled single issue (286 MFLOP/sec)!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 24!

Notes!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 25!

•  recall in 5-stage MIPS pipeline, LOAD had a latency of 1 cc, ie next inst. cannot use result of
LOAD without stalling for 1 cc!
•  in a dual-issue MIPS, up to 3 successive instructions cannot use result of LOAD without
stalling - this limits parallelism!
•  in the dual-issue MIPS, 1cc branch delay slot == 2 instruction slots!
•  in superscalar machines, load stalls and branch delay slots represent larger penalties !
•  a dual-issue CPU will only issue 2 instructions if they fit within the Issue Slots, otherwise it
will issue them sequentially (by inserting NO-OPs into slots)!
•  superscalar processors are “backwards” compatible, and can execute sequential and
unscheduled code too, but with lower performance!
•  Apple computer relied upon backwards compatibility when it changed its processor platform,
from the Motorola 68,000 family of CISC machines to the the PowerPC superscalar RISC
family; most of the original software for the PowerPC was the serial 68,000 style of code
which the multiple-issue PowerPC had to execute!
•  Apple established that such a transition could be accomplished without a major setback in the
business operation, which perhaps motivated Intel and HP to embark on their joint project to
develop a new processor architecture for their products (Itanium-EPIC)!

Static Multiple-Issue - Observations!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 26!

•  consider another slightly different dual-issue pipeline with 2 instructions issued per cc:!
•  RESTRICTION: !
•  1st Issue-Slot is for LD, SD, and all Integer instructions including Branches!
•  2nd Issue-Slot is for all FP instructions only!
•  This restriction doesn’t appear to change the performance, from the examples I have
looked at.!
•  In some textbooks such as the class reference textbook, you may see this type of dual-issue
pipeline described!
•  The Itanium processor, which we will talk about next, lets us change the restrictions on the
Issue-Slots. !

A Dual- Issue MIPs with - Integer and FP Parallelism !
 (ref text) "

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 27!

•  In a Statically Scheduled machine, the compiler schedules all instructions to avoid
hazards: the ID unit simply checks to see if instructions can issue together without
hazards, otherwise the ID unit inserts stalls until the hazards clear!

•  A future section (Dynamic Scheduling in chapter 3/4) will deal with Dynamically
Scheduled machines, where hardware-based techniques are used to detect hazards, to
re-schedule the instructions ‘on-the-fly’ and issue them in the right order, and improve
performance!

•  Dynamic scheduling is used in the Pentium III and 4, the Athlon, the MIPS R10000,
the SUN UltraSPARC III; the PowerPC 603, PowerPC G3, PowerPC G4, and the Alpha
21264!

•  In contrast, static multiple-issue with compiler-based scheduling is used in the Intel
IA-64 Itanium architectures!

•  In 2007, the dual-core and quad-core Intel laptop processors use the Pentium 5 family
of dynamically scheduled processors. The Itanium is primarily used in servers.!

Dynamically Scheduled Multiple-Issue Machines "

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 28!

The Itanium Processor – Historic Issues !

•  The RISC revolution in the 1990s caught many companies off-guard; The company ‘Digital
Equipment Corporation’ (DEC), which manufactured the refrigerator size DEC-Vax computer
and which was probably the biggest computer company at the time, was eliminated, wiping
out billions of dollars of market capitalization (see next slide)!
•  To avoid the same fate, Intel and HP embarked on a ‘secret’ project to develop a 64-bit
super-chip for the future, to replace the older 32-bit Pentium-family of processors!
•  The code-named the new chip the ‘Itanium’ and it was released in 2001!
•  Unfortunately, the Itanium software was incompatible with the existing library of 30 years of
Pentium code !
•  The competitor company AMD then shipped a 64-bit version of the Pentium-family, called
the Opteron.!
•  The computing industry largely moved to the Opteron processor, which could run Pentium-
style code and kept alive the existing library of 30 years of Pentium code, thereby finishing-
off the Itanium vision painted by Intel and HP!
•  The Itanium is still used in a niche market of proprietary high-end servers manufactured by
HP and a few other Itanium supporters, but it failed to live up to the promise presented by
Intel and HP!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 29!

Photo – DEC Vax Machine – Historic Issues !

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 30!

The Itanium Processor !

•  the Intel IA-64 architecture is a RISC-style static multiple-issue machine:!
•  instructions grouped into “Bundles”, each 128 bits wide with 3 instructions, and all 3
instructions in a bundle must issue together or stall together!
•  a 5 bit vector for each instruction identifies which of 5 different execution units are required
(INT-ALU, NON-INT-ALU, MEM UNIT, FP UNIT, BRANCH UNIT)!
•  PREDICATION: The IA-64 includes “Predication”, a technique to eliminate many
branches and branch hazards by making the execution of an instruction depend upon the
contents on a “Predicate Register”!
•  the code sequence “if (p) (statement 1) else (statement 2)” normally requires 2 branches,
one after (p) and one after (statement 1)!
•  with Predication, it is replaced by!

!(p) !statement 1!
!(~p) !statement 2!

•  each line is executed if the predicate at the beginning is true, otherwise it becomes a No-Op!
•  the original branch code sequence is replaced by 2 lines of code, with no branches!
•  nearly every instruction can be predicated, and there are many predication registers to store
predicates!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 31!

Itanium Processor - Registers !
(ref text - pg. 351) "

•  IA-64 Itanium-1 adds many more registers: !
•  there are 128 64-bit INT registers (actually 65 bits wide)!
•  there are 128 82-bit FP registers (2 bits more than the IEEE standard 80 bits)!
•  8 64-bit BRANCH registers, to store branch target addresses for indirect branches!

•  the 128 INT registers are allocated to support parameter passing for procedure calls: the
lower 32 registers are always visible in any procedure and are accessed as R0 .. R31!
•  the remaining 96 registers can be partitioned into “frames” , where a procedure call can be
allocated a frame of registers to store parameters - avoids the need to pass parameters through
a stack!
•  parameters can be passed to and from the procedure call using the registers in its frame!
•  each procedure has a register called the “current frame pointer”, to point to where its frame
starts!
•  the machine is 3 instructions (slots) wide, the 3 instructions are called a ‘BUNDLE’, and all
3 instructions in a BUNDLE must issue together or stall together!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 32!

Itanium-1 & Itanium-2 Processors !
(class text - Fig. 6.48. pg 442) "

•  According to class text, the latest Itaniums can issue 2 Bundles (6 instructions) per cc!
•  The 2005 Itanium-2 uses 221 Million transistors, and dissipates 130 Watts!
•  take note: It has 6 INT ALU units, 2 pipelined FP units, 4 MEM units, to help avoid
structural hazards, so that we can issue bundles without waiting !

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 33!

Itanium – Poulson Die (2010-2011)!
(www.theregister.co.uk/2011/02/20/intel_poulson_itanium_isscc) "

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 34!

Itanium - Poulson Core (2010-2011)!
(www.theregister.co.uk/2011/02/20/intel_poulson_itanium_isscc) "

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 35!

Itanium - Poulson Summary (2010-2011)!
(www.theregister.co.uk/2011/02/20/intel_poulson_itanium_isscc) "

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 36!

Itanium Compiler Scheduling (ref text - ch. 4.7, pg. 351) "
•  the compiler can create the code using 2 strategies: !
•  (#1) minimize the number of bundles; pack 3 instructions per ‘bundle’ whenever possible,
knowing that many bundles will stall due to data hazards or structural hazards!
•  (#2) minimize the number of stalls; The compiler inserts NO-OPs into slots when needed,
and arranges the bundles to execute without stalling if possible (compiler-based scheduling)!
•  Note that the Itanium is a multiple-issue linear pipeline machine; the ID (issue) stage
controls access to all the Execution units, and stalls all issues if necessary!
•  Lets consider compiler scheduling using the 2 methods. The loop x[I] = x[I] + s is unrolled 7
times, and scheduled (in the class textbook): here are the reported results:!
•  (a) strategy #1 - minimize the number of instruction bundles !
•  (b) strategy #2 - minimize the number of stalls (blank slots represent NOOPs). !
•  Strategy #1 yields 9 bundles, and executes in 21 clock cycles for 7 iterations of the loop. !
•  Strategy #2 yields 11 bundles and executes in 12 clock cycles for 7 iterations of the loop.!

•  lets repeat these examples in our class notes, but we’ll only unroll the loop 4 times (next
slides)!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 37!

!  In general, using strategy #2 (maximize code density), we really should maximize
code density as a first criterion, and and then maximize performance (minimize stalls)
when possible. !

!  In general, using strategy #1 (maximize code speed), we really should maximize
code speed as a first criterion, and and then maximize code density when possible. !

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 38!

Itanium Bundle Restrictions !

•  the 2 Itanium coding examples on the next slide are from the reference textbook (pg 355),
and there is a limited explanation on them!
•  The Itanium places restrictions on which types of instructions can go in each slot. Some of
the instruction types are: M=Memory, I=Integer ALU, FP = Floating Point, B = branch.!
•  The Itanium allows 29 different combinations of instruction types to go into a bundle, and
these restrictions are called ‘templates’ by Intel!
•  For example, in the template column, ” M M I” denotes (2 memory instructions, one Integer
instruction)!
•  Common Itanium templates are: “MMI”, “MMF”, “MII”, “MFI”, “MIB” ,’BBB”, !
•  “ MMB”, “MFB”!
•  Interestingly, the above templates do not allow 2 FP operations per bundle (which would
limit FP performance)!
•  Equally interestingly, the above templates do allow 3 branch instructions to be placed in one
bundle. It would be difficult to decide which branch takes precedence if all three branches
were taken simultaneously!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 39!

Example - Itanium Scheduling (pg 356, ref text) !

•  Lets work out an example in class!

•  TYPICAL ASSUMPTIONS:!
•  (1) there are 2 MEM units, each 2 stage pipeline!
•  (2) 2 pipelined FP ADD units, each 3 stage pipeline!
•  (3) 1 pipelined FP MULT unit, 6 stage pipeline!
•  (4) any 3 non-branch instructions can be placed in one bundle if there is enough hardware
(They all issue together or they all stall together)!
•  (5) at most one branch can be placed in a bundle!
•  OBSERVATIONS:!
•  (1) since there are 2 MEM units, we can only have at most 2 LDs in one bundle, otherwise
we have a structural hazard and the bundle could never issue !!
•  (2) since there are 2 FP ADD units, we can place at most 2 FP-ADDs into one bundle ,
otherwise we have a structural hazard and the bundle could never issue !!
•  there may be several other good ways to schedule the code for these 2 examples !

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 40!

•  Suppose we add hardware to support these next 2 assumptions:!

•  New Assumption #1: Instructions that don’t use MEM don’t pass through MEM stage(s)!

•  New Assumption #2: Instructions that don’t use WB don’t pass through WB stage(s)!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 41!

Itanium - Basic Loop, Unrolled(4) & Scheduled!
MAX-SPEED !

basic loop LD FO,0(R1)
SUBI R1,R1,#8
ADDD F1,F0,F31
BNEZ R1,loop
SD F1,+8(R1)

•  7 cc for 4 iterations: at 2 GHz clock, performance = (2 GHz) * (4 flops/7 cc) = 1,143 GigaFlops/sec !

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 42!

Itanium - Basic Loop, Unrolled(4) & Scheduled!
MIN-BUNDLES!

basic loop LD FO,0(R1)
SUBI R1,R1,#8
ADDD F1,F0,F31
BNEZ R1,loop
SD F1,+8(R1)

!  This code uses 5 Issue-Bundles, compared with 6 Issue-Bundles on the previous slide. It
executes in 11 cc, compared with 7 cc on the previous slide.!

!  This is just one possible way to schedule the instructions for maximum code density. In
general, using strategy #2 (maximize code density), we really should maximize code density as
a first criterion, and and then maximize performance (minimize stalls) when possible. !

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 43!

Real Itanium-1 Latencies & Penalties!
(ref text - ch. 4.7, pg. 359) "

•  recall that latency = # clock cycles that must expire in between 2 dependent instructions, ie
an instruction producing data and an instruction consuming the data!
•  observe the large latencies of FP loads (9 cc) and mis-predicted branches (9 cc)!
•  each cc represents 3 instructions, so a 9 cc penalty = 27 instruction slots ! These are huge
penalties!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 44!

Itanium-1 Performance (ref text - ch.4 , pg. 360) "

•  on INT SPEC benchmarks, the Itanium-1 has 60 % of the performance of the Pentium-4 !

•  on FP SPEC benchmarks, the Itanium-1 is about 10 % faster than the Pentium-4, when using
a clock rate which is slower than the P4 clock rate!

•  the Itanium-1 has a 4 MB off-chip L3 cache, the P4 does not have an L3 cache!

•  interestingly, the Itanium-1 gets its improved FP performance over the Pentium-4 based on
only one program in the benchmark, where it is 4 times faster; if that program would be
excluded, the Itanium-1 would be slower than the P4 !!

•  the Itanium-1 performance appears to be due to the L3 cache; a 4MB L3 cache would
offer a performance improvement to any machine, since this is a very large cache!
•  in terms of FP power per watt, the Itanium-1 has only 56 % of the performance of the P4
(half as efficient !)!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 45!

Itanium-2 Performance - Sept 2005 (from www)!

•  in 2005, the Itanium-2 seems to be nearly as powerful as the IBM Power5+ dynamically
scheduled machine !
•  in the future, it will be interesting to see which architecture dominates (static vs dynamic
scheduling)!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 46!

Dual-Core Itanium Performance - 2006 (from www)!

•  in 2006, it looks like the dynamically-scheduled IBM Power5+ still is in top spot!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 47!

Limits on ILP (ref text - section 4.7, pg.322) "

•  Consider an ideal superscalar CPU, and a compiler which can look at assembler instructions,
make compiler-time branch predictions, determine data-dependencies and schedule instructions
to maximize parallelism!
•  To check the data-dependencies between 50 instructions requires over 2,000 comparisons by
the compiler; to check the dependencies between 2000 instructions requires over 4 million
comparisons !!
•  suppose the compiler processes “windows” of instructions looking for parallelism!
•  what are the limits to ILP, for future machines ?!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 48!

Limits on ILP (ref text - fig 3.35, pg 242) "

•  Above table shows how many instructions can issue together after scheduling, for
various applications!
•  In the future, we may have statically scheduled multiple-issue machines which issue
between 64 and 128 instructions per cc!

© Ted Szymanski!Chapter 6, Advanced Pipelining-STATIC, slide 49!

Notes "

