Chapter 6: Advanced Pipelining

Recall:

Dependencies
Language dependent;
machine independent

Somewhat language dependent;

largely machine independent

Small language dependencies;
machine dependencies slight
(e.g., register counts/types)

Highly machine dependent;
language independent

Chapter 6, Advanced Pipelining-STATIC, slide 1

(class text - Fig 2.31, pg. 116)

Front end per
language

Intermediate
, representation

High-level
optimizations
Y
Global
optimizer
Y

- Code generator .

Function
Transform language to
common intermediate form

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Including global and local
optimizations + register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

© Ted Szymanski

Compiler Scheduling for Instruction Parallelism

* to improve performance further, we need to extract more “instruction level

parallelism”; Recall

pipeline CPI = Ideal CPI (1) + structural stalls* + data hazard stalls* + control stalls*

(* = average stalls per instruction)

* for now, we assume the following latencies in the TABLE below (pg 304, ref text); (these
change according to the design of each pipelined machine)

inst. producing result

inst. consuming result

latency in cc

FP ALU op another FP ALU op
Load double FP ALU op

FP ALU op store double / FP
Load double store double

3cc
1cc
2cc

Occ

¢ in this context, latency = # of extra cc after the producing instruction enters its EX
stage, before the result can be used, which is equal to the # of cc needed to avoid data
hazard stalls between the producing and consuming instructions

® Note: this lecture material is not covered in the class textbook, so take notes

Chapter 6, Advanced Pipelining-STATIC, slide 2

© Ted Szymanski

Comparison Hardware to Detect Data
hazards in ID Stage

dst reg b reg

ALU instruction opcode a reg

format | | | I |

Some Data Hazard Detection Logic

ID stage
finite state
machine
EX stage
MEM stage
WB stage

-4—p denotes a comparison, between instruction in different stages

Chapter 6, Advanced Pipelining-STATIC, slide 3 © Ted Szymanski

Technique # 1: Loop Unrolling

(It

* consider a loop to add a scalar “s” to a vector:

for (i=1000; i > 0; i=i-1)

x[i] = x[i] + s;

* before “unrolling” the loop, the unscheduled code looks like this:

Loop: LD FO,0(R1) ; load element x[i] into FO
ADDD F4,FO0,F2 ; add scalar in F2 to FO, store in F4
SD 0O(R1), F4 ; store result back to memory
SUBI R1,R1,#8 ; dec. pointer by 8 bytes = size of doubleFP

BNEZ RI, Loop

Chapter 6, Advanced Pipelining-STATIC, slide 4 © Ted Szymanski

Regular Loop, Unscheduled

(ref text - pp. 305)

¢ the “unscheduled” code executes like this:

Loop: LD FO0,0(R1) 1cc
stall 2cc
ADDD F4,F0,F2 3cc ; 1 cc stall from table 1
stall 4 cc
stall Scc
SD O(R1), F4 6 cc ; 2 cc stall from table 1
SUBI R1,R1,#8 7 cc
stall 8 cc ; the earliest forward still creates a stall
BNEZ RI1, Loop 9cc
no-op 10 cc ; branch delay slot unused

* 10 cc per vector element. At a 1 GHz clock, performance = 100 MFLOP / sec

* 1 MFlop = 1 million floating point operations per second
e MFLOP rating = (1 GHz)*(1 FLOP/10cc) = 100 MFLOP/sec

Chapter 6, Advanced Pipelining-STATIC, slide 5

© Ted Szymanski

Timing Diagram - Regular Loop - Branch Hazard

1 2 3 4 5 6 7 8 9 10 11 12 13 14
LD FO,0(R1) F [o [E M\WB | [
ADDD F4,F0,F2 F D |s ™A1 [a2 [aA3 [aa M WB
SD 0(R1),F4 F s D |EX |[s s WM WB
SUBI R1,R1,#8 s |[F o s s EX\ M WB
BNEZ R1,Loop F [s s D s-D |EX M WB
No-Op s |s P s D EX M WB

* The events in cc 9 are interesting:

e The BNEZ instruction moves into the ID unit, but it cant make a decision since R1

is being computed in the EX stage

* we have 2 options:

* => (1) stall the BNEZ in the ID stage, add forwarding hardware from the EX stage
back into the ID stage, and resolve the BNEZ instruction in next cc (which

introduces a stall)

* (2) don’t stall the BNEZ in the ID stage, add forwarding hardware from the EX
stage back into the ID stage, and resolve the BNEZ instruction in the same cc (which

stretches the clock)

* lets choose the 1st option, to avoid stretching the clock
* here, we choose to allow 2 instructions into the MEM stage, and WB stage, per cc

Chapter 6, Advanced Pipelining-STATIC, slide 6

© Ted Szymanski

Timing Diagram - Regular Loop - ME,WB Hazard

1 2 3 4 5 5 8 9 10 1 12 13 4
LD FO,0(R1) f D E M |WB
ADDD F4,FOF2 F D s Al |A2 |A3 |A4 M WB
sD O(R1),F4 F S D EX |s s s M WB
SUBl R1R1Z8 S F D s S S EX M WB
BNEZ R1,Loop F s s S D/s |[D EX M WB
No-Op S s F D EX M W8

* Here we assume the MEM and WB units accept only 1 instruction per cc
* The events in cc 9 are interesting:

* in this example, to avoid adding hardware, we chose to keep a structural hazard: we
only let one instruction into the MEM stage, or the WB stage, per clock cycle

* however, now we have to add forwarding hardware from the MEM stage, back
intro the MEM stage: see clock cycle 9-10: the ADDD instruction is in the MEM
stage, and it needs to supply F4 to the SD, which will enter the MEM stage in clock
cycle 10

* given that we need to add this forwarding hardware in this example, it may be
better to allow 2 instructions into the MEM unit and WB unit per cc

Chapter 6, Advanced Pipelining-STATIC, slide 7 © Ted Szymanski

Regular Loop, Compiler Scheduled

(ref text - pp. 306)

Loop: LD F0,0(R1) 1cc
SUBI R1,R1,#8 2 cc
ADDD F4,F0,F2 3cc
stall 4 cc ; this stall caused by SD
BNEZ RI1, Loop 5cc
SD F4,8(R1) 6 cc ; move SD into branch delay slot

* here is a version of the same loop, after ‘compiler scheduling’

* by moving SD into the branch delay slot, 2 stalls are eliminated

* SUBI moved earlier, and memory address (relative to R1) adjusted by compiler
e performance = 1 FLOP/ 6 cc

e at 1 GHz clock, performance =(1 GHz)*(1 FLOP/6 cc) = 167 MFLOPS / sec

* a 67 % improvement over the unscheduled code (100 MFLOP performance)

* to expose even more parallelism, compiler can “unroll” loop to expose 4 iterations at
once

Chapter 6, Advanced Pipelining-STATIC, slide 8 © Ted Szymanski

Loop Unrolled 4 Times, Unscheduled ef text - pp. 307)

Loop: LD FO0,0(R1) ; 1st element into FO
Bsall AppDp - 14, FO, F2
2 stalls SD OR1), F4
{ stall F6,-8(R1) ; 2nd element into F6
7 stalls ADDD F8,F6,F2
-8(R1), F8
LD F10,-16(R1) ; 3rd element into F10
ADDD F12,F10,F2
SD -16(R1), F12
LD F14,-24(R1) ; 4th element into F14
I stall ADDD F16,F14,F2
2 stall SD -24(R1),F16
SUBI RI1,R1, #32 ; dec pointer by 4 double FPs = 32 bytes

1 stall BNEZ R1, Loop
branch delay slot

* without scheduling, many stalls : (3 inst + 3 stalls per element) * 4 elements + 2 loop control +
1 branch delay slot + 1 stall = 28 cc per pass; performance = (1 GHz clock)*(4 FLOPS/28 cc) =
143 MFLOPS /sec (Effective rate is now slower than scheduled single loop iteration on last slide
= 167 MFLOP/sec)

Chapter 6, Advanced Pipelining-STATIC, slide 9 © Ted Szymanski

Loop Unrolled 4 Times, Scheduled (ef text - pp. 308)

Loop: LD FO,0(R1) ; 1st element into FO
LD F6,-8(R1) ; 2nd element into F6
LD F10.-16(R1) ; 3rd element into F10
LD F14,-24(R1) ; 4th element into F14

ADDD F4,F0,F2

ADDD F8, F6,F2

ADDD F12,F10,F2

ADDD Fl16,Fl14,F2

SD O(R1),F4

SD -8(R1), F8

SUBI RI1,R1,#32 ; dec pointer by 4 double FP #s
SD +16(R1),F12

BNEZ RI1, Loop

SD +8(R1),F16

e with scheduling, (4 FLOP/14 cc); effective rate of (1 FLOP/3.5 cc)
e at 1 GHz clock, performance = (1 GHz)*(1 FLOP/3.5 cc) = 286 MFLOP / sec
* much faster than all prior methods !

Chapter 6, Advanced Pipelining-STATIC, slide 10 © Ted Szymanski

Loop Unrolled 4 Times, Scheduled

Loop: LD FO,0(R1) : 1st element into FO
LD F1,-8(R1) ; 2nd element into F1
LD F2,-16(R1) ; 3rd element into F2
LD F3,-24(R1) ; 4th element into F3
ADDD F4,F0, F31 : scalar now in F31

ADDD F5,FI1,F31

ADDD F6,F2,F31

ADDD F7,F3,F31

SUBI R1,RI, #32 ; dec pointer by 4 double FP #s (32 bytes)
SD +32(R1),F4 ; adjust effective address by +32

SD +24(R1), F5

SD +16(R1), F6

BNEZ RI1, Loop

SD +8(R1),F16

* here is another way of writing the scheduled code. We used registers in a linear order
(FO, F1, f2 etc, and we put the scalar constant in F31)

Chapter 6, Advanced Pipelining-STATIC, slide 11 © Ted Szymanski

Hardware Cost of Previous Slide

Instructions Clock Cycle Comment
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
foo: LD F0, 0(R1) F DE MW
LD F1,-8(R1) F D E MW
LD F2,-16(R1) F D E MW
LD F3,-24(R1) F DE MW
ADD.D F4,FO,F31 F D A1 A2 A3 AA Mi W
ADD.D F5,F1,F31 F D A1l A2 A3 Ad Mi W
ADD.D F6,F2,F32 F D A1 A2 A3 Ad Mi W
ADD.D F7,F3,F31 F D A1 A2 A3 Ad Mi W
SuUBI R1,R1,#32 F D E MW 2 inst in M stage
S.D +32(R1), F4 F D E M Wi 2 inst in M, W stages
S.D +24(R1),F5 F D E M Wi 2 inst in M, W stages
SD +16(R1), F6 F D E M Wi 2 inst In W stage
BNEZ Rf1,foo F DE MW
S.D +8(R1), F7 F D E M Wi

14 cc per loop iteration

(1) To achieve this performance, we must allow up to 2 instructions to be in M stage and W stage in1 cc

(2) The ADD.D instructions pass through the MEM stage by assumption, but they do not access the Data-Memory-cache
Therefore, lets write ‘"Mi' in the space-time diagram, to denote ‘M idle’, ie these instructions don't access the data cache

(3) The SD instructions pass through the Wrie-back stage, but they do not write back to any register in the ID stage.
Therefore, lets write ‘Wi' in the space-time diagram, to denote ‘W idle’, ie these instructions do not perform a write-back

* to achieve the performance of 14 cc, observe that the M and W stages must be ‘widened’ to
allow 2 instructions to enter and exit per cc. We must add extra hardware to allow this.

* Also observe that in the MEM stage, only 1 instruction ever Reads or Writes to Memory per
cc, which is good (the data-cache does not have to be widened).

Chapter 6, Advanced Pipelining-STATIC, slide 12 © Ted Szymanski

Summary, Loop Unrolling and Scheduling

e regular loop, unscheduled and with all stalls : 10 cc per FLOP, 100 MFLOP/s

e regular loop, compiler scheduled to reduce stalls : 6 cc per FLOP, 167 MFLOP/s

e unrolled loop, unscheduled and with all stalls : 6.8 cc per FLOP, 143 MFLOP/s

e unrolled loop, compiler scheduled to reduce stalls : 3.5 cc per FLOP, 286 MFLOP/s

* Observations: Unrolling to loop to expose more parallelism can improve
performance, when the compiler schedules the code to reduce / eliminate stalls

* the key to improving performance is doing multiple loads early, so that FP ops can
proceed without stalls once data is loaded

* to avoid data hazards, the compiler must use many FP registers; basically each
unrolled loop iteration uses 2 new FP registers to store its results without data hazards
(if we used the same FP registers as other loop iterations, we would have many data
hazards and stalls)

* one limitation to loop unrolling is the number of FP registers required
* Q: if we had an infinite # of FP registers, what is the best performance of the
unrolled loop ? (Answer: 3 instructions per vector element).

Chapter 6, Advanced Pipelining-STATIC, slide 13 © Ted Szymanski

Notes

Chapter 6, Advanced Pipelining-STATIC, slide 14 © Ted Szymanski

Static Multiple-Issue Pipelines

(class text -section 6.9, pg 433)

* In a “static multiple issue” pipeline, n instructions issue together in each clock cycle

« in an ideal n-issue machine, effective CPI=1/n <1 !

e all instructions that issue together are arranged in “Issue-Slots” and together form an
“Issue-Packet” (pg 436) (like race horses which are given starting slots)

* usually, there is a restriction on which types of instructions can fit into an Issue-Packet

e If an Issue-Slot cannot be filled with a useful instruction due to hazards, a No-Op is
inserted into the slot

* This architecture is called by several names, ‘“Static Multiple Issue”, or
“SuperScalar”, or “Very Long Instruction Word” (VLIW), or “Explicitly Parallel
Instruction Computer” (EPIC - Intel’s name)

* the first implementations of the Intel IA-64 architecture, the Itanium-1 and Itanium-2,
are static multiple issue machines, called ‘EPIC’ by Intel

Chapter 6, Advanced Pipelining-STATIC, slide 15 © Ted Szymanski

Some Existing Multiple-Issue Machines

(ref text - fig. 3.23, pg 216)

Issue Hazard Distinguishing
Common name structure detection Scheduling characteristic Examples
Superscalar dynamic hardware static in-order execution Sun UltraSPARC TI/II
{static)
Superscalar dynamic hardware dynamic some out-of-order IBM Power2
(dynamic) execution
Superscalar dynamic hardware dynamic with out-of-order exccution Pentium II1/4,
(speculative) speculation with speculation MIPS R10K, Alpha
21264, HP PA 8500,
IBM RS64111
VLIW/ALIW static software static no hazards between Trimedia, i860
issue packets
EPIC mostly static mostly mostly static explicit dependences Itanium

software marked by compiler

Figure 3.23 The five primary approaches in use for multiple-issue processors and the primary characteristics
that distinguish them. This chapter has focused on the hardware-intensive techniques, which are all some form of
superscalar. The next chapter focuses on compiler-based approaches, which are either VLIW or EPIC. Figure 3.61, near
the end of this chapter, provides more details on a variety of recent superscalar processors.

(We’ll study dynamic multiple-issue machines in a few lectures. They are quite different from
static multiple-issue machines.)
Chapter 6, Advanced Pipelining-STATIC, slide 16 © Ted Szymanski

A Dual-Issue MIPS Processor

(class text -section 6.9, pg 433)

* consider a simple “static multiple issue” pipeline: 2 instructions issued per cc

¢ RESTRICTION: ¢ 1 slot reserved for ALU or BRANCH instructions,

¢ | slot reserved for LOAD or STORE instructions

* these restrictions simplifies ID stage, since they eliminate the hazards that might appear if

multiple instructions of any type where allowed to issue together

¢ also, not too much more hardware is required, since we have an integer ALU pipeline stage

which can be now be kept busy in parallel with the MEM pipeline stage anyway

* Recall our Basic Loop to add scalar in F31 to a vector in memory (see pg 438 class text)

Loop: LD FO,0(R1) ; fetch array element
ADDD F4,F0,F31 ; add FP scalar
SD O(R1),F4 ; store array element

SUBI RI1,R1,#8
BNEZ RI,Loop

* this code sequence benefits slightly with dual issue, and with loop unrolling it will benefit

alot

Chapter 6, Advanced Pipelining-STATIC, slide 17

© Ted Szymanski

Space-Time Diagram (class text - fig. 6.44, pp. 433)

Instruction type Pipe stages

'ALU or branch instruction IF [ID |EX |MEM |wB

| Load or store instruction [F [[ex |[MEM |ws
ALU or branch instruction | IF | ID \EX , MEM

| Load or store instruction ' IF |[ID |EX |MEM
ALU or branch instruction . S =) |EX
Load or store instruction . . IF " ID ‘ EX
ALU or branch instruction | [IF ID
Load or store instruction IF ID

WB
WB
| MEM
| MEM
| EX
EX

I
|
|
[
|
|

'wB
| WB
| MEM
| MEM

FIGURE 6.44 Static two-issue pipeline in operation. The ALU and data transfer instructions are
issued at the same time. Here we have assumed the same five-stage structure as used for the single-issue
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the reg-
ister writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a precise

exception model, which become more difficult in multiple-issue processors.

* dual-issue significantly increases rate of LOAD/STORE issues, but requires separate caches

for instructions (for the IF stage) and data (for the MEM stage)

Chapter 6, Advanced Pipelining-STATIC, slide 18

© Ted Szymanski

2-Issue MIPS Datapath (class text - fig. 6.45, pp. 437)

M
800001801 u
x

Instruction — —
memory

Registers

S'A; h
]

xc =

=) C

xc

C

ALU—>| ="

\ Sign

N \extend|

Write
data

Data
memory

Address

— M

bt | U

No Unrolling, Just Scheduled on Dual-Issue Machine

* In this example, assume: (1) a 4-stage FP-ADD pipeline, (2) we can let 2 instructions
into the MEM unit per clock cycle, provided only 1 instruction accesses MEM, (3) we

can let 2 instructions into the WB unit per clock cycle
* EXAMPLE #1: No Unrolling

Chapter 6, Advanced Pipelining-STATIC, slide 20

Comment

ID unit inserts 1 stall

LD/SD slot Others slot

LD FO,0(R1) no-op

no-op SUB1 R1,R1, #8
no-op ADDD F4,FO,F31
no-op BNEZ R1,loop
stall

SD F4,+8(R1) no-op

data hazard on F4

© Ted Szymanski

No Unrolling, Just Scheduled on Dual-Issue Machine

1 3 4 5 6 7 8 9 10 11 14
LD FO,0(R1) F [0D [E [M Jws

NO-OP - - - - -

NO-OP - - - - -

SUBI R1,R1,#8 F [0 [E, [M [ws

NO-OP - -\ - - -

ADDD F4,F0,F31 F |p \[A1 [A2 [A3 [A4, [M WB

NO-OP - - -

BNEZ R1,lLoop F [D |[E M [wB

SD F4,0(R1) F D [E s M WB

NO-OP - - - s -

LD FO,0(R1) F D |s E M WB

NO-OP - - s - - -

NO-OP - s - - -

SUBI R1,R1,#8 F s D E, [M WB

NO-OP - - \ - - -

ADDD F4,F0,F31 F D \[a1 [A2 [A3 [Aa4, [M WB
NO-OP ‘_ - - - \

BNEZ R1,Loop F D E M WB

SD F4,0(R1) F D E s M WB
NO-OP - - - S - -

* here is the timing diagram: Note that we must add extra hardware so that No-Op instructions
do not enter the MEM or WB stages, otherwise there would be 3 instructions in the MEM unit

in clock cycle 10

Chapter 6, Advanced Pipelining-STATIC, slide 21

© Ted Szymanski

Unrolled 4 times and Scheduled on Dual-Issue Machine

(Example completed in class)

Example 1: dual issue, unrolled 4 times & scheduled

Restriction: LD or SD slot

loop

LD
LD
LD
LD
no-op
no-op
SD
SD
SD
SD

FO,0(R1)
F1,-8(R1)
F2,+16(R1)
F3,+8(R1)

FO,+32(R1)
F1,+24(R1)
F2,+16(R1)
F3,+8(R1)

Others slot
(ALU,FP,BRA)
no-op

SUBI R1,R1,#32
ADDD F4,F0,F31
ADDD F5,F1,F31
ADDD F6,F2,F31
ADDD F7,F3,F31
no-op

no-op

BNEZ R1,loop
no-op

comment / hazard

branch delay slot

= in 10 cc, there are 20 slots and 6 no-ops: the slot-usage efficiency is 14/20 = 70%,

and there are no stalls: 4 FLOPs take 10 cc, for an effective MFLOP rate of (1 GHz)

*(4 Flops/10cc) = 400 MFLOP/sec.

= Dual-Issue is about 50 % faster than best scheduled single issue (286 MFLOP/sec)

Chapter 6, Advanced Pipelining-STATIC, slide 22

© Ted Szymanski

Unrolled 8 times and Scheduled on Dual-Issue Machine

(Example completed in class)

Example 1: dual issue, unrolled 8 times & scheduled

Restriction LD or SD slot ALU or Branch slot comment/hazard
loop LD F0,0(R1) no-op

LD F1,-8(R1) SUBI R1,R1,#64

LD F2,+48(R1) ADDD F8,FO,F31 adjust address offset

LD F3,+40(R1) |ADDD F9,F1,F31

LD F4,+32(R1) |ADDD F10,F2,F3

LD F5,+24(R1) [ADDD F11,F3,F31

LD F6,+16(R1) [ADDD F12,F4,F31

LD F7,+8(R1) ADDD F13,F5,F31

SD F8,+64(R1) |ADDD F14,F6,F31

SD F9,+56(R1) |ADDD F15,F7,F31

SD F10,+48(R1) [no-op

SD F11,+40(R1) [no-op

SD F12,+32(R1) |no-op

SD F13,+24(R1) [no-op

sD F14,+16(R1) |[BNEZ R1,loop

SD F15,+8(R1) [no-op fill branch delay slot

= effective MFLOP rate of (1 GHz)*(8 Flops/16cc) = 500 MFLOP/sec.
= Dual-Issue is about 180 % faster than best scheduled single issue (286 MFLOP/sec)

Chapter 6, Advanced Pipelining-STATIC, slide 23 © Ted Szymanski

Notes

Chapter 6, Advanced Pipelining-STATIC, slide 24 © Ted Szymanski

Static Multiple-Issue - Observations

* recall in 5-stage MIPS pipeline, LOAD had a latency of 1 cc, ie next inst. cannot use result of
LOAD without stalling for 1 cc

¢ in a dual-issue MIPS, up to 3 successive instructions cannot use result of LOAD without
stalling - this limits parallelism

¢ in the dual-issue MIPS, 1cc branch delay slot == 2 instruction slots
* in superscalar machines, load stalls and branch delay slots represent larger penalties

* a dual-issue CPU will only issue 2 instructions if they fit within the Issue Slots, otherwise it
will issue them sequentially (by inserting NO-OPs into slots)

* superscalar processors are “backwards” compatible, and can execute sequential and
unscheduled code too, but with lower performance

* Apple computer relied upon backwards compatibility when it changed its processor platform,
from the Motorola 68,000 family of CISC machines to the the PowerPC superscalar RISC
family; most of the original software for the PowerPC was the serial 68,000 style of code
which the multiple-issue PowerPC had to execute

* Apple established that such a transition could be accomplished without a major setback in the
business operation, which perhaps motivated Intel and HP to embark on their joint project to
develop a new processor architecture for their products (Itanium-EPIC)

Chapter 6, Advanced Pipelining-STATIC, slide 25 © Ted Szymanski

A Dual- Issue MIPs with - Integer and FP Parallelism

(ref text)

e consider another slightly different dual-issue pipeline with 2 instructions issued per cc:
* RESTRICTION:

¢ 1st Issue-Slot is for LD, SD, and all Integer instructions including Branches

* 2nd Issue-Slot is for all FP instructions only

* This restriction doesn’t appear to change the performance, from the examples I have
looked at.

* In some textbooks such as the class reference textbook, you may see this type of dual-issue
pipeline described

* The Itanium processor, which we will talk about next, lets us change the restrictions on the
Issue-Slots.

Chapter 6, Advanced Pipelining-STATIC, slide 26 © Ted Szymanski

Dynamically Scheduled Multiple-Issue Machines

* In a Statically Scheduled machine, the compiler schedules all instructions to avoid
hazards: the ID unit simply checks to see if instructions can issue together without
hazards, otherwise the ID unit inserts stalls until the hazards clear

* A future section (Dynamic Scheduling in chapter 3/4) will deal with Dynamically
Scheduled machines, where hardware-based techniques are used to detect hazards, to
re-schedule the instructions ‘on-the-fly” and issue them in the right order, and improve
performance

* Dynamic scheduling is used in the Pentium III and 4, the Athlon, the MIPS R10000,
the SUN UltraSPARC III; the PowerPC 603, PowerPC G3, PowerPC G4, and the Alpha
21264

* In contrast, static multiple-issue with compiler-based scheduling is used in the Intel
[A-64 Itanium architectures

* In 2007, the dual-core and quad-core Intel laptop processors use the Pentium 5 family
of dynamically scheduled processors. The Itanium is primarily used in servers.

Chapter 6, Advanced Pipelining-STATIC, slide 27 © Ted Szymanski

The Itanium Processor — Historic Issues

* The RISC revolution in the 1990s caught many companies off-guard; The company ‘Digital
Equipment Corporation’ (DEC), which manufactured the refrigerator size DEC-Vax computer
and which was probably the biggest computer company at the time, was eliminated, wiping
out billions of dollars of market capitalization (see next slide)

* To avoid the same fate, Intel and HP embarked on a ‘secret’ project to develop a 64-bit
super-chip for the future, to replace the older 32-bit Pentium-family of processors

* The code-named the new chip the ‘Itanium’ and it was released in 2001

* Unfortunately, the Itanium software was incompatible with the existing library of 30 years of
Pentium code

* The competitor company AMD then shipped a 64-bit version of the Pentium-family, called
the Opteron.

* The computing industry largely moved to the Opteron processor, which could run Pentium-
style code and kept alive the existing library of 30 years of Pentium code, thereby finishing-
off the Itanium vision painted by Intel and HP

* The Itanium is still used in a niche market of proprietary high-end servers manufactured by
HP and a few other Itanium supporters, but it failed to live up to the promise presented by
Intel and HP

Chapter 6, Advanced Pipelining-STATIC, slide 28 © Ted Szymanski

Photo — DEC Vax Machine — Historic Issues

VAX 8350 front view with cover removed. &J

Chapter 6, Advanced Pipelining-STATIC, slide 29 © Ted Szymanski

The Itanium Processor

* the Intel IA-64 architecture is a RISC-style static multiple-issue machine:

* instructions grouped into “Bundles”, each 128 bits wide with 3 instructions, and all 3
instructions in a bundle must issue together or stall together

* a 5 bit vector for each instruction identifies which of 5 different execution units are required
(INT-ALU, NON-INT-ALU, MEM UNIT, FP UNIT, BRANCH UNIT)

* PREDICATION: The IA-64 includes “Predication”, a technique to eliminate many
branches and branch hazards by making the execution of an instruction depend upon the
contents on a “Predicate Register”

* the code sequence “if (p) (statement 1) else (statement 2)”” normally requires 2 branches,
one after (p) and one after (statement 1)

* with Predication, it is replaced by

) statement 1

(~p) statement 2
* each line is executed if the predicate at the beginning is true, otherwise it becomes a No-Op
* the original branch code sequence is replaced by 2 lines of code, with no branches

* nearly every instruction can be predicated, and there are many predication registers to store
predicates

Chapter 6, Advanced Pipelining-STATIC, slide 30 © Ted Szymanski

Itanium Processor - Registers

(ref text - pg. 351)
* JA-64 Itanium-1 adds many more registers:
e there are 128 64-bit INT registers (actually 65 bits wide)
e there are 128 82-bit FP registers (2 bits more than the IEEE standard 80 bits)
* 8 64-bit BRANCH registers, to store branch target addresses for indirect branches

e the 128 INT registers are allocated to support parameter passing for procedure calls: the
lower 32 registers are always visible in any procedure and are accessed as RO .. R31

e the remaining 96 registers can be partitioned into “frames” , where a procedure call can be
allocated a frame of registers to store parameters - avoids the need to pass parameters through
a stack

* parameters can be passed to and from the procedure call using the registers in its frame

* each procedure has a register called the “current frame pointer”, to point to where its frame
starts

¢ the machine is 3 instructions (slots) wide, the 3 instructions are called a ‘BUNDLE’, and all
3 instructions in a BUNDLE must issue together or stall together

Chapter 6, Advanced Pipelining-STATIC, slide 31 © Ted Szymanski

Itanium-1 & Itanium-2 Processors

(class text - Fig. 6.48. pg 442)

Maximum instr. Maximum Max. clock |Transistors |Power |SPEC SPEC
Processor |issues / clock ops. per clock | rate (mllllons) (watts) int2000 fpzooo

\

[

Itanium [a integer/ media 0.8 GHz
2 memory
3 branch l
2FP
tanum2 |6 | 6 integer/media [11 { 1.5 Ghz | 221 130 i 810 | 1427
|
l

4 memory
| 3 branch
|2 FP

FIGURE 6.48 A summary of the characteristics of the Itanium and Itanium 2, Intel’s first two implementations of the IA-64
architecture. In addition to higher clock rates and more functional units, the Itanium 2 includes an on-chip level 3 cache, versus an off-chip level 3
cache in the Itanium.

* According to class text, the latest Itaniums can issue 2 Bundles (6 instructions) per cc
* The 2005 Itanium-2 uses 221 Million transistors, and dissipates 130 Watts

« take note: It has 6 INT ALU units, 2 pipelined FP units, 4 MEM units, to help avoid
structural hazards, so that we can issue bundles without waiting

Chapter 6, Advanced Pipelining-STATIC, slide 32 © Ted Szymanski

Itanium — Poulson Die (2010-2011)

(www.theregister.co.uk/2011/02/20/intel_poulson_itanium_isscc)

Intel’s future "Poulson”™ Itanium server processor
Chapter 6, Advanced Pipelining-STATIC, slide 33

© Ted Szymanski

Itanium - Poulson Core (2010-2011)

(www.theregister.co.uk/2011/02/20/intel_poulson_itanium_isscc)

Branch Floating Point
Predict Execution

BR Integer Floating
CTL § Register File Pt RF

Integer Execution

Instruction
Queues

Pipe Line Interface *
Control Logic

Chapter 6, Advanced Pipelining-STATIC, slide 34

© Ted Szymanski

Itanium - Poulson Summary (2010-2011)

(www.theregister.co.uk/2011/02/20/intel_poulson_itanium_isscc)

The Poulson chip is the ninth in the Itanium family, which is more than a
decade old and which was intended to replace x86 processors in the glorious
future painted by Intel, HP, and the other Itanium partners back in the mid-to-
late 1990s. That didn't happen, obviously, and everyone else that had
adopted Itanium beside HP has backed Intel's high-end Xeon 7500s for
everything but the proprietary platforms they don't want to move to another
chip architecture. Again.

The Poulson chip has eight cores, two directory caches, five QuickPath
Interconnect (QPI) links, two memory controllers, two shared L2 caches, and
a bunch of system logic all on the same piece of silicon. It weighs in at 3.1
billion transistors, and is 588 square millimeters in size. The current Tukwila
Itanium chip, by comparison, has four cores, a total of 2 billion transistors,
and is 700 square millimeters in area. The double shrink from 65 to 32
nanometers allows for a lot more stuff to be crammed onto the chip, and also
a reduction of the size of the chip by about 20 per cent and a slight reduction
in the thermal design point, which drops from 185 watts with top-end Tukwila
parts to 170 watts with the fastest Poulson parts.

Chapter 6, Advanced Pipelining-STATIC, slide 35 © Ted Szymanski

Itanium Compiler Scheduling et tex - ch. 4.7, pg. 351)

* the compiler can create the code using 2 strategies:

* (#1) minimize the number of bundles; pack 3 instructions per ‘bundle’ whenever possible,
knowing that many bundles will stall due to data hazards or structural hazards

* (#2) minimize the number of stalls; The compiler inserts NO-OPs into slots when needed,
and arranges the bundles to execute without stalling if possible (compiler-based scheduling)

* Note that the Itanium is a multiple-issue linear pipeline machine; the ID (issue) stage
controls access to all the Execution units, and stalls all issues if necessary

* Lets consider compiler scheduling using the 2 methods. The loop x[I] = x[I] + s is unrolled 7
times, and scheduled (in the class textbook): here are the reported results:

* (a) strategy #1 - minimize the number of instruction bundles
¢ (b) strategy #2 - minimize the number of stalls (blank slots represent NOOPs).
* Strategy #1 yields 9 bundles, and executes in 21 clock cycles for 7 iterations of the loop.

* Strategy #2 yields 11 bundles and executes in 12 clock cycles for 7 iterations of the loop.

* lets repeat these examples in our class notes, but we’ll only unroll the loop 4 times (next
slides)

Chapter 6, Advanced Pipelining-STATIC, slide 36 © Ted Szymanski

= In general, using strategy #2 (maximize code density), we really should maximize
code density as a first criterion, and and then maximize performance (minimize stalls)
when possible.

= In general, using strategy #1 (maximize code speed), we really should maximize
code speed as a first criterion, and and then maximize code density when possible.

Chapter 6, Advanced Pipelining-STATIC, slide 37 © Ted Szymanski

Itanium Bundle Restrictions

e the 2 Itanium coding examples on the next slide are from the reference textbook (pg 355),
and there is a limited explanation on them

¢ The Itanium places restrictions on which types of instructions can go in each slot. Some of
the instruction types are: M=Memory, I=Integer ALU, FP = Floating Point, B = branch.

¢ The Itanium allows 29 different combinations of instruction types to go into a bundle, and
these restrictions are called ‘templates’ by Intel

* For example, in the template column, ” M M I”” denotes (2 memory instructions, one Integer
instruction)

* Common Itanium templates are: “MMI”, “MMF”, “MII”, “MFI”, “MIB” BBB”,
° (13 MMB”, 4GMFB79

* Interestingly, the above templates do not allow 2 FP operations per bundle (which would
limit FP performance)

* Equally interestingly, the above templates do allow 3 branch instructions to be placed in one
bundle. It would be difficult to decide which branch takes precedence if all three branches
were taken simultaneously

Chapter 6, Advanced Pipelining-STATIC, slide 38 © Ted Szymanski

Example - Itanium Scheduling (g 356, ref text

* Lets work out an example in class

* TYPICAL ASSUMPTIONS:
* (1) there are 2 MEM units, each 2 stage pipeline

* (2) 2 pipelined FP ADD units, each 3 stage pipeline
* (3) 1 pipelined FP MULT unit, 6 stage pipeline

* (4) any 3 non-branch instructions can be placed in one bundle if there is enough hardware
(They all issue together or they all stall together)

* (5).at most one branch can be placed in a bundle
* OBSERVATIONS:

* (1) since there are 2 MEM units, we can only have at most 2 LDs in one bundle, otherwise
we have a structural hazard and the bundle could never issue !

* (2) since there are 2 FP ADD units, we can place at most 2 FP-ADDs into one bundle ,
otherwise we have a structural hazard and the bundle could never issue !

* there may be several other good ways to schedule the code for these 2 examples

Chapter 6, Advanced Pipelining-STATIC, slide 39 © Ted Szymanski

ITANIUM Scheduling Example

Recall our Basic Loop in a 5 stage pipeline, before multiple-i
Lets use a new timing-table format, with 5 columns

Assumptions:
(1) One FP ADD, 3 stage pipeline (before multiple-issue)

(2) one FP MULT, 6 stage pipeline
(3) 1 Integer ALU unit
(4) 1 MEM unit, 1 stage
(5) Data forwarding happens at the end of the cc in which the result is produced
(6) the EX column shows the execution times in INT ALU unit, and FP units
(7) an Instruction goes into the MEM stage only if it's a LD or SD
otherwise, it bypasses the MEM stage and goes straight to the Write-Back stage

Instruction Issue (ID stage) Execute Mem Write-Back comment
loop LD FO, O(R1) 1 2 3 4 fetch X(I)

ADDD F1, FO, F31 2.3 4..6 7 add scalar ir

SD F1, O(R1) 4..5 6 7

ADDI R1, R1,#-8 6 7 8

BNEZ R1,loop 7 8

No-op

* Suppose we add hardware to support these next 2 assumptions:
* New Assumption #1: Instructions that don’t use MEM don’t pass through MEM stage(s)

* New Assumption #2: Instructions that don’t use WB don’t pass through WB stage(s)

Chapter 6, Advanced Pipelining-STATIC, slide 40 © Ted Szymanski

Itanium - Basic Loop, Unrolled(4) & Scheduled

MAX-SPEED

basic loop LD FO,0(R1)
SUBI R1,R1,#8
ADDD F1,FO,F3:
BNEZ R1,loop
SD F1,+8(R1
Assumptions:

1) 2 FP ADD units, each a 3 stage pipeline

2) one FP MULT unit, a 6 stage pipeline

3) 4 Integer ALU units (to avoid structural hazards)

4) 2 MEM units, each a 2 stage pipeline

5) Data forwarding happens at the end of the cc in which the result is produced
6) EXcolumn shows execution times in both INT and FP units

7) Instruction goes to MEM stage only if it's a LD or SD

8) Instructions can bypass MEM or WB stages if they are not needed

Unrolled 4 times and Scheduled for MAX SPEED

Slot #1 Slot #2 Slot #3 Issue | Ex(1) | Ex(2) | Ex(3) | M(1) | M(2) |wB(1)|wB(2)|wB(3)| Comment/Hazard
LD FO,0(R1) LD F1,-8(R1) no-op 1 2 2 3.4 | 3.4 5 5

LD F2,-16(R1) |LD F3, -24(R1) no-op 2 3 3 4..5 | 4..5 6 6

no-op ADDD F4,F0,F31 |ADDD F5,F1,F31 3,4 5..7 | 5..7 8 8 wait for FO,F1
SUBI R1,R1,#32 |ADDD F6,F2,F31 |ADDD F7,F3,F31 5 6 6..8 | 6..8 7 9 9 bypass M stage
SD F4, +32(R1) [SD FS5,) |BNEZ R1,loop 6 7 7 7 8..9 | 8..9 bypass WB stage
SD F7 no-op 7 8 8 9..10(9..10 bypass WB stage

¢ 7 cc for 4 iterations: at 2 GHz clock, performance = (2 GHz) * (4 flops/7 cc) = 1,143 GigaFlops/sec

Chapter 6, Advanced Pipelining-STATIC, slide 41

© Ted Szymanski

Itanium - Basic Loop, Unrolled(4) & Scheduled
MIN-BUNDLES

basic loop LD FO,0(R1)

SUBI R1,R1,#8

ADDD F1,FO,F3:

BNEZ R1,loop

SD F1,+8(R1
Slot #1 Slot #2 Slot #3 Issue [Ex(1) | Ex(2) | Ex(3) Mem(1Mem(2|WB(1)|Wb(2)|WB(3) Comments
LD FO, O(R1) LD F1, -8(R1) no-op 1 2 2 3.4 | 3.4 5 5
LD F2,-16(R1) LD F3, -24(R1) ADDD F4,F0,F31 2.4 5 5 5.7 | 6.7 | 6.7 8 8 8
SUBI R1,R1,#32 |ADDD F5,F1,F31 ADDD F6,F2,F31 5..7 8 |[8..10]8..10 9 11 11 |forward F2 end cc 7
SD F4, +32(R1) |SD F5, +24(R1) |ADDD F7,F3,F31 8.9 [10 10 |10..12[11..12|11..12 13 forward F5
SD F6, +16(R1) |SD F7, +8(R1) BNEZ R1,loop 11 12 12 12 |13..14[13..14

= This code uses 5 Issue-Bundles, compared with 6 Issue-Bundles on the previous slide. It

executes in 11 cc, compared with 7 cc on the previous slide.

= This is just one possible way to schedule the instructions for maximum code density. In
general, using strategy #2 (maximize code density), we really should maximize code density as
a first criterion, and and then maximize performance (minimize stalls) when possible.

Chapter 6, Advanced Pipelining-STATIC, slide 42

© Ted Szymanski

Real Itanium-1 Latenc1es & Penalties
(ref text - ch.4.7,pg. 3

Instruction Latency

[nreger load 1
Floating-point load 9

Corrcc_:t]y predicted taken branch 0-3
Mispredicted branch
Integer ALU operations

FP arithmetic

* recall that latency = # clock cycles that must expire in between 2 dependent instructions, ie
an instruction producing data and an instruction consuming the data

* observe the large latencies of FP loads (9 cc) and mis-predicted branches (9 cc)

* each cc represents 3 instructions, so a 9 cc penalty = 27 instruction slots ! These are huge
penalties

Chapter 6, Advanced Pipelining-STATIC, slide 43 © Ted Szymanski

Itanium-1 Performance cef text - ch.4 , pg. 360)

e on INT SPEC benchmarks, the Itanium-1 has 60 % of the performance of the Pentium-4

* on FP SPEC benchmarks, the Itanium-1 is about 10 % faster than the Pentium-4, when using
a clock rate which is slower than the P4 clock rate

¢ the Itanium-1 has a 4 MB off-chip L3 cache, the P4 does not have an L3 cache

* interestingly, the Itanium-1 gets its improved FP performance over the Pentium-4 based on
only one program in the benchmark, where it is 4 times faster; if that program would be
excluded, the Itanium-1 would be slower than the P4 !

¢ the Itanium-1 performance appears to be due to the L3 cache; a 4MB L3 cache would
offer a performance improvement to any machine, since this is a very large cache

¢ in terms of FP power per watt, the Itanium-1 has only 56 % of the performance of the P4
(half as efficient !)

Chapter 6, Advanced Pipelining-STATIC, slide 44 © Ted Szymanski

Itanium-2 Performance - Sept 2005 (from www)

IDEAS Top Performers - SPECfp2000 - Single CPU Subset

Rank Company System Processor RP“" Baseline [TESt Date
esult
1 |IBM Corporation IBM System p5 520 (1900 MHz, 1 CPU) POWERS+ 3030 2839| Sep-05
2 |18M Corporation IBM IntelliStation POWER 285 Workstation (1900 POWERS+ 3027 2838| Ssep-05
MHz, 1 CPU)
3 |1BM Corporation IBM System p5 550 (1900 MHz, 1 CPU) POWERS+ 3007 2815| Sep-05
4 |HiTach '2’)"’“:"‘ BladeSymphony (1.66GHz/SMB Itanlum Intel Itanium 2 2801 Jun-0s
5 |Hewlett-Packard Company |HP Integrity rx4640-8 (1.6GHz/SMB Itanlum 2) Intel Itanlum 2 2712 2712 Oct-04

Intel Itanlum 2 (1.6 GHz/3MB, 533

6 |Hewlett-Packard Company [HP Integrity rx1620-2 (1.6GHz/3MB Itanium 2) ALY 2692 2692| Oct-04
7 |Hewlett-Packard Company |HP Integrity rx2620-2 (1.6GHz/6MB, Itanium 2) | Itel s lF'g’B‘“;‘"z’GMB' 2675 2675| Dec-04
8 |sar SGI Altix 3700 Bx2 (1600MHz SM L3, Itanium 2) Intel Itanium 2 2647| oOct-04
9 |saGI SGI Altlx 3700 Bx2 (1600MHz 6M L3, Itanium 2) Intel Itanium 2 2600| Oct-04
10 |18M Corporation 1BM eServer p5 595 (1900 MHz, 1 CPU) POWERS 2796 2585 Jan-05

¢ in 2005, the Itanium-2 seems to be nearly as powerful as the IBM Power5+ dynamically
scheduled machine

¢ in the future, it will be interesting to see which architecture dominates (static vs dynamic
scheduling)

Chapter 6, Advanced Pipelining-STATIC, slide 45 © Ted Szymanski

Dual-Core Itanium Performance - 2006 (from www)

JULY 18, 2006

Montecito Arrives, Doubles Itanium Performance

Intel finally unveiled its long-awaited dual-core Montecito chip, and replaced the familiar codename with
the unwieldy moniker: "Dual-Core Intel Itanium 2 Processor 9000 Series." The fastest chips run at the
same 1.6 GHz as did the single-core Madison 9M top end part — the widely anticipated clock rate, but
slower than once had been targeted using the "Foxton" speed booster. Thanks to the two cores per
processor chip, Montecito delivers approximately twice the performance compared to its single-core
predecessor. To offset contention for the shared front side bus, Intel increased the on-chip L3 cache to 24
MB (shared by both cores) which consume much of the remarkable 1.72 billion transistors on the die,

triple the circuit count of its predecessor.

Although Montecito is an impressive implementation, it would have been far more imposing had it

shipped in 2005, as once was expected. At this stage, Montecito faces formidable competition from IBM’s
POWERS+ processors, which currently hold top position on many industry standard benchmarks.

Undoubtedly Montecito will wrest some of those benchmarks away from POWER, but look for leapfrogging
results as vendors tune and tweak to regain the leadership crowns.

¢ in 2006, it looks like the dynamically-scheduled IBM Power5+ still is in top spot

Chapter 6, Advanced Pipelining-STATIC, slide 46 © Ted Szymanski

Limits on ILP (ref text - section 4.7, pg.322)

* Consider an ideal superscalar CPU, and a compiler which can look at assembler instructions,
make compiler-time branch predictions, determine data-dependencies and schedule instructions
to maximize parallelism

* To check the data-dependencies between 50 instructions requires over 2,000 comparisons by
the compiler; to check the dependencies between 2000 instructions requires over 4 million
comparisons !

* suppose the compiler processes “windows” of instructions looking for parallelism

¢ what are the limits to ILP, for future machines ?

Chapter 6, Advanced Pipelining-STATIC, slide 47 © Ted Szymanski

Limits on ILP (ef text - fig 3.35, pg 242)

espresso
SPEC L
benchmarks
fPppp
doduc —
tomcatv _
80 100 120 140 1
Instruction issues per cycle

* Above table shows how many instructions can issue together after scheduling, for
various applications

* In the future, we may have statically scheduled multiple-issue machines which issue
between 64 and 128 instructions per cc

Chapter 6, Advanced Pipelining-STATIC, slide 48 © Ted Szymanski

Chapter 6, Advanced Pipelining-STATIC, slide 49

Notes

© Ted Szymanski

