
© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 1!

•  In a Statically-Scheduled machine, the compiler schedules all instructions to avoid
data-hazards: the ID unit may require that instructions can issue together without
hazards, otherwise the ID unit inserts stalls until the hazards clear!

•  This section will deal with Dynamically-Scheduled machines, where hardware-
based techniques are used to detect are remove avoidable data-hazards automatically, to
allow ‘out-of-order’ execution, and improve performance!

•  Dynamic scheduling used in the Pentium III and 4, the AMD Athlon, the MIPS
R10000, the SUN Ultra-SPARC III; the IBM Power chips, the IBM/Motorola
PowerPC, the HP Alpha 21264, the Intel Dual-Core and Quad-Core processors!

•  In contrast, static multiple-issue with compiler-based scheduling is used in the Intel
IA-64 Itanium architectures!

•  In 2007, the dual-core and quad-core Intel processors use the Pentium 5 family of
dynamically-scheduled processors. The Itanium has had a hard time gaining market
share.!

Dynamically-Scheduled Machines !

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 2!

Dynamic Scheduling - the Idea !
(class text - pg 168, 171, 5th ed.)"

 !DIVD ! !F0, F2, F4!
ADDD ! !F10, F0, F8 !- data hazard, stall issue for 23 cc!
SUBD ! !F12, F8, F14 !- SUBD inherits 23 cc of stalls!

•  ADDD depends on DIVD; in a static scheduled machine, the ID unit detects the
hazard and causes the basic pipeline to stall for 23 cc!
•  The SUBD instruction cannot execute because the pipeline has stalled, even though
SUBD does not logically depend upon either previous instruction!
•  suppose the machine architecture was re-organized to let the SUBD and subsequent
instructions “bypass” the previous stalled instruction (the ADDD) and proceed with
its execution -> we would allow “out-of-order” execution!
•  however, out-of-order execution would allow out-of-order completion, which may
allow RW (Read-Write) and WW (Write-Write) data hazards !
•  a RW and WW hazard occurs when the reads/writes complete in the wrong order,
destroying the data. We would need to handle these hazards.!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 3!

!DIVD ! !F0, F2, F4!
!ADDD ! !F6, F0, F8 "!
!SUBD ! !F8, F10, F14!
!MULD ! !F6, F10, F8!

•  there is a RW data hazard between ADDD and SUBD (ADDD reads F8, SUBD
writes F8, even though there is no logical flow of information between the
instructions); if they execute in the wrong order the program is incorrect; in a
statically-scheduled machine, the ID Unit will stall to preserve order of R & W!
•  there is an WW data-hazard between ADDD and MULD (both write F6, even
though there is no logical flow of information between the two instructions); if they
execute in the wrong order the program is incorrect; in a statically scheduled
machine, the ID Unit will stall to preserve order of W & W!
•  these problems can be solved, and this code sequence can execute as fast as
possible, by using “Tomasulo’s algorithm” (also called “Dynamic Scheduling”)!

Dynamic Scheduling - the Idea"
(class text, pg. 169) !

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 4!

!DIVD ! !F0, F2, F4!
!ADDD ! !F6, F0, F8 - unavoidable data hazard, stall 23 cc!
!SUBD ! !F8, F10, F14!
!MULD ! !F6, F10, F8 ! !

•  Here is the same example ; in a static machine, the ID unit will stall the ADDD
until the hazards clear !
•  suppose we create some temporary registers, called nF6 and nF8, and we
‘rename’ the second occurrences of F6 and F8 to use these new registers; this
sequence avoids the hazards, and is logically equivalent (gives the same answer):!
 !DIVD ! !F0, F2, F4!

!ADDD ! !F6, F0, F8!
!SUBD ! !nF8, F10, F14!
!MULD ! !nF6, F10, nF8!

•  we can now let the SUBD and MULD instructions execute out-of-order, since
there are no RW or WW hazards!

Dynamic Scheduling - the Idea!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 5!

•  Most advanced CPUs (PowerPC, MIPS, Pentium) now implement Tomasulo’s
algorithm, originally proposed in 1960s for large supercomputers!
•  Basic ideas: !

- (i) hardware can unroll loops and execute multiple iterations optimally, without
compiler loop unrolling and scheduling ! !!
- (ii) hardware automatically bypasses “data hazards” without stalling pipelines
whenever possible !
- (iii) hardware issues instructions at maximum rate without data hazard stalls; ID
never stalls due to data-hazards; it only stalls due to structural-hazards!

•  hardware performs “register-renaming” function automatically, eliminating RW
and WW data-hazards - this is probably the trickiest part of !

"Tomasulo’s Algorithm = Dynamic Scheduling !

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 6!

•  How “dynamic scheduling” is accomplished:!
- (i) several Functional Units (FUs), i.e., MULT, DIV, SRT, ADD/SUB, etc"
- (ii) each Functional Unit contains a “Reservation Station”, which queues
several instructions to be performed and their operands if they are ready. If
operands are not ready, it queues pointers to other FUs that will produce the
operands (these pointers are called “tags”)!
- (iii) as an instruction is issued at the Instruction Queue (ID stage), its
(operands are pre-fetched) OR (tags are pre-fetched) from the registers and
stored along with the instruction in the appropriate Reservation Station !

-  basically, an instruction copies its operands when it issues, and takes its operands
with it to the reservation station, if the operands are ready; if the operand(s) are not
ready, the instruction takes an ‘I-owe-you’ (IOU or “pointer” or ‘tag’) for the
operand and will capture the operand once it is computed using the IOU!
-  an operand can move directly from a “producer” FU to a “consumer” RS,
bypassing the register file and removing all data-hazards!

"Hardware Organization (class text – pg. 173,174)"

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 7!

Hardware Structure Dynamic Scheduling (class text - fig. 6.49, pg 444)!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 8!

Hardware Structure - More Detail (class text – pg. 173)!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 9!

Dynamic Scheduling : Tomasulo’s Algorithm !

- (iv) new results computed in a Functional Unit are broadcasted to all
Reservation Stations (via a broadcast over the “Common Data Bus”), and written
back to registers at same time!
- Net affect: to eliminate all the RW and WW data hazards involved with reading
and writing to registers; this solution relies upon broadcasting results as they
become available to all Reservation Stations who took an IOU for the result!

•  Tomasulo’s algorithm decouples instruction issue from instruction execution; the
algorithm will keep issuing instructions (in the ID stage) as long as there is room in the
Reservation Stations; it never stalls instruction issues due to data-hazards !
•  Instruction Issues will only stall if a Reservation Station is full (structural hazard)!
•  A data hazard cannot cause instruction issues to stall in dynamic-scheduling;
Compare with a linear static-scheduled pipeline: If a LOAD results in a cache miss,
the entire pipeline must stall until the memory read is completed, which can take 100s
cc. The entire pipeline must stall, because the Load cannot move into the Write-Back
stage until it is ready to write. Other instructions must stall, because they cannot
“bypass” the Load.!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 10!

Three Basic Steps (ref text – pg. 174)"
•  3 main steps to complete an instruction, each can take many clock cycles:!
•  (1) ISSUE: get instruction from Instruction Queue; if there is an empty Reservation
Station for the instruction (ie ADD, MULT, DIV), then issue the instruction to the
RS, and fetch its operands if they are available and forward to the RS; otherwise,
forward a “tag” (a pointer to the FU that will generate the operand(s)) to RS (this
implements “register renaming”). If there is no empty RS for the instruction, we
have a structural-hazard and must stall pipeline!
•  (2) EXECUTE: at every RS: if operand is not ready, monitor the CDB waiting for
that register to be written by the correct producer; copy the result into the RS when it
appears on the CBD using the IOU (or tag) When both operands are ready, execute
the instruction if FU is not busy, or label instruction as ready to execute if the FU is
busy!
•  (3) WRITE RESULT: at every FU: when a result is computed, write it over the
Common Data Bus to the destination register and to any waiting Reservation Stations
that have an IOU for that operand!
•  all WW and RW data-hazards are automatically avoided, through the register
renaming process!
•  data structures to implement the logic are distributed through the Reservation
Stations!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 11!

 Comments !

•  Major advantages of Tomasulo’s algorithm:!

- (i) distribution of data-forwarding logic to all reservation stations and CDB!

- (ii) elimination of RW and WW hazards!

- (iii) issues occur at maximum possible rate!

- (iv) execution occurs at maximum possible rate, limited only by unremovable
data-hazards or structural-hazards in the original code!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 12!

3 INT
ALUs

1 FP
ADDD

1 FP
MULTD

1 FP
DIVD

ISSUE
LOGIC

&

REGISTERS

CDB

RESERVATION
STATION

RESERVATION
STATION

RESERVATION
STATION

RESERVATION
STATION

RESERVATION
STATION

CDB

MEM UNIT

FAST INT
FORWARDING
BUS (DASHED)

CDB
FORWARDING
BUS

INSTRUCTION ISSUE BUS

 Hardware Diagram for Example #1 !

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 13!

•  !

Example #1- Sequence of Instructions!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 14!

Example #2 - Concept of ‘Tags’ for Operands !

•  state of registers, before any instruction has issued.!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 15!

Example #2 - Concept of ‘Tags’ for Operands !

•  we assume no functional unit has started execution yet, since we are trying to show the data forwarding
using IOUs!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 16!

 Dynamic Loop Unrolling (text, pg 179)!

•  Consider the loop to multiply a vector by a scalar in F31;!
!Loop: !LD !F0, 0(R1) !; R1 = pointer to element in memory!
! !MULD !F4, F0, F31 !; add scalar in F2, store in F4!
! !SD !0(R1), F4 !; store into memory !!
! !SUBI !R1, R1, #8 !; dec pointer by 8 bytes (size of FP)!
! !BNEZ !R1, Loop!

•  lets assume “cancelling branches-PREDICT-TAKEN” (ie predict that branches are
always taken)!
•  Tomasulo’s algorithm will unroll the loop and issue as many instructions as it can,
until it encounters a structural-hazard - effectively decouples the issue from the
computation !!
•  hardware dynamically unrolls the loop and eliminates all RW and WW data-hazards!
•  Tomasulo’s algorithm does not require many temporary FP registers to store
intermediate results, since intermediates are implicitly stored in the Reservation
Station Buffers. Recall that when the compiler unrolled the loop, we needed many extra
FP registers to avoid RW and WW hazards.!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 17!

Example #3 - Automatic Loop Unrolling, Single Issue!
(Example done in class, 2012)!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 18!

 Concept of ‘Steady-State’ Performance!
•  Referring to last slide, lets examine loop iterations, to see if a ‘steady-state’ is
reached!
•  Here is a definition of ‘steady-state’ for a loop: The ‘STATE’ of the machine remains
constant, when viewed at recurring event times in each loop iteration. The state
includes the number of queued instructions in the reservation stations.!
•  A ‘recurrent event time’ is defined as the clock cycle when any event for a recurring
instruction starts or ends, ie, the issue clock cycle for the same instruction in every
loop, or the start of the execution for the same instruction in every loop!
•  The ‘STATE’ of the machine includes: (a) the number of instructions queued in each
type of Reservation Station.!
•  If a Steady-State is reached, then we can estimate the machine performance using
this formula:!

•  (performance) = (Flops per iteration/clock cycles per iteration) * (Clock Rate)!
•  This is an estimate, because it ignores the times to fill-up the pipelines at the
beginning of a loop, and it ignores the time to flush the pipelines at the end of a loop!
•  For large loops, these fill-up and flush times become negligible and the performance
estimate is quite accurate!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 19!

 Dynamic Loop Unrolling - Comments!

•  Referring to last slide, lets examine loop iterations, to see if a ‘steady-state’ is
reached!
•  The 1st LD starts EX in each loop iteration at times: 2, 7, 12,!
•  The 1st LD starts MEM in each loop iteration at times: 3, 8, 13, !
•  The 1st LD starts WB in each loop iteration at times: 5, 10, 15, !
•  Define ‘Delta-T (j, j-1)’ as the difference between the starting clock cycle of 2
identical recurring events in loops (j) and (j-1)!
•  lets pick an recurring event = cc that the 1st LD starts EX stage in each iteration!
•  Observe that Delta-T (2, 1) = 5 cc!
•  Observe that Delta-T (3, 2) = 5 cc!
•  Observe that loop 3 appears to be have reached a steady state !
•  the ending state of the machine for iteration 3 is the same as the ending state of the
machine for iteration 2, except all cc’s are shifted by +5 cc: The queues in the
reservation stations do not grow.!
•  Lets add another loop iteration to our table and see:!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 20!

 Dynamic Loop Unrolling - Steady-State!

•  this loop has reached a ‘steady-state’. For loop iterations j >= 2, Delta-T = 5 clock cycles.!
•  the number of instructions queued in each Reservation Station will remain constant, at the same recurring
event time within each loop iteration => the queue of instructions in RS does not grow or diminish, but
remains constant!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 21!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 22!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 23!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 24!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 25!

 Observations - Loop with Unavoidable Data-Hazards!
•  The MULTDs in the last loop have unavoidable data-hazards. They cannot be
removed. Each MULTD must wait the result of the previous MULTD.!

•  Observe that for j >= 2, Delta-T (j, j-1) = 6 cc for all instructions except for the
MULTD !

•  Lets define our recurring event as the time the MULTD starts Execution !

•  Observe that for j>=2, Delta-T (j, j-1) = 9 cc for the MULTD EX !

•  The MULTDs are executing at a much slower rate than all the other instructions, due
to their unavoidable data-dependencies!

•  If we run a loop with 1000 iterations, the issues take 6*1000 cc. The last integer
instructions will finish execution at time roughly 6*1000 +1 cc and will disappear. !

•  At time = 6000 cc, only floor(6000/9cc) = 667 MULTDs will have finished, and there
will be roughly 333 MULTDs left in the MULTD Reservation stations, and 333 SDs in
the MEM reservation stations awaiting execution (assuming RSs have infinite capacity)!

•  At this point, all the instructions have issued, the processor has moved on to a new
loop, and the MULTDs and SDs are left to finish as soon as they possibly can!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 26!

Final Thoughts "
•  Tomasulo’s algorithm allows out-of-order execution; instructions issue as soon a
possible, instructions execute as soon as possible!
•  Avoidable data-hazards are automatically removed. Unavoidable Data-hazards are
still present ; suppose we have a long sequence of data-dependent instructions: In a
static-scheduled pipeline, the ID Unit stalls the issue of each instruction until the data
hazard clears. With dynamically-scheduled pipeline, all instructions issue as soon as
possible, and the execution proceeds as soon as possible !
•  The main advantage of Tomasulo’s algorithm is that it allows out-of-order
execution : it lets other instructions without data-dependencies execute out-of-order
when there are data-hazards, and all executions happen as soon as they possibly can!
•  Good compiler scheduling can approach the performance of Tomasulo’s algorithm.!
•  Tomasulo’s algorithm is expensive in hardware. Nevertheless, most supercomputers,
the Motorola PowerPC, the Pentiums and the Intel dual-core and quad-core processors
(dual Pentiums) all rely on Tomasulo’s algorithm for performance. !
•  In contrast, the ‘next generation’ processor from Intel/HP, the Itanium processor, has
moved to a static-scheduled pipeline, to avoid hardware cost of Tomasulo’s algorithm.
However, the commercial acceptance of the Itanium has ‘stalled’, and time will tell
which technique (static vs dynamic scheduling) will rule.!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 27!

Dynamic Scheduling with Multiple-Issue !
•  machines which use Tomasulo’s algorithm can easily be modified to support multiple-issue!
•  the next example illustrates a multiple-ISSUE machine!
•  a problem that arises with multiple issue is branch hazards - branches arrive much faster due
to multiple issue; we might have 1 branch per cc!
•  many loops have a branch at the bottom of the loop, back to the top of the loop!
•  to keep issuing at maximum rate, we will use BRANCH-PREDICTION, ie predict the branch
as taken, so we start the issue for the next loop iteration even before we resolve the branch!
•  however, we avoid executing these instructions until we resolve the branch!
•  we call this mode of execution ‘NON-SPECULATIVE EXECUTION’!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 28!

Example - Non-Speculative Execution !

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 29!

•  observe that there are structural hazards on the INT Reservation-Station at clock cycles 5, 7,
9, 11, etc!
•  INT instructions fill up in the RS and cannot execute until the prior branches resolve"
•  the loop appears to reach a steady state at clock cycles 4,5, then 6,7, etc!
•  it takes 2 ccs to issue 5 instructions, due to structural hazards!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 30!

Hardware-Based ‘Speculative Execution’ (class text – pg. 183) !
•  recall branches result in large slowdowns for real machines!
•  in a wide n-issue machine, there may be a branch in every clock cycle!
•  to exploit more parallelism, we need to remove branch hazards!
•  solution: use “SPECULATIVE EXECUTION” on outcome of branch; predict the branch
outcome, and start execution according to your prediction!
•  similar to the “Branch-Prediction” concept we looked at in the regular linear pipeline!
•  The main difference is that we now allow instructions to execute and do a ‘tentative write-
back’ before we know the outcome of the branch; call these results ‘speculative results’!
•  other instructions might use these speculative results and start execution, so they also
become speculative instructions!
•  If our branch prediction was wrong, we must have special hardware support to “remove” all
speculated results!
•  Speculation is used in latest PowerPC chip, MIPS chip, Intel Pentium 3 and Pentium 4 chips,
the DEC Alpha 21264, and the AMD Athlon chips!
•  Basic idea: hardware must keep track of “speculated instructions”; once the branch outcome
is resolved, the speculated instructions dependent on that branch can be either (1) kept if the
branch prediction was correct or (b) be completely undone, with all registers restored to their
proper values!
•  If we keep the results, we say the speculated instructions go through the “Commit” stage!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 31!

Hardware-Based Speculation (class text - pp. 183-187) !

•  add a new hardware block called the “Re-Order Buffer”!
•  when a speculated instructions finishes execution, it writes it results to the Re-Order buffer!
•  the Re-Order buffer stores all speculated instruction results until we know if they are correct
or not!
•  when the branch outcome is determined, if the prediction was correct then the speculated
instructions “Commit”, and remove their results from the Re-Order buffer and copy the
results to the Registers!
•  If the branch was predicted incorrectly, the results of the speculated instructions, which are
held in the Re-Order buffer, can be erased since they are useless!
•  We add the constraint that speculated instructions must commit “in-order” to preserve the
correctness of the program!
•  (pg 227 text) entries in the re-order buffer have 4 fields; the speculated instruction, the
destination to be written (registers for ALU operations, memory for STORE instructions), the
value to be written back, and the result-ready bit (= ‘1’ when the instruction has completed
execution and the value field is valid)!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 32!

 MIPS machine"
with Tomasulo’s Alg"
and Speculation,!

(class text – pg. 185) !

Main change with speculation!
is the addition of the!
Re-order buffer (ROB)!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 33!

Example - Speculative Execution !

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 34!

Speculative machine !

•  observe that the structural hazards on the INT Reservation-Station have been removed by
speculation, since the INT instructions can execute without waiting for branches to resolve,
thereby creating more space in the INT-RS!
•  the machine now issues at the optimal rate (5 instructions per cc), and executes at the
optimal rate"

Note: delta-t = 1 cc in above"

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 35!

Notes!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 36!

Real Stuff: The Pentium 4 Architecture "
(Comp Org. text - section 6.10, class text - pg 259, 3rd ed.) !

•  The Pentium 4 is a dynamically scheduled speculative pipelined machine that executes the
old Intel IA-32 instruction set.!

•  It translates each “difficult-to-pipeline” IA-32 instruction into a series of pipelinable RISC
“micro-ops”!

•  Up to 3 IA-32 instructions are fetched, decoded and translated to micro-ops per clock cycle!

•  if an IA-32 instruction requires more than 4 micro-ops, its translation takes multiple clock
cycles!

•  Micro-ops are dynamically scheduled using Tomasulo’s algorithm, and therefore execute out-
of-order!

•  The issue stage can issue up to 3 micro-ops per clock cycle; the commit stage can complete
up to 3 micro-ops per second!

•  The P4 gains its advantage over the P3 as follows:!

•  deeper pipeline: 20 pipeline stages for the P4, versus 10 stages for the P3!

•  more functional units (7 units for the P4, versus 5 units for the P3)!

•  use of a trace cache, to speed up micro-op translation!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 37!

•  The P4 architecture uses speculation and therefore requires a re-order buffer. !

•  The P4 uses register-renaming, which is inherent in Tomasulo’s algorithm. !

•  The IA-32 instruction set only has 8 general purpose architectural registers, so running out of
registers is a problem. The P4 uses 128 general purpose registers!

•  P4 allows up to 126 microps to be outstanding at any time, including 48 loads and 24 stores !

•  For comparison, the IBM PowerPC chip allows up to 400 instructions to be outstanding at
any time!

•  The FP unit in Fig 6.50 (2 slides ahead) actually consists of 2 functional units, so there are 7
functions units in total!

•  The FP Unit handles the special MMX and SSE2 instruction set additions!

•  There are 2 Integer ALU units, which operate at twice the processor clock rate, so that 4
integer ops can be computed per clock tick!

The Pentium 4 Architecture !

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 38!

The Pentium 4 Architecture (ref text - pg 268, 3rd ed.) !
•  The P4 architecture requires 2 clock cycles just to drive results across the chip over the
busses!

•  The P4 ALU and data cache operate at twice the clock rate, to lower latency; this high-speed
operation is essential to lower potential stalls due to very deep pipeline!

•  The P4 has a Branch-Target-Buffer (BTB)* in the IF unit that is 8 times larger than the P3
BTB, to lower branch mis-prediction rates. It also uses an improved prediction algorithm.!

•  In 2002: the P4 had a smaller L1 data cache and larger L2 cache with higher memory
bandwidth (compared to Pentium 3), which should offset the smaller L1 cache!

•  The P4 implements the new Intel “SSE2” floating point instructions that allow 2 FP
operations to be done per clock tick. This boosts FP performance considerably.!

•  (We will discuss BTBs in a future lecture on Branches)!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 39!

Intel Pentium Processors (vlass text - fig. 3.47, pg 260, 3rd ed.) !

•  The Pentium 3 has both an L1 cache and an L2 cache. The L1 cache is about 32 Kbytes, and
holds both instructions and data together in one cache. The L2 cache is ‘off-chip’ in some of
the processors. The L2 cache is considerably larger than the L2 cache, usually around 1 Mbyte
in size.!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 40!

Pentium 4 Architecture (Comp. Org. text - fig. 6.50, pg 449) !

- 7 functional !
Units (FP box!
has 2 units)!

-  this box assumes the IF/ID functionality!

-  this box translates IA-32 instructions to RISC micro-ops!

-  this box queues up the RISC micro-ops to be issued!

-  this box does the operand !
fetching, register renaming and!
issue!

- 2 shared reservation!
 stations, one for Int/FP!
Ops, one for Mem Ops!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 41!

Pentium 4 Pipeline (Comp. Org. text - fig. 6.51, pg 449) !

 - this figure shows the typical flow through the P4 for a typical integer instruction. The average!
number of clock cycles spent in each major unit are shown!

-  average INT instruction requires 20 cc to complete, corresponding to a 20 stage pipeline!

- the major buffers where instructions wait are also shown!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 42!

Pentium 4 Performance (class text - pg 262, 3rd ed.) !

•  Several factors improve the performance of P4 vs P3:!

•  20 stage pipeline, aggressive multiple issue, dynamic scheduling, speculation!

•  low latencies for back-to-back operations (0 cc for ALU ops, 2 cc for LOADs)!

•  Several factors limit the performance of the P4 :!

•  Often less than 3 32-bit instructions can be fetched, due to cache misses!

•  Often less than 3 32-bit instructions can “issue” per clock cycle, since one of the 3
instructions generated more micro-ops than it is allowed to (there is fast micro-op generation
for most instructions, but not all)!

•  Not all the micro-ops can issue in a clock cycle due to structural hazards, ie a shortage of
reservation stations or a shortage of re-order buffers!

•  Unavoidable Data dependencies can lead to stalls!

•  Data cache misses can lead to stalls, (ie all instructions queued in reservation stations can be
stalled waiting for this data and none will execute)!

•  Branch Mispredictions cause stalls, since the pipeline must be flushed and refilled.!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 43!

Cache Misses (class text - fig. 3.53, pg 266, 3rd ed.) !

•  on average, L1 and L2 cache miss rates are usually between 10 and 50 misses per 1,000 instructions, a
miss rate of 1% - 5%. The L2 cache miss rate is smaller than L1 miss rate because it is larger, but L2
cache misses incur considerably larger stalls, about 5 times as large as an L1 miss!

© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide 44!

Notes!

