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•  In a Statically-Scheduled machine, the compiler schedules all instructions to avoid 
data-hazards: the ID unit may require that  instructions can issue together without 
hazards, otherwise the ID unit inserts stalls until the hazards clear!

•  This section  will deal with Dynamically-Scheduled machines, where hardware-
based techniques are used to detect are remove avoidable data-hazards automatically, to 
allow ‘out-of-order’ execution, and  improve performance!

•  Dynamic scheduling used in the Pentium III and 4, the AMD Athlon, the MIPS 
R10000, the SUN Ultra-SPARC III; the IBM Power chips, the IBM/Motorola 
PowerPC, the HP Alpha 21264, the Intel Dual-Core and Quad-Core processors!

•  In contrast, static multiple-issue with compiler-based scheduling is used in the Intel 
IA-64  Itanium architectures!

•  In 2007, the dual-core and quad-core Intel processors use the Pentium 5 family of 
dynamically-scheduled processors. The Itanium has had a hard time gaining market 
share.!

Dynamically-Scheduled Machines !
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Dynamic Scheduling - the Idea  !
(class text - pg 168, 171, 5th ed.)"

 !DIVD ! !F0, F2, F4!
ADDD ! !F10, F0, F8 !- data hazard, stall issue for 23 cc!
SUBD ! !F12, F8, F14 !- SUBD inherits 23 cc of stalls!

•  ADDD depends on DIVD; in a static scheduled machine, the ID unit detects the 
hazard and causes the basic pipeline to stall for 23 cc!
•  The SUBD instruction cannot execute because the pipeline has stalled, even though 
SUBD does not logically depend upon either previous instruction!
•  suppose the machine architecture was re-organized to let the SUBD and subsequent 
instructions “bypass” the previous stalled instruction (the ADDD) and proceed with 
its execution -> we would allow “out-of-order” execution!
•  however, out-of-order execution would allow out-of-order completion, which may 
allow RW (Read-Write) and WW (Write-Write) data hazards !
•  a RW and WW hazard occurs when the reads/writes complete in the wrong order, 
destroying the data. We would need to handle these hazards.!
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!DIVD ! !F0, F2, F4!
!ADDD ! !F6, F0, F8 "!
!SUBD ! !F8, F10, F14!
!MULD ! !F6, F10, F8!

•  there is a RW data hazard between ADDD and SUBD (ADDD reads F8, SUBD 
writes F8, even though there is no logical flow of information between the 
instructions); if they execute in the wrong order the program is incorrect; in a 
statically-scheduled machine, the ID Unit will stall to preserve order of R & W!
•  there is an WW data-hazard between ADDD and MULD (both write F6, even 
though there is no logical flow of information between the two instructions); if they 
execute in the wrong order the program is incorrect; in a statically scheduled 
machine, the ID Unit will stall to preserve order of W & W!
•  these problems can be solved, and this code sequence can execute as fast as 
possible, by using “Tomasulo’s algorithm” (also called “Dynamic Scheduling”)!

Dynamic Scheduling - the Idea"
(class text, pg. 169) !
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!DIVD ! !F0, F2, F4!
!ADDD ! !F6, F0, F8     - unavoidable data hazard, stall 23 cc!
!SUBD ! !F8, F10, F14!
!MULD ! !F6, F10, F8 ! !

•  Here is the same example ; in a static machine, the ID unit will stall the ADDD 
until the hazards clear !
•  suppose we create some temporary registers, called nF6 and nF8,  and we 
‘rename’ the second occurrences of F6 and F8 to use these new registers; this 
sequence avoids the hazards, and is logically equivalent (gives the same answer):!
 !DIVD ! !F0, F2, F4!

!ADDD ! !F6, F0, F8!
!SUBD ! !nF8, F10, F14!
!MULD ! !nF6, F10, nF8!

•  we can now let the SUBD and MULD instructions execute out-of-order, since 
there are no RW or WW hazards!

Dynamic Scheduling - the Idea!
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•  Most advanced CPUs (PowerPC, MIPS, Pentium) now implement Tomasulo’s 
algorithm, originally proposed in 1960s for large supercomputers!
•  Basic ideas: !

- (i) hardware can unroll loops and execute multiple iterations optimally, without 
compiler loop unrolling and scheduling ! !!
- (ii) hardware automatically bypasses “data hazards” without stalling pipelines 
whenever possible  !
- (iii) hardware issues instructions at maximum rate without data hazard stalls; ID 
never stalls due to data-hazards; it only stalls due to structural-hazards!

•  hardware performs “register-renaming” function automatically, eliminating RW 
and WW data-hazards - this is probably the trickiest part of !

"Tomasulo’s Algorithm = Dynamic Scheduling !
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•  How “dynamic scheduling” is accomplished:!
- (i) several Functional Units (FUs),  i.e., MULT, DIV, SRT, ADD/SUB, etc"
- (ii) each Functional Unit contains a “Reservation Station”, which queues 
several instructions to be performed and their operands if they are ready. If 
operands are not ready, it queues pointers to other FUs that will produce the 
operands (these pointers are called “tags”)!
- (iii) as an instruction is issued at the Instruction Queue (ID stage), its 
(operands are pre-fetched) OR (tags are pre-fetched) from the registers and 
stored along with the instruction in the appropriate Reservation Station  !

-  basically, an instruction copies its operands when it issues, and takes its operands 
with it to the reservation station, if the operands are ready; if the operand(s) are not 
ready, the instruction takes an ‘I-owe-you’ (IOU or  “pointer” or ‘tag’) for the 
operand and will capture the operand once it is computed using the IOU!
-  an operand can move directly from a “producer” FU to a “consumer” RS, 
bypassing the register file and removing all data-hazards!

"Hardware Organization  (class text – pg. 173,174)"
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Hardware Structure Dynamic Scheduling  (class text - fig. 6.49, pg 444)!
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Hardware Structure - More Detail  (class text – pg. 173)!
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Dynamic Scheduling : Tomasulo’s Algorithm !

- (iv) new results computed in a Functional Unit are broadcasted to all 
Reservation Stations (via a broadcast over the “Common Data Bus”),  and written 
back to registers at same time!
- Net affect: to eliminate all the  RW and WW data hazards involved with reading 
and writing to registers; this solution relies upon broadcasting results as they 
become available to all Reservation Stations who took an IOU for the result!

•  Tomasulo’s algorithm decouples instruction issue from instruction execution; the 
algorithm will keep issuing instructions (in the ID stage) as long as there is room in the 
Reservation Stations; it never stalls instruction issues due to data-hazards !
•  Instruction Issues will only stall if a Reservation Station is full (structural hazard)!
•  A data hazard cannot cause instruction issues to stall in dynamic-scheduling; 
Compare with a linear static-scheduled pipeline: If a LOAD results in a cache miss, 
the entire pipeline must stall until the memory read is completed, which can take 100s 
cc. The entire pipeline must stall, because the Load cannot move into the Write-Back 
stage until it is ready to write. Other instructions must stall, because they cannot 
“bypass” the Load.!
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Three Basic Steps (ref text – pg. 174)"
•  3 main steps to complete an instruction, each can take many clock cycles:!
•  (1) ISSUE: get instruction from Instruction Queue; if there is an empty Reservation 
Station for the instruction (ie ADD, MULT, DIV), then issue the instruction to the  
RS, and fetch its operands if they are available and forward to the RS;  otherwise, 
forward a “tag” (a pointer to the FU that will generate the operand(s)) to RS (this 
implements “register renaming”). If there is no empty RS for the instruction,  we 
have a structural-hazard and must stall pipeline!
•  (2) EXECUTE: at every RS: if operand is not ready, monitor the CDB waiting for 
that register to be written by the correct producer; copy the result into the RS when it 
appears on the CBD using the IOU (or tag) When both operands are ready, execute 
the instruction if FU is not busy, or label instruction as ready to execute if the FU is 
busy!
•  (3) WRITE RESULT: at every FU: when a result is computed, write it over the 
Common Data Bus to the destination register and to any waiting Reservation Stations 
that have an IOU for that operand!
•  all WW and RW data-hazards are automatically avoided, through the register 
renaming process!
•  data structures to implement the logic are distributed through the Reservation 
Stations!
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 Comments !

•  Major advantages of Tomasulo’s algorithm:!

- (i) distribution of data-forwarding logic to all reservation stations and CDB!

- (ii) elimination of RW and WW hazards!

- (iii) issues occur at maximum  possible rate!

- (iv) execution occurs at maximum possible rate, limited only by unremovable 
data-hazards or structural-hazards in the original code!
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•  !

Example #1- Sequence of Instructions!
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Example #2 - Concept of ‘Tags’ for Operands !

•  state of registers, before any instruction has issued.!
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Example #2 - Concept of ‘Tags’ for Operands !

•  we assume no functional unit has started execution yet, since we are trying to show the data forwarding 
using IOUs!
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 Dynamic Loop Unrolling (text, pg 179)!

•  Consider the loop to multiply a vector by a scalar in F31;!
!Loop: !LD !F0, 0(R1) !; R1 = pointer to element in memory!
! !MULD !F4, F0, F31 !; add scalar in F2, store in F4!
! !SD !0(R1), F4 !; store into memory !!
! !SUBI !R1, R1, #8 !; dec pointer by 8 bytes (size of FP)!
! !BNEZ !R1, Loop!

•  lets assume “cancelling branches-PREDICT-TAKEN” (ie predict that branches are 
always taken)!
•  Tomasulo’s algorithm will unroll the loop and issue as many instructions as it can, 
until it encounters a structural-hazard - effectively decouples the issue from the 
computation !!
•  hardware dynamically unrolls the loop and eliminates all RW and WW data-hazards!
•  Tomasulo’s algorithm does not require many temporary FP registers to store 
intermediate results, since intermediates are implicitly stored in the Reservation 
Station Buffers. Recall that when the compiler unrolled the loop, we needed many extra 
FP registers to avoid RW and WW hazards.!



© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide  17!

Example #3 -  Automatic Loop Unrolling, Single Issue!
(Example done in class, 2012)!
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 Concept of ‘Steady-State’ Performance!
•  Referring to last slide,  lets examine loop iterations, to see if  a ‘steady-state’ is 
reached!
•   Here is a definition of ‘steady-state’ for a loop: The ‘STATE’ of the machine remains 
constant, when viewed at recurring event times in each loop iteration. The state 
includes the number of queued instructions in the reservation stations.!
•  A ‘recurrent event time’ is defined as the clock cycle when any event for a recurring 
instruction starts or ends, ie, the issue clock cycle for the same instruction in every 
loop, or the start of the execution for the same instruction in every loop!
•  The ‘STATE’ of the machine includes: (a) the number of instructions queued in each 
type of Reservation Station.!
•  If a Steady-State is reached, then we can estimate the machine performance using 
this formula:!

•  (performance) = (Flops per iteration/clock cycles per iteration) * (Clock Rate)!
•  This is an estimate, because it ignores the times to fill-up the pipelines at the 
beginning of a loop, and it ignores the time to flush the pipelines at the end of a loop!
•  For large loops, these fill-up and flush times become negligible and the performance 
estimate is quite accurate!



© Ted Szymanski!Ch. 6, Advanced Pipelining-DYNAMIC, slide  19!

 Dynamic Loop Unrolling - Comments!

•  Referring to last slide,  lets examine loop iterations, to see if  a ‘steady-state’ is 
reached!
•   The 1st LD starts EX in each loop iteration at times:      2, 7, 12,!
•  The 1st LD starts MEM in each loop iteration at times:   3, 8, 13, !
•  The 1st LD starts WB in each loop iteration at times:       5, 10, 15, !
•  Define ‘Delta-T (j, j-1)’ as the difference between the starting clock cycle of 2 
identical recurring events in loops (j) and (j-1)!
•  lets pick an recurring event = cc that the 1st LD starts EX stage in each iteration!
•  Observe that Delta-T (2, 1) = 5 cc!
•  Observe that Delta-T (3, 2) = 5 cc!
•  Observe that loop 3 appears to be have reached a steady state  !
•  the ending state of the machine for iteration 3 is the same as the ending state of the 
machine for iteration 2, except all cc’s are shifted by +5 cc: The queues in the 
reservation stations do not grow.!
•  Lets add another loop iteration to our table and see:!
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 Dynamic Loop Unrolling - Steady-State!

•  this loop has reached a ‘steady-state’.  For loop iterations j >= 2,  Delta-T = 5 clock cycles.!
•  the number of instructions queued in each Reservation Station will remain constant, at the same recurring 
event time within each loop iteration => the queue of instructions in RS does not grow or diminish, but 
remains constant!
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 Observations - Loop with Unavoidable Data-Hazards!
•  The MULTDs in the last loop have unavoidable data-hazards. They cannot be 
removed. Each MULTD must wait the result of the previous MULTD.!

•  Observe that for j >= 2,  Delta-T  (j, j-1) = 6 cc  for all instructions except for the 
MULTD  !

•  Lets define our recurring event as the time the MULTD starts Execution !

•  Observe that for j>=2,  Delta-T  (j, j-1) = 9 cc for the MULTD EX  !

•  The MULTDs are executing at a much slower rate than all the other instructions, due 
to their unavoidable data-dependencies!

•  If we run a loop with 1000 iterations, the issues take 6*1000 cc. The last integer 
instructions will finish execution at time roughly 6*1000 +1 cc and will disappear. !

•  At time = 6000 cc, only floor(6000/9cc) = 667 MULTDs will have finished, and there 
will be roughly 333 MULTDs left in the MULTD Reservation stations, and 333 SDs in 
the MEM reservation stations awaiting execution (assuming RSs have infinite capacity)!

•  At this point, all the instructions have issued, the processor has moved on to a new 
loop, and the MULTDs and SDs are left to finish as soon as they possibly can!
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Final Thoughts "
•  Tomasulo’s algorithm allows out-of-order execution; instructions issue as soon a 
possible, instructions execute as soon as possible!
•  Avoidable data-hazards are automatically removed. Unavoidable Data-hazards are 
still present ; suppose we have a long sequence of data-dependent instructions:  In a 
static-scheduled pipeline, the ID Unit stalls the issue of each instruction until the data 
hazard clears. With dynamically-scheduled pipeline,  all instructions issue as soon as 
possible, and the execution proceeds as soon as possible  !
•  The main advantage of Tomasulo’s algorithm is that it allows out-of-order 
execution : it lets other instructions without data-dependencies execute out-of-order 
when there are data-hazards, and all executions happen as soon as they possibly can!
•  Good compiler scheduling can approach the performance of Tomasulo’s algorithm.!
•  Tomasulo’s algorithm is expensive in hardware.  Nevertheless, most supercomputers, 
the Motorola PowerPC, the Pentiums and the Intel dual-core and quad-core processors 
(dual Pentiums) all rely on Tomasulo’s algorithm for performance. !
•  In contrast, the ‘next generation’ processor from Intel/HP, the Itanium processor, has 
moved to a static-scheduled pipeline, to avoid hardware cost of Tomasulo’s algorithm. 
However, the commercial acceptance of the Itanium has ‘stalled’, and time will tell 
which technique (static vs dynamic scheduling) will rule.!
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Dynamic Scheduling with Multiple-Issue !
•  machines which use Tomasulo’s algorithm can easily be modified to support  multiple-issue!
•  the next example illustrates a multiple-ISSUE machine!
•  a problem that arises with multiple issue is branch hazards - branches arrive much faster due 
to multiple issue; we might have 1 branch per cc!
•  many loops have a branch at the bottom of the loop, back to the top of the loop!
•  to keep issuing at maximum rate, we will use BRANCH-PREDICTION, ie predict the branch 
as taken, so we start the issue for the next loop iteration even before we resolve the branch!
•  however, we avoid executing these instructions until we resolve the branch!
•  we call this mode of execution ‘NON-SPECULATIVE EXECUTION’!
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Example - Non-Speculative Execution  !
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•  observe that there are structural hazards on the INT Reservation-Station at clock cycles 5, 7, 
9, 11, etc!
•  INT instructions fill up in the RS and cannot execute until the prior branches resolve"
•  the loop appears to reach a steady state at clock cycles 4,5, then 6,7, etc!
•  it takes 2 ccs to issue 5 instructions, due to structural hazards!
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Hardware-Based ‘Speculative Execution’ (class text – pg. 183) !
•  recall branches result in large slowdowns for real machines!
•  in a wide n-issue machine, there may be a branch in every clock cycle!
•  to exploit more parallelism, we need to remove branch hazards!
•  solution: use “SPECULATIVE EXECUTION” on outcome of branch; predict the branch 
outcome, and start execution according to your prediction!
•  similar to the “Branch-Prediction” concept we looked at in the regular linear pipeline!
•  The main difference is that we now allow instructions to execute and do a ‘tentative write-
back’ before we know the outcome of the branch; call these results ‘speculative results’!
•  other instructions might use these speculative results and start execution, so they also 
become speculative instructions!
•  If our branch prediction was wrong, we must have special hardware support to “remove” all 
speculated results!
•  Speculation is used in latest PowerPC chip, MIPS chip, Intel Pentium 3 and Pentium 4 chips, 
the DEC Alpha 21264, and the AMD Athlon chips!
•  Basic idea: hardware must keep track of “speculated instructions”; once the branch outcome 
is resolved, the speculated instructions dependent on that branch can be either (1) kept if the 
branch prediction was correct or (b) be completely undone, with all registers restored to their 
proper values!
•  If we keep the results, we say the speculated instructions go through the “Commit” stage!
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Hardware-Based Speculation  (class text - pp. 183-187) !

•  add a new hardware block  called the “Re-Order Buffer”!
•  when a speculated instructions finishes execution, it writes it results to the Re-Order buffer!
•  the Re-Order buffer stores all speculated instruction results until we know if they are correct 
or not!
•  when the branch outcome is determined, if the prediction was correct then the speculated 
instructions “Commit”, and remove their results from the Re-Order buffer and copy the 
results to the Registers!
•  If the branch was predicted incorrectly, the results of the speculated instructions, which are 
held in the Re-Order buffer, can be erased since they are useless!
•  We add the constraint that speculated instructions must commit “in-order” to preserve the 
correctness of the program!
•  (pg 227 text) entries in the re-order buffer have 4 fields; the speculated instruction, the 
destination to be written (registers for ALU operations, memory for STORE instructions), the 
value to be written back, and the result-ready bit (= ‘1’ when the instruction has completed 
execution and the value field is valid)!
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 MIPS machine"
with Tomasulo’s Alg"
and Speculation,!

(class text – pg. 185) !

Main change with speculation!
is the addition of the!
Re-order buffer (ROB)!
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Example - Speculative Execution  !
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Speculative machine !

•  observe that the structural hazards on the INT Reservation-Station have been removed by 
speculation, since the INT instructions can execute without waiting for branches to resolve, 
thereby creating more space in the INT-RS!
•  the machine now issues at the optimal rate (5 instructions per cc), and executes at the 
optimal rate"

Note: delta-t = 1 cc in above"
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Notes!
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Real Stuff: The Pentium 4 Architecture  "
(Comp Org. text - section 6.10, class text - pg 259, 3rd ed.) !

•  The Pentium 4 is a dynamically scheduled speculative pipelined machine that executes the 
old Intel IA-32 instruction set.!

•  It translates each “difficult-to-pipeline” IA-32 instruction into a series of pipelinable RISC 
“micro-ops”!

•  Up to 3 IA-32 instructions are fetched, decoded and translated to micro-ops per clock cycle!

•  if an IA-32 instruction requires more than 4 micro-ops, its translation takes multiple clock 
cycles!

•  Micro-ops are dynamically scheduled using Tomasulo’s algorithm, and therefore execute out-
of-order!

•  The issue stage can issue up to 3 micro-ops per clock cycle; the commit stage can complete 
up to 3 micro-ops per second!

•  The P4 gains its advantage over the P3 as follows:!

•  deeper pipeline: 20 pipeline stages for the P4,  versus 10 stages for the P3!

•  more functional units (7 units for the P4, versus 5 units for the P3)!

•  use of a trace cache, to speed up micro-op translation!
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•  The P4 architecture  uses speculation and therefore requires a re-order buffer.  !

•  The P4 uses register-renaming, which is inherent in Tomasulo’s algorithm. !

•  The IA-32 instruction set only has 8 general purpose architectural registers, so running out of 
registers is a problem. The P4 uses 128 general purpose registers!

•  P4 allows up to 126 microps to be outstanding at any time, including 48 loads and 24 stores !

•  For comparison, the IBM PowerPC chip allows up to 400 instructions to be outstanding at 
any time!

•  The FP unit in Fig 6.50 (2 slides ahead) actually consists of 2 functional units, so there are 7 
functions units in total!

•  The FP Unit handles the special MMX and SSE2 instruction set additions!

•  There are 2 Integer ALU units, which operate at twice the processor clock rate, so that 4 
integer ops can be computed per clock tick!

The Pentium 4 Architecture  !
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The Pentium 4 Architecture  (ref text - pg 268, 3rd ed.) !
•  The P4 architecture requires 2 clock cycles just to drive results across the chip over the 
busses!

•  The P4 ALU and data cache operate at twice the clock rate, to lower latency; this high-speed 
operation is essential to lower potential stalls due to very deep pipeline!

•  The P4 has a Branch-Target-Buffer (BTB)* in the IF unit that is 8 times larger than the P3 
BTB, to lower branch mis-prediction rates. It also uses an improved prediction algorithm.!

•  In 2002: the P4 had a smaller L1 data cache and larger L2 cache with higher memory 
bandwidth (compared to Pentium 3), which should offset the smaller L1 cache!

•  The P4 implements the new Intel “SSE2” floating point instructions that allow 2 FP 
operations to be done per clock tick. This boosts FP performance considerably.!

•  (We will discuss BTBs in a future lecture on Branches)!
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Intel Pentium Processors  (vlass text - fig. 3.47, pg 260, 3rd ed.) !

•  The Pentium 3 has both an L1 cache and an L2 cache. The L1 cache is about 32 Kbytes, and 
holds both instructions and data together in one cache. The L2 cache is ‘off-chip’ in some of 
the processors. The L2 cache is considerably larger than the L2 cache, usually around 1 Mbyte 
in size.!
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Pentium 4 Architecture (Comp. Org. text - fig. 6.50, pg 449) !

- 7 functional !
Units (FP box!
has 2 units)!

-  this box assumes the IF/ID functionality!

-  this box translates IA-32 instructions to RISC micro-ops!

-  this box queues up the RISC micro-ops to be issued!

-  this box does the operand !
fetching, register renaming and!
issue!

- 2 shared reservation!
 stations, one for Int/FP!
Ops, one for Mem Ops!
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Pentium 4 Pipeline  (Comp. Org. text - fig. 6.51, pg 449) !

 - this figure shows the typical flow through the P4 for a typical integer instruction. The average!
number of clock cycles spent in each major unit are shown!

-  average INT instruction requires 20 cc to complete, corresponding to a 20 stage pipeline!

- the major buffers where instructions wait are also shown!
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Pentium 4 Performance  (class text - pg 262, 3rd ed.) !

•  Several factors improve the performance of P4 vs P3:!

•  20 stage pipeline, aggressive multiple issue, dynamic scheduling, speculation!

•  low latencies for back-to-back operations (0 cc for ALU ops, 2 cc for LOADs)!

•  Several factors limit the performance of the P4 :!

•  Often less than 3  32-bit instructions can be fetched, due to cache misses!

•  Often less than 3  32-bit instructions can “issue” per clock cycle, since one of the 3 
instructions generated more micro-ops than it is allowed to  (there is fast micro-op generation 
for most instructions, but not all)!

•  Not all the micro-ops can issue in a clock cycle due to structural hazards, ie a shortage of 
reservation stations or a shortage of re-order buffers!

•  Unavoidable Data dependencies can lead to stalls!

•  Data cache misses can lead to stalls, (ie all instructions queued in reservation stations can be 
stalled waiting for this data and none will execute)!

•  Branch Mispredictions cause stalls, since the pipeline must be flushed and refilled.!
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Cache Misses  (class text - fig. 3.53, pg 266, 3rd ed.) !

•  on average,  L1 and L2  cache miss rates are usually between 10 and 50 misses per 1,000 instructions, a 
miss rate of 1% - 5%.  The L2 cache miss rate is smaller than L1 miss rate because it is larger, but L2 
cache misses incur considerably larger stalls, about 5 times as large as an L1 miss!
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Notes!


