
© Ted Szymanski!Ch. 3, MultiThreading, slide 1!

•  There was significant progress in Instruction-Level-Parallelism (ILP) over last
decade, with the Itanium, and multiple-issue dynamically-scheduled machines!

•  In 2000, after the Itanium demise, researchers predicted (within 10 years)
dynamically-scheduled multiple-issue machines with speculation, with 6-8 instructions
per clock cycle, with multiple ‘processes’ (pg 230)!

•  However, cache misses have large latencies and are hard to cover with ILP -> some
researchers started the search for other forms of parallelism!

•  Multithreading allows multiple threads to share one processing core in an
overlapping fashion, with rapid thread switches!

•  Many new processors include multiple cores, with multi-threading in each core!

•  Each thread maintains its own registers, program counter, and virtual-memory page
table!

•  The core supports the ability to rapidly switch between threads, within 1 clock cycle!

•  A compiler generates the threads when it compiles the code!

ILP, Core-Processors and Multithreading (pgs 223-247)!

© Ted Szymanski!Ch. 3, MultiThreading, slide 2!

•  Fine-Grain Multithreading : processor can switch between threads within 1 clock
cycle!

•  threads usually activated in round-robin order, skipping stalled threads!

•  can hide very small and very large stalls, since thread switches are very fast!

•  slows down performance of any one thread, since all the threads share one processor!

•  Course-Grain Multithreading : only switch threads on costly stalls, i.e., level 2 or 3
cache misses !

•  Does not necessarily slow-down any one thread!

•  However, it cannot hide throughput losses from short stalls (i.e., level 1 cache)!

•  there is a thread-start-up stall effect, when the pipeline is loaded-up with a new thread
and many clock cycles are effectively wasted,!

•  Simultaneous Multithreading (SMT): when fine-grain multithreading is
implemented in a multiple-issue dynamically-scheduled processor!

ILP, Core-Processors and Multithreading (pg. 229) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 3!

•  Next slide Fig. 3.28 shows several versions of multithreading!

•  1) a regular multiple-issue with no multithreading : black boxes represent one
instruction using a functional unit (FU) from one ‘thread ’; in each time-slot, many FUs
are idle; there is a larger stall fir many clock cycles!

•  2) a regular multiple-issue with course-grain multithreading : grey boxes represent
one instruction using a FU from a second ‘thread ’ ; in each time-slot, many Fus are
still idle; a 2nd thread has been activated in the large stall!

•  3) a regular multiple-issue with fine-grain multithreading : light grey and dark grey
boxes represent one instruction using a FU from a second and third ‘thread ’ ; in each
time-slot, only one thread is active, and some FUs may be idle; threads share the
processor in round-robin order!

•  4) a regular multiple-issue with simultaneous multithreading : multiple threads are
active using FUs in each time-slot; ‘ready-to-execute’ instruction are taken from each
thread in round-robin order, to fill the Fus!

•  In all current processors, all issues from from one thread, but different threads can
execute in the same clock cycle!

ILP, Core-Processors and Multithreading (pg. 226) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 4!

© Ted Szymanski!Ch. 3, MultiThreading, slide 5!

•  Sun introduced the T1 fine-grain multithreaded processor in 2005!

•  One of the first processors to de-emphasize ILP and favor Thread-Level-Parallelism
(TLP)!

•  Chip returned to a basic simple 6-stage pipeline with support for multiple threads!

•  It did this while one of the most complex and aggressive ILP-based machines, the
Itanium, was still around!

•  T1 processor: 8 cores, each with 4 threads: Each core is a simple 6 stage pipeline; like
our basic 5 stage pipeline, plus one stage for thread-switching!

•  Fine-grain multithreading: switches to a new non-stalled thread in each clock-cycle!

•  Processor is idle only when all 4 threads are idle!

•  Loads / Stores incur 3 clock cycle delay that can be hidden with other threads!

•  All 8 cores share a single set of floating-point registers (the focus was on integer
performance, for web-services)!

Effectiveness on Sun T1 Processor(pg. 227) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 6!

Effectiveness on Sun T1 Processor(pg. 227) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 7!

Effectiveness on Sun T1 Processor(pg. 228) !

•  when using 4-threads per core, L1 (I=Instruction and D=Data) and L2 (shared) miss
rates increase by 18%, 35%, and 65%, due to increased contention for memory system!

•  unfortunately, we can’t make larger and faster main memory; every new technology
(ie magnetic bubble memory) has failed!

© Ted Szymanski!Ch. 3, MultiThreading, slide 8!

Effectiveness on Sun T1 Processor (pg. 228) !

•  On benchmarks, about 10-15% of instructions are executing, another 10-20% are
ready to execute but not chosen, and about 70-80% are not ready to execute!

•  Most of the time, not-read-to-execute instruction are waiting for cache misses!

© Ted Szymanski!Ch. 3, MultiThreading, slide 9!

Effectiveness on Sun T1 Processor (pg. 229) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 10!

Effectiveness on Sun T1 Processor (pg. 228) !

•  ideal effective CPI per thread = 4 clock cycles per instruction (1 instruction
executed every 4 clock cycles for each thread): a smaller CPI is better!

•  ideal CPI per core = 1 (1 instruction executed every clock cycle from some thread)!

•  The T1 processor runs at > 50% effectiveness, after considering all cache misses,
which is pretty good!

•  In 2005, the SUN T1 processor with 8 cores had the best reported integer
performance, beating out the Itanium and some traditional and more complex
dynamically-scheduled multiple-issue machines!

© Ted Szymanski!Ch. 3, MultiThreading, slide 11!

•  Intel i7 core supports SMT (with 3 threads per core)!

•  Next slide explores energy-efficiency ratio and SMT performance in the i7 core!

•  energy-efficiency ratio = inverse energy-consumption, so that higher number is better!

•  performance can be expressed as effective instructions per clock cycle when all cores
are in use, after considering all cache misses!

•  in next figure first reported in 2011, on average SMT improves performance and
energy-efficiency-ratio!

•  In 2011, the industry moved towards more simpler cores (multiple-issue with 3-4
instructions per clock cycle, dynamically-scheduled) with SMT, rather than fewer more
complex cores with ILP (pg 231)!

•  higher energy-efficiency-ratio reported for Intel i5 core and the Intel Atom machine!

Energy Efficiency and Multithreading (pg. 232) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 12!

© Ted Szymanski!Ch. 3, MultiThreading, slide 13!

•  ARM A8 processor is the basis for the Apple A9 processor used in the iPAD!

•  dual-issue statically-scheduled machine with a 13-stage pipeline!

•  it uses dynamic branch prediction with a 512-entry 2-way set-associative Branch
Target Buffer (BTB) and a 4K-entry global branch history buffer, to minimize the
branch stalls!

•  it uses an 8-entry branch return stack!

•  a branch misprediction results in flushing the pipeline and incurring a 13 clock cycle
penalty!

•  up to 2 instructions can issue per clock cycle!

•  if the instructions are data-dependent and if data-forwarding can resolve the
dependence, then they can issue together!

•  otherwise, the dependent instruction (and all instructions following it) are stalled until
the data-hazard clears!

•  ideal CPI = 0.5 (since 2 instructions can issue per clock cycle)!

The ARM Cortex A8 Processor (pg. 233) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 14!

The ARM Cortex A8 Pipeline (pg. 232) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 15!

The ARM Cortex A8 Instruction-Decode Pipeline (pg. 232) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 16!

The ARM Cortex A8 Execution Pipeline (pg. 234) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 17!

•  The next slide shows the performance, based on the CPI, for several programs!

•  The CPI per program is further broken down into components that cause the CPI!

•  Overall, L2 stalls contribute about < 0.5 CPI!

•  Overall, L1 stalls contribute about< 0.2 CPI!

•  Overall, pipeline stalls contribute about 1 CPI!

•  As a result of this analysis, Apple made the Apple A9 processor dynamically-
scheduled!

•  A9 is a dual-issue, dynamically-scheduled machine with speculation!

•  up to 4 instructions (2 ALU, 1 Load/Store, and 1 branch) can begin execution per
clock cycle!

•  A9 uses a better branch predictor, to lower effect of branch stalls!

•  Overall, A9 outperforms A9 by about 30 % on average!

The ARM Cortex A8 Processor (pg. 236) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 18!

ARM Cortex A8 CPI and Pipeline Stalls (pg. 235) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 19!

ARM Cortex A8 and Apple A9 Performance (pg. 236) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 20!

The Intel Core i7 (pg. 236) !

•  The Intel Core i7 is an aggressive multiple-issue dynamically-scheduled machine
with a reasonably deep pipeline: up to 6 issues per clock cycle!

•  Goal: high instruction throughput combining multiple issue with high clock rates!

•  Main Steps shown in Fig. 3.41:!

•  1) Instruction Fetch: IF unit fetches 16 bytes from cache per clock cycle: it uses a
multilevel branch prediction buffer and branch return address stack, to lower branch
stalls; a branch mis-prediction causes a 15 clock cycle penalty!

•  2) 16 bytes placed in predecode instruction buffer: breaks 16 bytes into individual
CISC 80x86 instructions. One 80x86 instruction can vary in length from 1 up to 17
bytes (remember that CISC instructions are difficult to pipeline).!

•  Also performs Macro-op fusion, where 2 instructions (ie compare & branch) may be
fused into 1 instruction!

•  Individual instructions placed in an 18-entry instruction queue!

•  3) Micro-OP Decode: 80x86 instructions are translated into pipelinable RISC micro-
ops. There is a 28-entry micro-op buffer.!

© Ted Szymanski!Ch. 3, MultiThreading, slide 21!

The Intel Core i7 (pg. 236) !

•  4) Loop stream detection and microfusion: if a loop of <= 28 instructions is detected
in the microop buffer, the loop will issue directly from the microop buffer, bypassing
the IF and ID stages. Microfusion combines pairs of instructions (ie load and ALU) and
issues them to one shared reservation station, where they can execute independently.
(Since then, it has been shown that microfusion has little benefits)!

•  5) Basic Instruction Issue: look up operands in registers, perform register renaming,
generate an entry in the reorder buffer if necessary, send instruction(s) to reservation
station!

•  6) A Centralized reservation-station with 36 entries is shared by 6 functional units. Up
to 6 microops can start execution per clock cycle!

•  7) Microops complete execution, results are sent back to ID stage and reorder buffer
and to any waiting reservation station!

•  8) when 1 or more instructions at the head of the reorder buffer are labelled complete,
the results are written into the register file and the entries in the reorder buffer are
cleared!

© Ted Szymanski!Ch. 3, MultiThreading, slide 22!

The Intel Core i7 (pg. 236) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 23!

The Intel Core i7 Performance (pg. 239) !

•  Textbook examines single-thread performance!

•  next slide shows ‘wasted work’ when no instructions can issue!

•  about 3% of LOADs are delayed due to structural hazard on Reservation-Station!

•  most losses come from branch prediction error (we flush the pipeline), or cache
missses!

•  cost of one branch misprediction = 15 clock cycles * (6 issues per cc) = 90
instructions!

•  cost of one L1 cache miss is 10 clock cycles * (6 issues per cc) = 60 instructions!

•  cost of one L2 cache miss is 30 clock cycles * (6 issues per cc) = 180 instructions!

•  cost of one L3 cache miss is 130 clock cycles * (6 issues per cc) = 780 instructions!

•  multi-threading allows the processor to switch threads, but the reservation-stations
have finite depth and they will fill-up, eventually causing structural hazards!

•  Fig 3.42 shows fraction of instructions whose results are killed due to pipeline
flushing!

© Ted Szymanski!Ch. 3, MultiThreading, slide 24!

Core i7 Performance – Fraction of Wasted Issues (pg. 239) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 25!

The Intel Core i7 Performance (pg. 239) !

•  Fig 3.43 shows the overall CPI for the 19 benchmark programs!

•  ideal instructions-per-clock-cycle = 6 instructions per clock cycle!

•  so the ideal clock-cycles-per-instruction is 1/6 clock-cycles!

•  the ideal CPU ignores branch mis-predictions and cache misses!

•  a real machine like the CORE i7 has very large penalties (90 instructions for branch
mis-prediction, and 60, 180, 780 instructions for L1, L2 and L3 cache misses)!

•  the overall CPI is about 0.5, which is not bad considering the large penalties "

© Ted Szymanski!Ch. 3, MultiThreading, slide 26!

Core i7 Performance CPI (pg. 239) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 27!

© Ted Szymanski!Ch. 3, MultiThreading, slide 28!

Core i7 Performance and Energy-Efficiency (pg. 239) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 29!

Intel Itanium and CORE i7 (pg. 244) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 30!

IBM Power Cores (pg. 247) !

© Ted Szymanski!Ch. 3, MultiThreading, slide 31!

•  There was significant progress in Instruction-Level-Parallelism (ILP) over last
decade, with the Itanium, and multiple-issue dynamically-scheduled machines!

•  However, ILP cannot hide the real penalties associated with branch mis-predictions
and L1, L2 and L3 cache misses"

•  Multithreading allows multiple threads to share one processing core in an
overlapping fashion, with rapid thread switches!

•  When one thread encounters a large penalty (ie 2 clock cycles up to 100s iof clock
cycles), then the treads can be quickly switched by the core!

•  Many new processors include multiple cores with multi-threading in each core!

•  Each thread maintains its own registers, program counter, and virtual-memory page
table!

•  The core supports the ability to rapidly switch between threads, typically within 1
clock cycle!

•  It looks like multiple cores with multithreading are here to stay!

ILP, Core-Processors and Multithreading (pg. 229) !

