ILP, Core-Processors and Multithreading (g 223-247)

* There was significant progress in Instruction-Level-Parallelism (ILP) over last
decade, with the Itanium, and multiple-issue dynamically-scheduled machines

* In 2000, after the Itanium demise, researchers predicted (within 10 years)
dynamically-scheduled multiple-issue machines with speculation, with 6-8 instructions
per clock cycle, with multiple ‘processes’ (pg 230)

* However, cache misses have large latencies and are hard to cover with ILP -> some
researchers started the search for other forms of parallelism

* Multithreading allows multiple threads to share one processing core in an
overlapping fashion, with rapid thread switches

* Many new processors include multiple cores, with multi-threading in each core

* Each thread maintains its own registers, program counter, and virtual-memory page
table

* The core supports the ability to rapidly switch between threads, within 1 clock cycle
* A compiler generates the threads when it compiles the code

Ch. 3, MultiThreading, slide 1 © Ted Szymanski

ILP, Core-Processors and Multithreading ;. 229)

* Fine-Grain Multithreading : processor can switch between threads within 1 clock
cycle

* threads usually activated in round-robin order, skipping stalled threads
* can hide very small and very large stalls, since thread switches are very fast
* slows down performance of any one thread, since all the threads share one processor

* Course-Grain Multithreading : only switch threads on costly stalls, i.e., level 2 or 3
cache misses

* Does not necessarily slow-down any one thread
* However, it cannot hide throughput losses from short stalls (i.e., level 1 cache)

* there is a thread-start-up stall effect, when the pipeline is loaded-up with a new thread
and many clock cycles are effectively wasted,

* Simultaneous Multithreading (SMT): when fine-grain multithreading is
implemented in a multiple-issue dynamically-scheduled processor

Ch. 3, MultiThreading, slide 2 © Ted Szymanski

ILP, Core-Processors and Multithreading (.. 226)

* Next slide Fig. 3.28 shows several versions of multithreading

* 1) a regular multiple-issue with no multithreading : black boxes represent one
instruction using a functional unit (FU) from one ‘thread ’; in each time-slot, many FUs
are idle; there is a larger stall fir many clock cycles

* 2) a regular multiple-issue with course-grain multithreading : grey boxes represent
one instruction using a FU from a second ‘thread ’ ; in each time-slot, many Fus are
still idle; a 2" thread has been activated in the large stall

* 3) a regular multiple-issue with fine-grain multithreading : light grey and dark grey
boxes represent one instruction using a FU from a second and third ‘thread ’ ; in each
time-slot, only one thread is active, and some FUs may be idle; threads share the
processor in round-robin order

* 4) a regular multiple-issue with simultaneous multithreading : multiple threads are
active using FUs in each time-slot; ‘ready-to-execute’ instruction are taken from each
thread in round-robin order, to fill the Fus

e In all current processors, all issues from from one thread, but different threads can
execute in the same clock cycle

Ch. 3, MultiThreading, slide 3 © Ted Szymanski

Execution slots ——»

Superscalar Coarse MT Fine MT SMT

L |

<+— Time

|

Figure 3.28 How four different approaches use the functional unit execution slots of a superscalar processor. The horizontal
dimension represents the instruction execution capability in each clock cycle. The vertical dimension represents a sequence of
clock cycles. An empty (white) box indicates that the corresponding execution slot is unused in that clock cycle. The shades of
gray and black correspond to four different threads in the multithreading processors. Black 1s also used to indicate the occupied
issue slots in the case of the superscalar without multithreading support. The Sun T1 and T2 (aka Niagara) processors are fine-
grained multithreaded processors, while the Intel Core 17 and IBM Power7 processors use SMT. The T2 has eight threads, the
Power7 has four, and the Intel 17 has two. In all existing SMTs, instructions issue from only one thread at a time. The difference in
SMT is that the subsequent decision to execute an instruction is decoupled and could execute the operations coming from several
different instructions in the same clock cycle.

Effectiveness on Sun T1 Processorpg.227)

* Sun introduced the T1 fine-grain multithreaded processor in 2005

* One of the first processors to de-emphasize ILP and favor Thread-Level-Parallelism
(TLP)

* Chip returned to a basic simple 6-stage pipeline with support for multiple threads

e [t did this while one of the most complex and aggressive ILP-based machines, the
Itanium, was still around

* T1 processor: 8 cores, each with 4 threads: Each core is a simple 6 stage pipeline; like
our basic 5 stage pipeline, plus one stage for thread-switching

* Fine-grain multithreading: switches to a new non-stalled thread in each clock-cycle
* Processor is idle only when all 4 threads are idle
* Loads / Stores incur 3 clock cycle delay that can be hidden with other threads

* All 8 cores share a single set of floating-point registers (the focus was on integer
performance, for web-services)

Ch. 3, MultiThreading, slide 5 © Ted Szymanski

Effectiveness on Sun T1 Processorpg.227)

Characteristic SunT1

Multiprocessor and Eight cores per chip: four threads per core. Fine-grained thread
multithreading scheduling. One shared fToating-point unit for eight cores.
support Supports only on-chip multiprocessing.

N =12 = i 5 Ior v - -
Pipeline structure Simple, in-order. six-deep pipeline with three-cycle delays for

loads and branches.

L1 caches 16 KB instructions: 8 KB data. 64-byte block size. Miss to 1.2 is
23 cycles, assuming no contention.

? cache . . - ~ ¢ H
L2 caches Four separate 1.2 caches, cach 750 KB and associated with a
memory bank. 64-byte hlock size. Miss to main memory is 110
clock cycles assuming no contention.

Initial implementation 90 nm process: maximum clock rate of 1.2 GHz: power 79 W:
300 M transistors; 379 mm- die.

Figure 3.29 A summary of the T1 processor.

Ch. 3, MultiThreading, slide 6 © Ted Szymanski

Effectiveness on Sun T1 Processorpg. 225

1.7 -
1.6 -
1.5
1.4

1.3

124

o] |

1 , | | | |

L1 I miss L1 Dmiss L2 miss L1 Imiss L1 D miss L2 miss
rate rate rate latency latency latency

Relative increase in miss rate or latency

Figure 3.30 The relative change in the miss rates and miss latencies when executing with one thread per core versus
four threads per core on the TPC-C benchmark. The latencies are the actual time to return the requested data after a
miss. In the four-thread case, the execution of other threads could potentially hide much of this latency.

* when using 4-threads per core, L1 (I=Instruction and D=Data) and L2 (shared) miss
rates increase by 18%, 35%, and 65%, due to increased contention for memory system

e unfortunately, we can’t make larger and faster main memory; every new technology
(ie magnetic bubble memory) has failed

Ch. 3, MultiThreading, slide 7 © Ted Szymanski

Effectiveness on Sun T1 Processor (ps.225)

100%
90%
80% -
70%

60% -

[Not ready
50% [Ready, not chosen
M Executing

40%

Percentage of cycles

30%
20%

10%

0% T T
TPC-C-like SPECJBBO0 SPECWebg9

Figure 3.31 Breakdown of the status on an average thread. “Executing” indicates the thread issues an instruction in that
cycle. “Ready but not chosen™ means it could issue but another thread has been chosen, and “not ready” indicates that the
thread is awaiting the completion of an event (a pipeline delay or cache miss, for example).

* On benchmarks, about 10-15% of instructions are executing, another 10-20% are
ready to execute but not chosen, and about 70-80% are not ready to execute

* Most of the time, not-read-to-execute instruction are waiting for cache misses

Ch. 3, MultiThreading, slide 8 © Ted Szymanski

Effectiveness on Sun T1 Processor (ps.229)

100% -
900/0 7 .
80% -

70%

60% - [Other
[Pipeline delay
50% - B L2 miss

B L1 D miss
40% - M L11miss

30% +

Percentage of cycles

20% A

1 00/0 | .
0%

TPC-C-like SPECJBB SPECWeb99

1

Figure 3.32 The breakdown of causes for a thread being not ready. The contribution to the “other” category varies. In
PC-C. store buffer full is the largest contributor; in SPEC-JBB, atomic instructions are the largest contributor; and in SPECWeb99
both factors contribute.

Ch. 3, MultiThreading, slide 9 © Ted Szymanski

Effectiveness on Sun T1 Processor (ps.225)

Benchmark Per-thread CPI Per-core CPI
TPC-C 72 1.80
SPECIBB 5.6 1.40
SPECWeb99 6.6 1.65

Figure 3.33 The per-thread CPI, the per-core CPI, the effective eight-core CPI, and
the effective IPC (inverse of CPI) for the eight-core T1 processor.

* ideal effective CPI per thread =4 clock cycles per instruction (1 instruction
executed every 4 clock cycles for each thread): a smaller CPI is better

¢ ideal CPI per core = 1 (1 instruction executed every clock cycle from some thread)

* The T1 processor runs at > 50% effectiveness, after considering all cache misses,
which is pretty good

* In 2005, the SUN T1 processor with 8 cores had the best reported integer
performance, beating out the Itanium and some traditional and more complex
dynamically-scheduled multiple-issue machines

Ch. 3, MultiThreading, slide 10 © Ted Szymanski

Energy Efficiency and Multithreading .. 232)

* Intel 17 core supports SMT (with 3 threads per core)
* Next slide explores energy-efficiency ratio and SMT performance in the i7 core
* energy-efficiency ratio = inverse energy-consumption, so that higher number is better

* performance can be expressed as effective instructions per clock cycle when all cores
are in use, after considering all cache misses

* in next figure first reported in 2011, on average SMT improves performance and
energy-efficiency-ratio

* In 2011, the industry moved towards more simpler cores (multiple-issue with 3-4
instructions per clock cycle, dynamically-scheduled) with SMT, rather than fewer more
complex cores with ILP (pg 231)

* higher energy-efficiency-ratio reported for Intel i5 core and the Intel Atom machine

Ch. 3, MultiThreading, slide 11 © Ted Szymanski

@ Speedup —i— Energy efficiency

1.50 1

1.25

D> |

[ElC| ||

1.00

i7 SMT performance and energy efficiency ratio

Figure 3.35 The speedup from using multithreading on one core on an i7 processor averages 1.28 for the Java benchmarks and
1.31 for the PARSEC henchmarks (using an unweighted harmonic mean, which implies a workload where the total time spent
executing each benchmark in the single-threaded base set was the same). The energy efficiency averages 0.99 and 1.07,
respectively (using the harmonic mean). Recall that anything above 1.0 for energy efficiency indicates that the feature reduces
execution time by more than it increases average power. Two of the Java benchmarks experience little speedup and have significant
negative energy efficiency because of this. Turbo Boost is off in all cases. These data were collected and analyzed by Esmaeilzadeh et
al. [2011] using the Oracle (Sun) HotSpot build 16.3-b01 Java 1.6.0 Virtual Machine and the gcc v4.4.1 native compiler.

Ch. 3, MultiThreading, slide 12 © Ted Szymanski

The ARM Cortex A8 Processor (pg.233)

* ARM A8 processor is the basis for the Apple A9 processor used in the iPAD
* dual-issue statically-scheduled machine with a 13-stage pipeline

* it uses dynamic branch prediction with a 512-entry 2-way set-associative Branch
Target Buffer (BTB) and a 4K-entry global branch history buffer, to minimize the
branch stalls

* it uses an 8-entry branch return stack

* a branch misprediction results in flushing the pipeline and incurring a 13 clock cycle
penalty

* up to 2 instructions can issue per clock cycle

« if the instructions are data-dependent and if data-forwarding can resolve the
dependence, then they can issue together

* otherwise, the dependent instruction (and all instructions following it) are stalled until
the data-hazard clears

e ideal CPI =0.5 (since 2 instructions can issue per clock cycle)

Ch. 3, MultiThreading, slide 13 © Ted Szymanski

The ARM Cortex A8 Pipeline (pg. 232)

FO F1 F2 DO D1 D2 D3 D4 EO E1 E2 E3 E4 E5
Branch mispredict

penalty =13 cycles Instruction execute and load/store
|
| . z I BP
nstruction g | | ALU/MUL pipe 0
=4
fetch g i update
1IN | g
RAM],,|12-entry . 8 :
AGU EN 'e;«:he Instruction decode 3 Al Hinibe BP
queve || | o M pipe update
BTB ™| @
G - : BP
@ LS pipe 0 or 1 update

Figure 3.36 The basic structure of the A8 pipeline is 13 stages. Three cycles are used for instruction fetch and four for
instruction decode, in addition to a five-cycle integer pipeline. This yields a 13-cycle branch misprediction penalty. The
instruction fetch unit tries to keep the 12-entry instruction queue filled.

Ch. 3, MultiThreading, slide 14 © Ted Szymanski

The ARM Cortex A8 Instruction-Decode Pipeline (.. 232

DO D1 D2 D3 D4
Instruction decode
._’
Early Dec/seq ——» — - —
Dec —
Dec queue Score+board RegFile
read/write . ; ID remap
issue logic
Early
Dec Dec —» —> —>

Figure 3.37 The five-stage instruction decode of the A8. In the first stage, a PC produced by the fetch unit (either from the
branch target buffer or the PC incrementer) is used to retrieve an 8-byte block from the cache. Up to two instructions are
decoded and placed into the decode queue; if neither instruction is a branch, the PC is incremented for the next fetch. Once in
the decode queue, the scoreboard logic decides when the instructions can issue. In the issue, the register operands are read:
recall that in a simple scoreboard, the operands always come from the registers. The register operands and opcode are sent to
the instruction execution portion of the pipeline.

Ch. 3, MultiThreading, slide 15

© Ted Szymanski

The ARM Cortex A8 Execution Pipeline (¢ 234)

EO E1 E2 E3 E4 E5
Instruction execute
Integer register write back
|
v ALU BP
B | Shit B + | Sat WB
flags update ALU
> multiply
g MUL MUL MUL pipe 0
=2 ACC WB
INST 0 s M M 2 [3 [N +
— " 8
S
3 ALU 8P
INST 1 ‘g. | Shit B + [» Sat dat WB | ALU pipe 1
(0} flags upcate
=h
)
> | ALU o LS pipeline B we [
pipe O or 1

Figure 3.38 The five-stage instruction decode of the A8. Multiply operations are always performed in ALU pipeline 0.

Ch. 3, MultiThreading, slide 16

© Ted Szymanski

The ARM Cortex A8 Processor (pg.236)

* The next slide shows the performance, based on the CPI, for several programs

* The CPI per program is further broken down into components that cause the CPI
¢ Overall, L2 stalls contribute about < 0.5 CPI

e Overall, L1 stalls contribute about< 0.2 CPI

* Overall, pipeline stalls contribute about 1 CPI

* As a result of this analysis, Apple made the Apple A9 processor dynamically-
scheduled

* A9 is a dual-issue, dynamically-scheduled machine with speculation

* up to 4 instructions (2 ALU, 1 Load/Store, and 1 branch) can begin execution per
clock cycle

* A9 uses a better branch predictor, to lower effect of branch stalls

* Overall, A9 outperforms A9 by about 30 % on average

Ch. 3, MultiThreading, slide 17 © Ted Szymanski

ARM Cortex A8 CPI and Pipeline Stalls (.. 235)

6

O L2 stalls/instruction
B L1 stalls/instruction
— B Pipeline stalls/instruction
54
W Ideal CPI
44
c
o
G
=4
@ -
- 3 =
@
a
@
@
[3]
-
(&}
24
14
04
nzip vpr qce mcf crafty parser eon perbmk gap voriex bzip2

Figure 3.39 The estimated composition of the CPI on the ARM A8 shows that pipeline stalls are the primary addition to the
hase CPL. eon deserves some special mention, as it does integer-based graphics calculations (ray tracing) and has very few cache
misses. It is computationally intensive with heavy use of multiples, and the single multiply pipeline becomes a major bottleneck.
This estimate is obtained by using the L1 and L2 miss rates and penalties to compute the L1 and L2 generated stalls per instruction.
These are subtracted from the CPI measured by a detailed simulator to obtain the pipeline stalls. Pipeline stalls include all three
hazards plus minor effects such as way misprediction.

ARM Cortex A8 and Apple A9 Performance (. 230)

' ' ' ‘ ' L]

crafty parser eon perlbmk gap vortex bzip2 twolf

2.251 —
24
[0
[S)
=
©
3
L 1.754
(18]
[= X
@
< —
[}
e 15
©
£
O
©
ol
o 1251 H
) H
Jm B N]]
gce mcf

gzip vpr

0.75

Figure 3.40 The performance ratio for the A9 compared to the A8, both using a 1 GHz clock and the same size caches for L1
and L2, shows that the A9 is about 1.28 times faster. Both runs use a 32 KB primary cache and a 1 MB secondary cache, which is 8-
way set associative for the A8 and 16-way for the A9. The block sizes in the caches are 64 bytes for the A8 and 32 bytes for the A9. As
mentioned in the caption of Figure 3.39, eon makes intensive use of integer multiply, and the combination of dynamic scheduling and a
faster multiply pipeline significantly improves performance on the A9. twolf experiences a small slowdown, likely due to the fact that
its cache behavior 1s worse with the smaller L1 block size of the A9.

Ch. 3, MultiThreading, slide 19 © Ted Szymanski

The Intel Core i7 g 236

* The Intel Core i7 is an aggressive multiple-issue dynamically-scheduled machine
with a reasonably deep pipeline: up to 6 issues per clock cycle

* Goal: high instruction throughput combining multiple issue with high clock rates
* Main Steps shown in Fig. 3.41:

¢ 1) Instruction Fetch: IF unit fetches 16 bytes from cache per clock cycle: it uses a
multilevel branch prediction buffer and branch return address stack, to lower branch
stalls; a branch mis-prediction causes a 15 clock cycle penalty

* 2) 16 bytes placed in predecode instruction buffer: breaks 16 bytes into individual
CISC 80x86 instructions. One 80x86 instruction can vary in length from 1 up to 17
bytes (remember that CISC instructions are difficult to pipeline).

* Also performs Macro-op fusion, where 2 instructions (ie compare & branch) may be
fused into 1 instruction

* Individual instructions placed in an 18-entry instruction queue

* 3) Micro-OP Decode: 80x86 instructions are translated into pipelinable RISC micro-
ops. There is a 28-entry micro-op buffer.

Ch. 3, MultiThreading, slide 20 © Ted Szymanski

The Intel Core i7 g 236

* 4) Loop stream detection and microfusion: if a loop of <= 28 instructions is detected
in the microop buffer, the loop will issue directly from the microop buffer, bypassing
the IF and ID stages. Microfusion combines pairs of instructions (ie load and ALU) and
issues them to one shared reservation station, where they can execute independently.
(Since then, it has been shown that microfusion has little benefits)

* 5) Basic Instruction Issue: look up operands in registers, perform register renaming,
generate an entry in the reorder buffer if necessary, send instruction(s) to reservation
station

* 6) A Centralized reservation-station with 36 entries is shared by 6 functional units. Up
to 6 microops can start execution per clock cycle

* 7) Microops complete execution, results are sent back to ID stage and reorder buffer
and to any waiting reservation station

* 8) when 1 or more instructions at the head of the reorder buffer are labelled complete,
the results are written into the register file and the entries in the reorder buffer are
cleared

Ch. 3, MultiThreading, slide 21 © Ted Szymanski

The Intel Core i7 . 236)

128-Entry | 32 KB Inst. cache (four-way associative) |«
inst. TLB |4 v
(four-way) 16-Byte pre-decode +macro-op

7

tusion, fetch buffar

¥

v
'M::cmh 13~§my instruction queue
hardware |4 g > > >
\ 4 A 4 A4 \ 4
Complex Simple Simple Simple
Micro ¥ Macie-op macro-op Macro-op | Macre-op
decoder decoder decoder decoder
~code >y \ 4 v \ 4
28-Entry micro-op loop stream detect buffer
¥
Register alias table and allocator
Retirement | v
register file | ° 128-Entry reorder buffer
»> 35-Entry reservation station
ke \ 4 v v
ALU ALU Load Store Store ALU
shift shift address | address data shift
SSE SSE X X 4 SSE
shuffie shuffle Memory order buffer shufile
ALU ALU ALU
| 128-bat 128-bit 128-bit
FMUL FMUL Store FMUL
FDIV FDIV & load FDIV
NN NEN v
512-Entry unified < i 64-Entry data TLB 32-KB dual-ported data . 256 KB unified 12
L2 TLB (4-way) »| (4-way associative) | | cache (B-way associative) | ¥ cache (eight-way)
v 4
8 MB all core shared and inclusive L3 » Uncore arbiter (handles scheduling and
cache (16-way associative) < clock/power state differences)

Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system components. The total pipeline depth 1s 14
stages, with branch mispredictions costing 17 cycles. There are 48 load and 32 store buffers. The six independent functional units
can each begin execution of a ready micro-op in the same cycle.

The Intel Core i7 Performance (ps.239)

 Textbook examines single-thread performance
* next slide shows ‘wasted work’ when no instructions can issue
e about 3% of LOADs are delayed due to structural hazard on Reservation-Station

* most losses come from branch prediction error (we flush the pipeline), or cache
missses

* cost of one branch misprediction = 15 clock cycles * (6 issues per cc) = 90
instructions

* cost of one L1 cache miss is 10 clock cycles * (6 issues per cc) = 60 instructions
* cost of one L2 cache miss is 30 clock cycles * (6 issues per cc) = 180 instructions
* cost of one L3 cache miss is 130 clock cycles * (6 issues per cc) = 780 instructions

* multi-threading allows the processor to switch threads, but the reservation-stations
have finite depth and they will fill-up, eventually causing structural hazards

* Fig 3.42 shows fraction of instructions whose results are killed due to pipeline
flushing

Ch. 3, MultiThreading, slide 23 © Ted Szymanski

Core i7 Performance — Fraction of Wasted Issues (. 239

40%
35% 4
30% +
25% - — -
20%

15% -

Work wasted/total work

10% -~

5% H H
0% | H —

T T T T T T T T T T

|

P F IO S OL G R OSSP
&R £ o W L P N & 9@ o
F N S K Rt V¥ S
& X N S R
] X ?

Figure 3.42 The amount of “wasted work” is plotted by taking the ratio of dispatched micro-ops that do not graduate to
all dispatched micro-ops. For example, the ratio 1s 25% for sjeng, meaning that 25% of the dispatched and executed micro-
ops are thrown away. The data in this section were collected by Professor Lu Peng and Ph.D. student Ying Zhang, both of
Louisiana State University.

Ch. 3, MultiThreading, slide 24 © Ted Szymanski

The Intel Core i7 Performance (ps.239)

* Fig 3.43 shows the overall CPI for the 19 benchmark programs

¢ ideal instructions-per-clock-cycle = 6 instructions per clock cycle
* so the ideal clock-cycles-per-instruction is 1/6 clock-cycles

* the ideal CPU ignores branch mis-predictions and cache misses

* a real machine like the CORE i7 has very large penalties (90 instructions for branch
mis-prediction, and 60, 180, 780 instructions for L1, L2 and L3 cache misses)

* the overall CPI is about 0.5, which is not bad considering the large penalties

Ch. 3, MultiThreading, slide 25 © Ted Szymanski

Core i7 Performance CPI g 239

3-
2.5
N _
T 15
015
1_
Oﬁ-HH H H H ”H
0 e H s .
Q%Gc}*e\Q&éQrz}»&- O \+\@f:>
F&F TN F LT & N o° SV
Q;\\ & o\}‘b\z{l/ & \,bﬁ‘ & Q0 o_>
R \)0 o 42

Figure 3.43 The CPI for the 19 SPECCPU2006 henchmarks shows an average CPI for 0.83 for both the FP and integer
benchmarks, although the hehavior is quite different. In the integer case, the CPI values range from 0.44 to 2.66 with a standard
deviation of 0.77, while the variation in the FP case is from 0.62 to 1.38 with a standard deviation of 0.25. The data in this section were
collected by Professor Lu Peng and Ph.D. student Ying Zhang, both of Louisiana State University.

Ch. 3, MultiThreading, slide 26 © Ted Szymanski

Inteli7 920 ARM A8 Intel Atom 230
Four cores, One core, One core,
Area Specific characteristic ~ each with FP noFP with FP
Physical chip Clock rate 2.66 GHz 1 GHz 1.66 GHz
roperties = - -
PROREE Thermal design power 130 W 2W 4W
Package 1366-pin BGA 522-pin BGA 437-pin BGA
Memory system Two-level Two-level
All four-way set All four-way set
associative One-level associative
128 /64 D fully associative 161716 D
TLB 512L2 321/32D 64 L2
Three-level
32 KB/32 KB Two-level Two-level
256 KB 16/16 or 32/32 KB 32/24 KB
Caches 28 MB 128 KB-1MB 512KB
Peak memory BW 17 GB/sec 12 GB/sec 8 GB/sec

Pipeline structure

Peak issue rate

4 opsfelock with fusion

2 opsiclock

2 ops/elock

Pipeline
scheduling

Speculating
out of order

In-order
dynamic issue

In-order
dynamic issue

Branch prediction

Two-level

Two-level
512-entry BTB
4K global history
8-entry return
stack

Two-level

Figure 3.44 An overview of the four-core Intel i7 920, an example of a typical Arm A8 processor chip (with.a 256
MB L2, 32K L1s, and no floating point), and the Intel ARM 230 clearly showing the difference in design philoso-
phy between a processor intended for the PMD (in the case of ARM) or netbook space (in the case of f\to.m) anda
processor for use in servers and high-end desktops. Remember, the i7 includes four cores, each of which is several
times higher in performance than the one-core A8 or Atom. All these processors are implemented in a comparable

45 nm technology. Szymanski

Ch. 3, Mul

Core i7 Performance and Energy-Efficiency (. 239

114

I B Speedup —— Energy efficiency l

i7 920 and Atom 230 performance and energy ratio

e
@
@

g

8

w

Q

o

Luindex
antr
Bloat
433 mile
434.zeusm)
435.gromacs
447 dealll
450.s0plex
453 povray
465.tonto
47Q.ibm
482.sphim@3@

473.astar
436.cactus ADM

483.xelancbmk

202_jess
209 _co
213_javac
212_mpegaudio
228_jack
401.bzp2
403.g9cc
429.mef
445 gebmk
458 hmmer
444 namd
454, calculix

464 h26drel
459.gams FDTD

201_compress
400.perlbench
462 libquantum
470.0mneipp
416.0amess
437.leslie3d

Figure 3.45 The relative performance and energy efficiency for a set of single-threaded benchmarks shows the 17 920 is 4 to over
10 times faster than the Atom 230 but that it is about 2 times less power efficient on average! Performance 1s shown in the columns
as 17 relative to Atom, which is execution time (i7)/execution time (Atom). Energy 1s shown with the line as Energy (Atom)/Energy (i7).
The 17 never beats the Atom in energy efficiency, although it is essentially as good on four benchmarks, three of which are floating
point. The data shown here were collected by Esmaeilzadeh et al. [2011]. The SPEC benchmarks were compiled with optimization on
using the standard Intel compiler, while the Java benchmarks use the Sun (Oracle) Hotspot Java VM. Only one core is active on the 17,
and the rest are in deep power saving mode. Turbo Boost is used on the 17, which increases its performance advantage but slightly

Ch. - decreases its relative energy efficiency.

Intel Itanium and CORE i7 (pe. 244

SPECCInt2006 SPECCFI.’ZOOG
Processor Clock rate base baseline
2 G 5 99
Intel Pentium 4 670 3.8 GHz 11.5 12.2
Intel Itanium -2 1.66 GHz 14.5 17.3
Intel i7 3.3 GHz 355 384

Figure 3.46 Three different Intel processors

vary widely. Although the Itanium

processor has two cores and the i7 four, only one core is used in the benchmarks.

© Ted Szymanski
Ch. 3, MultiThreading, slide 29
IBM Power Cores (pg.247)
Power4 Power5s Power6 Power7
[ntroduced 2001 2004 2007 2010
Initial clock rate (GHz) 1.3 1.9 4.7 3.6
Transistor count (M) 174 276 790 1200
Issues per clock 5 5 7 6
- . . R
Functional units 8 8 9 12
Coresfchip 2 2 2 8
=
SMT threads 0 2 2 4
Total on-chip cache (MB) 1.5 2 4.1 32.3

Figure 3.47 Characteristics of four IBM Power processors. All except the Power6 were dynamically scheduled,
which is static, and in-order, and all the processors support two load/store pipelines. The Power6 has the same func-

tional units as the Power5 except for a decimal

Ch. 3, MultiThreading, slide 30

unit. Power7 uses DRAM for the L3 cache.

© Ted Szymanski

ILP, Core-Processors and Multithreading ;. 229)

* There was significant progress in Instruction-Level-Parallelism (ILP) over last
decade, with the Itanium, and multiple-issue dynamically-scheduled machines

* However, ILP cannot hide the real penalties associated with branch mis-predictions
and L1, L2 and L3 cache misses

* Multithreading allows multiple threads to share one processing core in an
overlapping fashion, with rapid thread switches

* When one thread encounters a large penalty (ie 2 clock cycles up to 100s iof clock
cycles), then the treads can be quickly switched by the core

* Many new processors include multiple cores with multi-threading in each core

* Each thread maintains its own registers, program counter, and virtual-memory page
table

* The core supports the ability to rapidly switch between threads, typically within 1
clock cycle

* It looks like multiple cores with multithreading are here to stay

Ch. 3, MultiThreading, slide 31 © Ted Szymanski

