
(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page

“Switches and Networks in VHDL -
A Class Example”
Monday, Tuesday - Sept 16,17, 2013

Prof. Ted Szymanski
Dept. of ECE

McMaster University

1

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 2

Switches and Networks

• Switches and Interconnection networks are used in many
computing systems:

• Single-chip multiprocessors use a ‘Network-on-Chip’ (NoC)

• Cloud data-centers use networks of 10Gbit Ethernet switches
spanning tens to hundreds of meters

• Internet routers use basic switches with 100s of Gbit/sec
bandwidth, with a control processor to run Internet protocols

• Let take a look at basic a basic switch

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 3

Cloud Datacenter (see class textbook)

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 4

Pictures: A Google DataCenter!

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 5

Network-on-Chip for Multiprocessors

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 6

Some Supercomputer Network Topologies

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page

Recall: 2-to-1 Multiplexer - Behavioural Entity

0
1

a

b

s

c

7

VHDL rule: ‘If-then-else’ statement
must be in a process.

Entity mux21 is
 Port (a, b , s : in STD_LOGIC;
 c : out STD_LOGIC) ;
End entity mux21;

-- an architecture definition without using a process statement
Architecture mux21_arch1 of mux21 is
begin
 c <= a when s = '0' else b;
end mux21_arch;

-- using a process statement to generate combinational logic
Architecture mux21_arch2 of mux21 is
begin
 MUX : Process (a, b, s)
 begin
 if (s = '1') then
 c <= b;
 else
 c <= a;
 end
 end process MUX;
end architecture mux21_arch2;

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 8

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use work.all;

entity mux21 is
 generic(width : integer := 16);
 port(
 a : in std_logic_vector(width-1 downto 0);
 b : in std_logic_vector(width-1 downto 0);
 sel : in std_logic;
 q : out std_logic_vector(width-1 downto 0)

);
end mux;

architecture mux21_arch1 of mux21 is
begin
 q <= a when (sel = '0') else b;
end architecture rtl;

0
1

a

b

s

c

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page

A 4-to-1 MUX - Behavioural Entity

entity mux4 is
port (a,c,b,d : IN BIT;

s : IN INTEGER RANGE 0 to 3;
e : OUT BIT);

end mux4 ;

architecture mux4_a of mux4 is
begin

-- the 'with-select' construct usually synthesizes to a multiplexer

with s select
e <= a when 0 ,

b when 1,
c when 2,
d when 3;

end mux4_a ;

0

1

a

b

s ! (0,1,2,3)

e
c
d

2

3

9

Use the ‘With-Select’ statement

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 10

A 4-to-1 MUX - Behavioural Entity

architecture mux4_arch1 of mux4 is
begin
 MUX: process(sel,d0,d1,d2,d3) is
 begin
 case sel is
 when 0 =>
 z <= d0;
 when 1 =>
 z <= d1;
 when 2 =>
 z <= d2;
 when 3 =>
 z <= d3;
 end case;
 end process MUX;
end architecture mux4_arch1;

-- introduce propagation delay, page 111 ashenden
architecture mux4_arch1 of mux4 is
begin
 MUX: process(sel,d0,d1,d2,d3) is
 begin
 case sel is
 when 0 =>
 z <= d0 after prop_delay;
 when 1 =>
 z <= d1 after prop_delay;
 when 2 =>
 z <= d2 after prop_delay;
 when 3 =>
 z <= d3 after prop_delay;
 end case;
 end process MUX;
end architecture mux4_arch1;

0

1

a

b

s ! (0,1,2,3)

e
c
d

2

3

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 11

A 1-to-4 De-Multiplexer - Behavioural Entity

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 128

A 4-by-4 Crossbar Switch - Unpipelined

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 13108

A 4-by-4 Crossbar Switch - Pipelined

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page

A 4-to-1 MUX in VHDL

(c) Prof. Ted Szymanski 4DM4 Switch-in-VHDL, 2013, Page 15

A 4-to-1 DEMUX in VHDL

