“Switches and Networks in VHDL -

A Class Example”
Monday, Tuesday - Sept 16,17,2013

Prof. Ted Szymanski
Dept. of ECE
McMaster University

4DM4 Switch-in-VHDL, 2013, Page | (c) Prof. Ted Szymanski

Switches and Networks

¢ Switches and Interconnection networks are used in many
computing systems:

* Single-chip multiprocessors use a ‘Network-on-Chip’ (NoC)

¢ Cloud data-centers use networks of 10Gbit Ethernet switches
spanning tens to hundreds of meters

* |nternet routers use basic switches with 100s of Gbit/sec
bandwidth, with a control processor to run Internet protocols

¢ | et take a look at basic a basic switch

4DM4 Switch-in-VHDL, 2013, Page?2 (c) Prof. Ted Szymanski

Cloud Datacenter (see class textbook)

[,
Rac i _
switch _ 1’5
— 1U Server
Rack

Figure 6.5 Hierarchy of switches in a WSC. (Based on Figure 1.2 of Barroso and Holzle [2009].)

4DM4 Switch-in-VHDL, 2013, Page3 (c) Prof. Ted Szymanski

Pictures: A Google DataCenter

\ ‘ ‘ A F.. ‘ ;‘," ," / |

- ’
4DM4 Switch-in-VHDL, 2013, Page4 (c) Prof. Ted Szymanski

Network-on-Chip for Multiprocessors

@Iticore Multicore Multicore @Iﬁcore
MP MP MP MP

Memory .y le} Memory I— le} Memory I——(w Memory l— 1o

Interconnection network

-
Memory I/O Memory 1/O Memory /0

Multicore Multicore Multicore
MP MP MP

Figure 5.2 The basic architecture of a distributed-memory multiprocessor in 2011 typically consists of a multicore
multiprocessor chip with memory and possibly I/O attached and an interface to an interconnection network that
connects all the nodes. Each processor core shares the entire memory, although the access time to the lock memory
attached to the core’s chip will be much faster than the access time to remote memories.

Multicore
MP

4DM4 Switch-in-VHDL, 2013, Page5 (c) Prof. Ted Szymanski

Some Supercomputer Network Topologies

eEuSa)
e
e

(8) 2D grid or maeh of 16 nodes (b) 2D torus of 16 nodss

(c) Hypercubs of 16 nodes (16 =2 s0n = 4)

Figure F.14 Direct network topologies that have appeared in commercial systems,
mostly supercomputers. The shaded circles represent switches, and the black squares
represent end node devices. Switches have many bidirectional network links, but at
least one link goes to the end node device. These basic topologies can be supple-
mented with extra links to improve performance and reliability. For example, connect-
ing the switches on the periphery of the 2D mesh, shown in (a), using the unused ports
on each switch forms a 2D torus, shown in (b). The hypercube topology, shown in (c) is
an n-dimensional interconnect for 2" nodes, requiring n + 1 ports per switch: one for
the n nearest neighbor nodes and one for the end node device.

4DM4 Switch-in-VHDL, 2013, Pageg (c) Prof. Ted Szymanski

Recall: 2-to-1 Multiplexer - Behavioural Entity

Entity mux21 is
Port(a,b,s: in STD_LOGIC;
¢ : out STD LOGIC);

End entity mux21; a 0 —
b — L)

-- an architecture definition without using a process statement

Architecture mux21_archl of mux21 is

begin s
c<=a when s='0" else b;

end mux21 arch;

-- using a process statement to generate combinational logic
Architecture mux21 _arch2 of mux21 is

begin
MUX : Process (a, b, s)
begin
if (s ='1") then VHDL rule: ‘If-then-else’ statement
c<=b; must be in a process.
else
c<=a;
end

end process MUX;
end architecture mux21_arch2;

4DM4 Switch-in-VHDL, 2013, Page7 (c) Prof. Ted Szymanski

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all; b 1
use work.all;

entity mux2l is s
generic(width : integer := 16);
port(
a : in std_logic_vector(width-1 downto 0);
b : in std_logic_vector(width-1 downto 0);
sel : in std_logic;
q : out std_logic_vector(width-1 downto @)
DK
end mux;

architecture mux21l_archl of mux2l is
begin

q <= a when (sel = '0") else b;
end architecture rtl;

4DM4 Switch-in-VHDL, 2013, Pageg (c) Prof. Ted Szymanski

A 4-to-1 MUX - Behavioural Entity

i i a —0
entity mux4 is
port (a,c,b,d: IN BIT; b ——|1
s : IN INTEGER RANGE O to 3; L e
e : OUT BIT); |2
end mux4 ;
d —3
architecture mux4_a of mux4 is
begin
-- the 'with-select' construct usually synthesizes to a multiplexer s€ (0,1,2,3)
with s select
e<= awhenO,
b when 1, .
c when 2, Use the ‘With-Select’ statement
d when 3;

end mux4_a ;

4DM4 Switch-in-VHDL, 2013, Page9

(c) Prof. Ted Szymanski

A 4-to-1 MUX - Behavioural Entity

architecture mux4_archl of mux4 is

begin
MUZX: process(sel,d0,d1,d2,d3) is
begin
case sel is
when 0 =>
z <=d0;
when 1 =>
z<=dl;
when 2 =>
z<=d2;
when 3 =>
z <=d3;
end case;
end process MUX;

end architecture mux4_archl;

4DM4 Switch-in-VHDL, 2013, Page| 0

a —10

b —|1
e

c S)

d —13
s€ (0,1,2,3)

-- introduce propagation delay, page 111 ashenden
architecture mux4_archl of mux4 is

begin
MUX: process(sel,d0,d1,d2,d3) is
begin
case sel is
when 0 =>
z <= d0 after prop_delay;
when 1 =>
z <= dI after prop_delay;
when 2 =>
z <= d2 after prop_delay;
when 3 =>
z <= d3 after prop_delay;
end case;
end process MUX;

end architecture mux4_archl;

(c) Prof. Ted Szymanski

A 1-to-4 De-Multiplexer - Behavioural Entity

A
B
E
C
j\ D
S
4DM4 Switch-in-VHDL, 2013, Page| | (c) Prof. Ted Szymanski

A 4-by-4 Crossbar Switch - Unpipelined

. DEMUX 16 16 mux
N e B —
_— '
ALL DATAPATHS ARE .
(4,80r16) BITS WIDE ! I :['
—» -
E % '
:.. { E
. MUX
DEMUS CONTROL
__ CONTROL SIGNALS
SIGNALS

4DM4 Switch-in-VHDL, 2013, Pagei® (c) Prof. Ted Szymanski

A 4-by-4 Crossbar Switch - Pipelined

5 PIPELINE :
: DEMUX 16 RECISTERS 15 nux [l :
: 1/ D JA :
e ; >
o T : N
N A .
—— > E Do
Lo : ;o
LT T
AN : .
N ¢ v ¢ !
. 1/5%1; |
by ! __L___J——-
—— : =

ALL DATAPATHS +
PIPELINE LATCHES

ARE (48,16) BITS WIDE

4DM4 Switch-in-VHDL, 2013, Pagei®

\ MUX
DEMUX

| CONTROL g%\&igl_
SIGNALS

(c) Prof. Ted Szymanski

A 4-to-1 MUX

in VHDL

use work.SWITCH_PKG.all;

ENTITY MX4 IS

--GENERIC (DATA_WIDTH :

-- SEL_SIZE
PORT (
sel

x1, x2, x3, x4

INTEGER := 16;
: INTEGER := 2); --logN in N-1 MUX

: IN STD_LOGIC_VECTOR(SEL_SIZE-1 DOWNTO @);
: IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO @);
: OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO @));

y
END MX4;

ARCHITECTURE MX4_Behavior OF MX4 IS
BEGIN

process(sel, x1,

begin
CASE sel IS

WHEN "0o"

y <=

WHEN "01" =

y <= X2;

WHEN "10" =

y <=

WHEN OTHERS

y <=

x2, X3, x4)

=>
x1;

x3;
==
x4;
END CASE;
end process;
END MX4_Behavior;

4DM4 Switch-in-VHDL, 2013, Page

(c) Prof. Ted Szymanski

A 4-to-1 DEMUX in VHDL

ENTITY DMX4 IS

--GENERIC (DATA_WIDTH : INTEGER :
-- SEL_SIZE : INTEGER :
PORT (

16;
2); --or logN in an N-port DMX

sel : IN STD_LOGIC_VECTOR(SEL_SIZE-1 DOWNTO @);
x1, x2, x3, x4 : OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO ©);
¥ : IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO @));
END DMX4;
ARCHITECTURE DMX4_Behavior OF DMX4 IS
BEGIN
process(sel, y)
begin
CASE sel IS
WHEN "00" =>
x1l <= y;

x2 <= (others=>'0");
x3 <= (others='0");
x4 <= (others=>'0");

WHEN "01" =>
x1 <= (others='0");
X2 <= y;

x3 <= (others=>'0");
x4 <= (others=>'0");

4DM4 Switch-in-VHDL, 2013, Page| 5

X1

X2

X3

X4

Sel

WHEN "10" =>
x1 <= (others=>"'0");
x2 <= (others=>'0");
x3 <=y;
x4 <= (others=>'0");
WHEN OTHERS =>
x1 <= (others=>'0");
x2 <= (others=>'0");
x3 <= (others=>'0");
x4 <= y;

END CASE;
and process;
END DMX4_Behavior;

(c) Prof. Ted Szymanski

