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Basic/Intermediate Pipelining !
(See class textbook –5th Edition - Appendix C;!

Older editions of the class textbook carry the same material;!
Introductory version of textbook covers this material ‘lightly’)!

•  “pipelining” = ability to execute multiple instructions at the same time!
•  pipelines are organized into “stages”, each stage is one hardware module!
•   machine clock cycle time (clock period) = time required for slowest stage to 
complete its work!
•  to maximize performance, work should be evenly distributed over pipeline stages, 
so all stages have nearly the same completion times!

Pipelined RISC machine!
•  older CISC machines cannot be easily pipelined, since instructions vary immensely 
in complexity, from 1 c.c. to 100 c.c. per instruction!
•  original RISC machines supported pipelineable instructions, which execute in 
typically 5-10 clock cycles (depending upon pipeline depth)!
•  newer machines are more complex, using ‘dynamic scheduling’ (to be studied)!
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Typical 5-Stage Pipelined CPU "

•  All stages perform separate tasks!
•  Instruction-Fetch stage :    IR <- Mem[PC],      % fetch instruction & inc PC !

! ! !     NPC <- PC+4!
•  Instruction-Decode stage: A     <- Reg[A field of instruction],  % fetch A operand 

! !                  B     <- Reg[B field of instruction],   % fetch B operand
! !                 Imm <- Immediate field of IR        % fetch immed operand!

•  Execute stage:  for ALU instruction, compute result: ! ! !
! !ALU output = A op B  (from OP field of ALU instructions)!

•  for MEM instructions (Load/Store), compute effective address: ! !
! ! !ALU output <- A + Imm !        % assume displacement mode!

•  for BRANCH instructions, compute branch target and branch outcome: !
! ! !ALU output <- NPC + Imm     %  compute branch target
! ! !Cond <- (A op 0) !       % compare with 0!

IF ID EX MEM WB
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•  MEM stage :  for Mem instructions, perform Memory operation if necessary:!
 ! !LMD <- Mem[ALU output latch] ! % perform LOAD!

! !Mem[ALU output] <- B                    % perform STORE!
•  MEM stage : for Branch Instruction, perform PC update: ! ! !

! !if (cond)  PC <- ALU output !% update PC if necessary !
! !else PC <- NPC!

•  Write Back stage:  (write back results to register file if necessary): !!
!- for Reg-Reg ALU instructions: ! ! ! ! !
! !Reg[destination field of instr] <- ALU output      !!
- for Reg-Imm ALU instructions: ! ! ! ! !

!Reg[destination field of instr] <- ALU output !!
- for Load instructions: ! ! ! ! ! !

!Reg[destination field of instr] <- LMD !!

•  consider the above CPU without pipelining first; each instruction must pass through 
all 5 stages, requiring  5 clock cycles per instruction (= a multi-cycle unpipelined CPU)!
•  (LMD = ‘load memory data’ register)! ! !!
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Time per CPU Stage!
(introductory text - Fig. 62, pg, 373)!
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Nonpipelined vs. pipelined CPU!
(introductory text - fig. 6.3, pg, 373)!
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Now Add Pipelining-> the RISC  machine!

•  previous hardware is suitable for pipelining : all instructions require 5 c.c. to 
complete, and all instructions pass through the same 5 stages, in the same order!
•  without pipelining, all instructions take 5 c.c., so average CPI = 5!
•  without pipelining, CPU time for 1,000 instructions = 5,000 c.c. !
•  to pipeline, add “pipeline latches” between all stages!
•  in every clock cycle, a new instruction enters the pipeline in stage # 1, and the 
contents of all stages move right one stage !!
•  instructions enter and exit the pipeline one instruction per clock cycle!
•  every instruction stays within the pipeline for 5 clock cycles -> “latency = 5 cc.”!
•  CPU time to execute 1,000 instructions = 1000 cc. plus 4 cc to flush the pipeline!
•  the effective CPI =1004 cc/1000 inst = 1.004  cc per instruction, about 5 times faster 
than the same hardware circuit without the pipeline latches !

•  => Pipelining a 5 stage CPU results in about 5x performance improvement over 
unpipelined CPU !
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Pipelined CPU with Pipeline Registers (class text - Fig. C.22, pg. C-35)!

•  Add pipeline registers between stages. The clock rate can be increased significantly 
due to pipelining, since the combinational logic delays are significantly lowered . !
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Basic RISC Pipeline - “Space-Time” Diagrams!
(class text – Fig C.1, pg C-7)!

•  with pipelining, CPU works on 5 instructions at a time; each instruction is in a 
different pipeline stage, so they don’t collide.!
•  look at clock cycle 5, where 5 different instructions are in the CPU at the same time!
•  but, pipelining has some stringent requirements;!
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•  with pipelining, IF unit must fetch & deliver instructions 5x as fast!
•  with pipelining, MEM unit must fetch & deliver data 5x as fast!
•  register file used twice in every clock cycle; used once in stage 2 (ID stage) when 
A,B operands being read; used one in stage 5 (WB stage), when C operand is written 
back to register file -> pipelining requires “dual ported” register file!

 Pipeline Hazards (class text)!

•  “hazards” prevent an instruction from executing in its designated clock cycle & 
reduce performance, when compared to an “ideal” pipeline without hazards!
•  3 types of hazards:!

- structural hazards - conflict for scarce hardware resources!
- data hazards - results of new instruction depend upon results of previous 
instructions, which haven’t been computed yet!
- control  hazards - occur from pipelining branches ; by the time we figure out 
whether to branch, we have already started executing down the wrong path of 
the branch!
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Datapaths shifted in time (class text - Fig. C.2, pg. C-8)!

•  pipelining can be viewed as using all 5 of the hardware units, in each clock cycle!
•  the datapath (with 5 pipeline stages) can be viewed as shifted in time, where each 
stage is re-used in each time-slot!
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Structural Hazard due to 1 Port Memory (Fig. C.4, pg C-14)!
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Structural Hazard (1 Port Memory) causes Stall !
(class text -  Fig. C.5, pg C-15)!

•  a single memory port handles both instructions and data, creating a hazard when 
data is fetched for a previous Load instruction (in MEM stage), and a new 
instruction is fetched in IF stage!
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Pipeline Performance with Stalls  (class text – pg C-12)!

•  CPI unpipelined = 5 cc!
•  CPI pipelined = (1 +  pipeline stalls per inst) !

 

speeduppipelining=
CPI unpipelined

CPI pipelined

speeduppipelining=
5 

(1+ pipeline stall cycles per instruction)

•  what separates an “ideal” pipeline from a  real pipeline are the stall cycles per 
instruction, that the real machine encounters due to hazards. More generally;!

speeduppipelining=
pipeline depth 

(1+ pipeline stall cycles per instruction)
!

clock cycle unpipelined

clock cycle pipelined

Pipeline stalls per inst. = sum(% instr. type j)* (stalls instr. type j)!
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Speedup, Dual port vs Single Port (class text – pg. C-14)!

•  machine A: dual-ported memory (separate memory ports for instructions & data)!
•  machine B: single-ported (shared) memory, with slightly faster clock (1.05x as fast)!
•  ideal CPI (without any hazards) = 1  cc/inst, for both machines!
•  data references form 40 % of instruction mix!

•  Solution using Average CPIs:!
Average Instruction Time = CPI* Clock Cycle time

Average Instruction Time A = 1.0 * Clock Cycle time

Average Instruction Time B = CPI *Clock Cycle time

= (1+ 0.4 *1)*
Clock Cycle time ideal

1.05
= 1.3* Clock cycle time ideal

•  machine without memory hazard is 1.3 times faster. So, by adding another memory 
port, RISC machines gain about 30 % advantage over single -ported machines!
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•  structural hazards exist because the cost of avoiding them is high (duplication of 
hardware)!
•  Example: many new machines do not fully pipeline the Floating-Point-Unit (FPU) -> 
this is a structural hazard!
•  suppose RISC machine has a 5 cc latency for FP MULT with no pipelining (ie it 
takes 5 cc to compute a FP MULT result)!

•  if calls to FP MULT are separated by > 5 cc on average, then there is no degradation 
in performance at all due to the potential structural hazard of an unpipelined FP MULT  !

•  most programs usually don’t generate enough FP MULTs to fully exploit a pipeline, 
so inexpensive CPUs may use an unpipelined or partially pipelined MULT unit!

Structural Hazards!
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! ! !Data Hazards (class text – pg. C-16)!

•  data hazards occur when results of new instruction depend upon results of a previous 
instruction which hasn’t finished executing yet!
•  Consider this instruction sequence:!

ADD !R1, R2, R3 !-- destination R1 not written back until WB stage!

SUB !R4, R5, R1 !-- incorrect operand R1 fetched in ID stage!
AND !R6, R1, R7 !--     “!

OR ! !R8, R1, R9 !--     “!
XOR !R10, R1, R11 !-- destination R1 written back now !!!!



© Ted Szymanski!2013, App. C: Pipelining, slide  17!

Data Hazards in ALU stage (class text - Fig.  C.6, pg C-17)!

•  result of ADD not written back until WB stage in cc 5  -> data hazard for next 3 instructions!
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Data Forwarding (class text, Fig. C.7, pg C-18)!

problem overcome by “data forwarding” - add datapaths and multiplexers to hardware, to allow 
the correct data (R1) to follow the arrows in the above figure!
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ADD !R1, R2, R3 !!
SUB !R4, R5, R1 !!
AND !R6, R1, R7 !!
OR !R8, R1, R9 !!
XOR !R10, R1, R11 !!

    Data Forwarding Circuitry!

•  all these arithmetic instructions use R1!

•  ADD doesn’t write back R1 until cc 5!

•  without data forwarding, SUB, AND, OR read incorrect values of R1 in their ID 
stages (in cc. 2,3,4)!

•  arrows indicate forwarded data on the above timing diagram, to correct the problem!
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    Another ALU Forwarding Example (class text, Fig. C.8, pg. C-19)!
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Data Forwarding Hardware (class text – Fig. C-27, pg. C-41)!

•  data forwarding to ALU requires multiple 4-to-1 muxes, 32 bits wide, on ALU inputs, to 
select forwarded data, along with controller to enable the forwarding!
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Data Forwarding Controller!
(introductory text – fig. 6.16, pg 403)!

•  Data hazards can be detected in the ID stage, which can generate the appropriate control 
signals in the next few clock cycles, to resolve the data hazards!
•  the ID unit needs to examine the new instruction it receives, and the last 2 instructions 
(which are entering the EX and MEM stages) ; The ID unit can keep local copies of the last 
2 instructions, in two 32-bit-wide shift registers in the ID stage!

ID stage computes a Vector of control!
Signals for each stage!
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Comparison Hardware to Detect Data hazards in!
 ID Stage"
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•  with forwarding circuitry, current results of EX or MEM stages can be used by a 
subsequent instruction entering EX stage, by enabling the multiplexers from EX/MEM 
stages back into the EX stage!

•  the EX stage always checks to see if either of the 2 previous instructions have just 
computed an operand that it needs; if so, it fetches the operand using the forwarding 
circuitry!

•  requires Combinational Logic to examine current instr. + last 2 instructions!

•  Here is an example!

ADD !R1, R2, R3 !!
LW !R4, 8(R1) !!
SW !12(R1), R4 !!
 !!

    Data Forwarding, for Load & Stores!

No Stalls here!
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Load Data Hazards Forcing Extra Stalls (class text – Fig. C.10, pg. C-21) "

! ! !1 !2 !3 !4 !5 !6          7!
!     _____________________________________________________!

LW !R1, 0(R2) !IF !ID !EX !MEM !WB!
SUB !R4, R1, R6 ! !IF !ID !stall !EX !MEM !WB!
AND !R6, R1, R7 ! ! !IF !stall !ID !EX !MEM!
OR !R8, R1, R9 ! ! ! !stall !IF !ID !EX!
 !!

•  a timing diagram for this situation is shown on following slide!

•  Assuming a cache hit, the Load instruction receives R1 from memory at end of the MEM 
stage in cc 4 (only if we have a cache hit; otherwise many more stalls will be inserted)!

•  the SUB instruction cannot enter the EX stage 3 until after the MEM stage forwards R1, ie 
after cc 4, so a stall is inserted, delaying the SUB instruction entry into the EX stage by 1 cc !

•  due to the pipelined structure, all subsequent instructions are stalled at same cc 4!

•  ID unit detects hazard when SUB instruction is in the ID unit (it retains copies of 2 previous 
instructions, for hazard checking); it asserts a global ‘Stall’ signal, which stops the  IF unit 
from fetching and incrementing the PC, but which allows other stages to continue!
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Load Data Hazards Forcing Extra Stalls (class text - Fig. C.9, pg. C-20)!

•  figure C.9:  LW can forward data to AND and OR instructions but not to SUB, which would 
forward the result in “negative time” on the timing diagram -> this necessitates the 1 cc “stall”!

LW  R1, O(R2)!

SUB  R4, R1, R6!

AND R6, R1, R7!

OR R8, R1, R9!
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Load Data Hazards Forcing Extra Stalls (class text – Fig. C.10, pg.  C-21)!

This slide illustrates the same information as the previous slides!
It shows both cases (untaken branch - top, and the taken branch-bottom)!
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•  Suppose 30 % of instructions are LOADS, and 50 % of the time the instruction 
immediately after the LOAD depends upon the result of the LOAD, creating a hazard 
& stall.!

•  How much faster is ideal pipeline (CPI = 1) versus real pipeline with load stalls ?!

•  Answer: Average CPI for instruction immediately after LOAD is 1.5, since CPU 
needs 1 clock cycle just to fetch the instruction, and half the time it encounters a 
hazard in its execution (it needs the data from the LOAD) & stalls!

•  effective CPI of all instructions = (0.7 * 1 cc + 0.3 * 1.5 cc) = 1.15!

•  effective CPI of ideal machine = 1.0!

•  so, ideal machine is about 15 % faster. !

•  Compilers can re-arrange instruction execution sequence to minimize stalls!

•  Here are 2 formulas for CPI, which effectively compute a weighted average:!

  !!

CPI,  Load Data Hazards Stalls (class text 2nd edition,  - pg 155)!

 

CPI = (1
i
! + (fraction inst. type i ) *(stalls per inst. type i))

CPI = (fraction inst. type i)
i
! * (CPI inst. type i)
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Compiler Scheduling to Reduce Load Stalls !
(class text - pg. 155, 2nd edition)!

•  consider 2 lines of C code:!
a = b + c; ! !/* a, b, c, d  are variables in memory */!
d = e - f;!

•  Assume Loads have a latency of 1 cc (that means they cause 1 stall if the 
immediately following instruction relies upon the loaded value)!
•  Unscheduled code: ! ! !Compiler scheduled code:!

LW  !Rb, b!
LW ! !Rc, c!
stall 1 cc!
ADD !Ra, Rb, Rc!
SW! !a, Ra!
LW! !Re, e!
LW! !Rf, f!
stall 1 cc!
SUB  !Rd, Re, Rf!
SW ! !d, Rd!

LW  !Rb, b!
LW ! !Rc, c!
LW! !Re, e!
ADD !Ra, Rb, Rc!
LW! !Rf, f!
SW! !a, Ra!
SUB  !Rd, Re, Rf!
SW  !d, Rd!
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Compiler Scheduling to Reduce Load Stalls "
(class text - Fig 3.16, pg. 157, 2nd edition)!

•  without compiler scheduling, up to 65 % of all Loads can cause stalls!
•  with compiler scheduling, Load stalls reduced by at least 50 %!
•  scheduling will reduce average CPI got load instructions moderately!
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Branch Hazards (class text, pg. C-21)!

•   Basic problem: we don’t know whether to take the branch for several cc. By this 
time,  CPU has fetched several incorrect instructions and started execution.!
•  Consider: BRANCH  if A<0 to branch-target-address!
•  EX stage computes A<0, MEM stage forwards branch outcome to IF stage, and 
the ‘Load_BTA’ signal arrives at the IF unit during clock cycle 4  (see below ) -> 
the 3 instructions following the branch will be fetched by the IF_Unit !!
•  Leads to a 3 cc “branch delay” for the basic pipeline!

! ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7        8 !
! !     _____________________________________________________!

Branch ! !IF !ID !EX !MEM* !WB!
Branch+1 ! !IF !ID !EX !MEM !WB ....!
Branch+2 ! ! !IF !ID !EX !MEM     WB!
Branch+3 ! ! ! !IF !ID !EX !MEM !WB!
Branch+4 ! ! ! ! !IF !ID !EX !MEM!
 !!(In this example, the  ‘LOAD_BTA’ signal asserted when Branch instruction 

reaches the MEM stage in cc 4, and changes the PC before start of cc 5)!
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Original MIPS Datapath, with 3 cc Branch Delay"
(class text – Fig C.22, pg. C-35)!

•   Recall ; the main problem is that we don’t forward the ‘LOAD_BTA’ signal to the 
IF-unit until the MEM stage; this creates the 3 clock cycle delay  !
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Performance Impact of 3 cc Branch Delay "
•   Branch delays incur  big “slow down” affects on real machines.!
•  Consider an ideal machine with no branch delays; CPI = 1.0!
•  Consider a typical machine like the Pentium (x86 family) or PowerPC; up to 30 % 
of all instructions can be branches!
•  if each branch instruction causes 3 stall cycles, the new overall CPI is 1.9 !!

CPI = (0.7 * 1cc + 0.3 * 4cc) = 1.9 cc per instruction!
•  Ideal machine is about 90 % faster than real machine with branch stalls!
•  A good solution to branches can yield a speedup of up to 90 %, nearly a factor of 2. !
•  Solution: add hardware to resolve branches earlier in pipeline; as soon as 
possible, which is in the ID stage. See next slides.!
•   Even with this solution, we are still left with a 1 cc branch delay. For a typical 
machine with 30% branches, the new CPI is now:!

!CPI = (0.7 * 1cc + 0.3 * 2cc) = 1.3 cc per instruction!
•  a real machine is about 30 % slower than the ideal machine, due to 1 cc branch 
penalty. 30 % is a lot in the highly competitive CPU market ! We must try to solve.!
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New CPU Datapath, with 1 cc Branch Delay (Fig. C.28, pg. C-42)!

•   Branch test now moved up into the ID stage; We can determine branch and update 
the PC before the ID stage finishes. Net result -> 1 cc branch delay penalty.!
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Reducing the 1 cc Branch Delay"
•   There are  4 basic ways to reduce the 1 cc branch penalty; done at compile time:!

- Accept the penalty - put 1 No-Op in the branch delay slot & accept 1cc penalty!
- Delayed Branch - Define instruction following the branch to be always 
executed; let compiler try to fill the “ 1cc branch delay slot” with a useful 
instruction, otherwise fill it with a No-Op; approach used in MIPS machine!
- Branch Prediction with Instruction Cancelling - (also called Cancelling 
Branches in text) Every Branch Instruction includes static prediction in the Op-
Code (taken / not taken). Hardware always executes instruction in branch delay 
slot; hardware “kills” instruction if branch is predicted incorrectly. For incorrectly 
predicted branches, 1 cc. is wasted - the  instruction in the branch delay slot. Net 
affect: CPI for branch = 1 cc if predicted correctly, 2 cc if predicted incorrectly. If 
we can predict correctly often enough, we can improve performance here. !
- this technique essentially puts a conditionally executed instruction into the branch 
delay slot, so its easier for the compiler to find an instruction to put in the slot; it 
doesn’t have to be guaranteed to ‘safe’, since it will be cancelled if branch 
prediction is wrong (Cancelling an instruction is relatively easy - simply disable its 
write-back)!

© Ted Szymanski!2013, App. C: Pipelining, slide  36!

Predict Not-Taken (class text, Fig. C.12, pg C-22) "

Untaken branch : CPI = 1 cc per branch instruction!
Taken branch:      CPI = 2cc per branch instruction!
Average CPI:       about 1.5 CPI, depending upon frequency of taken/untaken branches!
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Delayed Branch: Filling the 1 cc Branch Delay "
•  3 ways a compiler can try to fill the 1 cc branch delay in Delayed Branch scheme:!

- take an instruction from before the branch and move into branch delay slot!
- take instruction from branch target address and move in branch delay slot!
- take instruction from “fall-through” path and insert into slot!

•  in all 3 cases, the instruction must be “safe” to move into the slot, i.e., the instruction 
moved in the branch delay slot cannot change any final results even if the  branch is 
predicted incorrectly (since we are not cancelling instructions on incorrect predictions)!
•  lets suppose we can fill the 1 cc branch delay slot 60 % of the time. For the  typical 
machine considered earlier with 30% branches, the new  CPI is now:!

CPI = (0.7 * 1cc + 0.3 *(1cc*0.6 + 2cc*0.4)) = 1.12 cc per instruction!
•  The effective CPI of the branch is 1cc  60% of the time,  and 2cc 40% of the time!
•  a real machine is about 12 % slower than the ideal machine with CPI = 1. This is 
better than the 30 % slowdown when we did not fill the branch delay.!
•  (Using Branch Prediction with Instruction Cancelling scheme, it is easier to put an 
instruction into the delay slot, since it doesn’t have to be ‘safe’, since it will be 
cancelled in the branch is predicted incorrectly. For delayed branch, instr. must be safe)!
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Delayed Branch: Filling the 1 cc Branch Delay  (Fig. C.14, pg. C-24)"

•  (a) is safe and is preferred. In (b), assume R4 is un-used before the branch. We save 1cc if 
we take the branch. In (c) assume R7 is unused before the branch. (Note: DADD R1… cannot 
be moved after branch due to control dependency on R1.)!
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Delayed Branch: Filling the 1 cc Branch Delay "
(class text - Fig. 3.29, pp. 179, 2nd ed) "
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Branch Prediction Rates "
(class text – Fig. C.17, pg C-27)!
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Performance of Branch Schemes "
(class text - pp. A24, 3rd edition) "

•   assume clocks are constant. Pipeline stall cycles per instruction, from branches = 
Branch frequency * branch penalty  !

speeduppipelining=
pipeline depth 

(1+ pipeline stall cycles per instruction)
!

clock cycle unpipelined

clock cycle pipelined

speeduppipelining=
pipeline depth 

(1+ Branch frequency *  Branch penalty)

•   for more detailed model, one could consider both conditional and unconditional 
branches, since the frequency and penalties are slightly different. For even more 
detail, one could consider prediction;!

pipeline stall cycles from branches =  Branch frequency type *  Branch penalty type
conditional &
unconditional branches

!

pipeline stall cycles from branches =  Branch frequency type *  Branch penalty type
conditional &
unconditional branches &
predicted branches

!
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Options for Compiler Prediction "
(class text - pp. 176, 2nd ed) "

•   compiler always predicts “taken” - right about 60 % of time, from SPEC benchmark !
•  predict backward branches as taken, forward branches as not taken - might be better 
or worse than first way!
•  predict on basis of execution profile gathered from earlier runs of same program; 
right about 85 % of the time (based on benchmarks)!
•  Overall for MIPS, branches stall about 5 % of the time, Loads stall about 8 % of the 
time, after all compiler optimizations !
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Final CPU Datapath & Control Figure"

•   The introductory textbook introduces a “Flush” signal which goes to several 
pipeline stages, to discard the instruction in those stages!
•  This Flush signal creates the stalls in our space-time diagrams!
•  An asserted “Flush” signal causes the CPU to discard instructions in the affected 
pipeline stages, due to an unexpected event, such as an incorrectly predicted branch (if 
we are using branch prediction), or a data hazard which cannot be resolved through 
forwarding and which needs more time to clear!
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Final CPU Datapath & Control Figure"
(introductory text - Fig  6.41, pg 427)!
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Exceptions !
(class text –  Appendix C, pg. C-43)!

•  “Exceptions” = “Interrupts”, caused by several events:!
- I/O device request!
- invoking operating system from user program!
- breakpoint (programmer requested interrupt)!
- integer arithmetic under / overflow!
- FP arithmetic anomaly (and there are many of these)!
- Page Fault (read to Virtual Memory page, which is not in main memory)!
- memory-protection violation!
- execution of undefined instruction (CPU generates interrupt)!

•  exceptions are usually handled in a way that is completely “transparent” to the 
program being interrupted.!
•  If a CPU can handle an exception transparently, ie, save the state of the interrupted 
process, perform the exception routine, and then restore the state of the process and 
restart the process, we say the CPU is “restartable” !
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Exceptions (class text – pg. C-43) "
•  an “EXCEPTION” instruction causes the CPU to enter the Exception handling 
routine. On an Exception, the CPU could do this:!

- save PC of faulting instruction at the end of the clock cycle!
- force an EXCCEPTION inst. into the pipeline at next cc!
- Until EXCEPTION inst. is taken, disable all writes for the faulting inst. and the 
insts.!
- enter exception handling routine, which resolves exception and restarts 
execution at faulting instruction!

•  “precise exceptions” - when a pipeline can be stopped such that instructions before 
the faulting inst. are completed, and those after the faulting inst. did not change state 
and can be re-started from scratch!
•  Problem: consider FP-DIV inst. with a latency of 20 cc, which raises an exception 
at cc. 19; at this point, 19 other inst. have already been fetched into pipeline, and up 
to 14 of these have completed execution and written results, perhaps even 
overwriting the operands of the faulting FP instruction; can be very difficult to 
recover state before the faulting instruction!
•  many recent machines have 2 modes of operation, “precise” & “imprecise”.  In 
Alpha, PowerPC chip, & MIPS chips, precise mode can be 10x slower than imprecise 
modes!
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Exceptions in MIPS (class text, pg. C-43) "
•  to be precise, exceptions must be handled in order of occurence, assuming all 
instructions were executed one at a time (as in an unpipelined machine)!
•  consider:!

! !1 !2 !3 !4 !  5 !  6!
LD ! !IF !ID !EX !MEM**! WB!
ADD ! ! !IF * !ID !EC ! MEM !WB!

•  * denotes page-fault at cc 2 which  occurs first;   ** denotes page-fault at cc 4;    !
•  exceptions occur out-of-order: to be precise, pipeline must process LD exception 
1st -> pipeline cannot simply handle exceptions as they occur in time!
•  Solution: every instruction in the pipeline has a status vector, which moves down 
the pipeline with the instruction. A set bit in the vector denotes an exception. Once an 
exception is indicated, all writes for that instruction are disabled. !
•  When an instruction enters the WB stage, its status vector is checked, and any set 
bits cause the exception to be handled; net result: exceptions are handled in order.!
•  in above example, LD exception will be handled first, in cc 5; the ADD exception 
will be handled later, after the 1st exception clears!
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MIPS Exceptions "
(class text - Fig  C.32, pg. C-48)!

•  up to 4 simultaneous exceptions can occur in MIPS, for 4 separate instructions in 
the pipeline!
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Multi-Cycle FP Operations "
(class text – pg. C-51) "

•  The MIPS integer ALU is also called the “integer” unit!
•  a real MIPS machine  has 4 separate EX units !

- Integer (the regular integer ALU that we have already been considering)!
- FP & Integer MULT!
- FP Add/substract!
- FP  & Integer DIV!

•  typically the lower 3 units are not fully pipelined due to excessive hardware cost -> 
potential for structural hazards & data hazards!
•  results of computation must be recirculated within these units, reusing critical 
hardware, until they are finished -> “multi-cycle” operation!
•  net result is that we cannot issue a new instruction every clock cycle into these 
units; we must wait for earlier instructions to finish execution within these units!
•  time an instruction spends in a unit (after its issue clock cycle) = “latency”; time 
between successive instruction issues to the same unit = “initiation rate”!
•  the multi-cycle operations introduce many potential data hazards, since instructions 
finish “out-of-order”!
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Multi-Cycle Floating-Point Operations ( Fig. C.33, pg. C-52)"
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Option (1) for Adding FP Pipelining (Fig  C.35, pg. C-54)"
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Option (2) for Adding FP Pipelining (Fig  C.35, pg. C-54)"

•  In this pipeline, only the integer instructions and LOAD/STORE instructions pass through the 
MEM stage!
•  The floating point instructions bypass the MEM stage, and go directly into the WRITE-BACK 
stage.!
•  In options (1) and (2), the computer designer must decide on how many instructions can enter 
the MEM stage or the WRITE-BACK stage, per clock cycle!
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•  latency == additional # clock cycles (after given inst. enters unit) before result can be used; 
latency = the number of extra pipeline stages (above 1) needed for a unit!
•  results of integer ALU can be used in next cc, so its latency = 0!
•  in above table, Integer ALU,  FP ADD, FP MULT are fully pipelined, so initiation rate = 1 
inst. per clock cycle;  FP DIV is not pipelined, since initiation rate = 1 inst. every 25 clock 
cycles!
•  above table allows 4 outstanding FP Adds, seven outstanding FP/INT Mults, one FP divide, 
for MIPS system on last slide!
•  number of FP register writes per clock cycle may be > 1 now!

FP Latency & Initiation Rate (class text – Fig. C.34, pg. C-53) "
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FP Pipeline Timing (class text – Fig. C-37, pg. C-55) "

•  FP MULT unit has a 7 stage internal pipeline, with stages M1, ...., M7!
•  FP ADD unit has a 4 stage internal pipeline, with stages A1, ...., A4!
•  MUL.D stalls in cc 3 while operand F4 fetched in MEM stage!
•  ADD.D stalls in cc 6-11 while operand F0 computed in MULT unit!
•  SD.D stalls in cc 14,15 while operand F2 computed; stalls in cc 16 due to MEM conflict!
•  This slide illustrates that only 1 instruction can access cache  memory in the MEM stage per 
clock cycle (memory access is expensive and takes time, and is a common  structural hazard)!
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•  slides 51 and 52 illustrate 2 options for the pipelines, when we add floating-point instructions!
•  for each option, there are several other design decisions that a computer-designer must make!

•  How many instructions can enter the MEM stage, per clock cycle ?!
•  How many instructions can access the cache memory, per clock cycle ?!
•  How many instructions can enter the WRITE-BACK stage, per clock cycle ?!
•  How many write-backs to the registers are allowed, per clock cycle ?!

•  Allowing more functionally typically requires more hardware design time, more test time, 
and more transistors, which all increase the chip costs!
•  Different chip manufacturers typically make different design decisions, so there is no single 
answer!
•  These design decisions result in different machine performances, and often differentiate the 
machines produced by companies like INTEL, AMD, MIPS and ARM!

•  We we allow multiple-issue (or super-scalar) designs, then on average multiple instructions 
must enter the MEM and WB per clock cycle, and the same design decisions exist!

 Handling the MEM and WB Stages "
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•  complications:!
- structural hazards exist since DIV unit is not pipelined!
- since instructions have varying run times, there can be multiple writes to 
registers per clock cycle (if two instructions finish at same time & must write)!
- ‘WW hazards’ are now possible, since inst. no longer reach WB in order.!
- instructions complete in different order than issued, causing problems with 
exceptions!
- because of longer latencies, stalls for ‘WR hazards’ will be more frequent and 
will last longer!

Note on Data-Hazards due to out-of-order execution: !
•  a WW hazard ( “Write-Write” ) happens when 2 writes finish in wrong order!
•  a WR hazard ( “Write-Read”) happens when the write should be followed by the 
Read, but the 2 instructions finish in wrong order!
•  these hazards can be avoided by adding stalls, to force in-order execution!

FP Hazards and Forwarding (class text – pg. C-55)"
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FP - Multiple Register Writes May Occur Often "
(class text – Fig. C.28, pg. C-56) "

•   In a single-issue machine, afor maxim,um-performancemultiple instructions may enter the!
•  it may not be worthwhile, dding hardware to allow for multiple writes, since this event may 
be infrequent!
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•  assume INT & FP instructions have their own registers; so they operate relatively 
independently (except for occassional data moves between them)!
•  to avoid hazards, the following 3 checks can be performed in the ID stage!
•  (1) check for structural hazard; make sure the FP unit is ready to accept a new 
operation!
•  (2) check for ‘WR hazard’: (the write of the operand should happen first, followed 
by the read of the operand); make sure the operand register is not listed as a pending 
destination register for any instruction in the FP pipeline which hasn’t finished 
writing yet; otherwise, stall until the hazard clears; many comparisons must be made 
in parallel here!
•  (3) Check for ‘WW hazard’; determine if any instruction in the FP pipeline has the 
same destination register as the instruction in the ID stage; if so, stall the instruction 
in the ID stage until the hazard clears!

•  when an instruction moves from the ID stage to some unit, we say that the 
instruction “issues”, otherwise it stalls!

FP Hazard Detection Logic (class text – App. C)"
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Notes!

WW hazard example:!

DIVD !F0,F2,F4!
ADDD !F0,F2,F4!

The ADDD will attempt to write F0 before DIVD and be forced to stall on WB until!
The hazard clears "

- a read/write hazard is never a problem in a single-issue static scheduled pipeline,!
because given 2 instructions j and j+1, instruction j must have both its operands available 
when it starts execution (otherwise it stalls), and once it starts execution, it not longer 
needs its operands and the next instruction can overwrite those operands!
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IF1 IF2 ID EX DF DS TC WB

2 cycle
inst. memory access

3 cycle
data memory access

8 Stage MIPS R4000 Pipeline (class text – Pg. C-61)!

•   real caches tend to be slower than CPUs, so MIPS R4000 spreads cache accesses over 
multiple clock cycles, leading to a deeper (8 stage) pipeline and higher clock rates !
•  instruction fetch uses 2 clock cycles IF1, IF2  - allows 2 cc for cache to respond; ID stage 
now also checks for cache hit or miss; a miss will stall the pipeline!
•  data memory access uses 3 clock cycles  DF, DS, TC - allows 2 cc for data cache to respond 
(Data Access -First, Data Access - Second), along with 1 cc to check if returned result is valid 
or not (Tag-Check)!
•  instruction and data caches must also be pipelined too; the instruction cache must accept a 
new operation in the first stage IF1, while still working on the read in IF2!
•  the same pipelining applies for the data cache!
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•   the classic 5 stage pipeline is still used in low to mid-range embedded processors!

•  the MIPS R4000 8-stage pipeline is a 64 bit embedded processor, used for example 
in the Nintendo-64 game systems and in laser printers!

•  there is an NEC version of this chip without the Floating Point hardware; FP is done 
through software!

Basic/Intermediate Pipeline Summary!


