Basic/Intermediate Pipelining
(See class textbook 5" Edition - Appendix C;

Older editions of the class textbook carry the same material;
Introductory version of textbook covers this material ‘lightly”)
* “pipelining” = ability to execute multiple instructions at the same time
* pipelines are organized into “stages”, each stage is one hardware module

* machine clock cycle time (clock period) = time required for slowest stage to
complete its work

* to maximize performance, work should be evenly distributed over pipeline stages,
so all stages have nearly the same completion times

Pipelined RISC machine

¢ older CISC machines cannot be easily pipelined, since instructions vary immensely
in complexity, from 1 c.c. to 100 c.c. per instruction

* original RISC machines supported pipelineable instructions, which execute in
typically 5-10 clock cycles (depending upon pipeline depth)

* newer machines are more complex, using ‘dynamic scheduling’ (to be studied)
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Typical 5-Stage Pipelined CPU

— IF L/ ID |l EX | ! MEM ) WB L »

* All stages perform separate tasks

e Instruction-Fetch stage : IR <- Mem[PC], % fetch instruction & inc PC
NPC <- PC+4

* Instruction-Decode stage: A <- Reg[A field of instruction], % fetch A operand
B  <- Reg[B field of instruction], % fetch B operand
Imm <- Immediate field of IR % fetch immed operand

* Execute stage: for ALU instruction, compute result:
ALU output = A op B (from OP field of ALU instructions)

* for MEM instructions (Load/Store), compute effective address:
ALU output <- A + Imm % assume displacement mode

* for BRANCH instructions, compute branch target and branch outcome:
ALU output <- NPC + Imm % compute branch target
Cond <- (Aop 0) 9% compare with 0
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* MEM stage : for Mem instructions, perform Memory operation if necessary:
LMD <- Mem[ALU output latch] % perform LOAD

Mem[ALU output] <- B % perform STORE
* MEM stage : for Branch Instruction, perform PC update:
if (cond) PC <- ALU output % update PC if necessary

else PC <- NPC
* Write Back stage: (write back results to register file if necessary):

- for Reg-Reg ALU instructions:
Reg[destination field of instr] <- ALU output

- for Reg-Imm ALU instructions:
Reg[destination field of instr] <- ALU output

- for Load instructions:
Reg[destination field of instr] <- LMD

* consider the above CPU without pipelining first; each instruction must pass through
all 5 stages, requiring 5 clock cycles per instruction (= a multi-cycle unpipelined CPU)

¢ (LMD = ‘load memory data’ register)
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Time per CPU Stage

(introductory text - Fig. 62, pg, 373)

Register ALU Data | Register | Total
Instruction class read operation | access write time

| Load word (1w) | 200ps. 100 ps \ 200 ps 200 ps ] 100 ps | 800 ps
Etore word (Sw) %7 200 ps 100 ps 206ips 200 ps i SRS 700 ps
| Rformat (add, sub, and, 200ps | 100 ps ‘ 200 ps | | 100ps | 600 ps
or,slt) |
Branch (beq) | 200ps | 100ps | 200 ps . 500 ps

FIGURE 6.2 Total time for each instruction calculated from the time for each compo-
nent. This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit
have no delay.
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Nonpipelined vs. pipelined CPU

(introductory text - fig. 6.3, pg, 373)

Program

execution — 200 400 600 800 1000 1200 1400 1600 1800
order Time T T T T T T T T T
(in instructions)

w $1, 100($0) "Siucton|peg| ALy | D28 | Reg

w $2, 200($0) 800 ps Insiuction| Reg | ALU | D2 | Reg

lw $3, 300($0) h 800 ps g Insft:;ccrt]ion

—
800 ps

Program

execution — 200 400 600 800 1000 1200 1400

order Time T T T T T T T -

(in instructions)

Instructi Dat
Iw $1' 100($O) nsf;ltj(fhlon Reg| ALU accaezs Reg
B e o
w $2, 200($0) 200 ps " | [Res| A | %2 |Reg
- .
Iw $3, 300($0) 200 ps|"gen| (9] AV | access [P0
200 ps 200 ps 200 ps 200 ps 200 ps
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Now Add Pipelining-> the RISC machine

e previous hardware is suitable for pipelining : all instructions require 5 c.c. to
complete, and all instructions pass through the same 5 stages, in the same order

* without pipelining, all instructions take 5 c.c., so average CPI =5
* without pipelining, CPU time for 1,000 instructions = 5,000 c.c.
* to pipeline, add “pipeline latches” between all stages

* in every clock cycle, a new instruction enters the pipeline in stage # 1, and the
contents of all stages move right one stage

* instructions enter and exit the pipeline one instruction per clock cycle
e every instruction stays within the pipeline for 5 clock cycles -> “latency = 5 cc.”
* CPU time to execute 1,000 instructions = 1000 cc. plus 4 cc to flush the pipeline

* the effective CPI =1004 cc/1000 inst = 1.004 cc per instruction, about 5 times faster
than the same hardware circuit without the pipeline latches

* => Pipelining a 5 stage CPU results in about 5x performance improvement over
unpipelined CPU
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Pipelined CPU with Pipeline Registers (cass text - Fig. .22, pg. ¢-35)

Branch-Target Address (BTA)

Instruction
memory

Load_BTA signal

ID/EX EX/MEM MEM/WB
Branch
j taken
Zero?
Be..10 L
Ryq.15 'r
™ x
— MEM/WB.IR |Registers
M
™ u Data
1 l—’ X memory [ |

]

« Add pipeline registers between stages. The clock rate can be increased significantly
due to pipelining, since the combinational logic delays are significantly lowered .
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Basic RISC Pipeline - “Space-Time” Diagrams

(class text — Fig C.1, pg C-7)

Instruction number

1

Clock number

2 3 4

5 6 7 8 9
Instruction ¢ IF ID EX MEM WB
Instruction i + 1 IF D EX MEM  WB
Instruction i +2 IF D EX MEM WB ]
' Instruction i + 3 IF ID EX MEM WB o
' Instruction i + 4 IF D EX MEM WB |

FIGURE 3.2 Simple DLX pipeline. On each clock cycle, another instruction is fetched and begins its five-cycle execution.
If an instruction is started every clock cycle, the performance will be up to five times that of a machine that is not pipelined.
The names for the stages in the pipeline are the same as those used for the cycles in the implementation on pages 127-
129: IF = instruction fetch, ID = instruction decode, EX = execution, MEM = memory access, and WB = write back.

* with pipelining, CPU works on 5 instructions at a time; each instruction is in a
different pipeline stage, so they don’t collide.

* look at clock cycle 5, where 5 different instructions are in the CPU at the same time

* but, pipelining has some stringent requirements;
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* with pipelining, IF unit must fetch & deliver instructions 5x as fast
* with pipelining, MEM unit must fetch & deliver data 5x as fast

* register file used twice in every clock cycle; used once in stage 2 (ID stage) when
A B operands being read; used one in stage 5 (WB stage), when C operand is written
back to register file -> pipelining requires “dual ported” register file

Pipeline Hazards (class tex)

* “hazards” prevent an instruction from executing in its designated clock cycle &
reduce performance, when compared to an “ideal” pipeline without hazards

* 3 types of hazards:
- structural hazards - conflict for scarce hardware resources

- data hazards - results of new instruction depend upon results of previous
instructions, which haven’t been computed yet

- control hazards - occur from pipelining branches ; by the time we figure out
whether to branch, we have already started executing down the wrong path of
the branch
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Datapaths shifted in time (ciass text - Fig. C 2, pg. C-8)

Time (in clock cycles)

cc1 i cc2 cca i cc4 ccs cco cc7 ccs : cco

- B
i RD f
M H F{eE] = 3 Reo
? <

N

i i N ——

H B = H

‘ Reg| /3’ DM Reg'

: [ // i
™\

Program execution order (in instructions)

IM ch/ \[iJr

Figure C.2 The pipeline can be thought of as a series of data paths shifted in time. This shows the overlap among the parts of

* pipelining can be viewed as using all 5 of the hardware units, in each clock cycle
* the datapath (with 5 pipeline stages) can be viewed as shifted in time, where each
stage is re-used in each time-slot
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Structural Hazard due to 1 Port Memory (Fig. C 4, pg C-14)

Time (in clock cycles)

cci ¢ cc2 | cc3 cca  ccs | cce | cC7 . ccs

Load Mem

Instruction 1 i | Mem

Instruction 2 : : Mem

Instruction 3 Mem

Instruction 4

Figure C.4 A processor with only one memory port will generate a conflict whenever a memory reference accurs. In this
example the load instruction uses the memory for a data access at the same time instruction 3 wants to fetch an instruction from
2013, memory.

Structural Hazard (1 Port Memory) causes Stall
(class text - Fig. C.5,pg C-15)

Clock cycle number
Instruction 1 2 3 4 5 6 7 8 9 10
Load instruction IF D EX MEM  WB
Instruction i + 1 IF ID EX MEM WB
Instruction i + 2 - IF ID EX MEM WB
Instructiqr}_i +3 stall IF D EX MEM WB
Instruction { + 4 IF ID EX MEM WB
Instruction i + 5 IF ID EX MEM
Instruction i + 6 IF ID EX

FIGURE 3.8 A pipeline stalled for a structural hazard—a load with one memory port. As shown here, the load instruc-
tion effectively steals an instruction-fetch cycle, causing the pipeline to stall—no instruction is initiated on clock cycle 4
(which normally would initiate instruction /+ 3). Because the instruction being fetched is stalled, all other instructions in the
pipeline before the stalled instruction can proceed normally. The stall cycle will continue to pass through the pipeline, so that
no instruction completes on clock cycle 8. Sometimes these pipeline diagrams are drawn with the stall occupying an entire
horizontal row and instruction 3 being moved to the next row; in either case, the effect is the same, since instruction 3 does
not begin execution until cycle 5. We use the form above, since it takes less space.

* a single memory port handles both instructions and data, creating a hazard when
data is fetched for a previous Load instruction (in MEM stage), and a new
instruction is fetched in IF stage
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Pipeline Performance with Stalls (class text - pg c-12)

y CPI unpipelined
speedup . .. . =
D D pipelining CPI pipelined

* CPI unpipelined =5 cc
* CPI pipelined = (1 + pipeline stalls per inst)

5
speedup ;.o linine=
PECAliP pipelining (1+ pipeline stall cycles per instruction)

» what separates an “ideal” pipeline from a real pipeline are the stall cycles per
instruction, that the real machine encounters due to hazards. More generally;

pipeline depth clock cycle yypipelined

KY eedu . P *
PECAUP pipelining (1+ pipeline stall cycles per instruction)  clock cycle ,ipeined

Pipeline stalls per inst. = sum(% instr. type j)* (stalls instr. type j)
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Speedup, Dual port vs Single Port (s ext—pe. c-14

* machine A: dual-ported memory (separate memory ports for instructions & data)
* machine B: single-ported (shared) memory, with slightly faster clock (1.05x as fast)
* ideal CPI (without any hazards) = 1 cc/inst, for both machines

¢ data references form 40 % of instruction mix

* Solution using Average CPlIs:

Average Instruction Time = CPI* Clock Cycle time

Average Instruction Time , = 1.0 * Clock Cycle time

Average Instruction Time = CPI *Clock Cycle time

Clock Cycle time g,
1.05

=1.3*Clock cycle time ;4.4

=(1+04*1)*

» machine without memory hazard is 1.3 times faster. So, by adding another memory
port, RISC machines gain about 30 % advantage over single -ported machines
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Structural Hazards

* structural hazards exist because the cost of avoiding them is high (duplication of
hardware)

* Example: many new machines do not fully pipeline the Floating-Point-Unit (FPU) ->
this is a structural hazard

* suppose RISC machine has a 5 cc latency for FP MULT with no pipelining (ie it
takes 5 cc to compute a FP MULT result)

¢ if calls to FP MULT are separated by > 5 cc on average, then there is no degradation
in performance at all due to the potential structural hazard of an unpipelined FP MULT

* most programs usually don’t generate enough FP MULT: to fully exploit a pipeline,
so inexpensive CPUs may use an unpipelined or partially pipelined MULT unit
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Data Halal'dS (class text — pg. C-16)

* data hazards occur when results of new instruction depend upon results of a previous
instruction which hasn’t finished executing yet

* Consider this instruction sequence:

ADD R1,R2,R3 -- destination R1 not written back until WB stage
SUB R4,R5,R1 -- incorrect operand R1 fetched in ID stage

AND R6,R1,R7 -

OR R8,R1,R9 -

XOR R10,R1,R11 -- destination R1 written back now !!!
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Data Hazal’dS ill ALU Stage (class text - Fig. C.6, pg C-17)

Time (in Clock Cycles) >
cc1 ccz cc3 ccd cCs cce

-
DADD R1, R2, R3 E\.! m :D_
-
ul

DSUB R4, R1, RS E" | Reg
AND R6, R1, R7

l

OR R8, R1, R9

1
XOR R10, R1, R11

* result of ADD not written back until WB stage in cc 5 -> data hazard for next 3 instructions
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Data Forwal'ding (class text, Fig. C.7, pg C-18)

Time (in clock cycles)

cc1 cc2 Cccs3 CcC4 cCs CC6

DADD R1, R2, R3 M

'
s
3
2
» T
2
£ .
é: DSUB R4, R1, RS M ] ‘REQ
£
s
o =]
a
OR R8, R1, R9 ]_[i/ a

XOR R10, R1, R11

M Reg

problem overcome by “data forwarding” - add datapaths and multiplexers to hardware, to allow

the correct data (R1) to follow the arrows in the above figure
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Data Forwarding Circuitry

Clock number

1 2 3 4 5 6
ADD  R1,R2,R3 IF D EX. MEM  WB
SUB  R4,R5,Rl1 IF D " EX N\ [MEM WB
AND  R6,R1,R7 IF D YIEX  MEM
OR  R8,R1,R9 IF__ ¥ BX
XOR  RI0,RI,RI1 - IF D

¢ all these arithmetic instructions use R1
e ADD doesn’t write back R1 until cc 5

 without data forwarding, SUB, AND, OR read incorrect values of R1 in their ID
stages (in cc. 2,3.4)

e arrows indicate forwarded data on the above timing diagram, to correct the problem
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Another ALU Forwarding Example s ex Fig. s, p2.c-19)

Time (in clock cycles)

CC1

DADD R1, R2, R3 IM

LD R4, O(R1)

Program execution order (in instructions)

SD R4,12(R1)

Figure C.8 Forwarding of operand required by stores during MEM. The result of the load is forwarded from the memory
output to the memory nput to be stored. In addition, the ALU output 1s forwarded to the ALU input for the address calculation of
both the load and the store (this is no different than forwarding to another ALU operation). If the store depended on an immediately
preceding ALU operation (not shown above), the result would need to be forwarded to prevent a stall.




ID/EX

EX/MEM

AARR]

'l 'y

x e =

x c

ALU

‘i Zero? |

Data FOI’W&I’ding Hardware (class text — Fig. C-27, pg. C-41)

MENM/WE

Data
Memory >
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* data forwarding to ALU requires multiple 4-to-1 muxes, 32 bits wide, on ALU inputs, to
select forwarded data, along with controller to enable the forwarding

© Ted Szymanski
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Data Forwarding Controller

(introductory text — fig. 6.16, pg 403)

yd \ - WB
Instruction| |
"‘ Control | M
| | >~
\  /[ex
NS
IF/ID ID/EX

EX/MEM

MEM/WB

ID stage computes a Vector of control
Signals for each stage

* Data hazards can be detected in the ID stage, which can generate the appropriate control
signals in the next few clock cycles, to resolve the data hazards

¢ the ID unit needs to examine the new instruction it receives, and the last 2 instructions

(which are entering the EX and MEM stages) ; The ID unit can keep local copies of the last
2 instructions, in two 32-bit-wide shift registers in the ID stage
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Comparison Hardware to Detect Data hazards in
ID Stage

ALU instruction

format

opcode

b reg

areg

Some Data Hazard Detection Logic

finite state
machine

ID stage

EX stage

MEM stage

WB stage

-4—p denotes a comparison, between instruction in different stages
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Data Forwarding, for Load & Stores

* with forwarding circuitry, current results of EX or MEM stages can be used by a
subsequent instruction entering EX stage, by enabling the multiplexers from EX/MEM
stages back into the EX stage

* the EX stage always checks to see if either of the 2 previous instructions have just
computed an operand that it needs; if so, it fetches the operand using the forwarding

circuitry

* requires Combinational Logic to examine current instr. + last 2 instructions

* Here is an example

ADD R1,R2,R3

Clock number

3 4 5

LW R4, 8(R1)

SW  12(R1),R4

No Stalls here
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1 2 6
IF D EX MEM  WB
IF ID a EX MEM  WB
IF ID YEX MEM
IF ID EX
IF D
© Ted Szymanski




Load Data Hazards Forcing Extra Stalls (ass ext i c.10,pe. 21y

1 2 3 4 5 6 7
LW R1,0(R2) IF ID EX MEM WB
SUB R4,R1,R6 IF ID stall EX MEM WB
AND R6,R1,R7 IF stall ID EX MEM
OR R8,R1,R9 stall IF ID EX

* a timing diagram for this situation is shown on following slide

* Assuming a cache hit, the Load instruction receives R1 from memory at end of the MEM
stage in cc 4 (only if we have a cache hit; otherwise many more stalls will be inserted)

* the SUB instruction cannot enter the EX stage 3 until after the MEM stage forwards R1, ie
after cc 4, so a stall is inserted, delaying the SUB instruction entry into the EX stage by 1 cc

* due to the pipelined structure, all subsequent instructions are stalled at same cc 4

* ID unit detects hazard when SUB instruction is in the ID unit (it retains copies of 2 previous
instructions, for hazard checking); it asserts a global ‘Stall’ signal, which stops the IF unit
from fetching and incrementing the PC, but which allows other stages to continue
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Load Data Hazards Forcing Extra Stalls (class text - Fig. C.9, pg. C-20)

grniClack Cwdag »
ol ccz cC3 cC4 s

LW R1,0(R2) ™M nea || iD* o [ 3

SUB R4,R1,R6

i

AND R6, R1,R7

}

=
|
E

[ |

OR R8, R1,RY

|
h
[ 1

e figure C.9: LW can forward data to AND and OR instructions but not to SUB, which would
forward the result in “negative time” on the timing diagram -> this necessitates the 1 cc “stall”
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Load Data Hazards FOI’CiIlg Extra Stalls (class text — Fig. C.10, pg. C-21)

LD  R1,0(R2) IF ID EX MEM WB

DSUB R4,R1,R5 IF 1D EX MEM WB

AND R6,R1,R7 IF 1D EX MEM WB

OR  R8,R1,R9 IF ID EX MEM WB

LD R1,0(R2) IF 1D EX MEM WB

DSUB R4,R1,R5 IF 1D stall EX MEM WB

AND R6,RI1,R7 IF stall ID EX MEM WB

OR  R8,R1,R9 stall IF ID EX MEM WB

Figure A.10 In the top half, we can see why a stall is needed: The MEM cycle of the joad produces a value that is
needed in the EX cycle of the DSUB, which occurs at the same time. This problem is solved by inserting a stall, as
shown in the bottom half.

This slide illustrates the same information as the previous slides
It shows both cases (untaken branch - top, and the taken branch-bottom)
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CPI, Load Data Hazards Stalls (class text 2n¢ edition, - pg 155)

* Suppose 30 % of instructions are LOADS, and 50 % of the time the instruction
immediately after the LOAD depends upon the result of the LOAD, creating a hazard
& stall.

* How much faster is ideal pipeline (CPI = 1) versus real pipeline with load stalls ?

* Answer: Average CPI for instruction immediately after LOAD is 1.5, since CPU
needs 1 clock cycle just to fetch the instruction, and half the time it encounters a
hazard in its execution (it needs the data from the LOAD) & stalls

e effective CPI of all instructions = (0.7 * 1 cc + 0.3 ¥ 1.5¢cc)=1.15

o effective CPI of ideal machine = 1.0

* 50, ideal machine is about 15 % faster.
* Compilers can re-arrange instruction execution sequence to minimize stalls

® Here are 2 formulas for CPI, which effectively compute a weighted average:
CPI = 2(1 + (fraction inst. type i) *(stalls per inst. type 1))

i

CPI = Z(fraction inst. type i) * (CPI inst. type 1)

i
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Compiler Scheduling to Reduce Load Stalls

(class text - pg. 155, 2nd edition)

¢ consider 2 lines of C code:
a=b+c; /*a,b,c,d are variables in memory */
d=e-f;

* Assume Loads have a latency of 1 cc (that means they cause 1 stall if the
immediately following instruction relies upon the loaded value)

* Unscheduled code: Compiler scheduled code:
Lw Rb, b LW Rb, b
Lw Re,c LW Rc, c
stall 1 cc LW Re, e
ADD Ra, Rb, Re ADD Ra, Rb, Re
SW a,Ra LW Rf,
LW Re, e SW a, Ra
LW Rf, f SUB Rd, Re, Rf
stall 1 cc SW d.Rd
SUB Rd, Re, Rf
SW d,Rd
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Compiler Scheduling to Reduce Load Stalls

(class text - Fig 3.16, pg. 157, 2nd edition)

\I scheduled @ unscheduled \

gcc

spice

tex 0.65

o 0.2 0.4 0.6 0.8

% loads stalling pipeline

* without compiler scheduling, up to 65 % of all Loads can cause stalls
 with compiler scheduling, Load stalls reduced by at least 50 %

* scheduling will reduce average CPI got load instructions moderately
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Branch Hazards (class text, pg. C-21)

* Basic problem: we don’t know whether to take the branch for several cc. By this
time, CPU has fetched several incorrect instructions and started execution.

* Consider: BRANCH if A<0 to branch-target-address

* EX stage computes A<(), MEM stage forwards branch outcome to IF stage, and
the ‘Load_BTA’ signal arrives at the IF unit during clock cycle 4 (see below ) ->
the 3 instructions following the branch will be fetched by the IF_Unit !

* Leads to a 3 cc “branch delay” for the basic pipeline

1 2 3 4 5 6 7 8
Branch IF ID EX MEM* WB
Branch+1 IF ID EX MEM WB ...
Branch+2 IF ID EX MEM WB
Branch+3 IF ID EX MEM WB
Branch+4 IF ID EX MEM

(In this example, the ‘LOAD_BTA’ signal asserted when Branch instruction
reaches the MEM stage in cc 4, and changes the PC before start of cc 5)
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Original MIPS Datapath, with 3 cc Branch Delay

(class text — Fig C.22, pg. C-35)

Branch-Target Address (BTA)

Load_BTA signal
IF/ID ID/EX EX/MEM MEM/WB

1Re..10

IRyq.15

Instruction o
memory [ [—% MEM/WB.IR |Registers

Data

— memory

,sgg]n L]

* Recall ; the main problem is that we don’t forward the ‘LOAD_BTA’ signal to the
IF-unit until the MEM stage; this creates the 3 clock cycle delay
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Performance Impact of 3 cc Branch Delay

* Branch delays incur big “slow down” affects on real machines.
* Consider an ideal machine with no branch delays; CPI = 1.0

* Consider a typical machine like the Pentium (x86 family) or PowerPC; up to 30 %
of all instructions can be branches

* if each branch instruction causes 3 stall cycles, the new overall CPI'is 1.9 !
CPI=(0.7 * 1cc + 0.3 * 4cc) = 1.9 cc per instruction

* Ideal machine is about 90 % faster than real machine with branch stalls

* A good solution to branches can yield a speedup of up to 90 %, nearly a factor of 2.

¢ Solution: add hardware to resolve branches earlier in pipeline; as soon as
possible, which is in the ID stage. See next slides.

* Even with this solution, we are still left with a 1 cc branch delay. For a typical
machine with 30% branches, the new CPI is now:

CPI= (0.7 * 1cc + 0.3 * 2cc) = 1.3 cc per instruction

¢ a real machine is about 30 % slower than the ideal machine, due to 1 cc branch
penalty. 30 % is a lot in the highly competitive CPU market ! We must try to solve.
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New CPU Datapath, with 1 cc Branch Delay (Fig. C.28, pg. C-42)

Load_BTA signal

Branch-Target
Address (BTA)

IFID EX/MEM MEMW/WB

Zero?

Instruction| |R
memory [ T MEM/WE.IR Registers

M
u Data M
r X memory [ u
X

15_6;,‘_ 32

Figure C.28 The stall from branch hazards can be reduced by moving the zero test and branch-target calculation into the ID
phase of the pipeline. Notice that we have made two important changes. each of which removes 1 cycle from the 3-cycle stall for

* Branch test now moved up into the ID stage; We can determine branch and update
the PC before the ID stage finishes. Net result -> 1 cc branch delay penalty.
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Reducing the 1 cc Branch Delay

* There are 4 basic ways to reduce the 1 cc branch penalty; done at compile time:
- Accept the penalty - put 1 No-Op in the branch delay slot & accept 1cc penalty

- Delayed Branch - Define instruction following the branch to be always
executed; let compiler try to fill the “ 1cc branch delay slot” with a useful
instruction, otherwise fill it with a No-Op; approach used in MIPS machine

- Branch Prediction with Instruction Cancelling - (also called Cancelling
Branches in text) Every Branch Instruction includes static prediction in the Op-
Code (taken / not taken). Hardware always executes instruction in branch delay
slot; hardware “kills” instruction if branch is predicted incorrectly. For incorrectly
predicted branches, 1 cc. is wasted - the instruction in the branch delay slot. Net
affect: CPI for branch = 1 cc if predicted correctly, 2 cc if predicted incorrectly. If
we can predict correctly often enough, we can improve performance here.

- this technique essentially puts a conditionally executed instruction into the branch
delay slot, so its easier for the compiler to find an instruction to put in the slot; it
doesn’t have to be guaranteed to ‘safe’, since it will be cancelled if branch
prediction is wrong (Cancelling an instruction is relatively easy - simply disable its
write-back)
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Pl'edict NOt-TakeIl (class text, Fig. C.12, pg C-22)

Untaken branch instruction IF D EX MEM WB

Instruction i + 1 IF D EX MEM WB

Instruction i + 2 IF 1D EX MEM WB

Instruction i + 3 IF ID EX MEM WB
Instruction i + 4 IF D EX MEM WB
Taken branch instruction IF ID EX MEM WB

Instruction { + 1 IF idle idle idle idle

Branch target IF 1D EX MEM WB

Branch target + | IF 1D LX MEM WB
Branch target + 2 IF D EX MEM WB

Figure A.12 The predicted-not-taken scheme and the pipeline sequence when the branch is untaken (top) and
taken (bottom). When the branch is untaken, determined during ID, we have fetched the fall-through and just con-
tinue. If the branch is taken during ID, we restart the fetch at the branch target. This causes all instructions following
the branch to stall 1 clock cycle.

Untaken branch : CPI = 1 cc per branch instruction
Taken branch: ~ CPI = 2cc per branch instruction
Average CPI: about 1.5 CPI, depending upon frequency of taken/untaken branches
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Delayed Branch: Filling the 1 cc Branch Delay

* 3 ways a compiler can try to fill the 1 cc branch delay in Delayed Branch scheme:

- take an instruction from before the branch and move into branch delay slot

- take instruction from branch target address and move in branch delay slot

- take instruction from ‘“fall-through” path and insert into slot

¢ in all 3 cases, the instruction must be “safe” to move into the slot, i.e., the instruction
moved in the branch delay slot cannot change any final results even if the branch is
predicted incorrectly (since we are not cancelling instructions on incorrect predictions)

* lets suppose we can fill the 1 cc branch delay slot 60 % of the time. For the typical
machine considered earlier with 30% branches, the new CPI is now:

CPI = (0.7 * 1cc + 0.3 *(1cc*0.6 + 2cc*0.4)) = 1.12 cc per instruction
* The effective CPI of the branch is 1cc 60% of the time, and 2cc 40% of the time

* a real machine is about 12 % slower than the ideal machine with CPI = 1. This is
better than the 30 % slowdown when we did not fill the branch delay.

* (Using Branch Prediction with Instruction Cancelling scheme, it is easier to put an
instruction into the delay slot, since it doesn’t have to be ‘safe’, since it will be
cancelled in the branch is predicted incorrectly. For delayed branch, instr. must be safe)
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Delayed Branch: Filling the 1 cc Branch Delay . c14,pe c24)

DADD R1, R2, R3 DADD R1, R2, R3

. DSUB R4, R5, R6 =
if R2 = 0 then if R1 = 0 then

Delay slot DADD R1, R2, R3 Delay slot

OR R7, R8, R9

if R1 = 0 then

Delay siot DSUB R4, RS, RE

becomes becomes becomes
DSUB R4, RS, RE DADD R1, RZ, R3
-
if R2 = 0 then if R1 = 0 then
DADD RI, R2, R3 DADD RI, R2, R3 OR R7, RE, R9
if RL = 0 then i
- DSUB R4, RS, R6 OSUB R4, RS, RE =

(a) From before (b} From target (c) From fall-through

* (a) is safe and is preferred. In (b), assume R4 is un-used before the branch. We save 1cc if
we take the branch. In (c) assume R7 is unused before the branch. (Note: DADD R1... cannot
be moved after branch due to control dependency on R1.)
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Delayed Branch: Filling the 1 cc Branch Delay

(class text - Fig. 3.29, pp. 179, 2nd ed)

Scheduling strategy Requirements Improves performance when?
(a) From before branch ~ Branch must not depend on the rescheduled instruc- Always.
' Lons.
(b) From target Must be OK to execute rescheduled instructions if When branch is taken, May
hlram:h is not laken. May need to duplicate instruc- enlarge program if instructions are
tions. duplicated.

{¢) From fall through Must be OK to execute instructions if branch is taken.  When branch is not taken.

FIGURE3.28 Delayed-branch scheduling schemes and their requirements. The otigin of the instruction being sched-
uled into the delay slot determines the scheduling strategy. The compiler must enforee the requirements when looking for
insiructions to schedule the delay slot. Whan the slots cannot be scheduled, they are filled with no-op instructions. In strat-
egy (b), it the branch target is also accessible from another peint in the program—as it would be if it were the head of a
loop—the target instructions must be copied and not just moved.
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Branch Prediction Rates
(class text — Fig. C.17, pg C-27)

25%
22%

20% - 18%

o 15%

o, o,
12% 110, 12% .
10% - 9% o’

Misprediction rate

5% 6%
5% -

Integer Floating-point

Benchmark

Figure C.17 Misprediction rate on SPEC92 for a profile-based predictor varies widely but is generally better for the floating-

point programs, which have an average misprediction rate of 9% with a standard deviation of 4%, than for the integer

programs, which have an average misprediction rate of 15% with a standard deviation of 5%. The actual performance depends
2013, Ap} on both the prediction accuracy and the branch frequency, which vary from 3% to 24%.




Performance of Branch Schemes
(class text - pp. A24, 3" edition)

pipeline depth y clock cycle ynpipelined

speedup i 1inino=
PECAliP pipelining (1+ pipeline stall cycles per instruction)  clock cycle ,ipeined

» assume clocks are constant. Pipeline stall cycles per instruction, from branches =
Branch frequency * branch penalty

J pipeline depth
speedup ;o jinine=
PECAtP pipelining (1+ Branch frequency * Branch penalty)

e for more detailed model, one could consider both conditional and unconditional
branches, since the frequency and penalties are slightly different. For even more
detail, one could consider prediction;

pipeline stall cycles from branches = ZBranch frequency (.. * Branch penalty (.

conditional &
unconditional branches

ZBranCh frequency (y,. * Branch penalty ;.

conditional &
unconditional branches&
predicted branches

pipeline stall cycles from branches
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Options for Compiler Prediction
(class text - pp. 176, 2nd ed)

» compiler always predicts “taken” - right about 60 % of time, from SPEC benchmark

* predict backward branches as taken, forward branches as not taken - might be better
or worse than first way

* predict on basis of execution profile gathered from earlier runs of same program;
right about 85 % of the time (based on benchmarks)

* Overall for MIPS, branches stall about 5 % of the time, Loads stall about 8 % of the
time, after all compiler optimizations
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Final CPU Datapath & Control Figure

* The introductory textbook introduces a “Flush” signal which goes to several
pipeline stages, to discard the instruction in those stages

* This Flush signal creates the stalls in our space-time diagrams

* An asserted “Flush” signal causes the CPU to discard instructions in the affected
pipeline stages, due to an unexpected event, such as an incorrectly predicted branch (if
we are using branch prediction), or a data hazard which cannot be resolved through
forwarding and which needs more time to clear
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Final CPU Datapath & Control Figure

(introductory text - Fig 6.41, pg 427)
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Exceptions
(class text — Appendix C, pg. C-43)

* “Exceptions” = “Interrupts”, caused by several events:
- I/O device request
- invoking operating system from user program
- breakpoint (programmer requested interrupt)
- integer arithmetic under / overflow
- FP arithmetic anomaly (and there are many of these)
- Page Fault (read to Virtual Memory page, which is not in main memory)
- memory-protection violation
- execution of undefined instruction (CPU generates interrupt)

* exceptions are usually handled in a way that is completely “transparent” to the
program being interrupted.

* If a CPU can handle an exception transparently, ie, save the state of the interrupted
process, perform the exception routine, and then restore the state of the process and
restart the process, we say the CPU is “restartable”
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Exceptions (class text — pg. C-43)

* an “EXCEPTION” instruction causes the CPU to enter the Exception handling
routine. On an Exception, the CPU could do this:

- save PC of faulting instruction at the end of the clock cycle
- force an EXCCEPTION inst. into the pipeline at next cc

- Until EXCEPTION inst. is taken, disable all writes for the faulting inst. and the
insts.

- enter exception handling routine, which resolves exception and restarts
execution at faulting instruction

‘

* “precise exceptions” - when a pipeline can be stopped such that instructions before
the faulting inst. are completed, and those after the faulting inst. did not change state
and can be re-started from scratch

* Problem: consider FP-DIV inst. with a latency of 20 cc, which raises an exception
at cc. 19; at this point, 19 other inst. have already been fetched into pipeline, and up
to 14 of these have completed execution and written results, perhaps even
overwriting the operands of the faulting FP instruction; can be very difficult to
recover state before the faulting instruction

* many recent machines have 2 modes of operation, “precise” & “imprecise”. In
Alpha, PowerPC chip, & MIPS chips, precise mode can be 10x slower than imprecise
modes
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Exceptions in MIPS (class text, pg. C-43)

* to be precise, exceptions must be handled in order of occurence, assuming all
instructions were executed one at a time (as in an unpipelined machine)

e consider:

1 2 3 4 5 6
LD IF ID EX MEM** WB
ADD IF * ID EC MEM WB

* * denotes page-fault at cc 2 which occurs first; ** denotes page-fault at cc 4;

* exceptions occur out-of-order: to be precise, pipeline must process LD exception
Ist -> pipeline cannot simply handle exceptions as they occur in time

* Solution: every instruction in the pipeline has a status vector, which moves down
the pipeline with the instruction. A set bit in the vector denotes an exception. Once an
exception is indicated, all writes for that instruction are disabled.

* When an instruction enters the WB stage, its status vector is checked, and any set
bits cause the exception to be handled; net result: exceptions are handled in order.

* in above example, LD exception will be handled first, in cc 5; the ADD exception
will be handled later, after the 1st exception clears
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MIPS Exceptions

(class text - Fig C.32, pg. C-48)

Pipeline stage Problem exceptions occurring

IF Page fault on instruction fetch; misaligned memory access; memory
protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on data fetch; misaligned memory access; memory protection
violation

WB None

Figure A.28 Exceptions that may occur in the MIPS pipeline. Exceptions raised from
instruction or data memory access account for six out of eight cases.

* up to 4 simultaneous exceptions can occur in MIPS, for 4 separate instructions in
the pipeline
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Multi-Cycle FP Operations

(class text — pg. C-51)

* The MIPS integer ALU is also called the “integer” unit
* a real MIPS machine has 4 separate EX units
- Integer (the regular integer ALU that we have already been considering)
- FP & Integer MULT
- FP Add/substract
- FP & Integer DIV

* typically the lower 3 units are not fully pipelined due to excessive hardware cost ->
potential for structural hazards & data hazards

* results of computation must be recirculated within these units, reusing critical
hardware, until they are finished -> “multi-cycle” operation

* net result is that we cannot issue a new instruction every clock cycle into these
units; we must wait for earlier instructions to finish execution within these units

* time an instruction spends in a unit (after its issue clock cycle) = “latency”; time
between successive instruction issues to the same unit = “initiation rate”

* the multi-cycle operations introduce many potential data hazards, since instructions
finish “out-of-order”
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Multi-Cycle Floating-Point Operations (rig.c33.pg. c-52)

FP/integer
multiply

EX

FP adder

EX

FP/integer
divider

Figure C.33 The MIPS pipeline with three additional unpipelined, floating-point, functional units. Because only one
instruction issues on every clock cycle, all instructions go through the standard pipeline for integer operations. The FP operations
simply loop when they reach the EX stage. After they have finished the EX stage, they proceed to MEM and WB to complete
execution. ski




Option (1) for Adding FP Pipelining i ¢35, pe. c-54)

Integer unit
EX

FP/integer multiply
M3 M4 M5

FP/integer divider

Figure C.35 A pipeline that supports multiple outstanding FP operations. The FP multiplier and adder are fully pipelined and
have a depth of seven and four stages, respectively. The FP divider is not pipelined, but requires 24 clock cycles to complete. The
latency in instructions between the issue of an FP operation and the use of the result of that operation without incurring a RAW stall
is determined by the number of cycles spent in the execution stages. For example, the fourth instruction after an FP add can use the
result of the FP add. For integer ALU operations, the depth of the execution pipeline is always one and the next instruction can use
the results.

Option (2) for Adding FP Pipelining i ¢35, pe. c-54)

Integer unit

MEM

FPf mleger multiply

oy MR

FP adder

e /—

\ FPfinteger divider
< ‘ oM

* In this pipeline, only the integer instructions and LOAD/STORE instructions pass through the
MEM stage

* The floating point instructions bypass the MEM stage, and go directly into the WRITE-BACK
stage.

* In options (1) and (2), the computer designer must decide on how many instructions can enter
the MEM stage or the WRITE-BACK stage, per clock cycle
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FP Latency & Initiation Rate (class text — Fig. C.34, pg. C-53)

Functional unit Latency Initiation interval
Integer ALU 0 1
Data memory (integer and FP loads) 1 1
FP add 3 1
FP multiply (also integer multiply) 6 1
FP divide (also integer divide) 24 25

Figure A.30 Latencies and initiation intervals for functional units.

* latency == additional # clock cycles (after given inst. enters unit) before result can be used;
latency = the number of extra pipeline stages (above 1) needed for a unit

* results of integer ALU can be used in next cc, so its latency = 0

* in above table, Integer ALU, FP ADD, FP MULT are fully pipelined, so initiation rate = 1
inst. per clock cycle; FP DIV is not pipelined, since initiation rate = 1 inst. every 25 clock
cycles

¢ above table allows 4 outstanding FP Adds, seven outstanding FP/INT Mults, one FP divide,
for MIPS system on last slide

* number of FP register writes per clock cycle may be > 1 now
2013, App. C: Pipelining, slide 53 © Ted Szymanski

FP Pipeline Timing (class text — Fig. C-37, pg. C-55)

Clock cycle number
Instruction 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17
LD F4,0(R) IF D EX MEMy WB
MUL.D FO,FA,F6 IF 1D stall M1 M2 M3 M4 M5 M6 M7 , MEM WB
ADD.D F2,F0,F8 [F  stall D stall stall  stall  stall  stall slullﬁl A2 A3 i {\4 VMb‘M L
S.D  Fz2,0(R2) IF  stall stall stall stall stall sl 1D EX  stull  stall tslallj MEM

g
Figure A.33 A typical FP code sequence showing the stalls arising from RAW hazards. The longer pipeline sub-
stantially raises the frequency of stalls versus the shallower integer pipeline. Each instruction in this sequence is
dependent on the previous and proceeds as soon as data are available, which assumes the pipeline has full bypass-
ing and forwarding. The SD must be stalled an extra cycle so that its MEM does not conflict with the ADD.D. Extra
hardware could easily handle this case.

e FP MULT unit has a 7 stage internal pipeline, with stages M1, ...., M7

* FP ADD unit has a 4 stage internal pipeline, with stages A1, ...., A4

* MUL.D stalls in cc 3 while operand F4 fetched in MEM stage

* ADD.D stalls in cc 6-11 while operand FO computed in MULT unit

* SD.D stalls in cc 14,15 while operand F2 computed; stalls in cc 16 due to MEM conflict

e This slide illustrates that only 1 instruction can access cache memory in the MEM stage per
clock cycle (memory access is expensive and takes time, and is a common structural hazard)
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Handling the MEM and WB Stages

e slides 51 and 52 illustrate 2 options for the pipelines, when we add floating-point instructions
» for each option, there are several other design decisions that a computer-designer must make

* How many instructions can enter the MEM stage, per clock cycle ?
* How many instructions can access the cache memory, per clock cycle ?
* How many instructions can enter the WRITE-BACK stage, per clock cycle ?

* How many write-backs to the registers are allowed, per clock cycle ?

* Allowing more functionally typically requires more hardware design time, more test time,
and more transistors, which all increase the chip costs

* Different chip manufacturers typically make different design decisions, so there is no single
answer

* These design decisions result in different machine performances, and often differentiate the
machines produced by companies like INTEL, AMD, MIPS and ARM

* We we allow multiple-issue (or super-scalar) designs, then on average multiple instructions
must enter the MEM and WB per clock cycle, and the same design decisions exist
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FP Hazards and Forwarding (class text — pg. C-55)

e complications:
- structural hazards exist since DIV unit is not pipelined

- since instructions have varying run times, there can be multiple writes to
registers per clock cycle (if two instructions finish at same time & must write)

- ‘WW hazards’ are now possible, since inst. no longer reach WB in order.

- instructions complete in different order than issued, causing problems with
exceptions

- because of longer latencies, stalls for ‘WR hazards’ will be more frequent and
will last longer

Note on Data-Hazards due to out-of-order execution:

* a WW hazard ( “Write-Write” ) happens when 2 writes finish in wrong order

* a WR hazard ( “Write-Read”) happens when the write should be followed by the
Read, but the 2 instructions finish in wrong order

* these hazards can be avoided by adding stalls, to force in-order execution
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FP - Multiple Register Writes May Occur Often

(class text — Fig. C.28, pg. C-56)

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11

MUL.D FO,F4,f6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
IF D EX MEM WB

_ IF ID EX MEM WB

ADD.D F2,F4,F6 IF ID Al A2 A3 A4 MEM WB

IF m EX MEM WB
ans IF 1D EX MEM WB
L.D F2,0(R2) IF |1 EX MEM WB

Figure A.34 Three instructions want to perform a write back to the FP register file simultaneously, as shown in
clock cycle 11.This is not the worst case, since an earlier divide in the FP unit could also finish on the same clock.
Note that although the MUL.D,ADD.D,and L.D all are in the MEM stage in clock cycle 10,only the L, D actualfy uses the
memory, so no structural hazard exists for MEM.

¢ In a single-issue machine, afor maxim,um-performancemultiple instructions may enter the

* it may not be worthwhile, dding hardware to allow for multiple writes, since this event may
be infrequent
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FP Hazard Detection Logic (class text — App. )

e assume INT & FP instructions have their own registers; so they operate relatively
independently (except for occassional data moves between them)

* to avoid hazards, the following 3 checks can be performed in the ID stage

* (1) check for structural hazard; make sure the FP unit is ready to accept a new
operation

* (2) check for “WR hazard’: (the write of the operand should happen first, followed
by the read of the operand); make sure the operand register is not listed as a pending
destination register for any instruction in the FP pipeline which hasn’t finished
writing yet; otherwise, stall until the hazard clears; many comparisons must be made
in parallel here

* (3) Check for ‘WW hazard’; determine if any instruction in the FP pipeline has the
same destination register as the instruction in the ID stage; if so, stall the instruction
in the ID stage until the hazard clears

* when an instruction moves from the ID stage to some unit, we say that the
instruction “issues”, otherwise it stalls

2013, App. C: Pipelining, slide 58 © Ted Szymanski




Notes

WW hazard example:

DIVD  FO,F2,F4
ADDD FO,F2,F4

The ADDD will attempt to write FO before DIVD and be forced to stall on WB until
The hazard clears

-a read/write hazard is never a problem in a single-issue static scheduled pipeline,
because given 2 instructions j and j+1, instruction j must have both its operands available
when it starts execution (otherwise it stalls), and once it starts execution, it not longer
needs its operands and the next instruction can overwrite those operands
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8 Stage MIPS R4000 Pipeline (class text — Pg. C-61)

—» IF1 | IFp —» ID — EX —| DF | DS | TC |—{ WB

<> < »
2 cycle 3 cycle
inst. memory access data memory access

* real caches tend to be slower than CPUs, so MIPS R4000 spreads cache accesses over
multiple clock cycles, leading to a deeper (8 stage) pipeline and higher clock rates

* instruction fetch uses 2 clock cycles IF1, IF2 - allows 2 cc for cache to respond; ID stage
now also checks for cache hit or miss; a miss will stall the pipeline

» data memory access uses 3 clock cycles DF, DS, TC - allows 2 cc for data cache to respond
(Data Access -First, Data Access - Second), along with 1 cc to check if returned result is valid
or not (Tag-Check)

* instruction and data caches must also be pipelined too; the instruction cache must accept a
new operation in the first stage IF1, while still working on the read in IF2

* the same pipelining applies for the data cache
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Basic/Intermediate Pipeline Summary

* the classic 5 stage pipeline is still used in low to mid-range embedded processors

» the MIPS R4000 8-stage pipeline is a 64 bit embedded processor, used for example
in the Nintendo-64 game systems and in laser printers

* there is an NEC version of this chip without the Floating Point hardware; FP is done
through software
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