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Three dimensional integration is an increasingly feasible method of implementing complex cir-
cuitry. For large circuits, which most benefit from 3-D designs, efficient placement algorithms with
low time complexity are required.

We present an iterative 3-D placement algorithm that places circuit elements in three dimen-
sions in linear time. Using an order of magnitude less time, our proposed algorithm produces
placements with better than 11% less wire lengths than partitioning placement using the best
and fastest partitioner. Due to the algorithms iterative nature, wire-length results can be further
improved by increasing the number of iterations.

Further, we provide empirical evidence that large circuits benefit most from 3-D technology and
that even a small number of layers can provide significant wire-length improvements.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids—placement and
routing; J.6 [Computer-Aided Engineering]—computer-aided design (CAD)

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Placement, 3-D VLSI, 3-D integrated circuits

1. INTRODUCTION

As integrated circuits become more complex, utilization of the third dimension
is becoming a more realistic solution. Recent work has resulted in 3-D field
programmable arrays (FPGAs) with a mesh-like distribution of programmable
circuit elements [Leeser et al. 1998]. However, cell placement for 3-D integration
is still in its infancy [Alexander et al. 1996; Leeser et al. 1998; Ohmura 1998;
Tong and Wu 1995; Tanprasert 2000].

If 3-D integration is to help the implementation of very large circuits, efficient
placement and routing tools are required. Therein lies the main differences
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between 2-D and 3-D placement algorithms. 3-D placement methods will have
to place much larger circuits than 2-D placers, thus they need to have near
linear run-time complexities.

In this paper, we will present a fast placement algorithm for three dimen-
sional cell placement. Our algorithm runs in linear time, and produces better
placements than 3-D partitioning placement using a leading partitioner. The
quality of the placement is measured by the resulting total wire length. For
future benchmarking, we generated 3-D placement results for two benchmark
circuit suites, ACM/SIGDA and ISPD98, using our Gravity algorithm and par-
titioning placement method. These benchmarks are the first comprehensive
wire-length benchmarks published for 3-D placements.

Previously mentioned three dimensional placement methods are recursive
minimum-cut partitioning into octants [Alexander et al. 1996; Leeser et al.
1998], an analytical approach by Tanprasert [2000], and a placement algorithm
due to Ohmura [1998]. Ohmura’s algorithm has a much higher run-time com-
plexity than our, namely O(|V | · |E|) where |V | is the number of circuit nodes,
and |E| is the number of nets. Thus, Ohmura’s algorithm is primarily useful
for small circuits. The largest circuit Ohmura’s algorithm was tested on had 64
nodes and 60 nets. Gravity, the algorithm we propose, was tested on circuits
up to 210,000 nodes and 200,000 nets. The recursive minimum-cut partitioning
algorithms by Alexander et al. and Leeser et al. rely on the strength of their
minimum cut partitioner. Since recursive partitioning methods have proven
strong in run time and placement quality in two dimensions [Shahookar and
Mazumder 1991] we will compare our algorithm against 3-D recursive parti-
tioning placement using the currently fastest and best minimum cut partitioner
by Karypis et al. [1997].

2. RELATED METHODS

Force-directed and quadratic placement algorithms are popular for the 2-D
placement problem. An in-depth overview of existing two-dimensional place-
ment methods can be found in Shahookar and Mazumder [1991]. In principle,
these 2-D algorithms can be extended to the 3-D domain with minor adjustment.
However, 3-D placers will have to place considerably larger circuits, thereby in-
creasing the importance of near linear run times.

Force-directed algorithms [Antreich et al. 1982; Chang and Hsiao 1993;
Eisenmann and Johannes 1998; Goto 1981; Koford 1998; Tia and Liu 1993;
Ueda et al. 1985] typically base their placements on a set of contractive and
repulsive forces that draw connected circuit elements closer together but re-
pulse overlapping nodes. An equilibrium of these forces is computed either
by solving sets of linear equations, or by iteration. The equilibrium positions
may be post-processed to remove cell overlaps to yield the final cell posi-
tions. Our proposed algorithm Gravity uses attractive forces to bring together
connected nodes iteratively. However, Gravity does not use repulsive forces
to remove cell overlap. Gravity relies on a novel bucket rescaling technique
that reasserts an even cell distribution periodically with low computational
overhead.
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Quadratic placement methods pioneered by Wipfler et al. [Kleinhans et al.
1991; Parakh et al. 1998; Tsay and Kuh 1991; Tsay et al. 1988; Vygen 1997;
Wipfler et al. 1982], use a force-directed algorithm to compute the initial po-
sitions of cells. These initial positions are used to seed the partitions of a
minimum-cut partitioner, which then recursively partitions the chip area and
the cells while minimizing the number of nets cut. The minimum-cut parti-
tioners eliminate cell overlap, albeit at considerable computational expense in
addition to the force-directed step. Gravity similarly ignores cell overlap during
its force-directed step. However, in Gravity the final placement is determined
by recursively partitioning the cells based upon their computed positions, with
low computational overhead.

3. THE MODEL

Our 3-D circuit placement model aims to reflect the most general scientific def-
inition of the wire-length placement model, while observing engineering con-
straints. The result is a 3-D lattice into which circuit elements are placed such
that the cumulative length of rectilinear Steiner trees connecting the nodes of
each net is approximately minimized.

We define a rectilinear Steiner tree:

Definition 1. Rectilinear Steiner Tree
A rectilinear Steiner tree S(V , f ) is the shortest tree that connects all nodes

v ∈ V at positions f (v) using only orthogonal horizontal and vertical segments.
Its length is |S(V , f )|.

3.1 2-D Model

The purest and widely accepted placement model for conventional 2-D VLSI
placement models the chip surface as a square grid with all circuit elements
being of unit square size and having their I/O connections in the center. Circuit
elements are then placed in checkerboard-fashion onto the grid [Shahookar and
Mazumder 1991].

A circuit to be placed is abstracted into a hypergraph G(V , E). The circuit
elements form the set V of nodes of the hypergraph, and the circuit nets form
the set of hyperedges E that are subsets of V .

The goodness of the placement is measured by its total wire length. The wire
length is measured for each net. This is the length of the shortest rectilinear
tree that connects all nodes in the net. Such a tree is called a rectilinear Steiner
tree [Hanan 1966]. Determining the lengths of a rectilinear Steiner tree is
difficult. A popular method for estimating the wire length is the semi-perimeter
bounding box approximation [Shahookar and Mazumder 1991]. This estimate
simply adds the horizontal and vertical distance spanned by the nodes in the
net. This estimate is exact for two- and three-node nets, which typically form
the majority of all nets.

Consequently, we define the placement problem formally:

Definition 2. 2-D Placement Problem
Given a hypergraph G(V , E), find a reversible function f : V → {1, . . . , n1}×

{1, . . . , n2}, such that
∑

e∈E |S(e, f )| is minimized.
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In the case where G(V , E) is a graph, that is, all nets have two nodes, and
when n2 = 1, this problem degenerates into the well-known problem Optimal
Linear Arrangement [Garey and Johnson 1979]. Optimal Linear Arrangement
is NP-complete, and hence the 2-D placement problem is also intractable. This
intractability means that finding an optimal solution to the placement problem
in an acceptable amount of time is generally not possible. Hereafter, we will
consider only algorithms that approximately solve the placement problem, that
is, reduce the total wire length as much as possible.

3.2 3-D Model

The three dimensional model is a natural extension of the 2-D model:

Definition 3. 3-D Placement Problem
Given a hypergraph G(V , E), find a reversible function f : V → {1, . . . , n1}×

{1, . . . , n2} ×{1, . . . , n3} such that
∑

e∈E |S(e, f )| is minimized.

This definition also describes the model used by Ohmura [1998].
The length of orthogonal Steiner trees representing the minimum net lengths

are now approximated by the sum of the height, width, and depth of a Steiner
tree.

The reader will have noticed that we treat the vertical dimension like the
horizontal dimensions to create a homogeneous three-dimensional mesh. Even
though connections in the vertical dimension often correspond to vias connect-
ing elements in different layers [Chiricescu and Vai 1998; Depreitere et al.
1994; Leeser et al. 1998; Leighton and Rosenberg 1986; Ohmura 1998; Reber
and Tielert 1986; Tong and Wu 1995], Leeser et al. [1998] have shown that vias
need not be more expensive in terms of connection delay than intra layer con-
nections. Thus, it is reasonable to focus on the underlying fundamental problem
of finding a mapping of nodes into a uniform three-dimensional grid.

We should also point out that problem Definition 3 allows for specification of
the number of layers n3. Consequently, this paper is not restricted to placements
into three-dimensional cubes but rather arbitrary 3-D grids. In Section 5.1, we
examine the effect of adding more layers to a three dimensional placement
mesh.

4. ALGORITHM

The Gravity placement algorithm has four simple stages. The first stage is a
random placement of nodes into the unit cube. This is followed by a force-based
iteration that moves neighboring nodes closer together. After a number of force-
based iterations, node positions are rescaled in stage three to reachieve an
approximate uniform node distribution. After a number of repetitions of stages
two and three, stage four determines the final placement through a recursive
partitioning phase based on the nodes’ computed coordinates.

In this section, we will explain each stage, and provide some performance
remarks. Figure 1 gives an overview of the Gravity algorithm.
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Input: Default
G(V , E) hypergraph
(m1, m2, m3) gridsize
I number of iterations
K number of final

placements 25
r rescaling interval 10

Step Action Section
1: Perform random initial placement. (4.1)
2: For i = 1 to I
3: Compute force based iteration. (4.2)
4: if imodbI/K c = 0
5: Compute a final placement. (4.4)
6: if imodr = 0
7: Perform bucket rescaling. (4.3)

Output best computed final placement.

Fig. 1. Gravity placement algorithm.

4.1 Random Initial Placement

Initially all circuit nodes are assigned a random initial position with a uniform
distribution over the unit cube. Nets, that is, hyperedges, connecting the nodes
are ignored. Circuit elements may overlap. In fact, we will tolerate node overlap
until the final placement step (see Section 4.4). This is one of the most distinctive
features of our algorithm and allows for very fast iterations.

4.2 Force-Based Iteration

In the force-based iteration, each node n’s new position x ′n = (x ′n1, x ′n2, x ′n3) is the
weighted average of its own position, and the positions of its neighbors.

x ′n =
xn +

∑
e∈En

we

[(∑
n′∈e

xn′

)
− xn

]
1+

∑
e∈En

we
(|e| − 1

) (1)

where
En = set of hyperedges incident to node n,

we = 2
|e|(|e| − 1)

= weight of edge e.

The formula for the edge weight we reflects the fact that each edge enters the
position calculations ( |e|2 ) times when it should only be counted once. It should
be observed, that the cardinalities and weights of all edges have to be computed
only once as they are constants. Further, the position sums

∑
n′∈e xn′ have to be

computed only once for each edge e at each iteration. Thus this iteration step’s
execution time is linear in the number of pins p =∑e |e|.
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Fig. 2. Step 2: Gravitate nodes. Projection onto 2-D.

Equation (1) utilizes the position sum of all nodes in a net, every time a node
coordinate is updated. By using the node positions from the last iteration, this
sum is constant and can be precomputed for all nets before every iteration,
resulting in a significant computational savings. An alternative would be to
use the latest node positions to compute the position sum in Equation (1). This
approach would require significant added computation every time a node coor-
dinate is updated, since the position of every node on every adjacent net must be
examined, and some nets can be very large. Further, the positions of nodes tend
to converge after many iterations, so the benefits of using the latest coordinates
over the last iteration’s coordinates diminish. Empirical tests confirm that us-
ing new values does not lead to a faster convergence and increases run-times.

In contrast to most previous methods, we allow nodes to move freely, even if
nodes overlap and occupy the same volume. We call this a force based method
because an attractive force between neighbors exerts a pull on each node, thus
reducing the total wire length needed to embed the circuit. The overall effect is
that all nodes are slowly pulled to the center of the chip volume. See Figure 2 for
an illustration. In the next step, we counter the pull toward the center through
uniform rescaling.

4.3 Bucket Rescaling

After a few iterations, it becomes necessary to counter the nodes’ tendency
to cluster near the center. Two problems arise if nodes are allowed to cluster
unchecked. For one, the resolution of the nodes’ positions is limited by the
precision of the variables they are stored in. A 24-bit variable, as used in the
current implementation, can store positions with a resolution of 2−24. If nodes
are separated by less than 2−24, their positions become indistinguishable. At
this point, force step computations according to Equation (1) become ineffective.
The second reason why rescaling of node positions becomes necessary is rooted
in the problem definition itself. The problem definition calls for a placement
of circuit nodes into a 3-D mesh. In a mesh, nodes are separated by an even
spacing. However, heavily clustered nodes are far from being equally spaced.
This changes the nature of the optimization process and results in poor quality
placements after the final placement step.

Gravity exploits a novel bucket rescaling technique to achieve a uniform
cell distribution. After every r iterations, the unit cube is sliced into a grid of
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Fig. 3. Step 3: Re-scaling of node distribution.

m1×m2×m3 buckets for rescaling. The nodes in each bucket are counted. Then,
the slice widths are resized proportional to their node counts (see Figure 3).
The same rescaling process is repeated for each column in each slice, and for
each bucket within each column. This entire rescaling step is repeated until all
bucket counts are with 20% of the mean N/(m1m2m3). The number of iterations
between rescalings r and the number of buckets M = m1 ×m2 ×m3 are corre-
lated parameters. The longer the algorithm runs before rescaling, the greater
the tendency of nodes to cluster near the center. To rebalance these nodes ef-
ficiently, the number of buckets M should be chosen to minimize the variance
of the number of nodes per bucket after rescaling. We chose to fix the parame-
ter r = 10, which we observed empirically to yield good results, and adjust M
according to the theoretical analysis of Equations (2) and (3) in the following
section.

4.3.1 Number of Buckets. The number of buckets used for rescaling affects
the homogeneity of the rescaled node distribution and also the variance in
individual bucket counts. On one hand, we wish to choose as many buckets as
possible in order to achieve high homogeneity of node positions since this would
closely resemble a final node placement. On the other hand, a larger number of
buckets leads to a higher variance in individual bucket counts. This can result
in an excessive number of repetitions of the rescaling step as bucket counts are
increasingly likely to fall outside 20% of the mean.

If we model the rescaled node distribution over the cube by a uniform node
distribution, we can arrive at a formula to estimate the optimal number of
buckets. For a uniform node distribution, the bucket counts are governed by a
binomial distribution. We use a normal distribution to approximate the bino-
mial distribution in order to determine the probability Pε that all M bucket
counts are within a factor of ε of the mean:

Pε =
[

erf

(
εN/M + 1/2√

2
√

N/M (1− 1/M )

)]M

. (2)
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Since we expect the node distribution to be symmetrical, we choose an odd num-
ber of buckets mi in each dimension i for a total number of M = m1×m2×m3
buckets. Starting with a 3× 3× 3 grid of buckets, we increase each mi in turn
by 2 as long as Pε ≥ 50%. This ensures that the expected number of rescaling
iterations is no more than 2. The actual node distribution after a rescaling step
outlined in section 4.3 is not a true uniform distribution. In fact, the resulting
distribution exhibits a smaller variance in bucket counts as this is the aim of
our rescaling technique. By empirical observation, we determined that ε should
be scaled by 1.85. Thus, the actual number of buckets used by Gravity, M ′ is

M ′ = max{M : P1.85ε ≥ 0.5
and M = m1m2m3

and m1, m2, m3 odd
and max{m1, m2, m3}
−min{m1, m2, m3} ≤ 2}. (3)

Observation has shown that choosing the initial number of buckets according
to (3) leads to very good placement results for all benchmark circuits ranging
from 833 nodes for p1 to 210,613 nodes for ibm18. Occasionally, degenerate
circuit features can still lead to excessive rescaling iterations. In the rare case
where more than 12 rescaling iterations occur, we reduce m1, m2, or m3 in
turn by 2 and jiggle the node positions randomly by a small amount between
±1/(2

√
N ).

After a preset number of iterations of stages two and three, Gravity per-
forms a final placement step in which all node positions are adjusted to remove
overlap.

4.4 Final Placement

After a number of iterations of the force based iteration (see Section 4.2), and
the rescaling bucket mapping step (see Section 4.3), some cells are expected
to overlap partially or completely. In a final placement such an overlap is not
tolerated. Hence, this step will assign a unique grid position to each cell.

We describe a final placement method based on a recursive grid-splitting
technique. This method allows nodes to be placed into arbitrary 3-D grids in
compliance with problem Definition 3.

Our grid-splitting method recursively splits an arbitrarily chosen n1×n2×n3
grid along the largest dimension. At the same time, the nodes are recur-
sively split according to their position along the same dimension. This split-
ting process is continued until each node u is assigned to a unique position
fV (u) ∈ {1, . . . , n1} × {1, . . . , n2} × {1, . . .n3}. For illustration purposes, Figure 4
shows a 2-D version of this recursive grid-splitting procedure for a 25-node
circuit and a 5× 5 grid.

The size of the grid dimensions n1, n2, and n3 can be arbitrarily set, but
normally they are chosen such that the grid closely resembles a cube with
approximately N nodes. The exact grid dimensions for an N node circuit are
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Fig. 4. Step 4: Recursive grid splitting (left) leads to final placement of nodes (right).

given by

n1 = d 3
√

N e (4)
n2 = d

√
N/n1e (5)

n3 =
⌈

N
n1n2

⌉
. (6)

Typically, we compute a final placement at regular intervals 25 times during
a run. This lets us sample the solution in an effort to eliminate noise and to
avoid potential local maxima.

4.5 Performance Remarks

The overall time complexity of Gravity is 2(p), provided that, for an N node
circuit and I force step iterations, N ¿ 2I , and the space requirement is the
size of the input, i.e., 2(p).

The run time of Gravity is reduced by simplifying the data structures, sim-
plifying the arithmetic, and improving cache hit rates. The data structures
accessed in the force step are stripped to the minimum information necessary.
Thus more nodes and edges can be kept in cache and fewer pointer derefer-
ences have to be performed. Secondly, we use integer operations to simulate
fixed point arithmetic. Finally, we arrange the node and edge data arrays ac-
cording to the order of a depth first search before we start the iterations. This
helps keeping more nodes and edges in L1 cache.

5. RESULTS

We will now examine the results of our 3-D placement algorithm. Of particular
interest are two aspects. On one hand, we would like to know how three dimen-
sional placement improves the wire length over two dimensional placement.
This aspect is examined in Section 5.1. On the other hand, we are interested to
see how 3-D Gravity compares to other near-linear time placement algorithms.
For this reason we compare, in Section 5.2, Gravity’s placements to placement
by recursive partitioning using one of the leading partitioners.

In both cases, we use the 1993 ACM/SIGDA [Brglez 1993] and the 1998 ISPD
[Alpert 1998] benchmark suites (see Table I).
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Table I. The 1993 ACM/SIGDA (top) and 1998 ISPD
Benchmark Circuits (bottom)

Circuit Nodes Nets Pins Pins
Node

Pins
Net

19ks 2844 3282 10547 3.71 3.21
avq.large 25178 25384 82751 3.29 3.26
avq.small 21918 22124 76231 3.48 3.45
baluP 801 735 2697 3.37 3.67
biomedP 6514 5742 21040 3.23 3.66
golem3 103048 144949 338419 3.28 2.33
industry2 12637 13419 48158 3.81 3.59
industry3 15406 21923 65791 4.27 3.00
p1 833 902 2908 3.49 3.22
p2 3014 3029 11219 3.72 3.70
s13207P 8772 8651 20606 2.35 2.38
s15850P 10470 10383 24712 2.36 2.38
s35932 18148 17828 48145 2.65 2.70
s38417 23949 23843 57613 2.41 2.42
s38584 20995 20717 55203 2.63 2.66
s9234P 5866 5844 14065 2.40 2.41
structP 1952 1920 5471 2.80 2.85
t2 1663 1720 6134 3.69 3.57
t3 1607 1618 5807 3.61 3.59
t4 1515 1658 5975 3.94 3.60
t5 2595 2750 10076 3.88 3.66
t6 1752 1641 6638 3.79 4.05
ibm01 12752 14111 50566 3.97 3.58
ibm02 19601 19584 81199 4.14 4.15
ibm03 23136 27401 93573 4.04 3.41
ibm04 27507 31970 105859 3.85 3.31
ibm05 29347 28446 126308 4.30 4.44
ibm06 32498 34826 128182 3.94 3.68
ibm07 45926 48117 175639 3.82 3.65
ibm08 51309 50513 204890 3.99 4.06
ibm09 53395 60902 222088 4.16 3.65
ibm10 69429 75196 297567 4.29 3.96
ibm11 70558 81454 280786 3.98 3.45
ibm12 71076 77240 317760 4.47 4.11
ibm13 84199 99666 357075 4.24 3.58
ibm14 147605 152772 546816 3.70 3.58
ibm15 161570 186608 715823 4.43 3.84
ibm16 183484 190048 778823 4.24 4.10
ibm17 185495 189581 860036 4.64 4.54
ibm18 210613 201920 819697 3.89 4.06

5.1 From Two to Three Dimensions

One of the anticipated advantages of 3-D circuitry is that total circuit wire
length is expected to be shorter than in two dimensions. We are substantiating
this expectation by providing placement results in d = 2, 2 1/3, 2 2/3, and 3
dimensions for a sample of benchmark circuits. Table II shows the results for
four circuits covering the dynamic range from 800 to 210,000 nodes. The grid
sizes were computed to most closely resemble a d

√
N × d

√
N × N/( d

√
N )2 grid

for an N -node circuit in d dimensions. Since the semi-perimeter bounding box
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Table II. Wire-Length Improvement from Two to Three Dimensions

All Nets Counted 2- and 3-node Nets

Length Change Length Change
Circuit Nodes Grid (approx.) (approx.) (exact) (exact)
p1 833 29 29 1 5027.6 2778.9

17 17 3 3751.3 −25.38% 2202.3 −20.74%
12 12 6 3418.3 −32.00% 2032.3 −26.86%
10 10 9 3385.9 −32.65% 2021.6 −27.25%

s9234P 5866 77 77 1 27055.6 18728.4
39 38 4 18749.9 −30.69% 13745.2 −26.60%
26 26 9 16573.6 −38.74% 12570.3 −32.88%
19 18 18 16041.9 −40.70% 12241.2 −34.63%

ibm06 32498 181 180 1 712282.8 233084.3
81 81 5 365606.2 −48.67% 126683.4 −45.64%
49 48 14 277323.5 −61.06% 101553.6 −56.43%
32 32 32 254276.8 −64.30% 95390.0 −59.07%

ibm18 210613 459 459 1 7128339.7 2179268.3
188 187 6 3140755.9 −55.93% 1011482.3 −53.58%

98 98 22 2111055.3 −70.38% 728096.2 −66.58%
60 60 59 1875854.6 −73.68% 655591.2 −69.91%

approximation method underestimates the actual wire length for nets of 4 or
more nodes, we also included the exact total wire length for the subset of nets
containing only 2- and 3-node nets into Table II. For 2- and 3-node nets, the
semi-perimeter method is exact. Therefore, the wire length reductions shown
in the last column of Table II are exact. The entries are based on 10 runs of
Gravity. Even though Gravity is a randomized algorithm, due to its random
initial placement, its results are very stable. The average standard deviation
of each run from the mean is less than 2%.

This table shows that the wire length advantage of 3-D placements over 2-D
increases substantially from 27% to 70% as the circuit size increases from 833
to 210,613 nodes. The results also show that even a small number of additional
layers results in significant wire length savings for larger circuits, for example
2 1/3 dimensions for ibm06 and ibm18.

5.2 Gravity vs. 3-D Partitioning Placement

Since no 3-D placement results have been published before, we needed to cre-
ate a 3-D placement comparison basis on a fundamentally proven and strong
technique. Partitioning placement is one of the basic and proven placement
schemes in two dimensions. Based on the simplicity of the partitioning place-
ment method, and recent advances in partitioning algorithms, it is natural to
extend partitioning placement to three dimensions for comparison purposes.
In the following section we describe the 3-D partitioning placement algorithm
that we used to present the first 3-D placement results for benchmark cir-
cuits at VLSI’99 [Obenaus and Szymanski 1999]. In Section 5.4 we compare
the results of this 3-D partitioning placer with the 3-D results produced by
Gravity.
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Fig. 5. Partition placement process: simultaneous splitting of the grid and partitioning of the
circuit.

5.3 Recursive Partitioning Placement using Grid Splitting

As mentioned above, partitioning placement is one of the fundamental place-
ment methodologies. For our 3-D recursive partitioning placer, we implement
a grid splitting technique that mirrors 3-D Gravity’s final placement step with
the important difference that here the node partitioning has to be computed
using a partitioner, whereas in Gravity the splitting of nodes is based on its
computed coordinates. Figure 5 illustrates how this algorithm proceeds, and
Figure 6 provides the pseudo code of this partition placement algorithm.

Partitioning placement in three dimensions has been suggested before.
Leeser et al. [1998] used a partitioning placement method for placement in
the Rothko architecture, and Alexander et al. [1996] suggested it for three di-
mensional FPGA placement. Their partition placement methods were based on
a 2-D variation of partitioning placement, called quadrisection [Shahookar and
Mazumder 1991]. In quadrisection, the chip area is recursively split into four
quadrants and circuits are recursively partitioned four ways. They extended
this method into three dimensions by splitting the chip’s volume into eight oc-
tants while concurrently partitioning the circuit eight ways. However, no large
circuit placement results were published.

As our partitioner, we chose the hMetis hypergraph partitioner developed
by Karypis et al. [1997]. To our knowledge, this partitioner is currently the
best of the published near-linear-run-time partitioners. Although we use re-
cursive two-way partitioning along each axis in 3-D, we could easily imple-
ment 3-D quadrisection with a few modifications to the hMetis library inter-
face. Restrictions in the current hMetis library interface made it necessary to
compute a recursive, balanced (k + l )-way partitioning to achieve a k:l split
as is sometimes necessary in step 12 of the algorithm in Figure 6 when an
odd number of rows, columns, or layers needs to be split. While recursive
multi-way partitioning increases run-time and memory requirement, it does
not affect the quality of the cut (Karypis, personal communication). Accord-
ing to Karypis, the hMetis interface could easily be adapted to allow explicit
k:l cuts.
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Variables and predicates:
V = {v1, . . . , v|V |} set of circuit nodes
x[v] coordinates of gate

for circuit node v
(a1, a2, a3) coordinates of lower

left front corner
(b1, b2, b3) lengths of sides of

gate array box
(n1, n2, n3) initial size of

gate array box

Initial Call:
place(V ,(0, 0, 0),(n1, n2, n3))

place(V ,(a1, a2, a3),(b1, b2, b3))
1: if |V |=1 then

2: x[v1] := (a1, a2, a3)
3: else

find largest side of box
4: k := i such that bi = max(b1, b2, b3)

split box b into two boxes b1 and b2
5: (b11, b12, b13) := (b1, b2, b3)
6: b1k := bb1/2c
7: (b21, b22, b23) := (b1, b2, b3)
8: b2k := db1/2e

determine coordinates of lower left
front corner of b1 and b2

9: (a11, a12, a13) := (a1, a2, a3)
10: (a21, a22, a23) := (a1, a2, a3)
11: a2k := ak + b1k

partition V into subcircuits V1 and V2
of sizes no more than b11 ·b12 ·b13
and b21 ·b22 ·b23, respectively

12: (V 1, V 2) := partition(V ,b11 ·b12 ·b13,b21 ·b22 ·b23)
invoke placement routine on subcircuits

13: place(V 1,(a11, a12, a13),(b11, b12, b13))
14: place(V 2,(a21, a22, a23),(b21, b22, b23))

Fig. 6. Generic partitioning placement algorithm.

In order to compensate for the excessive memory requirement for large
(k+ l )-way partitionings, we restricted the largest dimensions of the grid for the
largest circuits to be of even length. Consequently, the largest cuts are balanced
two-way cuts which require substantially less memory resources. Further, to
obtain accurate estimates of the run time, assuming the hMetis interface was
adapted to allow explicit k:l splits, we ran the algorithm while forcing balanced
splits at all levels of recursion down to 8 or less nodes when no more partitioning
intelligence is required.

5.4 Result Comparison

We compare the placement results of our 3-D Gravity algorithm against the
performance of the 3-D partitioning placer described above (see Section 5.3).
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Table III. 3-D Placement Grids for the ACM/SIGDA Suite
(top) and the ISPD98 Suite (bottom)

Circuit Nodes 3-D Gravity Grid 3-D hMetis Grid
19ks 2844 15× 14× 14 15× 14× 14
avq.large 25178 30× 29× 29 30× 30× 28
avq.small 21918 28× 28× 28 28× 28× 28
baluP 801 10× 9× 9 10× 9× 9
biomedP 6514 19× 19× 19 19× 19× 19
golem3 103048 47× 47× 47 48× 48× 45
industry2 12637 24× 23× 23 24× 23× 23
industry3 15406 25× 25× 25 26× 25× 24
p1 833 10× 10× 9 10× 10× 9
p2 3014 15× 15× 14 15× 15× 14
s13207P 8772 21× 21× 20 21× 21× 20
s15850P 10470 22× 22× 22 22× 22× 22
s35932 18148 27× 26× 26 27× 26× 26
s38417 23949 29× 29× 29 29× 29× 29
s38584 20995 28× 28× 27 28× 28× 27
s9234P 5866 19× 18× 18 19× 18× 18
structP 1952 13× 13× 12 13× 13× 12
t2 1663 12× 12× 12 12× 12× 12
t3 1607 12× 12× 12 12× 12× 12
t4 1515 12× 12× 11 12× 12× 11
t5 2595 14× 14× 14 14× 14× 14
t6 1752 13× 12× 12 13× 12× 12
ibm01 12752 24× 24× 23 24× 24× 23
ibm02 19601 27× 27× 27 28× 28× 26
ibm03 23136 29× 29× 28 30× 30× 27
ibm04 27507 31× 30× 30 32× 30× 29
ibm05 29347 31× 31× 31 32× 32× 30
ibm06 32498 32× 32× 32 32× 32× 32
ibm07 45926 36× 36× 36 36× 36× 36
ibm08 51309 38× 37× 37 38× 38× 36
ibm09 53395 38× 38× 37 38× 38× 37
ibm10 69429 42× 41× 41 42× 41× 41
ibm11 70558 42× 41× 41 42× 41× 41
ibm12 71076 42× 42× 41 42× 42× 41
ibm13 84199 44× 44× 44 44× 44× 44
ibm14 147605 53× 53× 53 54× 54× 52
ibm15 161570 55× 55× 54 56× 56× 54
ibm16 183484 57× 57× 57 58× 58× 57
ibm17 185495 58× 57× 57 58× 58× 57
ibm18 210613 60× 60× 59 60× 60× 59

As a comparison basis we used the ACM/SIGDA and ISPD98 benchmark cir-
cuit suites. For each benchmark circuit with N nodes, both algorithms com-
puted a placement into a homogeneous cube-like three-dimensional grid with
a cube-edge length of approximately 3

√
N nodes. The exact 3-D grid dimen-

sions are governed by Equations (4)–(6), subject to the constraints described
in Section 5.3 above. Table III shows the exact grid dimensions. The cumula-
tive wire lengths were estimated using an extension to three dimensions of
the semi-perimeter bounding box method. This 3-D extension adds the height,
width, and length of the volume spanned by the nodes in a net. This estimate

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.



312 • S. T. Obenaus and T. H. Szymanski

Table IV. Overview of 3-D Gravity versus 3-D Partitioning Placement for the ACM/SIGDA Suite

hMetis 250 iterations 500 iterations 1000 iterations 2000 iterations

length time change speed- change speed- change speed- change speed-
Circuit (s) (%) up (%) up (%) up (%) up
19ks 14,493.3 37.41 −19.87 13.87 −20.95 8.61 −21.58 4.69 −22.50 2.49
avq.large 104,104.1 302.81 −14.54 10.00 −20.54 5.83 −23.91 2.96 −25.68 1.51
avq.small 94,688.0 277.32 −15.68 10.52 −20.23 6.18 −23.70 3.17 −24.95 1.65
baluP 3,263.5 13.34 −16.05 14.79 −16.02 8.69 −16.70 4.49 −16.41 2.34
biomedP 25,239.2 106.47 −13.08 15.74 −14.64 9.65 −15.57 5.02 −16.01 2.66
golem3 687,104.9 1,519.41 −3.58 10.97 −12.25 7.24 −16.58 3.96 −18.89 2.07
industry2 78,997.7 201.72 −7.04 11.22 −7.04 6.92 −6.83 3.79 −6.15 2.00
industry3 152,962.3 300.69 −18.36 13.20 −19.13 7.75 −19.17 4.26 −19.21 2.27
p1 4,156.1 14.11 −17.70 15.93 −17.54 9.43 −18.09 5.07 −19.22 2.63
p2 18,562.5 43.16 −15.50 13.00 −16.42 7.70 −15.98 4.12 −15.69 2.13
s13207P 26,501.3 103.16 −13.32 12.17 −15.94 7.34 −17.31 3.76 −17.20 1.93
s15850P 30,950.7 121.61 −8.92 11.30 −12.16 6.59 −13.49 3.36 −12.93 1.84
s35932 57,926.1 218.19 −4.92 11.11 −10.42 6.46 −14.51 3.26 −15.67 1.70
s38417 73,282.6 252.72 2.44 8.55 −2.77 4.78 −4.10 2.45 −3.43 1.29
s38584 72,643.9 258.05 −2.10 9.78 −4.76 5.46 −5.43 2.92 −5.26 1.56
s9234P 17,670.1 85.74 −6.88 16.57 −8.46 9.99 −9.41 5.49 −9.19 2.82
structP 7,064.1 22.93 −13.33 13.31 −15.09 8.24 −15.99 4.46 −16.48 2.31
t2 8,501.9 22.21 −19.47 13.71 −20.78 8.24 −21.49 4.44 −21.08 2.23
t3 7,828.2 22.00 −14.65 13.09 −14.80 7.88 −14.54 4.21 −14.80 2.15
t4 7,375.9 21.88 −11.89 12.68 −12.20 7.61 −13.06 4.04 −13.49 2.06
t5 12,568.2 36.24 −12.35 11.99 −11.69 7.30 −11.20 3.99 −10.79 2.05
t6 7,968.1 22.52 −14.27 11.66 −14.20 6.71 −14.72 3.45 −14.52 1.79
Average −11.87 12.51 −14.00 7.48 −15.15 3.97 −15.43 2.07

is exact for nets with two or three nodes, which form the majority of all
nets.

Tables IV and V show wire-length and run-time comparisons on a
Pentium II/300 for the ACM/SIGDA and ISPD98 circuit suites, for 250, 500,
1000, and 2000 force-step iterations. Gravity outperforms generic 3-D parti-
tioning placement using the most powerful efficient partitioning algorithm cur-
rently available. On the more established ACM/SIGDA suite, Gravity with 250
force-step iterations runs on the average a factor of 12.5 faster while produc-
ing placements with approximately 12% less wire length. By increasing the
number of iterations to 2000, Gravity can improve the wire-length advantage
to over 15% while still requiring only half the time of the hMetis partitioning
placer. For the newer ISPD98 circuit suite with the larger and more modern cir-
cuits, Gravity performs even better. With a 1/13 of the run time, 250-iteration
Gravity produces results that are on the average almost 20% better than the
partitioning placer. This advantage can be increased to 22.6% with a speed-up
of 2.3 by using 2000 iterations.

The target circuits for which Gravity is expected to compute placements in
the future are expected to be large. For this reason it is encouraging to observe
that Gravity performs even better and faster on the benchmark circuit suite
with the larger circuits.

As a final indication of the potential of 3-D Gravity, we found in Obenaus
[2000] that the wire-length improvement of 3-D Gravity over 3-D hMetis par-
titioning placement is roughly twice that of 2-D Gravity over 2-D hMetis parti-
tioning placement.
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Table V. Overview of 3-D Gravity versus 3-D Partitioning Placement for the ISPD98 Suite

Circuit hMetis 250 iterations 500 iterations 1000 iterations 2000 iterations

length time change speed- change speed- change speed- change speed-
(s) (%) up (%) up (%) up (%) up

ibm01 92,601.5 239.33 −15.16 13.87 −16.39 8.18 −16.63 4.38 −17.20 2.38
ibm02 202,121.7 391.13 −15.44 13.69 −15.78 8.23 −15.98 4.46 −16.45 2.31
ibm03 234,600.9 432.92 −16.24 12.17 −18.42 7.05 −19.00 3.81 −18.97 2.05
ibm04 301,324.1 497.46 −22.79 11.96 −23.47 7.36 −23.99 3.90 −24.45 2.05
ibm05 367,004.5 553.55 −23.79 13.79 −25.11 8.44 −25.11 4.58 −26.00 2.40
ibm06 333,985.0 655.11 −21.58 13.21 −22.93 8.01 −24.08 4.28 −24.37 2.17
ibm07 473,844.3 1,084.43 −20.14 15.04 −22.07 9.15 −23.39 4.92 −22.98 2.56
ibm08 531,860.7 1,191.15 −22.54 14.79 −23.64 9.39 −24.42 5.17 −24.73 2.73
ibm09 617,201.7 1,263.16 −23.44 13.13 −24.49 7.95 −25.24 4.43 −25.27 2.36
ibm10 832,125.1 1,761.46 −22.16 15.04 −24.57 9.12 −25.22 4.82 −26.18 2.50
ibm11 872,118.2 1,660.90 −26.25 13.72 −27.83 8.28 −29.17 4.40 −29.83 2.29
ibm12 991,783.9 1,863.66 −20.84 14.57 −21.12 9.56 −21.59 5.40 −22.10 2.89
ibm13 1,000,941.8 1,864.37 −19.58 12.49 −21.08 7.59 −21.80 4.03 −22.27 2.12
ibm14 1,657,408.1 3,064.37 −17.56 12.07 −20.12 6.84 −21.58 3.70 −21.89 1.98
ibm15 1,994,685.8 3,768.55 −10.54 12.19 −13.31 7.27 −14.07 3.89 −14.27 2.13
ibm16 2,222,138.0 4,029.56 −14.28 11.52 −17.02 7.13 −18.07 3.84 −18.65 2.04
ibm17 2,745,042.7 4,462.59 −18.23 12.66 −20.31 7.83 −21.32 4.21 −21.72 2.18
ibm18 2,639,356.6 4,284.66 −24.62 11.47 −27.01 7.07 −28.92 3.66 −29.61 1.94
Average −19.73 13.19 −21.37 8.03 −22.20 4.33 −22.61 2.28

6. CONCLUSION

With Gravity, we have developed one of the first fast 3-D placement algorithms.
To our best knowledge this is the first effectively linear time 3-D placement
algorithm. With its linear run time, Gravity is suited for very large circuits.
The previously published 3-D placement algorithm by Ohmura [1998] has a
significantly higher run-time complexity, O(n ·m) where n = number of nodes,
and m = number of nets. Thus it is not equally well suited for very large circuits.
3-D placement algorithms such as 3-D quadrisection [Alexander et al. 1996;
Leeser et al. 1998], or recursive hMetis partitioning placement also have at
least a complexity of O(n log n).

In Section 5.1, we provided evidence that large circuits benefit the most from
3-D placements. We also showed that even a small number of layers in the third
dimension provides significant wire-length improvements for large circuits. For
example, the two largest circuits in Table II exhibited a 64% and 74% reduction
in wire-length in a full 3-D placement. However the majority of the wire-length
savings materialized in five- or six-layer placements.

In Section 5.2, we compared Gravity to another promising near-linear time
methodology. We used the currently fastest and best published partitioner to
implement a 3-D minimum cut partitioning placer. Gravity outperformed these
placements in wire length by more than 11% while being at least an order of
magnitude faster (at 250 iterations).
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