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Abstract- We address the problem of fair scheduling of 
packets in Internet routers with input-queued (IQ) switches. We 
present new performance metrics for IQ switches with unity 
speedup. Scheduling in IQ switches is formulated as tracking the 
behavior of an ideal output-queued (OQ) switch that provides 
optimal performance. We introduce several performance metrics 
that measure the difference between the ideal performance 
provided by an ideal OQ switch and an IQ switch with unity 
speedup. A key performance metric is the notion of ‘‘lag” 
between an  IQ switch and an ideal OQ switch. Using the 
proposed metric5 as design criteria, we present a suite of 
scheduling policies for IQ switches with unity speedup that 
provide better performance than existing scheduling policies in 
the literature, with comparable complexity. 

1. INTRODUCTION 
There is a tremendous demand for Internet core nodes to 
provide quality-of-service (QoS) guarantees for multimedia 
services, and to provide high switching capacity that makes 
use of the virtually unlimited bandwidth of optical fibers. f i e  
Internet’s success depends on the deployment of high-speed 
switches and routers that meet these two demands. 

On the one hand, the demand of QoS guarantees can be 
met using output-queued (OQ) switches, which can provide 
optimal throughput. In addition, much research effort, 
considering algorithms such as the weighted fair queueing 
(WFQ) family (e.g., (191) has been devoted to packet 
scheduling at output ports to support fair bandwidth sharing 
that provides delay bounds for regulated traffic. However, OQ 
for an N x N switch requires the switching fabric and memory 
to run up to N times faster than the line rate; unfortunately, for 
large N or for high-speed data lines, memories with sufficient 
bandwidth are not available. 

On the other hand, the fabric and the memory of an input- 
queued (IQ) switch need only to run as fast as the line rate. 
This makes input queueing very appealing for switches with 
fast line rates or with a large number of ports. But IQ 
switching can suffer from head-of-line (HOL) blocking, 
which limits the throughput to just 58.6%, if each input 
maintains a single FIFO [ I l l .  One method that has been 
proposed to reduce HOL blocking is to increase the speedup 
of a switch. A switch with a speedup of S can remove up to 
S packets from each input and deliver up to S packets to 

each output within a rime slot, where a time slot is the time 
between packet arrivals at an input port. 

A theoretical result IS] established that an N x N combined 
input-and output-queued (CIOQ) switch with a speedup of 
two could exactly emulote an N x N  OQ switch for any 
traffic pattern of input cells. Emulation occurs at every time 
instance if, under identical inputs both systems produce 
identical departures. Unfortunately, the complexity of the 
scheduling algorithm presented in [SI renders OQ switch 
emulation infeasible (see [14], [I51 for a discussion of the 
complexity). The speedup requirement translates to a smaller 
time available for the execution of the arbitration algorithm. In 
a hardware implementation, reduction of the available time by 
a factor of two poses a substantial problem, although the 
difference does not seem significant asymptotically; it 
translates to a requirement of doubling the operating 
frequency of the arbiter, which might not be practically 
achievable. Furthermore, Minkenberg [ I  81 have shown that 
exact emulation of an OQ using a CIOQ switch is possible 
only if the CIOQ have infinite output buffers. 

Most commercial high-performance switches and routers 
(e.g., CISCO 1200[2], BBN [21], Lucent Cajun [3] family, or 
Avici TSR45000 [I]) use IQ switches. Most of these high- 
speed switches are built around a crossbar switch that is 
configured using a centralized scheduler designed to provide 
high throughput and use a fixed-length cell as a transfer unit. 
Fixed-length switching technology is widely accepted for 
achieving high switching efficiency such that variable-length 
packets are segmented into fixed-length cells at the inputs and 
are reassembled at outputs. We assume fixed-length cell 
scheduling for the remainder of this paper’. 

In this paper we consider scheduling policies in an IQ- 
crossbar switch with a unity speedup. Given that an IQ switch 
requires at least a speedup of two to exactly emulate an OQ 
switch [ 5 ] ,  an IQ scheduling policy with a unity speedup can 
not exactly emulate the behavior of an OQ switch, under all 
possible traffic patterns. Consequently, we formulate 
scheduling in an IQ switch as the problem of frocking an ideal 
OQ switch. We introduce new performance metrics that 
measure the difference between the ideal performance 
provided by an OQ switch and an IQ switch. Using these 
mebics as design criteria, we present a suite of scheduling 
policies for IQ switches with unity speedup that provide better 
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‘ The words pockel and cell are used interchangeably far the remainder of 
this paper. 
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performance than existing scheduling policies in the literature, 
with comparable complexity. Although in this paper we 
describe the case of tracking an ideal OQ switch implementing 
only a FIFO scheduling policy, our results can be easily 
extended for other non-FIFO scheduling policies. 

This paper is organized as follows. Section I1 formulates 
scheduling in an IQ switch with unity speedup as tracking the 
behavior of an ideal OQ switch. Section 111 describes the 
benefits of tracking the behavior of an ideal OQ switch. In 
section IV, we present a suite of scheduling policies for 
tracking the behavior of an ideal OQ switch with various 
performance and implementation complexities. The 
performance of these scheduling policies is evaluated through 
simulation for different traffic models and compared to 
several known scheduling policies in the literature in section 
V. Section VI provides our conclusions. 

11. PROBLEM FORMULATION 
We consider an N x N ideal OQ switch that implements 

scheduling policy noQ and an IQ 'switch with unity speedup 

that implements scheduling policy zIQ. Let the average cell 

arrival rate at input i for output j be ,Ao. We assume that 

incoming traffic is admissible; that is, xzlAg < I ,  and 

< I .  The arrival process is identical to both switches. 
The goal is to find a scheduling policy rIQthat tracks the 

behavior of the ideal OQ switch as close as possible, where 
we define what tracking means more precisely after 
introducing some definitions. 

Given that an IQ switch requires at least a speedup of two to 
exactly emulate an OQ switch [5 ] ,  an IQ scheduling policy 
with a unity speedup can not exactly emulate the behavior of 
an OQ switch, under all possible traffic patterns. In general, 
arriving cells to the IQ switch implementing R , ~  will depart at 

some later time than the ideal OQ switch implementing nOQ. 

Consequently, we say that an IQ switch implementing rlQ 
lags the behavior of the ideal OQ switch implementing zoQ , 

A. Definition of Term 
Here we make precise some of the terminology used 

throughout this paper. 
Definition 1 Ideal departure  time (IDT): The ideal 
departure time for a cell c [ IDT(c)]  is the time slot at which 
c will depart from an ideal OQ switch implementing xoQ. 
Definition 2 Actual departure  time (ADT): The actual 
departure time (ADT) for a cell c [ ADT(c)  1 is the time slot 
at which c departs from the switch under consideration (i.e., 
IQ implementing nIQ) 

' When we refer 10 IQ switch with unity speedup, we include designs that 
employ combined input output queueing with unity speedup. 

Definition 3 Cell Lag (CL): The cell lag for a cell c 
[ C L ( c ) ]  is the difference between the ideal departure time 
and the actual depamre time. Precisely, 

CL(c) = 
ADT(c) - IDT(c),ADT(c) > IDT(c) { 0,  otherwise 

We assume that every call entering the switch will 
eventually depart at some time in the future; that is, 
Vc,ADT(c) <CO. To simplify the notation, let X denote the 
random variable given by CL(c) 

In addition, we defme the cell lag for a cell c given the 
current time slot n [CL(c,n)]  as the difference between the 
ideal d e o m r e  time and the current time slot. Preciselv. 

n-IDT(c),n> IDT(c) 
0,  otherwise 

cL(c, n) = { 
To the best of our knowledgs, we are lbefirsr to defme this 

notion of lag between an IQ switch and an OQ switch. 
Definition 4 Scheduling Policy Lag Mean (p l log ) :  The lag 

mean for a scheduling policy R [ plOg(x)] is defmed as the 

expectation or mean of the random variableX; that is, 
,U~, (R)  is the average lag of all cells departing from a switch 

implementing scheduling policy R . plOg(z) = E [ X ] ,  The lag 

mean represents the additional delay provided by scheduling 
policy zlQ than that provided by an ideal OQ switch. 

Definition 5 Scheduling Policy Maximum Lag (mawl,): 

The maximum lag for a scheduling policy R [maxlog(rr) J is 

defined as Vc,max,,(n) = mot(X) 

Definition 6 Scheduling Polilcy Lag Variance (-LE): The 

lag variance for scheduling policy n [ o&(z)] represents the 
variance in the lag between the switch implementing 
scheduling policy R and the ideal OQ switch; that is, 
&(n) = E [ ( X - , U ~ ~ , ) * ] .  Note that, #T&(R) reflects the 
additional jitter provided by the scheduling policy R than that 
provided by an ideal OQ switch. 

Although other metrics c m  be similarly defined, we 
consider the previous metrics sufficient to characterize the 
tracking criteria of an ideal OQ switch. The goal of a 
scheduling policy zlQ can be characterized by any of the 
tracking metrics defmed previously or a combination of them. 

Remark Although an IQ switch with unity speedup lags the 
behavior of an ideal OQ switch, for efficiency purposes a cell 
may occasionally depart from an IQ switch earlier than an 
ideal OQ switch; for example, consider a 2 x 2 switch at a 
specific time slot such that the two mosf lagging cells for its 
outputs (e.g., outputs 1, and 2) reside a1 the same input port 
(e.g., input 1). Because the scheduling policy can transfer at 
most one cell from each input port (e.g., input I), another cell 
with a future ideal departure time might .be selected from the 
other input port (e.g., input 2) to be transferred across the 
switch for efficiency purpose:;. Howevix, in general an IQ 
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switch lags an OQ switch and 
strictly lagging. 

can be designed to be 

Ill. MOTIVATION 
In an ideal OQ switch arriving packets are 

immediately available at the outgoing link. Consequently, the 
only shared resource in an OQ switch is the outgoing link of 
the switch and packets contend for access to the outgoing link 
(output contention). In an IQ switch packets are queued at the 
input port of the switch and they must fust contend for access 
to the switch fabric (input contention), before contending for 
the outgoing link; that is, in an IQ switch, there are two shared 
resources: the switch fabric and the outgoing link. 

All present IQ scheduling policies resolve input and 
output contention using heuristics such as using a round-robin 
scheme at both the input and output to solve the contention 
fairly, or using the packet’s age (i.e., time in the switch) to 
resolve contention. All these schemes can be seen as an 
approximation to the ideal case of an OQ switch, where all the 
outgoing links are independent and packets are served 
independently in each outgoing link; that is, by tracking the 
behavior of an ideal OQ switch and minimizing the lag, we 
automatically resolve input and output contention in a fair 
manner and eliminate any starvation problem of inputs that 
other scheduling policies have to carefully handle. 

We emphasize that significant research effort (e.g., 
[7], [19], [ZO]) has been done in developing scheduling 
policies for ideal servers that provide bounded latency, jitter, 
and end-to-end delay for traffic flows. Unfortunately, the real 
Internet does not consist only of ideal servers, but rather of 
heterogeneous servers (i.e., non ideal IQ and CIOQ servers, 
and ideal OQ servers). By tracking the behavior of an ideal 
server, we approximate its behavior as close as possible and 
attempt to bound the performance difference between the ideal 
server and an IQ switch. 

IV. TRACKING SCHEDULING POLICIES 

We consider the case of zOg =FIFO. The architecture of 

our IQ switch is shown in Figure 1. 

I” 

tput N I“ 

*I 
Fig. I .  Logical slruclure of an input-queued switch 

We use virtual output queueing (VOQ) at each input port of 
the switch and a crossbar as the switching fabric. For 
zoe =FIFO,  arriving cells at the IQ switch can be 
immediately assigned an IDT using a simple parallel prefix 

circuit [lo] (i.e., a ranker); Let N j  be the number of cells in 
the ideal OQ switch destined to output j . The IQ switch uses 
N rankers such that each ranker calculates the number of cells 

present in the ideal OQ switch; specifically, each ranker j uses 
a variable Nj such that at the begiMing of each time slot 

NI =[ 0, otherwise 
Note that the subtraction of one in the previous equation 
accounts for one (celVtime slot) departure in the ideal OQ 
switch. For every new cell c arriving at time slot n destined 
to output j , ranker j assigns IDT(c) = n+ N, and updates 

N j  = N j  + I .  For an N x  Nswitch, we use the following 
notational conventions: 
i aninput, I < i < N  
j 
VOQ(i, j) is the VOQ at input i and buffers cells destined for 
output j . HOL(i, j )  is the head-of-line cell at VOQ(i, j ) .  

First, we present a scheduling policy called mmimum 
weighted lag (MWL) that is simple to describe, but has a high 
implementation cost. It serves as solid base for developing 
other practical scheduling policies that approximate its 
performance. Second, we present a scheduling policy that 
iteratively minimizes the maximum lag at a lower cost than 
MWL. Third, we present a maximal weighted lag scheduling 
policy that is readily implemented in hardware and provides 
excellent performance. Simulation results for all tracking 
scheduling policies are presented in section V. 

N j - l , N , > O  

an output, 1 < j 5 N 

A. Marimum Weighted Lag Scheduling Policy 
Maximum weighted lag (MWL) is based on the 

implementation of a mmimum bipartite weight-matching 
algorithm (MWM)[4]. A maximum weight matching on a 
bipartite graph with weighted edges is defined as a set of 
edges between input and output nodes with the maximum total 
weight among all possible sets satisfying the constraint that 
any input node is matched to at most one output node. 

At every time slot n ,  we associate a weight W(i,  j )  to every 
VOQ(i, j )  such that W(i ,  j )  = CL(HOL(i, j ) ,  n) ; that is, 
W(i,  j) is maximum lag of an HOL packet in VOQ(i, j). The 
maximum weighted lag scheduling policy finds a matching 
M that maximizes z W ( i ,  j )and  can be found by solving an 

equivalent network flow problem [4]. The best 
implementation of a MWM has running time complexity 
O(N’ log(N)) on a sequential model [4]. We use a traditional 
implementation of a maximum bipartite graph matching. 
However, our contribution is in judiciously using the cell lag 
values as the edge weights. Previous work on MWM 
considered only the weight equaling to either some function of 
the occupancy of the VOQs (i.e., number of packets’ in each 
VOQ) or the waiting time of the cell at the head of line of 
each VOQ (e.g., [13], [17], [ZZ], [24], [25], and [26]). 
Consequently, these algorithms .do not necessarily track the 
behavior of an ideal OQ switch and cells’ departure time may 

(i.,)EM 
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arbitrarily deviate from the ideal case if the arrival traffic is 
bursty. In addition, using the occupancy of the VOQs as the 
edge weight can lead to starvation ofcertain inputs [17]. 

Because MWL computes the matching with the 
maximum possible total weight during every time slot, it aims 
at minimizing the lag mean ( ptog ). This does not necessarily 
imply that the maximum lag is minimized. Although this 
algorithm is too complex to implement in practice, it serves as 
a reference model for which other approximation algorithms 
are developed. 

E. Iferalive Min Max-Lag Scheduling Policy 
This scheduling policy iteratively minimizes the maximum 

lag (iMML.) by performing a matching between an input port 
for the cell with maximum lag amongst all cells in the switch 
and its corresponding output port until no more matches can 
be performed. 

iMML can be implemented using a request-accept paradigm 
using an arbiter at each input and output port such that in each 
iteration, each unmatched input sends a request to the output 
corresponding to its most lagging packet. Each output arbiter 
then examines its requests and sends a grant to the input 
arbiter with the most lagging packet. The input and output 
arbiter are considered matched. However, an output arbiter 
may break a match if it receives a more lagging request than 
its current matched input arbiter in the future. This 
"backtracking" procedure requires N 2  iterations in the worst 
case on a sequential model. The running time complexity of 
iMML is O(N2 IogNjon a sequential model. This scheduling 
policy is equivalent to stable-marriage matching [9], where the 
preference of each input port is the lag of its VOQs. (We 
name it iterative ntin niax-lug because it is more descriptive). 
The best known parallel algorithm for the stable marriage 
problem is due to Feder et al. [SI and has a running time 
complexity O(& log3 n) and uses n4 processors on a 
Concurrent Read Concurrent Write (CRCW) PRAM model. 

MWL and iMML can be seen as tracking the behavior of an 
ideal OQ switch with different tracking criteria. The former 
tracking policy's objective is to minimize the lag mean and the 
latter's objective is to minimize the maximum lag. The two 
scheduling policies are related such that total weight of a 
stable marriage is at least half the total weight of a maximum- 
weighted matching [ 121. Consequently, depending on the 
tracking criterion we aim to optimize, we can use either MWL 
or iMML. 

C. Iterative Maximal Lag Scheduling Policy 
Because iMML can break matches performed in 

previous iterations of the algorithm, it generally requires a 
large number of iterations to form a stable matching. In 
addition, this breaking of matchings made earlier in the 
matching process is also difficult to implement in practice. 
Consequently, we explore using a simpler greedy scheme 
based on muximal matching. A maximal matching is one that 
adds connections incrementally, without removing 
connections made earlier in the matching process. Iterative 
maximal lag (iML) is essentially a greedy version of iMML 

without backtracking. Initially all input and output arbiters are 
unmatched, then in each iteration: 
1. Request: Each unmatched input sends a request to every 
unmatched output for which it has a queuod cell. 
2. Grant: If an unmatched output receives any requests, it 
chooses the request with the most lagging cell and sends a 
grant to this input. 
3. Accept: If an' unmatched input receives any grants, it 
chooses the grant for its most lagging cell and sends an accept 
signal to this output. The input and output arbiter are 
considered matched. 

The algorithm executes until either no more matches can be 
made or a fixed number of iterations are performed. On a 
CRCW model, the algorithm requires O ( N )  iterations such 
that each iteration is O(N) computations. This algorithm is 
readily implemented in hardware. 

v. SIMULATION RESULTS 

The performance of MWL, iMML, and iML are 
evaluated for a 16x16 switch under uniform and bursty traffic 
models. We compare the behavior of our scheduling policies 
the following scheduling policies: BLIP [16], and iDRR [23]. 
Our choice of these scheduling policies is a balance between 
the extensively studied algorithms with excellent performance, 
commercially implemented (i.e., BLIP) and recent published 
results in the literature (i.e., iDRR). These schemes are based 
on a hybrid of maximal matching and weighted round robin 
priority schemes, with complexity comparable to iML. 
Consequently, these scheduling policies take up to N iterations 
in the worst case on a CRCW model. For comparison 
purposes, all maximal matching based scheduling policies 
were executed until a maximal match was found. 

The proposed tracking criteri.a (i.e., pto>! , max,og, utag) 2 are 
evaluated in addition to the average cell delay for each traffic 
model. 

A. Uniform Traflic Model 
As shown in Fig. 2., all OUI' proposed scheduling policies 

achieve 100 percent throughput under i.i.d. Bernoulli traffic. 

2ot 
Fig. 2 Average Cell Delay of SLIP, iDRR, MWL, iMML, and iML under 
uniform traffic 
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Fig. 3 Average Lag of ISLIP, iDRR, MWL, IMML, and IML undcr uniform 
traffic 

In Fig. 3, MWL achieves the least lag mean compared to other 
scheduling policies (albeit at a significantly higher 
implementation cost), followed by iMML and iML with 
virtually identical performance. Finally, iSLlP and iDRR have 
the highest lag mean. The same trend occurs for the maximum 
lag as shown in Figure 4. 

Oflsrsd laad psi  inpm pod (c8Wrlol) 

Fig. 4 Maximum Lag of SLIP, IDRR, MWL, iMML, and iML under uniform 
traffic. 

Fig. 5 Lag variance of SLIP, iDRR, MWL, iMML, and iML under uniform 
IP3ffiC. 

As shown in Fig. 5, the lag variance of the proposed 
scheduling policies is almost an order of magnitude better than 
both SLIP  and IDRR. 
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B. Bursty Trafic Model 
Real network traffic is self-similar and highly correlated 

such that cells tend to arrive in bursts [6] .  The performance of 
the tracking scheduling policies was evaluated under a bursty 
traffic model such that each input port is connected to a burst 
source that generates trafic-cells are generated using a 2-state 
Markov process that alternates between busy and idle states. 
The process remains in the busy and idle states for a 
geometrically distributed number of cell times. Wken the 
server is in the busy state, cells arrive at the beginning of 
every cell time and all with the same set of destinations. This 
traffic model was also used in [16]. A burst size of 16 was 
used. 

Although iMML, iML provide comparable delay to ISLIP, 
and iDRR as shown in Fig. 6,  iMML and iML provide smaller 
lag mean, lag variance, and maximum lag as shown in Figures 
7, 8, 9, respectively. Note that MWL always provides the best 
performance at high traffic loads, albeit at a higher 
implementation cost. 

Omred lord per input pon (CelWrlol) 

Fig. 6 Average Cell Delay of BLIP, iDRR, MWL. iMML, and iML under 
buaty 
traffic 

Mlersd load per input pod [celhlol) 

Fig. 7 Average Lag of SLIP, iDRR, MWL, IMML, and iML under bursty 
traffic 
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Fig. 8 Lag variance of BLIP, IDRR, MWL, iMML, and iML under busty 
traffic. 
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Fig. 9 Maximum Lag of SLIP, iDRR, MWL, iMML, and iML under bursty 
trarlie. 

VI. CONCLUSION 
IQ switches are commercially used in most Internet routers 

due to their capability of operating at high line speeds with 
lower memory bandwidth requirement than OQ switches. In 
this paper, we addressed the issue of fair scheduling in 
Internet routers with IQ switches. We formulated switch 
scheduling in an IQ switch with unity speedup as tracking the 
behavior of an ideal OQ switch. By tracking the behavior of 
an ideal OQ switch, an IQ switch resolves input and output 
contention fairly, eliminates any starvation of inputs, and 
approximates the ideal behavior of an OQ switch as close as 
possible. We introduced several metrics that quantify the 
difference between the ideal behavior of an OQ and an IQ 

,switch. Using those metrics as design criteria we proposed a 
suite of scheduling policies with varying design criteria and 
implementation complexities. Finally, we showed through 
simulation that our proposed scheduling policies provide 
superior performance compared to the best proposed 
scheduling policies in the literature. 
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