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Randomized Routing of Virtual Connections in
Essentially Nonblocking Log N-Depth Networks
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Abstract— An optimal N x N circuit switching network with
6(N) bandwidth has a lower bound of (N - log N') hardware,
which includes all crosspoints, bits of memory and logic gates,
and a lower bound of #(log V) set-up time. To date no known
self-routing circuit switching networks with explicit constructions
achieve these lower bounds. In this paper we consider a random-
ized routing algorithm on a class of circuit switching networks
called “Extended Dilated Banyans.” It is proven that the blocking
probability of an individual connection request is Oflog, N -
(k/d)"], where d is the dilation factor and k is a constant. With a
dilation of 6(loglog N) and a loading <1 the blocking probability
is shown to approach zero, yielding an “essentially nonblocking”
network. The hardware complexity of these networks depends
upon the internal node implementation. A space division node
yields a network with (N - log N - loglog N) hardware and
6(log N -loglog N ) set-up time. A time division node, in which the
bits from each connection are dynamically concentrated in time
using a “Time-Bit-Concentrator” circuit, yields a network with an
asymptotically optimal O(N -log N') hardware and a slightly sub-
optimal 6(log N - loglog N) set-up time. Both implementations
improve upon the best known explicit constructions of self-
routing circuit switching networks with 6( V) bandwidth, and the
TDM construction meets Shannon’s lower bound on the cost of
such networks. It is shown that Extended Dilated Banyans can
carry significantly more traffic than the Batcher-banyan switch
and its variants, given equivalent hardware complexity such as
logic gates, bits of memory and crosspoints.

[. INTRODUCTION

CIRCUIT SWITCHING network is a network which

can establish connections between specified input ports
and specified output ports, over which data is transferred. An
important criteria of circuit switching networks is the internal
blocking probability, i.e., the probability that a connection
cannot be established. Ideally a network will exhibit no
internal blocking, but in practice a blocking probability of
1072 or lower is acceptable for most purposes. An “essentially
nonblocking network” can defined as one in which the internal
blocking probability can be kept below an arbitrarily low
threshold [22]. This paper is concerned with the design of
self-routing circuit switching networks which can scale to
asymptotically large sizes while simultaneously having very
low blocking probabilities.
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The hardware cost of a circuit switching network is defined
as the number of logic gates required to build the network,
where every logic gate has bounded fan-in and fan-out. This
cost includes all crosspoints, all bits of memory and all logic
gates. The set-up time is defined as the propagation delay
(expressed in terms of individual logic gate delays) along the
longest path from any input port to any output port. An optimal
N x N circuit switching network with N input ports and N
output ports has the following properties: 1) it has lower bound
of §(N - log N) hardware, 2) it would be “self-routing” and
the “set-up” time would be #(log N) logic gate delays, and
3) it would be internally nonblocking regardless of the traffic
pattern, provided that there are no destination conflicts.

“Self-routing” networks are useful in many applications
such as ATM switching. Self-routing circuit switching net-
works are usually constructed with multiple stages of smaller
crossbar switches. Connection requests are typically fed into
the network bit-serially in synchronization with a “bit-clock,”
and are propagated forward one stage at a time. Each small
crossbar switch contains sufficient hardware to buffer one or
more incoming bits for each connection, perform and latch the
routing decisions, and then propagate the connection to the
next stage. The routing decisions at each stage must be made
within each crossbar based on routing information extracted
from the connection headers as they pass by, within a few
gate delays.

Shannon established a lower bound of §(N - log N) bits
of memory for internally nonblocking circuit switching net-
works [20]. To date there are no known self-routing circuit
switching networks with #(N) bandwidth and with explicit
space division constructions which meet this lower bound on
the hardware cost. In practice, self-routing circuit switching
networks proven to have low blocking probabilities and a
worst case bandwidth of #( V) are based on the Batcher sorting
network [4] and related sorting and permutation networks,
such as the Batcher-banyan switch [9], [13]. However, the
Batcher sorting network requires #(log® N') hardware (which
requires all connections to be bit-serial) and has a setup time
of A(log? N) logic gate delays. To date space division self-
routing circuit switching networks based on Batcher’s sorting
network have the best known explicit constructions, and these
figures are summarized in Table 1.

A dilated banyan has been defined as a banyan where
every link is replaced by multiple parallel links [12], [17],
[18]. The nodes in a dilated banyan can be called “dilated
crossbars”; these are crossbars where each 10 port can support
multiple connections simultaneously. Dilated banyans can
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have much lower blocking probabilities than regular banyans
[12], [17], [18], however they still suffer from severe worst
case congestion.

To overcome the worse-case congestion of dilated banyans
extra stages can be added to the network, following a technique
used by Mitra et al. [15]. The resulting class of networks can
be called “extended dilated banyans.” In order to eliminate all
worst case traffic patterns in an n-stage dilated banyan, it is
sufficient to extend the dilated banyan by adding n — 1 extra
stages. In this paper the class of self-routing circuit switching
networks consisting of the concatenation of any two dilated
banyans is considered. These “fully extended dilated banyans”
may be operated with or without internal packet buffers. In
this paper, we will consider only bit-serial circuit-switching
networks which do not contain internal packet buffers.

A self-routing algorithm for these fully extended networks
is proposed. Let the first dilated banyan acts as a “ran-
domization” network, and the second acts as a traditional
“routing” network. In the first dilated banyan, connections
are routed to randomly selected output ports. In the second
dilated banyan, connections are routed to their destinations.
It is proven that the blocking probability of a connection in
a dilated N x N banyan is O[logy N - (k/d)%] where d is
the link dilation factor and k£ is a constant. By increasing
the dilation the blocking probability can be made arbitrarily
small. With a dilation of f(loglog N)and with each of the
N input ports sourcing O(loglog N) connections, the dilated
banyan becomes “essentially nonblocking.” The importance of
this result is the following: the fully extended dilated banyans
are immune to worst case congestion: The randomization
network transforms any given input-output mapping (including
a worst case mapping) into a random input-output mapping.
The random mapping is established in the routing network
with a blocking probability which is guaranteed to be below an
arbitrary specified threshold. Hence, the worst case bandwidth
is therefore (N) as N — oc.

The dilated crossbar nodes can be implemented with time
division multiplexing (TDM) or space division multiplexing
(SDM); each case affects the asymptotic cost and asymptotic
set-up time of the fully extended dilated banyans. The pro-
posed TDM construction yields a network with an asymptoti-
cally optimal (N -log N') hardware and a slightly sub-optimal
f(log N - loglog N) setup time. The TDM construction has
the lowest asymptotic cost and fastest asymptotic set-up time
among known TDM networks with explicit constructions and
with 8( N') bandwidth (see Table I). In fact, the proposed TDM
switch meets Shannon’s lower bound on the asymptotic cost
of such switches. We point out that the TDM construction is
circuit-switched, i.e., it does not require any internal packet
buffers within the switching fabric (otherwise it could not
possibly meet Shannon’s lower bound on the cost). However,
the TDM network requires (N - log N) bits of internally
memory, since this is obviously a lower bound as established
by Shannon [20].

The proposed space division construction yields a self-
routing N x N circuit switching network with (N - log N -
loglog N) hardware and 6(log N -log log N) set-up time. The
SDM construction also has the lowest asymptotic cost and
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TABLE 1
ASYMPTOTIC COMPLEXITIES OF VARIOUS NETWORKS
network seif-routing? | explicit? hardware setup-time
crossbar yes yes ONY) o)
Clos (7] | no yes N -
Cantor (8] | no yes O(N -(logN )®)
Benes (7] no yes (N -logN )
Pippenger (16] | no yes O(N 'logN) 1
Bassalygo (5] no no B(N logN) -
Baicher 4] | yes yes O(N (logN *) O((logN )
Batcher-Banyan (9] | yes yes O(N (logN )?) ((logN )
permutation networks | yes yes O(N (logN )?) O((logN »)
AKS [1} yes no (N logN) O(logN')
ALM (3] yes no O(N -logN) B(logN )
proposed TDM yes yes O(N -logN) ©(logN -loglogN )
proposed SDM yes yes ©O(N -logN -loglogN ) | S(logN -loglogN)

fastest asymptotic set-up time among known SDM networks
with explicit constructions and with §(/N) bandwidth (see
Table I). It is shown that these constructions provide attractive
alternatives to the use of costly sorting networks in the design
of practical robust self-routing circuit switching networks for
ATM applications.

Finally, we point out that extended dilated banyans have
been used commercially; the well known “BBN-Butterfly”
parallel processor from Bolt, Beranek, and Newman used a
2-dilated delta network with extra stages for communications
[24]. However, a proof that self-routing extended dilated
banyans can be made essentially nonblocking given any worse-
case traffic pattern has previously eluded researchers, i.e., see
[14]. Furthermore, explicit constructions of practical essen-
tially nonblocking self-routing connection networks proven to
have O(N log N) bit complexity have also eluded researchers.
The AKS sorting network [1] achieves O(N log V) bit com-
plexity but lacks explicit constructions. This paper is organized
as follows. Section II includes a review of banyan networks.
Section III describes the randomized routing algorithm and the
Extended Dilated Banyans. Section IV presents the proof of
the essentially nonblocking property. Section V considers the
hardware complexities of the TDM and SDM constructions.
Section VI discusses some variations, and Section VII contains
some concluding remarks.

II. TOPOLOGY AND ROUTING
ALGORITHMS FOR MULTISTAGE BANYANS

A “square” b™ x b™ banyan network of size N consists of
n = log, N stages, where each stage consists of N/b nodes,
where each node is a crossbar switch of size b x b. The stages
are labeled from 1 to n, and the N output ports from stage
i are connected to the N input ports of stage 7 + 1 with N
edges. Define a “path” through the banyan, from some input
port ¢ to some output port j, as a sequence of incident edges
(or “links”) which must be traversed in order to reach j from
i. By definition every banyan has a unique path between each
input port and each output port [23].

A binary “strict-buddy banyan” has been defined in [2] as
one with the following property; in every stage except the last,
each node has one “buddy” node that is connected to the same
two successor nodes in the next stage. A radix-b strict-buddy
banyan is defined here as a radix b banyan with the following
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Fig. 1. Examples of various factorized binary banyans.

properties (1); all nodes are of degree b, and in (2) every stage
except the last all 5"~1 nodes can be partitioned into b2 sets
where all b nodes in a set share the same b successors in the
next stage. The following theorem stated without proof since
it is used to obtain general theorems which are applicable to
all members of the fully extended dilated banyan networks.
Theorem 1: All higher radix (™ x b™) strict buddy banyans
are topologically equivalent.
Define a b" x b™ “factor” as a b" x b™ banyan or a b™ x b"
crossbar. The following claim will be essential to our proofs.
Claim: Any d™ x b™ banyan network can be topologically
rearranged into two stages of “factors,” with “factors” of size
b* x b® in one stage, and “factors™ of size b" ¢ x b"~* in the
other stage (see Fig. 1 for examples of factorized banyans).
The “factors” can be implemented with crossbars or by other
instances of factorized banyans. By application of Theorem 1,
it follows that properties 1 and 2 of the banyan are retained.
It is not difficult to verify that dilated banyan networks
have severe worst case performance, whether they are circuit
switched or packet switched. The worst case bandwidth of a
d-dilated banyan is O(v/N - d); for a I-dilated banyan with
64 K 10 ports the worst case bandwidth is a remarkably
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poor 256 connections or 0.039 of peak capacity. For an 8-
dilated banyan with 64 K IO ports the worst case bandwidth
is a remarkably poor 2048 connections or 0.031 of peak
capacity. The worst case congestion grows more severe as
the network size increases, severely limiting the usefulness
of dilated banyans as robust self-routing circuit switching
networks. In this paper, the worse case bandwidth problem
will be eliminated by using a fully extended dilated banyan,
as described in the next section.

III. RANDOMIZED ROUTING ON EXTENDED DILATED BANYANS

Consider the concatenation of any two self-routing n-stage
dilated banyans, yielding a fully extended dilated banyan with
2n stages. The first dilated banyan acts as a “randomization
network™ which attempts to route every connection request to
a random output port. The second dilated banyan acts as a
“routing network,” which attempts to route every connection
request to its intended destination.

If the resultant network is symmetric about its bisector then
the innermost stages of each network can be merged into one,
yielding a dilated Benes network with 2n — 1 stages. However,
the class of fully extended dilated banyans includes many
other networks which are not topologically equivalent to the
Dilated Benes network. In other words, the particular choice
of topology has little bearing on the main result. For example,
if both banyans have the topology of an Omega network
then the two innermost stages can also be merged into one,
yielding a dilated network with 2n—1 stages of shuffles, which
could be called the fully extended dilated Omega network.
This network is not topologically equivalent to the Dilated
Benes network, but the main result of the paper still applies.
Fig. 2(b) illustrates a typical end-to-end connection through a
space division dilated Benes network. Once the connection is
established, the data can be transferred over it, after which the
connection is torn down.

IV. A BOUND ON THE BLOCKING IN DILATED BANYANS

Consider a d-dilated b™ x b" banyan with n stages. As a con-
sequence of Theorem | on topological equivalence, all dilated
strict-buddy banyans share the following properties; 1) all links
leaving the same stage are topologically indistinguishable, 2)
all nodes in the same stage are topologically indistinguishable,
3) the n-stage network can be factorized into a network with
two stages of factors, with factors of size b° in the first stage
and factors of size 6" ® in the second stage. Furthermore,
given a uniform random traffic model then 4) all nodes in the
same stage are statistically identical and 5) all links leaving
the same stage are statistically identical.

A. Binomial Approximation for Dilated Delta Networks

Patel presented an analysis of unique path #" x 6™ Delta
networks in [23]. Delta networks are a subset of Banyan
networks which have the self-routing digit-controlled property;
at every stage a single digit in the destination tag is used
to select a unique outgoing link. Patel’s analysis is easily
generalized to model d-dilated " x ™ Delta networks. Each
d-dilated crossbar output port is incident to one ‘“dilated link”
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which can support up to d connections. Let Y; , denote the
probability that ¢ connection requests traverse a dilated link
leaving stage s of the network, where 0 < ¢ < d and
0 < s < n. The probabilities Y;  determine the input loading
to the network. Here after we will refer to “dilated links” as
simply “links.” An approximate analysis for a d-dilated ™ x "
delta network under a random uniform traffic model is given
by:

where wg is a binomial approximation for the input loading. If
1 < j < d requests select an output port than all can propagate
forward. Otherwise, d requests can propagate forward and the
rest are blocked. The generalized analysis is approximate since

(a) A space division construction of a fully extended dilated banyan. (b) A time division construction of a fully extended dilated banyan.

the distribution of arrivals to a node in stage s € 1 ---n is
actually a Multinomial distribution based on the probabilities
Yo s, Y15, -+ Yy s rather than a Binomial distribution based
on u, [17], [18]. The above analysis is nevertheless accurate to
within 5 or 10%. In order to obtain a rigorous upper bound on
the blocking probability, the Multinomial nature of the arrival
distribution must be considered.

B. Rigorous Upper Bound

Theorem 2 will apply to all networks which meet properties
1)-5) stated earlier, including the dilated banyans, under a
random uniform traffic model. The following two facts will
be necessary.

Fact 1 (Hoeffding [10]): If T is the number of successes in
N independent Bernoulli trials with probabilities p1,--- . pN
then if 3 p; = Np and m > Np + 1 is an integer then

Pr(T > m) < B(m, N. p)

where B(m, M, p) is the probability of at least . successes
in M Bernoulli trials, with the probability of success in any
trial equal to p.
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Fact 2: Valiant’s bound [19] on Chernoff’s bound states
that for any m > Mp

B(m, M, p) < (eMp) e Mp,
m

The end-to-end acceptance probability P A is defined as the
probability a connection request is established given that it
was offered, and the end-to-end blocking probability PB is
defined as probability a connection request is not established
given that it was offered.

Theorem 2: Let each of the ™ input ports in a b™ x b
d-dilated banyan source h < d connection requests. The end-
to-end blocking probability PB in an is upper bounded by

d n
1-— (%) -eh:| .

Proof: Let N = b". Define the random variable X ; as
the number of connection requests traversing link 7 leaving
stage j of the network for 0 < ¢ < N —-1land1 < j < n.
The random variables X; o determine the input loading. The
random variables assume values for each state of the network,
and the following expectations are defined over all destination
assignments corresponding to a random uniform traffic model.

By symmetry, all links leaving stage s are statistically
identical for 1 < s < n, hence the end-to-end acceptance
and blocking probabilities are given by

PA =E[Xy,.]/E[X0,0]s
PB =E[Xo 0 — Xo..)/E[X0.0)-

PB<1-

Computing limits on the distributions of the random vari-
ables X,; for all j as j — oo is one approach to the
bounding the blocking probability. However, this approach is
quite difficult when it is tractable, and it does not appear to
be tractable in the general case (see [11], [14]). Therefore,
it is worthwhile to re-formulate the problem. PA and PB
can be expanded and re-expressed in terms of the conditional
acceptance probabilities within each stage of the switching
network.

_ E[XO,TL]
PA = ‘E[XO,O]
_ElXo] | E[Xo,)] E[Xo, ]
E[Xo,0) E[Xo,1] E[Xo,n-1]"

The acceptance probability within each stage is denoted with
small letters to distinguish it from the end-to-end acceptance
probability. Hence, PA = pa; - pas - -- pa,, where pa, is
defined as E[Xy ,]/E[Xo,s—1]. Note that pa, is equivalent
to the exact probability a request is successfully routed out of
stage s, given that it has survived up to stage s. The conditional
blocking probability in stage s, denoted pb,, is equivalent to
the exact probability that a request is blocked while attempting
to leave stage s, given that it survived up to stage s.

By symmetry all bx b nodes in the first stage are statistically
identical and independent, and therefore we can consider any
one node. The number of input ports that can reach any output
link leaving stage 1 is b'; these input ports submit exactly
h - b connection requests. By symmetry these requests are
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evenly distributed over the b! links leaving each node in stage
1. The connection requests may appear at the inputs either
synchronously or asynchronously, and can be viewed as being
routed serially with all service orders equally likely. Thus, the
exact probability that the jth request to be serviced encounters
a saturated link and blocks is given by

B(d, j— 1, 1/N")

where N’ = b. It follows that an exact expression for the
conditional blocking probability of all requests in the first
stage, denoted pb,, is given by

1 N'h
pby = ﬂ; B(d, j — 1, 1/N").

The probability the last request (out of N'h) to be serviced
encounters a saturated link and blocks is therefore given by

B(d. N'h—1,1/N") < B(d.N'h, 1/N")

b\ ¢
(2

where the last inequality is obtained by inflating the number
of trials to N'h by the addition of one dummy trial with zero
probability of success, and then applying Facts 1 and 2.

The following two claims are stated without proof.

Claim 1: The conditional blocking probability of the last
request to be serviced is an upper bound on the conditional
blocking probability of each and every request to be serviced.

Claim 2: The conditional blocking probability of the last
request to be serviced is upper bounded when no blocking in
the previous stages is assumed.

By applying Claims 1 and 2, a lower bound for pa; is
given by the following:

d
p@e o

To establish a lower bound for pa, for 2 < s < n, factorize
the network into 2 stages, with factors of size b* x b° in the
first stage and factors of size b ~* x b™~° in the second stage.
By symmetry we need only consider any one factor in the first
stage and apply its bound to all factors in the first stage.

Consider an arbitrary connection request labeled X which
has been successfully routed up to stage s, and it is now
competing with other connections to exit stage s over some
link L. By symmetry, it suffices to consider any one path
leading up to some link L. Since there are exactly h requests
at each input port, then exactly 6° - h — 1 other connection
requests may compete with X for access to link L. Due to the
random traffic model, each path is equally likely to select any
output port of the factor. It follows that the probability that
X encounters a saturated link and blocks given that it did not
block in all previous stages is again upper bounded by (1).
Therefore, for 2 < s < n

d
1- (ij) -ehjl.

pas >




2526

Hence, the end-to-end blocking probability PB is

bounded by
eh\ ¢

C. Worst Case Traffic Patterns

upper

n

Theorem 2 bounds the blocking probability in a dilated
banyan given a random uniform traffic model. In this section it
is proven that the fully extended dilated banyans are immune
to severe performance degradation caused by worst case traffic
patterns. Historically, the worst case performance of a network
is evaluated under a “worst case permutation traffic model”
rather than a random uniform traffic model. This model
excludes output port conflicts and only consider blocking due
to internal link conflicts. In the permutation model, every input
port of the fully extended dilated banyan sources precisely h
connection requests and every output port is the destination of
precisely h connection requests.

Given a worst case permutation, randomized routing will
transform it into a random input-output mapping in the ran-
domization network, since every connection request is routed
to a random output port. Hence, the blocking probability
in the randomization network is bounded by Theorem 2.
However, in the permutation traffic model Theorem 2 will
not apply to the routing network; see [14] for a description of
the problem of bounding the blocking probability in circuit
switched networks under this traffic model. To summarize
the problem: The connection requests which have survived
through the randomization network and which are entering the
routing network are not randomly and uniformly distributed
over the input ports or the output ports of the routing network.
The connection requests are not randomly distributed over the
input ports since the positions they occupy are correlated.
The connection requests are not randomly distributed over the
output ports, since it is known that every output port is the
destination for at most h connection requests. Hence, Theorem
2 is not applicable under the worst case traffic model.

To overcome these problems, we assume that all connec-
tion requests survive through the randomization network. By
Claims 1 and 2 the upper bounds on the blocking probability
derived with this assumption will still apply. Hence, it can be
said with certainty that all paths are randomly and uniformly
distributed over the input ports of the routing network since
we are assuming no blocking in prior stages. (Note the
distinction between paths and surviving connection requests).
The following theorem derives an upper bound on the blocking
probability in the routing network.

Theorem 3: The conditional blocking probability I’ of a
b™ x b™ d-dilated banyan acting as a routing network in a fully
extended dilated banyan is upper bounded by

eh\?
PBSI—P—(T)~H“
(

Proof: Within the routing network PA = pa,41 -
PAnto -+ pas,. Consider any arbitrary connection request

n
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labeled X which has been successfully routed up to stage
n + s and which is now competing for access to an outgoing
link labeled L leaving stage n + s. It is convenient to factorize
the routing network into two stages of factors, with factors of
size b® x b* in the first stage and factors of size b" ™% x b %
in the second.

Due to the randomization every path is equally likely to be
mapped to each and every input port of the routing network.
Therefore within the routing network each of the NA paths
is equally likely to arrive at every factor in the first stage of
the factorized routing network. (Again, note the distinction
between paths and surviving requests).

Each factor in the second stage of the factorized network
has exactly N’ = b"~* output ports. Given the permutation
traffic model, at most h - N’ connection requests are destined
for any second stage factor. Therefore, connection request X
will compete with at most N'h — 1 other paths for access to
the same factor in the second stage. By symmetry and due
to the randomization, each path destined to the same factor
in the second stage is equally likely to attempt to enter that
factor over all incident links leading into that factor. Hence,
the probability that any other path will select the same link L
as connection request X is 1/N’. Thus, the probability that
X encounters a saturated link and blocks is upper bounded
as follows:

ch

d
bn sxSBd N/h—l.lN/ S _ .()7}’.
POnt pi

Therefore in an n stage routing network the end-to-end
blocking probability PB is again upper bounded by

(l 7
PBgl—P(%>~fﬂ. )
[¢

O
Theorems 2 and 3 establish rigorous upper bounds on the
average case and worst case blocking probabilities for the
class of fully extended dilated banyans. A connection request
will successfully make it through both halves with probability
>PA? and it will be unsuccessful with probability <1 —PA2.
In the permutation traffic model, we can tighten the upper
bound slightly. In this model, the last stage in the routing
network cannot block any requests, since there is never any
blocking at any output port. Furthermore, if the last stage of the
randomization network was combined with the first stage of
the routing network, then blocking can only occur in 2n — 2
stages.

D. Numerical Results

Fig. 3(a) illustrates the upper bound on the blocking proba-
bilities of asymptotically large dilated banyans operating at
a light offered loads (h = 1). Curves are shown for 8
dilated banyans, 12 dilated banyans and 16 dilated banyans.
For a fixed dilation, the upper bounds approach unity as
N — o0, although they do so very slowly. This observation
is consistent with Koch’s result in [11], which proved that
for fixed dilations, the blocking probability approaches 1 as
N — oc.
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Fig. 3. (a) Upper bounds on PB versus log, N for fixed dilations
(d = 8,12, and 16). Each dilation represents three curves for banyans of
degree 2, 4, and 8 (the smaller degrees have the higher PB). (b) Upper
bound ¥ersus exact PB for 12 dilated banyans of degree 2, 4, and 8. (Upper
bounds from Theorem 2; exact analysis from [17].)

Fig. 3(b) illustrates the exact blocking probability for 12-
dilated banyans (of degree 2, 4, and 8), and also the upper
bound computed from Theorem 2. The analysis for the exact
blocking probability of dilated banyans is detailed and can be
found in [17] or [21]. The upper bound is about two orders of
magnitude larger than the exact blocking probability, but the
“shapes” of the curves are remarkably similar.

E. Asymptotic Performance, Approximation

Using the Binomial expansion (1 — z)" ~ 1 —n -z for
x < 1, (2) can be approximated. Letting = = (eh/d)4 - e=*
then for 2 < 1 the upper bound on the blocking probability
can be approximated:

PB <logy N - (eh/d)* . e~

For small eh/d this approximation is good to many digits,
and it is very useful since (2) often yields numeric underflow
(since the PB can be extremely small). For sufficiently small
eh/d, the second and higher order terms in the binomial
expansion can be ignored, and therefore PB = O(log, N -
(eh/d)%).
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Fig. 4. PB versus log, log, N for a dilation d = 2 - log, log, .N'. Each
dotted line is an exact PB curve for a fixed loading h. The solid line is
an exact piecewise linear PB curve for h = |d/3¢],m which exhibits
discontinuities when h increases by 1, but approaches zero as N — oc.
Dashed curve is an upper bound on PB from Theorem 2.

F. Asymptotic Performance, Upper Bound

A rigorous bound on PB in either half, given a dilation
d = 6(loglog N) and a loading h = O(loglog N), can be
found as follows. The number of stages n is set to n = log, N,
the dilation d is set to d = log, log, N, and the loading on the
input/output ports h is set to h = d/(2¢), so that eh/d = 1/2.
Hence, PB is upper bounded by

1\? !
PB<1-— {1 - (7) -eh]
2
1 n
<1- {1 - (nl+l0g2 6/26)} ’

Letting y = (1 — 1/n!*1082 ¢/2¢) then log, y = log, [1 —
n(1+logz €/2€)] /11 /n]. The limit of log,y as n — oo is
oo /oc. By applying L’ Hospitals rule twice and taking the limit
as n — 00, one rigorously establishes that

lim PB<1-1=0. 3)

n—oo

Equation (3) establishes rigorously that the blocking prob-
ability of any connection request asymptotically approaches
zero as N — oo, given a dilation and loading that grow with
6(loglog N).

Fig. 4 illustrates the exact blocking probability of a dilated
banyan when d = §(loglog N) and h = 6(d). The exact PB
is computed from the analysis in [17]. For a fixed loading
(iie., h =1 or h = 2), the exact blocking probability drops
extremely rapidly as N — oo as proven in Theorem 2. Even
when the loading is allowed to increase with 6(loglog N) (i.e.,
the solid curve represents o = |d/3e|), the exact blocking
probability drops rapidly as N — oo. The dashed curve is
the upper bound on the blocking probability computed from
Theorem 2, for a loading of A = |[d/3e]. The blocking
probability approaches zero as N — oo, as the asymptotic
analysis indicates.
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Fig. 5. TDM and SDM constructions of a dilated 2 X 2 cross bar node. (a) A
TDM construction using linear cost “temporal bit concentrators”. (b) An SDM
construction using a lattice-like sorting circuit; the 0’s rise and the 1’s sink.

V. HARDWARE COMPLEXITY ANALYSIS

Dilations can be implemented using two techniques, Time
Division Multiplexing (TDM) and Space Division Multiplex-
ing (SDM).

A. “Time Bit Concentrators” with Linear Cost

An N x N binary banyan requires O(N - log N) nodes
(of degree two) arranged in O(log N) stages. Suppose each
2 x 2 node is time multiplexed to “simulate” a dilation of
6(loglog N). Basically, TDM will be used to implement a
novel bit concentrator in the time domain, which we can
call a “Time Bit Concentrator.” This concentrator operates on
individual bits and not entire packets, and its cost and latency
grows linearly with the number of bits it is concentrating.

Claim: The use of TDM in a b x b node (for bounded
b) to simulate a dilation of O(loglog N) incurs a cost of
8(loglog N) hardware per node and a latency of O(loglog N)
logic gate delays per node.

Proof: An implementation of a 2 x 2 node, using “Time
Bit Concentrators,” is shown in Fig. 5(a). The circuit is
synchronized to a global “bit-clock.” In every bit clock, each
input port receives a pair of bits from the last stage, and each
output port transmits a pair of bits to the next stage. These
bits have been concentrated in time, in order to implement a
dilation of O(d).

Each input port requires 2d bits of memory to store the
direction bits for up to d time multiplexed connections (either
“0” or “1” or “null” if there is no connection). These bits must
be loaded into a circular buffer initially as the connection head-
ers pass by, and are retained for the duration of the connections
(which may be hundreds of bit-times). For simplicity, each
output port uses 2 sets of bit-buffers; one set stores incoming
bits and one set supplies outgoing bits. In Fig. 5(a), the arriving
bits are directed to the appropriate output port where they are
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temporarily stored (concentrated in time). After servicing the
d time multiplexed connections, the incoming bit-buffers will
become the outgoing bit-buffers and visa-versa. The bit-buffers
themselves are “push/pop” stacks which can hold 2d bits,
which can be pushed or popped in constant time. Therefore,
the entire d-dilated 2 x 2 node requires O(d) logic gates and
O(d) bits of memory. 0

The entire TDM N x N switching network requires O(N -
log N) binary nodes, where each node uses a Time-Bit-
Concentrator to implement a dilation of O(loglog N). Since
each binary node requires O(loglog N) hardware and incurs
a delay of O(loglog N), then the entire network requires
O(log N -loglog N) hardware (which includes all logic gates,
bits of memory and crosspoints) and has an end-to-end set-up
time of O(log N - loglog N).

In order to express the cost and delay of this TDM network
fairly, its cost and delay must be re-expressed in terms of
its size, or equivalently the number of connection requests
which it can handle. The switching network can be viewed
as having a capacity of M = N - loglog N sources and
M = N -loglog N sinks (since each of the N input ports
and output ports shares h = O(loglog N) time-multiplexed
sources/sinks). Each of the N output ports requires O(h?)
hardware to deliver the traffic to the proper sink (out of h
sinks multiplexed onto that output port), but this overhead is
asymptotically negligible.

Theorem 4: An M x M switching network of the above
TDM construction has a worst case bandwidth of (M),
requires §( M -log M ) hardware, and has a propagation delay of
8(log M -log log M). The hardware cost is asymptotically opti-
mal and the delays are slightly suboptimal. (The proof follows
by substitution.) This construction has the fastest asymptotic
setup times among known self-routing circuit switches with
6(N) bandwidth with explicit time division constructions.

B. Space Division Implementation

An N x N binary banyan requires O(N -log N) nodes (of
degree two) arranged in O(log N) stages. Suppose each 2 x 2
node is space multiplexed to implement a dilation of d (which
will increase its degree to 2d).

Claim: The use of SDM in a b x b node (for bounded
b) to implement a dilation of O(loglog N) incurs a cost
of Ol(loglog N)?] hardware per node and a delay of
O(loglog N) per node.

Proof: A SDM implementation is shown in Fig. 5(b).
Each d-dilated 2 x 2 node can be implemented using a
type of lattice sorting circuit with 2d inputs and 2d outputs.
Connection requests arrive bit-serially at the left side, and use
a single bit to denote the desired output port; a 0 implies any
output link in the upper half of the outputs and a one implies
any output link in the lower half of the outputs. The arrows
represent bit-serial compare-exchange modules controlled by
a single bit; the O’s rise and the 1’s sink; once the state
of a comparator is set it remains there for the duration of
the connection, which may be hundreds of bit-times. Each d-
dilated 2 x 2 node requires O(d?) crosspoints and O(d?) logic
gates, and has a propagation delay of O(d) gate delays. U
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The entire SDM switching network then requires O[N -
log N - (loglog N)?] hardware and has a propagation delay
of O(log N - loglog N) gate delays. Once again, the cost and
delay of the SDM network should be expressed in terms of
M, the number of connections requests which can be handled
where M = Nloglog N.

Theorem 5: An M x M switching network of the above
SDM construction has a worst case bandwidth of §(M), re-
quires 8( M -log M -log log M) hardware, and has a propagation
delay of A(log M -loglog M) gate delays. (The proof follows
by substitution.)

These SDM cost figures are sub-optimal by factors of
#(loglog M) only, and represent improvements over the prior
best known space division networks. These figures are among
the lowest asymptotic costs and the fastest asymptotic setup
times of known self-routing circuit switches with §(/N') band-
width with explicit space division constructions. (These SDM
figures can be improved upon, but the improvement is beyond
the scope of this paper and will appear elsewhere [25].)

V1. PRACTICAL CONSIDERATIONS

The exact analysis of an ATM packet switch using a fully
extended dilated banyan is rather intricate. The exact analysis
must model the Input and/or Output queues external to the
switch fabric, which have Batch arrival and Batch departure
processes. An exact analysis must also compute the exact
blocking probability within the circuit switching fabric. The
reader is referred to [21] for detailed analytic models.

Fig. 6 compares the performance of a three-stage dilated
Clos network to a Batcher-banyan. Each network is circuit-
switched with N = 1024 1O ports. Each switching fabric uses
external input queues to store packets which have temporarily
blocked in any one time slot, which will be re-submitted in
the next time slot. When the dilation is >1 in the Dilated
Clos network, each input port attempts to establish d circuit
switched connections in every time slot. It will then transfer
one ATM cell over every established connection, after which
the connections are torn down and the time slot ends. A
random uniform traffic model is assumed.

To equate their costs both circuit switching fabrics use the
same number of gate-array integrated circuits (IC). Fig. 6
compares a three-stage dilated Clos network built with d-
dilated 32 x 32 crossbars versus a Batcher-banyan switch
built with 32 x 32 bitonic sorting circuits. Each d-dilated
32 x 32 crossbar and each 32 x 32 bitonic sorting circuit are
implemented on one gate array 1C, respectively. Each IC is
assumed to have the same number of IO pins, reflecting the
constraints of existing integrated circuit packaging technology.
For example, existing pin-grid-array (PGA) integrated circuits
typically have 256 10 pins. It follows that as the dilation
increases, the bandwidth of a connection decreases [21], since
more connections are using the same number of 10 pins. The
Batcher-banyan requires at least 11 stages of IC’s. The dilated
Clos network requires only three stages of IC’s. Hence, to
equate the hardware cost approximately 11/3 copies of the
Dilated Clos network are operated in parallel (see [21] for the
detailed calculations).
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Fig. 6. Practical comparison of extended dilated banyans with the
Batcher-banyan. Both networks have equivalent hardware cost (in gate array

integrated circuits) and use input queueing. (a) Normalized throughput versus
offered load. (b) Probability of packet loss versus offered load.

According to Fig. 6, the dilated Clos networks carry sig-
nificantly more traffic than the Batcher-banyan switch. Fur-
thermore, because they carry significantly more traffic, the
probability that a packet is lost due to input queue overflow
is much lower. (Note: both networks use the same number
of packet buffers in the external input queues.) From the
graphs, the throughput of the Dilated Clos network increases
with increasing dilation, and the improvement is attributed to
the improved link utilization. In effect, the TDM and SDM
implementations use a type of statistical multiplexing of con-
nections over the hardware, thereby improving the utilization.
While this comparison uses a three-stage dilated Clos network,
similar results hold even with five stage, seven stage, and in
general 2n — 1 stage fully extended dilated banyans.

Note that there is a tradeoff between maximized bandwidth
and minimized blocking probability. For maximized band-
width the Dilated Clos network should be operated at the high-
est possible loads, by setting h = d. While this increases the
internal blocking probability, the carried traffic is nevertheless
maximized since more connections are established in each pass
on average. The above graphs are based on maximized band-
width. The important point is that even at full loading, these
networks are still immune to severe worst case congestion.
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A. Hardware Experiences

An ATM-like switch fabric based upon a TDM dilated
banyan network has been developed by various students at
McGill University in a series of student projects. The TDM
nodes have been specified in the VHDL hardware description
language on the Mentor Graphics CAD environment. Multiple
Time-Bit-Concentrator nodes can be implemented on a single
Xilinx Field Programmable Gate Array (FPGA) IC. The degree
of time multiplexing is programmable and can be changed
in real-time by down-loading the appropriate bit-stream to
the Xilinx FPGA’s. The blocking probability can be made
arbitrarily low by adjusting the time multiplexing. We have
demonstrated in VHDL a self-routing digital switch with four
space division links and with a time multiplexing factor of 16,
yielding 64 logically addressable 10 ports. The key features
of the architecture are: it can scale to arbitrarily large sizes
while maintaining an arbitrarily low blocking probability,
while remaining provably immune to congestion, and while
maintaining O(N log N) hardware bit-complexity.

Variations: a) Randomization may be unnecessary in appli-
cations where the traffic is relatively random, and a “partial
randomization” scheme may be sufficient. In this case, the
number of extra stages to be added can be lowered or even
eliminated. b) The randomization network can be operated in
a nonblocking mode by having each node always forward all
requests. Each node can select a state from a small lookup
table of pseudo-random nonblocking states. ¢) It may be
useful to employ a deflection routing algorithm and have every
connection attempt to reach its real destination in the first
dilated banyan; only the deflected connections need be routed
through the second dilated banyan. While such a scheme may
be useful in practice, it seems difficult to formally prove that
it is immune to worst case congestion.

VII. CONCLUSIONS

It was proven that blocking probability of a dilated banyan
decreases rapidly as the dilation factor grows. With a dilation
of O(loglog N) and a loading of O(log log N) connections on
each IO port, the blocking probability of an individual con-
nection approaches zero. At a sufficiently light loading, dilated
banyans can be used as self-routing “essentially nonblocking”
circuit switching networks. By increasing the loading, they
can be used as circuit-switching networks which carry high
amounts of traffic.

In order to provide immunity to worst case traffic patterns,
it is sufficient to randomize the traffic through a randomization
network before routing through a dilated banyan. The resultant
networks are provably immune to severe internal congestion
problems by nature of the randomization network. The TDM
construction of a fully extended dilated banyan requires O(N -
log N) bits of internal memory and hardware and meets
Shannon’s asymptotic lower bound on the cost of essentially
nonblocking networks. The SDM construction requires O(N -
log N -log log IV) bits of internal memory and hardware, which
is slightly sub-optimal. However, asymptotically it is signif-
icantly less expensive than the well known Batcher-banyan
switch and other circuit switches which are based on sorting
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networks. For realistic sizes, the performance improvements
of the dilated banyans over the Batcher-banyan are about an
order of magnitude.
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