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We show an embedding of the star graph into a rectangular
optical multichannel mesh of 4 dimensions such that the embed-
ding has no bends; that is, neighbors in the star graph always
differ in exactly one coordinate in the mesh, to facilitate one-hop
optical communication. To embed an n-star, the mesh can have
any number of dimensions d between 1 and n —1. The embedding
has load 1 and an expansion of at most n?='/d!. The size of the
mesh will be at most

nx-.--xnx(nl/d).
——— e
d—1

We optimize the size of the host mesh using clique-partitioning
to produce embeddings with expansions as low as unity. In two
dimensions, for even n, the mesh will be no larger than nx
n(n — 2)!, and have an expansion of no more than 1 1/(n = 1),
Further, we show how we can use a contraction method to effi-
ciently embed the star graph into an optical mesh with near-unity
aspect ratios. Contraction on a two-dimensional embedding will
yield a mesh of size no larger than n x n for even n with a load
of “‘I — 2)!. © 1997 Academic Press

1. INTRODUCTION

1.1. Motivation

Efficient embeddings of star graphs into optical multichan-
nel meshes are proposed. Our motivation comes from the re-
cent development of mesh-like optical networks with multiple
channels in each dimension [4, 6, 10, 14, 15]. However, this
paper is essentially a theoretical result applicable to any tech-
nology that favors rectangular embeddings without bends.

Optics is expected to impact future computing architectures
by providing the capability of hundreds and potentially thou-
sands of high bandwidth optical communication channels be-
tween processors. One attractive model for a computing archi-
tecture places the processors in a two-dimensional arid with
tens or hundreds of reconfigurable and partitionable optical
channels in each row or column [14, 16]. One advantage of
this model is its physical realizability, since all optical chan-
nels are parallel and arranged in rows and columns. The optical
channels in each row or column can be realized by multiplex-
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ing multiple wavelengths onto a single fiber [4, 10, 14]. Al-
ternatively, the optical channels in each row or column can be
realized by exploiting hundreds or thousands of microscopic
optical beams emanating from a single optoelectronic device
such as a smart pixel array [15, 16]. Finally, the optical chan-
nels can be realized by exploiting the temporal advantages of
optics, i.e., the ability to clock optics at much higher rates then
electronics, creating the means to support multiple electronic
channels in the optical medium [6, 15].

The need for straight line connections, particularly in free-
space optics, and the convenience of rectangular structures
provided the motivation for finding a way to embed the »n-
star into a rectangular grid, say in two dimensions, such that
neighbors in the graph are always in either the same row or
the same column.

Akers et al. [1] introduced the star graph as an alternative to
the hypercube. The n-star is an n!-node regular automorphic
graph. Nodes are labeled with different permutations of n
symbols. Nodes are neighbors if the label of one can be
transformed into the label of the other by swapping the first
symbol with one of the other symbols. Due to its small
diameter ([3(n — 1)/2]) and sublogarithmic degree (n — 1),
the star graph outclasses the hypercube in many aspects. See
Day and Tripathi [3] for a comparative study.

A way of embedding meshes into the star graph has been
shown by Ranka er al. [12]. Thus a star graph can simulate an
n-dimensional mesh efficiently. We are proposing the opposite,
an embedding of the star graph into a mesh.

Motivated by the need for embeddings of star graphs
onto two-dimensional devices such as printed circuit boards,
Hoelzman and Bettayeb [7] investigated the genus of a star
graph. The genus of a graph determines the number of
“bridges™ that have to be placed on a two-dimensional surface
to avoid edge crossings. They found that the star’s genus is
lower than a hypercube’s and concluded that the layout of
a star graph should be more efficient than the layout of a
hypercube of similar size.

In contrast to board layouts, edge crossings are not a
problem in free-space optics. However, unnecessary bends
can be problematic. Up to this point, there has not been
a convenient way to embed a star graph into a common
rectangular physical device. We propose a way of embedding
star graphs into two, three, or more dimensions, such that the
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positions of neighbors differ in one coordinate only. Hence.
in a two-dimensional embedding, neighbors always share the
same row or column.

1.2. Graph Embeddings

In [9]. Leighton defines several terms to describe embed-
dings. When embedding one graph into another, we say, we
embed the guest graph into the host graph. We call the ratio
of the number of host graph nodes over the number of guest
graph nodes the expansion of the embedding. The dilation of
an embedding is the maximum path length in the host graph
between neighbors in the guest graph. The maximum number
of guest graph nodes that are embedded into the same host
graph node is called the load of an embedding.

The embedding of an (1 — 1)-dimensional mesh into an 7-
star by Ranka et al. exhibits a load and expansion of 1 and a
dilation of 3.

Our unoptimized embedding of the star graph into the d-
dimensional mesh will have a load of 1, an expansion of at
most n?='/d!, and a dilation of at most n!/d! — 1. Most
importantly, the embedding will have no bends. We say that
the embedding has a bend if and only if any of the host
graph nodes corresponding to neighbors in the guest graph
nodes differ by more than one coordinate in their labels.
Finding an embedding of a graph into a mesh without bending
edges and having load and expansion one is a known NP-
complete problem called Edge Embedding on a Grid |5]. Our
proposed embedding solves Edge Embedding on a Grid for
selected even-n n-star embeddings in two-dimensional meshes.
When the expansion-one condition is removed, our proposed
embedding strategy solves Edge Embedding on a Grid for all
n-stars in arbitrary dimensional meshes.

We also present two optimization methods, called group
optimization and contraction, which can reduce the expansion
and dilation considerably. In two-dimensional mesh embed-
dings, group optimization guarantees an expansion below |
2/(n — 1) while maintaining unity load. Contraction increases
the load without increasing the degree or introducing inter-
nal edges within vertices in the contracted node. At the same
time, contraction improves the aspect ratio of the host mesh,
and thus the dilation of the embedding. In two dimensions,
the dilation is no more than n + 1 while the aspect ratio is
no greater than n + 1: n. As well as improving the aspect
ratio, the contraction operation we propose solves the known
NP-complete problem Graph Homomorphism [5] for n-stars
embedded into selected Jd-dimensional meshes. See [16] for a
discussion of NP-complete problems related to embeddings in
optical multichannel meshes.

1.3. Optical Model

Consider a mesh-based computing architecture, with n¢
electronic nodes arranged in a d-dimensional array and with
an optical medium interconnecting the n nodes in each row,
column, or dimension. The electronic nodes can represent
printed circuit boards, multichip modules, or integrated cir-

cuits. Hence, each node may contain multiple processing ele-
ments. Due to the bandwidth advantage of optics, the optical
medium within a row or column can support multiple chan-
nels; in a typical configuration, each electronic node may re-
serve its own contention-free broadcast channel along a row
and a column, This optical multichannel mesh architecture has
been called a hypermesh [14].

This optical model assumes that the passing of a packet
between any nodes along one dimension requires one logical
hop. For example, passing a packet from one node to another
node along a contention-free optical channel in the same row
takes one hop regardless if the nodes are spatially nearest
neighbors or at opposite ends of the row. When a guest graph
is embedded into this optical mesh model, the number of
dimensions traversed in an edge embedding is more relevant
than the physical distance, since broadcasts along a row or
column require one logical hop regardless of the destination’s
position within the row. Equivalently, the number of bends
of an embedding is more important than its dilation. If an
embedding of a guest graph edge into the optical multichannel
mesh has & bends, then a packet requires k + 1 hops to get
from one guest node to its neighbor. In this model, the number
of bends replaces the dilation as a distance measure of an
embedding. As a result, the diameter of this optical mesh-like
network can be much smaller than that of the electrical mesh
[14]. In the worst case, it requires d logical hops to transmit
a packet between the furthest apart nodes in an d-dimensional
optical multichannel mesh model. In the conventional mesh
model, where packets can only hop along host graph edges
between physically nearest neighbors, it requires d - (n — 1)
logical hops to transmit a packet between the furthest apart
nodes in the worst case.

In the remainder of this paper, we will first describe the star
graph introduced by Akers et al. in [1] and the d-dimensional
mesh. Then we will present and prove the embedding strategy.
Finally, we show a few examples of embeddings.

2. MESH AND STAR GRAPH

A d-dimensional mesh H = (Vy, En) of size N =
ny X na X --+ X ng has N nodes and extends n; nodes into
dimension i. The N mesh nodes in Vy are labeled with d
coordinates; that is,

veVy (1)
&y =1, V2. oees Vd)
where 0 <v; <npj—land 1 <i <d. (2)

Two nodes u, v € Vg are neighbors, i.e., uv € Ey, if their
labels only differ by one in exactly one coordinate [13]; that is,

uveklby (3)
sdiell,2, ..., d u—vi|=1 AYj#iuj=vj. 4
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FIG. 1. The 4-star (left) and (4 x 6)-mesh,

An n symbol star graph § = (Vg, Eg), or n-star as intro-
duced in [1], is a graph with N = n! nodes of degree n — 1.
The n! nodes are each labeled by a different permutation of
n symbols from a set § = {s1, 52, ..., s,}. We will choose
these symbols to be the numbers 0 ... n— 1. Formally, we say,

veVs (5)
S V=0, V2, co; V) AV, V2, s, Wb =80 (6)

As mentioned in Section 1.1, two nodes u, v € Vs are neigh-
bors if the label of « can be transformed into the label of v by
exchanging the first symbol of #’s label with one of the n — 1
remaining symbols in its label; that is

uv e Eg CT)
SIHFEluy=vi AV &AL, iYu; =v;. (8)

For example, node 23410 of the 5-star has the four neigh-
bors 32410, 43210, 13420, and 03412, Figure 1 shows a
4-star and a (6 x 4)-mesh.

For comparison, respectively, n!-node star graphs and n!-
node square meshes have degrees n — | and 4, diameters
13(n —1)/2] and 2+/n! — 2, and average distances n +2/n —
4+ 30, 1/i and 2(v/n! — 1//n)/3.

3. EMBEDDING

Until now, it has been unknown if the star graph could be
embedded into an orthogonal structure such that all neighbors
are in either the same row or column. Fortunately, we were able
to determine such embeddings for arbitrary size star graphs and
arbitrary dimensional host-meshes. Hereafter, we will assume

that the mesh which is to host an n-star is of n or fewer
dimensions. The mesh may have higher dimensions, but we
will not utilize more than n dimensions.

Let us introduce and prove the embedding strategy in
Section 3.1. In Section 3.2, we shall show a way of minimizing
the expansion of the embedding through a method we call
group optimization, and will show some example embeddings.
Finally, in Section 3.3, we use a contraction method to improve
the aspect ratio of the embedding to near unity.

3.1. Embedding Strategy

To construct an embedding, we will look at every star
node and insert it into two appropriate sets. We call these
sets clusters and groups. The label of a node will determine
its group and cluster, which in turn will determine the
node’s position in the mesh. First, we describe how such an
embedding is found. Then, we shall formally prove that such
an embedding can always be found.

Assume we are dealing with an n!-node n-star, and assume
we are trying to embed it into a rectangular mesh of d
dimensions. In this case, we will put each node into one
of n!/d! groups, each containing ! nodes, and into one of
n!/(n —d + 1)! clusters, each containing (7 — d + 1)! nodes.

3.1.1. Clusters

A cluster is a (n —d -+ 1)-substar within the n-star. For each
node, its cluster is determined by the last ¢ — 1 symbols in
the label. For example, if we want to find the correct cluster
for node v = 30421 given that we want to embed it into a
three-dimensional mesh, then the last ¢ — 1 symbols in label
of v are 21, and hence v belongs in cluster C,;.
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More formally,

v €Cccy..ca-1

S (Vp—d+2, Vn—d+3s == s Vi) =061y B3y g BP0 9)

In order to specify a node’s position in the d-dimensional
mesh, we need to specify d coordinates. The first d — 1 coordi-
nates are determined from the cluster, and the last coordinate
follows from the node’s group.

We use the ¢ — 1 symbols that mark a cluster as the first
d — 1 mesh coordinates of the nodes in that cluster. Nodes
in our example-cluster Ca; will have 2 and | as their first
two coordinates when embedded into the mesh host-graph. It
should be noted that not all mesh positions will be associated
with a cluster. Host graph nodes whose labels have duplicates
in their first d — 1 coordinates cannot be associated with any
star graph nodes since it would imply that such a star graph
node had duplicate symbols in its label. For example, host
graph node 2,2, 3,1 will always remain unoccupied by guest
nodes because the label of a guest node would have to end
with 223. However, no permutation of n different symbols
has any duplicates.

3.1.2. Groups

To find the last coordinate of a node, we look at its group. A
node’s group is determined by the n — d symbols in positions
2 through n — d + 1 in its label. For instance, v = 30421
would be a member of group Gs because symbols 2 through
n—d+1in v's label are 0 and 4. The other members of
Gos are 10423, 10432, 20413, 20431, and 30412. Formally,
we say

Ve G._"-'IHE v Bn—d

& (V2, V3, vy Va—ds1) = (81, 820 -+ -0 Bn-a): (10)

Since |G| = d!. we have n!/d! groups. We arbitrarily assign
an ordering to the groups and number them accordingly from
0 to n!/d! — 1. In the proof we will call this ordering map-
ping O. The group’s index in the ordering will serve as the
dth coordinate for all of the group’s nodes. Thus, the group
and cluster of a node determine all d coordinates of the node’s
embedding in the host graph. See Fig. 2 for a visualization of
the mesh coordinate assignment procedure.

Now, we are ready Lo state the embedding as a theorem.

3.1.3. Proof
THEOREM 1. Assume an n-star § = (Vs, Eg) where all
nodes are labeled using symbols from set & = {0, ... n —
1} and a d-dimensional mesh host graph H = (Vy. En)
of dimensions
nx-exnxnl/dl).
e’

d—1
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FIG. 2. Finding the coordinates in the host graph.

Further. consider a one-to-one mapping O: (all permuta-
tions of n — d symbols from S} — {0, 1, 2, ..., nlfd! — 1}.
Then S can be embedded into H with no bends and load 1. Such
an embedding is achieved by embedding every node v & Vs into
a node u € Vy such that

ud)
= (Vi—d+2s Vn—d+3s <+ +s Va=1s Vns
O((va, V35 - -y Vn—d+1)))-

(K1, U2y ooy Ud=2 Ud—15

(1)

Proof. We call § the guest graph and H the host graph.

No two different nodes can belong to the same group and
the same cluster since nodes with the same group symbols
(symbols 2 ... n—d+1) have different permutations of cluster
symbols (symbols n — d +72...n), and vice versa. Hence,
every guest graph node is embedded into a unique host graph
node.

To show that there are no bends between guest graph
neighbors in the host graph, we need to show that the labels
of host graph nodes of neighbors in the guest graph differ by
one coordinate only.

All members of one cluster differ in only one coordinate in
their host graph labels since the cluster determines d — | of d
coordinates, which are common. Further, recall that the labels
of neighbors of a star graph node are found by swapping the
first symbol in a node’s label with one of the n — 1 other
symbols. It follows that a node in a cluster C must have n —d
of its n — 1 neighbors in C since d — | neighbors can only be
reached by changing one of the last d — 1 symbols. Butn—d
neighbors leave the last d — 1 symbols unchanged and those
neighbors are thus within the same cluster.
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The remaining ¢ — 1 neighbors of a node v (which are found
by swapping the first symbol with one of the ¢ — 1 last ones
of node v) are in the same group as v since the labels of those
neighbors have the same symbols 2 through n —d + 1. v and
its neighbors in the same group share the same dth coordinate
in the host graph label. Moreover, these ¢ — 1 neighbors of v
in v's group differ with v in only one of the last ¢ — 1 symbols,
and since the last d — 1 symbols are the first  — 1 coordinates
in the host graph, the labels of these guest graph neighbors
differ by only one coordinate in the host graph. M

column 0 1 2 3

FIG. 3. Unoptimized embedding of the 4-star into a (4 x 12)-mesh as
yielded by Theorem [.

3.2. Group Optimization

According to Theorem | we embed the 4-star of Fig. | into a
4 % 12-mesh as shown in Fig. 3. In Fig. 3, every group occupies
one row and some nodes are left “idle.” We can improve
the efficiency of the embedding by mapping two groups into
every row in order to reduce the number of idle nodes, thus
reducing the expansion of the embedding. Ideally, two groups
will occupy distinct nodes and fully occupy all the nodes in
a row, resulting in an embedding with unity load and unity
expansion. To achieve this improvement, we need to find a
perfect matching between pairs of groups. Figure 4 illustrates
an embedding of the 4-star into a (4 x 6)-mesh (from the
original embedding into a (4 x 12)-mesh shown in Fig. 3)
obtained using a perfect group matching.

For general ¢-dimensional embeddings, we shall refer to a
group’s dth coordinate as its row, just as in the 2-dimensional
case. We can put two groups with all their nodes onto the
same row if none of their nodes claim the same mesh node,
as determined by the nodes’ clusters. As we will show in
Theorem 2. it turns out that we can put those groups that differ
by two or more symbols in their labels onto the same row.

In order to determine which groups can he placed on the
same row in a group-optimized embedding, we shall place all
groups with the same symbols into a mefa group T such that

Geigrengna € Uit oo yua)

< (g1, g2, ..., gu—g) 18 @ permutation of
[Vi« Y2y neney anc."}- CLZ)
column 0 1 2 3

FIG. 4. Group-optimized embedding of the 4-star in a 2-d mesh.
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FIG. 5. Clique partitionings of M, 5, M5 5. and M 5.

Each meta group T holds |I'| = (n — d)! groups.

Groups that differ in two or more symbols can share a row,
cf. proof of Theorem 2. Thus, we construct a meta group graph
M, 4 = (Va, Ep) in which nodes represent meta groups and
an edge is present whenever two meta groups differ in at least
two symbols:

Vi =[v:vis aset of n —d symbols from S}  (13)

and

Ey={uwv:junvl<n-—d-2} (14)

Now, we show how we can use a method called cligue-
partitioning and a meta group graph to group-optimize the
embedding of a star graph. Note, that a meta group graph
M, 4 = (Vy, Ep) can always be partitioned into ¢ cliques
for some ¢ < |Vyl.

THEOREM 2. Given a clique-partitioning of a meta group
graph M, g into ¢ cliques, we can embed an n-star into a d-
dimensional mesh of size

nx---xnxc:(n—d)
e ——’
d—1
with load one and no bends.

Proof. A clique partitioning of an M, 4 is a partitioning of
the nodes of M, 4 into cliques, i.e., complete subgraphs, such
that every node is a member of exactly one of these cliques.

Take any two groups G| and G» whose meta groups are
neighbors in M, 4. G) and G2's symbols differ in at least
two. Consequently, their respective clusters differ in at least
one symbol (recall that

S182 «v Sp—d+1 Sn—d+42 - Sn)

group cluster

and so members of G and G» can never occupy the same
mesh node even if placed in the same row.

In a clique, all meta groups are neighbors, and hence we
can embed one group from each meta group in a clique into
the same row. There are ¢ cliques and (n—d)! groups per meta
group. Thus, we can embed the n-star in a d-dimensional mesh
of size

nx--xnxc-n—d)!

—_—
d—1

with load one. M
We observe that the expansion e is

n=l . etn —d)!

n!

e= (15)

It is desirable to partition M, 4 into as few cliques as possi-
ble in order to minimize the expansion. However, clique par-
titioning is a well known and hard problem. Algorithms for
clique partitioning exist, and a survey can be found in [11].
Optimal partitionings of My 3, Ms 2, and Mg 2 are shown in
Fig. 5.

In two dimensions, we can determine an upper bound on
the expansion by exploiting symmetry in the meta group graph
M, ». First, we show how to partition an M, 2.

LEMMA 3. An M, » can be partitioned into n cliques if n

is even, and n + 1 cligues if n is odd.

Proof. The labels of M, 2 consist of n —2 symbols. For
simplicity, we may alternatively identify an M, 2 node by the

012345‘% node

sidd Li—=11 | 05

distance o e
even —T S li
. (. clique
distance L—_In q

FIG. 6. A clique-partitioning of Mg /M 5.
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TABLE I
Star Graph Embeddings in Two Dimensions

Star 2-dimensional mesh
Unoptimized Group optimized Contracted
n Nodes n! size expansion size expansion size load
-4 24 4 x 12 2 4 % 6 1 4 %3 2
5 120 5 % 60 23 5% 30 11 5% 5 6
6 720 6 x 360 3 6 x 120 1 6 x5 24
7 5040 7 x 2520 31 7 x 840 L T %7 120
8 40320 8 x 20160 4 8 x 5040 1 8 x7 720
9 362880 9 x 181440 41 9 x 45360 11 9% 9 5040

two symbols that are missing from its label. For example,
node 0145 in Mg 2 can be uniquely identified by its missing
symbols 23. Using these new labels, M, 2 becomes My n—2.
In fact, this symmetry holds for all d and clique-partitioning
an M, 4 is equivalent to clique-partitioning an M, ,—d.

In an M, ,_>., neighbors have no symbols in commeon. We
select cliques by choosing pairs of symbols, corresponding to
My, n—> node labels, that do not overlap. For instance, symbol
pairs 01, 23, and 45 form a clique. Let us define the distance
between two symbols s; and s> as the smallest integer A such
that 52 = (s1 + A) mod n. Every symbol needs to pair up with
[(n — 1)/2] odd, and [(n — 1)/2] even distance symbols in
order to form the (3) meta group graph node labels.

When n is even, we pair up symbols at odd distances
n—1,n—3, ..., 1toform n/2 cliques that cover all the odd
distance symbol pairings. Similarly, we create n/2 cliques to
cover all the even symbols pairings. See Fig. 6 for an example.
In this way, we partition M, ,—2 and consequently M, > with
n cliques.

When n is odd, we introduce a ghost symbol n + 1 to
make the number of symbols even and then proceed as in

Now, we use Lemma 3 to get an upper bound on the ex-
pansion.

THEOREM 4. A group-optimized unity-load embedding with
no bends of an n-star into a two dimensional mesh has an ex-
pansion of no more than 1 1/(n—1) if nis even, and 1 2/(n—1)
if nis odd.

Proof. The proof follows from Lemma 3 and the formula
for expansion (15) where the number of cliques cisnorn+1
when #n is even or odd, respectively. H

Theorem 4 guarantees us that we can always find a near
unity expansion embedding in two dimensions. In Tables 1 and
11, we have compiled parameters of actual embeddings. Table
I obeys the expansion bound of Theorem 4 and even suggests
a tighter actual bound of unity ifniseven,and 1 1/(n—1)if
n is odd. Table TI suggests that the expansion also approaches
unity as the star graph size increases. Figures 7 and 8 show
example embeddings of the 5-star in two dimensions and the
4-star in three dimensions.

In the next section we will show how the high aspect ratio
of the larger embeddings can be reduced to yield aspect ratios

the even case. W of approximately unity.
TABLE I
Star Graph Embeddings in Three Dimensions
Star 3-dimensional mesh
Unoptimized Group optimized Contracted

n Nodes n! size expansion size expansion size load
4 24 4 x4 x4 2% 4 x4 x4 2% 4 x4 x4 1
5 120 5x5x%20 4! 5 %35 %10 25 L 2
6 720 6 x 6 x 120 6 6 % 6 % 36 14 6% 6x6 6
i 5040 7 x 7 x 840 81 7 x 7 x 168 l% T xT% T 24
8 40320 8 x 8 x 6720 102 8 x 8 x 840 11 8x8xT7 120
9 362880 9 % 9 x 60480 13 9 x 9 x 5040 11 9x9x7 720
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14203 03412 34201 23410
14023 03142 34021 23140
12403 04312 32401 24310
12043 04132 32041 24130
10423 01342 30421 21340
10243 01432 30241 21430
23104 43102 03241 13240
23014 43012 03421 13420
21304 41302 02341 12340
21034 41032 02431 12430
20314 40312 04321 14320
20134 40132 04231 14230
13204 04213 43201 34210
13024 04123 43021 34120
12304 02413 42301 32410
12034 02143 42031 32140
10324 01423 40321 31420
10234 01243 40231 31240
03214 24103 34102 43210
03124 24013 34012 43120
02314 21403 31402 42310
02134 21043 31042 42130
01324 20413 30412 41320
01234 20143 30142 41230
32104 42103 13402 23401
32014 42013 13042 23041
31204 41203 14302 24301
31024 41023 14032 24031
30214 40213 10342 20341
30124 40123 10432 20431

FIG. 7. Embedding of the 5-star into a 2-dimensional mesh.

3.3. Contraction

For large star graphs, the high aspect ratio of the mesh, e.g.,
8 x 5040 for the 8-star in 2 dimensions, may complicate phys-
ical implementation. In this section, we will show how we
can use contraction to efficiently improve the aspect ratio, and

/ 23011302 /
| 3102[2103
" 3201 1203
{2310 0312
/ 3012[2013]/
i [3218 0213]
41320 8321 2
/3120 01231 ;
/ 3021 1O |
2130 0132 ]
20311032
12300231

FIG. 8. 3-d embedding of the 4-star.

thus the dilation of the embedding, by reducing the number of
rows in the embedding to be equal to the number of cliques
in a clique-partitioned meta group graph. In two-dimensional
embeddings, we will have no more than n + | rows, implying
a dilation of at most n.

We can reduce the aspect ratio by contracting several nodes
into one, thus increasing the load. Two caveats are required,
though. First, contraction should not increase the degree of a
node. Otherwise, the aspect ratio problem would merely be
shifted from a large-size problem to a large-degree problem
[2]. Second, contracted nodes should not have internal edges.
If internal edges were present, potentially slow electrical
intranode connections might have to replace otherwise fast
optical internode links.

A solution to the second caveat in the contraction problem
can once again be found in the meta group graph introduced
in Section 3.2. Every star graph node is part of a group and
meta group, which in turn make up the meta group graph. and
within a meta group, all star graph nodes of a given cluster
are isolated.

THEOREM 5.  Star graph nodes of the same cluster have no
neighbors in their meta group.

Proof. Let nodes u = (u1, ..., uy) and v = (vy, ..., vy)
be any two distinct members of the same cluster and meta
group. Then (uz, ..., uy,) is a permutation of (vz, ..., v,).
Consequently, «; = vy, and « and v cannot be neighbors in
the star graph. M

By Theorem 5, we can contract all (n — d)! star graph
nodes of the same cluster and meta group into one mesh node
without introducing any potentially slow electrical intranode
connections. Further, we can show that although contraction
may increase the load of the embedding substantially, the
degree of the host node will remain at n — 1, i.e., the degree
of the star graph.

THEOREM 6. The degree of a contracted node containing
all nodes of a meta group for a given cluster is equal 1o the de-
gree of the individual nodes.

Proof. Foreachi =1, ..., (n—d)!, let u' denote a subset
of the nodes in a meta group Iy, .., ) Which share the same
cluster. All nodes u' are embedded in the contracted node u.

3{014)2

FIG. 9. Contracted embedding of a 5-star in two dimensions.
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input: n.d dimensions of star and mesh
contraction “true’ if contraction is desired

Embed(n,d,contraction)

Q=clique-partitioning of Mg

row=0

foreach clique C inQ

foreach meta group I' in C

thisRow=row

foreach group GinI”

[ foreach permutation (p, ....,p;) of {0,...n-1 -1y ey et
Eueslnode ol (pyaeeaay ,lhisRow)=(p|.g|,...,gn_d Daseeally)
if contraction=false then

‘ | thisRow = thisRow+|

if contraction=false then
row=row-Hn-d)!

else

‘ row=row-+1

FIG. 10. Group-optimized embedding algorithm with optional contraction.

For example, in Fig. 9, contracted node # = (3, 0, 1, 2, 4) in
the upper right corner holds nodes «!' = (3. 0, 1, 2. 4), u? =
(30,2, 1,4, u3 = (3,1,0,2, 4, u* = 3, 1, 2, 0, 4),
w = (3,2, 1,0, 4), and u® = (3. 2. 0, 1, 4). These u are
all part of cluster C4 and members of meta group g,y 2

We label u by (u1. y1. ..., Yo—a. tn_as2. ..., uty). We ob-
serve that for all § = 1,..., (n — &), uy = uy, and
Uy _gyns - s Uy) = (Uy—g42, «.., #,). The cluster of all

nodes inuis Cy, , ., . wy- Within Gy, o, every u’l con-
nects to a node with the same label only with symbols u) and
Yk, Where k =1, ..., n — d, exchanged. Since uy = u'f =
forall nodesin "\, ,, ) and in cluster Ct_ gz oo tigy all Yo~
symbol edges of the nodes in # will connect to contracted node
v of meta group Uiy . .. yogl—ty) 0 cluster Cuy yonoou,-
Intragroup edges will also connect to the same contracted node
in a different cluster since the neighbors’ meta group remains
Py W

Since we contract all nodes of the same cluster in one meta
group into one contracted node. we only require as many rows
for our embeddings as there are cliques in a clique partitioned
meta group graph. Thus, in two dimensions, by Lemma 3, we
require no more than n + | rows,

A contracted embedding of the 5-star in two dimensions is
shown in Fig. 9. The aspect ratio of the embedding is now
reduced from 30 :5 to 5: 5 with a load of (n —d)! = 6. The
degree of the contracted nodes is still n — 1 = 4.

Tables I and II show parameters of contracted embeddings
for star graphs of up to 9! nodes. Figure 10 shows the algorithm
for group-optimized embeddings with optional contraction.

4. CONCLUSION

Star graphs can be embedded in rectangular meshes in up
to n — 1 dimensions without bends. thus allowing for one-
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hop optical communication between star graph neighbors in a
rectangular implementation.

These embeddings exhibit load 1 and expansion of at most
n?='/d\. Using clique partitioning. we were able to reduce
the size of the host graph and produce embeddings with ex-
pansions as low as unity for two-dimensional embeddings and
close to unity in three-dimensional embeddings. In general, the
expansion of a group-optimized two-dimensional embedding
is guaranteed not to exceed 1 2/(n — ).

By increasing the load in a contraction process, we were
able to reduce the aspect ratio to values near unity without
requiring potentially slow electrical intranode edges. Further,
we managed to keep the degree of a contracted node at n — I,
the degree of the embedded n-star.

After Latifi and Bagherzadeh [8] overcame the scalability
problem on the n!-node star graph, our embedding procedure
eliminates one more obstacle that has hindered the practical
use of star graphs.
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