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A formal model for a class of optical mesh-based interconnec-
tion networks called “hypermeshes” is proposed and character-
ized. Hypermeshes are based on the concept of orthogonal cross-
bar switches, with N nodes arranged in n-dimensional mesh
structure where all nodes aligned along a dimension are intercon-
nected with an optical multichannel switch. The optical multi-
channel switches can be modeled as hypergraph “hyperedges”
which can perform multiple data transfers over their members
simultaneously. The hyperedges can be implemented with space
division multiplexing (SDM) in the electrical or optical domains or
with wavelength division multiplexing (WDM) over a single fiber
in the optical domain. The use of WDM over a fiber also reduces
the hypermesh “interconnection complexity” to rival that of a 2D
mesh. An architectural characterization is performed and the
combinatorial properties, including rearrangeability, permutation

capability, partitionability, embedding capability, and bisection -

bandwidth, are characterized. It is shown that every algorithm
which can execute conflict-free on an omega network can execute
conflict-free on a hypermesh and that every graph which can be
embedded into a hypercube with dilation k can be embedded into
a hypermesh with dilation <k. Hypermeshes are shown to have
high bisection bandwidths, thereby minimizing the time for many
common algorithms such as parallel sorting. It is shown that un-
der the constraint of equivalent aggregate bandwidth the hyper-
meshes are considerably more powerful computational models

than meshes, generalized hypercubes, and other orthogonal -

graphs. Two attractive optical implementations of hypermeshes
using optical technology recently advocated in the literature are
also pI‘OpOSCd. © 1995 Academic Press, Inc.

1. INTRODUCTION

The bandwidth requirements in the next generation of
multiprocessors will be an order of magnitude higher than
in existing systems, leaving optics as perhaps the only
feasible interconnection technology. Fiber optic technol-
ogy is becoming attractive due to the continually decreas-
ing cost, the very high aggregate bandwidth of a fiber (in
the multi-Thz range), and the potential for large scale
“‘wavelength division multiplexing’”’ (WDM), i.e., the
ability for a single fiber to support multiple optical chan-
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nels in the GHz. bandwidth range, each on a separate
wavelength.

In this paper, a formal model for a class of interconnec-
tion networks called ‘‘hypermeshes’ is proposed and
characterized. The contributions include: (1) a definition
of the formal model based on the concept of orthogonal
hypergraphs; (2) the detailed architectural characteriza-
tion of the model’s permutation capability, rearrangeabil-
ity, partitionability, graph embedding capability, and bi-
section bandwidth; (3) the derivation of asymptotic
metrics such as its crosspoint cost and transmission line
cost; (4) a comparative evaluation with other architec-
tural models (meshes and hypercubes) implemented in
the same technology; and (5) the proposal of two efficient
optical implementations. The hypermesh is a network ar-
chitecture which has both optical and electrical imple-
mentations, and electrical implementations will be de-
scribed as well. Electrical implementations can facilitate
the transition between technologies.

Traditional interconnection networks for parallel pro-
cessors can be grouped roughly into three families: (1)
those based on multistage networks such as the SW-ban-
yan and Omega networks (or “‘butterfly’” and *‘perfect-

‘shuffie’” networks as they are often called); (2) those

based on point-to-point graphs, including meshes, to-
roids, and hypercubes [9, 16]; and (3) those based on
buses.

Point-to-point networks can be formally modeled as
undirected graphs G(E,V) defined over a set of homoge-

“neous vertices V and a set of edges E. Each vertex typi-

cally represents one or more processing elements (PEs)
and each undirected edge between two vertices repre-
sents a bidirectional communication chaniel between the
two vertices. A fundamental constraint of the graph
model is the definition that each edge joins precisely two
vertices [4]. Many interconnection networks can be
viewed as ‘‘orthogonal graphs,” and Scherson has pre-
sented a formal framework for classifying such networks
[17]. An orthogonal graph is characterized by its radix d
and its dimensionality n. All d nodes whose positions
differ in exactly one dimension are said to be *‘aligned’’
along that dimension. The fundamental difference be-
tween many well known networks is the precise manner
in which the nodes aligned along a dimension are inter-
conhected.
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In a d*-mesh, all ¢ nodes aligned along a dimension are
interconnected with a ring [6]. A d"-mesh with radix d =
2 and with log, N dimensions corresponds to the well
known binary hypercube. Binary hypercubes can also be
generalized to have higher radixes: In the graph model of
a radix-d generalized hypercube, all the vertices aligned
along a dimension are interconnected with a clique (or
fully connected graph) [1]. All of these orthogonal graphs
can be “‘unfolded’ to yield multistage graphs with similar
properties {2, 7, 11, 31].

Bus-based networks such as the “*spanring bus hyper-
cube’ have been discussed by Wittie [15]. In the span-
ning bus hypercube with d" nodes, all d nodes aligned
along a dimension are interconnected with a bus. By con-
ventional definition a bus has a single channel shared
over all its members, and hence it can transfer a single
packet between two nodes on the same bus in one logical
step [15]. Due to the sequential nature of operation,
buses have relatively poor performance at higher traffic
loads [15]. This poor performance can be alleviated in a
number of ways; one approach is to use a ring to inter-
connect the nodes aligned along a dimension, which
results in a conventional d" mesh. The performance of a
2D mesh can be further improved through the addition of
a small number of buses, as proposed by Stout [21] and
Kumar and Raghavendra [20]. However, the addition of a
small number of busses does not significantly affect the
architecture or bisection bandwidth of the underlying 2D
mesh, and as a result these 2D mesh-based architectures
cannot perform many algorithms such as sorting very
effectively.

Many optical networks rely on distributed optical
crossbar-like switches and they cannot be properly mod-
eled as conventional point-to-point graphs [35]. In this
paper, a class of multidimensional optical networks
called hypermeshes is proposed in a formal graph-theo-
retic framework based on hypergraphs. Hypergraphs are
generalizations of the conventional graph in which edges
are generalized to yield ‘‘*hyperedges,”” and where a hy-
peredge represents a logical relationship among an arbi-
trary number of vertices rather than just two vertices [4].
(The phrase “*hyperedge” is used rather than ‘‘edge” to
make explicit the generalization.)

Graph-theoretic models are used in practice because
once a network can be formally modeled as a graph or
hypergraph, all the algorithms and theorems from the

field of graph-theory can be used to characterize the’

model. Implementations of the same formal model would
share the same architectural characteristics. The need for
formal models for optical networks is apparent from the
literature; to date, no modeling formalism which captures
all the features of optical technology has been proposed
(see [35]).

The proposed hypermesh can be viewed as an multidi-
mensional orthogonal network, with N = ¢" nodes ar-
ranged in n-dimensional Euclidean space, where all ¢

nodes aligned along each dimension belong to a hy-
peredge. Each hyperedge with  members represents ac-
cess to a distributed multichannel switch which can per-
form O(d) data transfers over its members in one logical
step. For the remainder of this paper we assume that
each multichannel switch can perform a permutation of
data over its members simultaneously, and we model
each switch as a single hypergraph edge.

The definition of a hypermesh is “‘functional’ and a
fundamental attribute of all ¢" hypermeshes is that each
hyperedge supports O(d) independent channels which al-
low up to O(d) simultaneous data transfers. There are
many possible ways to implement the functionality: each
hyperedge could utilize space division multiplexing by
supporting O(d) spatially distinct electrical or optical
channels to perform the simultaneous mappings. Alterna-
tively, each hyperedge could utilize wavelength division
multiplexing over a single optical fiber to achieve the
required functionality.

Distributed WDM optical crossbar-like switches form
the basic building blocks (the hyperedges) of large multi-
dimensional WDM optical hypermeshes. The maximal
size of a WDM optical crossbar is limited to perhaps 16 or
32 in the foreseeable future, due to constraints on wave-
length tunability [26, 27] and on maximal fiber length.
Hence, to interconnect multiple PEs into a massively
parallel machine, one must use multiple smaller WDM
optical switches arranged into some type of efficient net-
work architecture. In large networks composed of multi-
ple smaller switches, even the routing of data between
nodes can become quite complex, and the study of traffic
flows in such networks involves graph theory, queueing
theory, and architecture. The hypermesh is large multidi-
mensional crossbar architecture, and it is the capabilities
of this architecture that are formalized in this paper.

Hypermeshes are more expensive and considerably
more powerful than spanning bus hypercubes {15], since
the buses, which can transfer one packet at a time, have
been replaced by O(d) buses, which can transfer O(d)
packets in the same amount of time. When one intercon-
nects thousands of the building blocks into higher dimen-
sional networks, the costs and capabilities are considera-
bly different. As a result of these changes, Wittie's
architectural characterizations of spanning bus hyper-
cubes [15] do not apply to hypermeshes. Hence, the hy-
permesh architectural model has different costs and ar-
chitectural capabilities from a spanning bus hypercube or
generalized hypercube, and these costs and capabilities
are precisely characterized in this paper.

Previously, one- or two-dimensional electrical cross-
bar-like switching networks have been proposed by Szy-
manski [12, 14], Tanabe et al. [18], Wang et al. {25], and
Mackenzie et al. {32]. However, large multidimensional.
crossbars are not easily manufacturable with conven-
tional electrical technology, and it is the emerging optical
technologies which makes multidimensional optical
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crossbar networks attractive. A one-dimensional optical
crossbar-like network was proposed by Wailes ez al. [24].
Higher dimensional optical crossbar-like networks have
been proposed by Szymanski, Dowd, and Li et al. in [5,
12, 14, 22, 36], and routing in these networks was consid-
ered in [13]. In this paper, it is shown that all of these
networks belong to a single architectural class with com-
mon architectural attributes, which include high bisection
bandwidth, high permutation capability, and high embed-
ding capability. It is shown that optical versions of these
networks do not fit into any of the existing architectural
characterizations based on graph models, and that the
optical networks cannot even be properly formally mod-
elled as graphs. The unique capabilities of the multidi-
mensional networks warrants the definition of a distinct
class of network which accurately reflects the architec-
ture. In this paper, we will refer this class of network as a
“hypermesh,”’ which refiects both the multidimensional
orthogonal mesh-like structure and the hypergraph-based
formal model.

A “‘bisector’ of a graph or hypergraph can be infor-
mally defined as any line or surface which partitions the
graph or hypergraph into two disconnected components
of equal size. The bisection bandwidth of a network
(graph or hypergraph) can be defined as the minimum
bandwidth crossing a network bisector, taken over all
possible bisectors. As a result of their definition, hyper-
meshes have bisection bandwidths which are higher than
those of conventional 2D or 3D meshes and toroids, and
comparable to that of binary hypercubes. Many parallel
algorithms such as sorting make extensive use of data

“transfers over network bisectors, and the speed of this
operation is bounded by the bisection bandwidth. It will
be shown that under the constraint of equivalent aggre-
gate bandwidth, hypermeshes can perform parallel sort-
ing faster than conventional meshes, based on the higher
bisection bandwidth.

The hypercube is considered to be one of the most
powerful formal models for parallel computation [29],
and hence it is interesting to compare a hypermesh with a
hypercube (both in the same domain, either eléctrical or
optical). The degree-log N hypermesh uses fewer cross-
bar switches and fewer directed links by a factor of O(log
log N), where N is the network size [13]. The reduction in
directed links represents significant decrease in the com-
plexity of the backplane interconnect. It is also shown
that the reduction in crossbar and link cost does not
result in any significant loss of computational power
when compared to a hypercube. This result is interesting
given that the hypercube is amongst the most powerful
computational models known.

In the electrical domain a 2D or 3D hypermesh 1S more
complex to interconnect than the 2D or 3D mesh, which
is the price paid for the higher bisection bandwidth. How-
ever, in the optical domain the use of wavelength division
multiplexing over a single fiber can reduce the hypermesh

interconnection complexity significantly, so that it rivals
that of a conventional 2D or 3D mesh. Thus, while hyper-
meshes are more complex to interconnect than 2D or 3D
meshes in the electrical domain, hypermeshes have inter-
connection complexity comparable to 2D and 3]D meshes
in the optical domain.

Two novel and attractive implementations of hyper-
meshes are proposed. The first “‘fiber-optic’ implemen-
tation relies on a chip-set for fiber-optic networks pro-
posed in [28], which was funded by Darpa’s Optical
Computing Program. It should be noted that this chip-set
can be used to construct any network; including 2D or 3D
meshes, hypercubes and the proposed hypermeshes. It is
shown that the hypermesh architecture is more powerful
than the others, and that the improvement is due to the
architecture and not due to the chip-set or technology.
The second proposed implementation involves the use of
newer optical technology which is not commercially
available yet, namely rapidly tunable laser diodes and
optical receivers, and the use of WDM over a single fiber
of minimum physical distance.

This paper is organized as follows. Section 2 reviews
graph models of networks and orthogonal graphs. Sec-
tion 3 defines a formal model of hypermeshes based on
orthogonal hypergraphs and describes efficient imple-
mentations. Section 4 considers the permutation capabil-
ity, rearrangeability, partitionability, and graph embed-
ding properties of hypermeshes. Section 5 performs a
quantitative comparative evaluation between meshes,
hypermeshes, and hypercubes based on a queueing
model by Kleinrock [30]. Section 6 performs a compari-
son of sorting on meshes, hypermeshes, and hypercubes.
Section 7 contains some concluding remarks.

2. A REVIEW: GRAPH MODELS OF NETWORKS AND
ORTHOGONAL GRAPHS

2.1. The Definition of a “‘Time Step”’

Throughout this paper, we assume that every undi-
rected edge e joining two vertices (u, v) represents two
data channels (or transmission lines), one from « to v and
one from v to «, each with a bandwidth of B bit/s.

In order to properly model real physical distances, a
modeling convention used by Kleinrock in [30] is
adapted. The basic unit of time in a discrete-time network
is the “‘packer cycle time’ denoted Ty - Ty is defined as
the time required to transfer a fixed size packet contain-
ing P bits from one node to a neighbor over the longest
edge (i.e., transmission line), with length L meters and
with bandwidth B bit/s. '

T, + T, + T,.

Ii

Tr
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The first term T is often called *‘transmission delay’” in
the queueing literature [30]. It represents the time. re-
quired for all the bits in the packet to depart from the
sender over the channel, and hence T, = P/B. The second
term T, represents the time-of-flight *‘propagation delay™
over the channel, i.e., the time required for the last bit in
the packet to propagate through the medium and reach
the destination. T, represents the ‘‘node latency,”” which
includes the deterministic logic delays incurred when a
packet passes through a node. See Kleinrock’s text for
elaboration of these quantities [30]. .

If a packet can be delayed in a queue(s), then the time a
packet spends waiting in queues is called the ‘‘queueing
delay’ or ‘*queueing time’’ [30]. In a discrete time net-

" work the queueing delay is also expressed in terms of the
packet cycle time, and it can be determined with a dis-
crete-time queueing analysis [30].

There exist many different models for the propagation
delay of a transmission line of length L, including a linear
delay O(L), logarithmic delay O(log L), or unit delay
O(1). In optical systems optical bit-streams travel down a
fiber or waveguide at roughly (2/3)c, where c is the speed
of light. Hence, a linear delay model is warranted for
optical systems. The linear delay model also applies for
high-bandwidth electrical transmissions along an electri-
cal transmission line.

ExampLE 1:  Consider a general purpose multiproces-
sor compactly arranged within a 3D volume of length 4 m
(or roughly 12 ft.) on each side, yielding a maximum vol-
ume of 64 m?3, large by current standards. Assume a
packet size of 128 bits; the latest generation of micropro-
cessors have 64 bits of address space and read or write 64
bit of data at a time, hence a 128-bit packet seems to be
the minimal requirement for interconnecting such general
purpose micro-processors. The velocity of light in a fiber
is roughly 2 x 10® m/s. At a “*state-of-the-art’’ transmis-
sion bandwidth of 1 Gbit/s. [26-28], each bit in an optical

transmission occupies 0.2 m of fiber and it propagates
forward at a speed of 0.2 m/ns. Assuming transmissions
travel at most 4 m (the length of an orthogonal axis), then
the propagation delay is at most 20 ns, and the transmis-
sion delay is 128 ns. Thus, in this realistic scenario the
propagation delay is a small fraction (15%) of the trans-
mission delay.

Also, the (inherent) node latency can be small in a
properly designed systéem; in the well known *‘fiber-dis-
tributed data interface’” (FDDI) ring network standard,
the inherent latency within each node is 10 bit times, just
enough to observe the relevant token header bits and
make a routing decision. 1n a similar high-speed slotted
ring, the node latency is typically a few bit times, just
enough to examine and overwrite a full-empty bit in the
slot header. Thus, in a typical FDDI fiber-optic system
the node latency is a very small fraction of the packet
transmission time, typically less than 10% of the trans-
mission delay.

The technique of splitting the packet delay into three
identifiable components (the transmission delay, propa-
gation delay and node latency) was proposed by
Kleinrock in his well known text as a basis for comparing
various networks [30], and will be used in this paper.
Example 1 has illustrated that the propagation delay and
node latency will be a small fraction of the packet cycle
time in systems using existing fiber-optical technology. In
any case, the model makes all these delay components
explicit and each can be assigned arbitrary values in all
the analyses to follow.

2.2. The Definition of a ‘‘Neighbor”

In the graph model of a network, two vertices « and v
are defined to be “‘neighbors™ if they are end-points of
the same edge (i.e., ¢ = (1, v)) [4]. As a consequence of
the definition, it follows that (1) a transmission from ver-
tex u to its neighbor v can occur without conflict (since u«
has a dedicated channel to v), and (2) the time required to
transmit a packet is upper bounded by parameter Ty
(which reflects the length and bandwidth of the longest
transmission line in the graph model).

According to conventional graph-theoretic definitions,
two vertices of a hypergraph are defined to be ‘‘neigh-
bors” if they belong to the same hyperedge [3, 4]. As a
consequence of this definition, it follows that (1) a trans-

nmission from vertex « to a neighbor v can occur without

conflict if no other neighbor is simultaneously transmit-
ting to v over the same hyperedge, and (2) the time re-
quired to transmit a packet is upper bounded by parame-
ter Tgr (which reflects the length and bandwidth of the
longest transmission line in the hypergraph model).

ExampLE 2: Consider a bus spanning d nodes arranged
in a (one-dimensional) linear array. Since access to the
bus is sequential, the bus is better represented as a hyper-
graph hyperedge, where membership to a hyperedge im-
plies access to a (shared) bus. All 4 nodes are ‘‘neigh-
bors’’ by the above definition, since any one node can
transmit a packet to any other node in one basic unit of
time (the packet cycle time), although they cannot trans-
mit simultaneously.

ExampLE 3: Consider a collection of d processors inter-
connected with a distributed d X d crossbar switch (see
Fig. 3a and Fig. 4 below). There are some difficulties with
modeling this system as a conventional graph: (a) Should -
it be modeled as a graph with d vertices of degree one
(representing the processors) and one special vertex of
degree d (representing the crossbar switch), with 4 di-
rected edges from the processors to the switch (and visa
versa), for a total of 2d directed edges and a diameter of
2? Or should it be modeled as a fully-connected graph
(i.e., cligue) with d vertices of degree d each, with one
edge from every vertex to every other vertex, for a total
of d(d — 1)/2 undirected edges, and a diameter of 1? The
problem with the first approach is that it suggests a diam-
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eter of 2 when common convention accepts-that all these
d vertices are neighbors with a diameter of 1. It also
requires the creation of a special vertex representing the
crossbar switching function, when the optical networks
in Figs. 3a, 4c, and 4d have no such localized crossbar.
The problem with the second approach is that it implies
(1) the existence of d(d — 1)/2 edges, which the system

does not have, and (2) it implies that the bisection band--

width is considerably larger than it really is. One solution
is to model this system as a hypergraph, with these d
nodes belonging to a hyperedge, where in this case mem-
bership to the hyperedge implies access to a distributed
crossbar-like switch. These d nodes are therefore neigh-
bors with diameter 1, as convention dictates, and there is
no need for the creation of an artificial vertex for the
crossbar functionality.

A multidimensional WDM fiber-optic network based
on the structure in Fig. 4c was described in [12, 22]. In
each paper it was stated that the d nodes in Figure 4c
Joined through the star-coupler are nearest neighbors.
Note that these d nodes cannot be neighbors in a graph
model, unless they form a clique with d(d — 1)/2 edges,
which would imply an incorrect number of edges/chan-
nels and an incorrect bisection bandwidth. The hyper-
graph is the only formal model which allows the nodes in
Fig. 4c to be neighbors in the graph-theoretic sense,
hence capturing the essence of the optical technology.
The same applies for the WDM implementation in
Fig. 4d.

2.3. Graph Models of Meshes

A d" mesh (where N = d") consists of N nodes ar-
ranged in n-dimensional space, where all d nodes aligned
along a dimension are interconnected with a linear array.
A 2D mesh is shown in Fig. 1a. For a given size N, as the
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dimensionality n increases the radix. d decreases. At the
extreme, one obtains a mesh with dimension log N and
radix 2, which corresponds to the well-known binary hy-
percube (when its redundant wrap-around links are re-
moved). The binary hypercube with N nodes can be mod-
eled as a point-to-point graph where

V={leol,..,2¢~1}
(u,(u + )y mod N) U
(u,(u — d&’) mod N)
VueV, Y0=sj<n

E =

In the context of Scherson’s orthogonal graphs, the bi-
nary hypercube can be formally modeled as an orthogo-
nal graph as follows

={peot,..,2n—1}

E={u,vu,vEV,u®uv=1mmeo0,..n- 1}
where ® denotes an associative vector operator (in this
case, the digit-by-digit exclusive-or of two binary vec-
tors), and where x * y denotes x - 2¥ (see [17]).

Binary hypercubes can also be generalized to have
higher radices [1, 2]. A higher radix d" generalized hyper-
cube can be formally modeled as an orthogonal graph
where all nodes aligned along a dimension are intercon-
nected with a clique, as follows:

V="{peo,l,.. d -1}

E={u,vu,veEV,uQu==>0-1+m)),

meO0,..,n— 1}
Hereb€0,1,...,d —
(d™) (see [17]).

1, and where b - (1 » m) denotes b -

0.0

o

—

=
[

03

(®)

(2) A 4’ mesh (with “‘wrap-around). (b) A 4? generalized hypercube.
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3. HYPERMESHES

The d"-hypermesh network can be modeled as an or-
thogonal hypergraph H(V, Z) defined over a set of verti-
ces V and a set of ‘*hyperedges’” Z. There are d” vertices
in the hypermesh, and each vertex has a unique integer
address from 0, ..., d” — 1. The integer address of each
vertex can be viewed as a ‘‘coordinate vector’ of n ele-
ments in radix ¢, where the elements correspond to the
vertices” coordinates in the r-dimensional Euclidean
space:

vertex coordinate vector = (x,-y, X,_2, ..., X|, Xo) —>

vertex integer address = x,-; - d*™' + x,-»

cdnT2 e Xg ded.

Each hyperedge is a set of d vertices which are aligned
along some dimension. Let each hyperedge represent a
distributed multichannel switch with d channels (i.e., d
buses), each capable of supporting one data transfer,
such that the multichannel switch supports d data trans-
fers simultaneously. (Alternatively, one may model each
channel as a hyperedge capable of supporting a single
data transfer. This model would be useful when each
switch had fewer or greater than d channels.)

By definition, in a d"-hypermesh there are n dimen-
sions, with d"~! hyperedges aligned along each dimen-
sion, for a total of n - 4"~ hyperedges. Each hyperedge
can be assigned a unique identifier consisting of a vector
of n elements, where each element is either a radix-d digit
or a “‘wild-card”” symbol ® which denotes a variable,

(0,0,0)

(0,0.3)

. Z(xn"h cees Xt ®7 Xm—~15 o+

® € (0, ..., d — 1). The hyperedge identified by the label

Z(Xneiy oo Xmts @, Xy, ..., Xo) consists of the set of d
vertices as follows:

.y Xg)
d-1
= U (xn-la coes Xm+1s [7 Xemmly oees -x())-
i=0
With this convention, a formal model of a d"*-hypermesh
is given by:

V={eo,l, .. d—1

Z(Xp=1> Xn=25 -0y X1, O)U
Z= Z(xn-h Xp=2s »eey ®’ XQ)U
Z(@: Xp=25 vony X1, XO)

Vaed—-1,...,00and VO < i < n.

In the above definition, it was assumed that the hyper-
mesh is ‘‘regular’’ and that each vertex represents one
Processing element. In practice, a hypermesh can be “‘ir-
regular’’; i.e., the number of nodes aligned along differ-
ent dimensions could vary with each dimension. Further-
more, each vertex could represent a cluster of processing,
elements which are treated as a single vertex at this level
of abstraction. The clustering approach can amortize the
hyperedge cost over a larger number of processors, as Is
done in the Connection Machine.

333

. ; dimension 2
dimension 1

dimension 0

FIG. 2. A 4° hypermesh. Thick bars denote hypergraph **hyperedges,”” which represent distributed crossbar switches.
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(a)

® denotes a "virtual” crosspoint

“€— denotes transmission line or
optical channel

=

static ally tuned receiver

from hypergraph net (sfar coupler )

(®)
FIG. 3.

(a) A logical diagram of a distributed optical crossbar switch interconnecting d PE nodes, with 2d directed edges and o2 **virtual

"crosspoints.”” Crosspoints are set by tuning the optical component(s) to the desired wavelength. (b) A PE node in a 1D hypermesh, with a tunable

laser and static optical receiver. .

In a d" hypermesh, each vertex is a member of n hy-
peredges, one in each of » dimensions. The hyperedges
- "have the ability to perform permutations over their mem-
bers in one step, over d independent data channels, as
shown in Fig. 3a. However, certain implementations may
also allow partial or complete broadcasts, partial or com-
plete combining mappings, or various combinations,
through different settings of virtual crosspoints. A hyper-
mesh were each hyperedge performs broadcasts was pro-
posed in [32] and called a ‘‘beta-hypermesh.”’

A model of a 4° hypermesh is shown in Fig. 2, where
hyperedges are represented by the thick bars. The rout-

ing algorithm in a hypermesh is similar to the routing
algorithm in a conventional toroid. Each node compares
its own address with the destination’s; If the node’s ad-
dress and the destination tag differ in m digits, then the
packet can exit over either of the m hyperedges corre-
sponding to the dimensions in which the address and tag
differ and follow a minimum distance path.

3.1. A WDM Optical Hypermesh with
Electrical Switching

A recent paper [28] funded by Darpa’s Optical Com-
puting Program has proposed an integrated chip-set for
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electrical electrical
: ~ crossbar switch transmission lines
* (i.e., co-axial cables)
____._»,
-
2-to-1 optical transceivers
optical couplers and electrical crossbar WDM optical

transmissions

I-to-2
power splitter

power flow
—_—

: Q f@_i@_ é i@jﬂ) 2,

power flow

> O
T fiber
—_—
star coupler ~ power flow

2-to-1
optical coupler

f ¢t vt '
' by t s t

fiber

power flow
(d) 2-to-1 ? | l’
optical splitter * T
power flow

FIG. 4. Four implementations of a hyperedge: () electrical transmission with centralized electrical switching, (b) optical transmission with
centralized electrical switching, (c) optical transmission with centralized optical switching over a large large star-coupler, and (d) optical transmis-

sion with distributed optical switching over two minimum distance fibers.

fiber-optic networks. The chip-set consists of (1) mono-
lithic GaAs electrical-to-optical (EQO) transceivers, (2)
monolithic GaAs optical-to-electrical (OE) transceivers,
and (3) an integrated silicon crossbar switch (32 X 32, but
expandable to sizes 64 X 64 or 128 X 128) operating at
approx. 1 Gbit/s per channel.

This integrated chip-ser can be incorporated into a hy-
permesh hyperedge, as shown in Fig. 4a. The crossbar
switch can be placed at the center of the linear array,
with fibers emanating to and from every node in the ar-
ray. One potential drawback of this construction is the

large number of fibers which interconnect the nodes to
the centralized crossbar. A hyperedge with d nodes has a
total of 2d directed transmission lines, d leading from all
nodes into the crossbar chip from above, and d exiting
the crossbar from below and leading back to all nodes.
The use of WDM with nontunable components can re-
duce this complexity considerably, as shown in Fig. 4b.
There are two fibers, one carrying transmissions from the
nodes into the crossbar, and visa versa. Each fiber in the
net now carries up to d simultaneous transmissions over
d distinct wavelengths {\g, ..., Ay~ }; each node with ad-
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FIG. 5. (a) A 2D hypermesh with electrical switching and electrical
transmission. (b) A 2D hypermesh utilizing a chip-set consisting of inte-
grated monolithic OE and EO converters and integrated eléctrical
crossbar switches.

dress i can transmit its data to the localized crossbar on a
separate reserved wavelength A; using a nontunable laser
diode. The optical transmissions are converted to elec-
tronics, switched in the crossbar, converted back into the
optical domain, and transmitted back to the destination
nodes, again over separate reserved wavelengths using
nontunable laser diodes. (In general, each hyperedge in a
d" hypermesh carries O(d) wavelengths). Two possible
hypermesh implementations using this chip-set are
shown in Fig. 5.

3.2. A WDM Optical Hypermesh with
Optical Switching

One-dimensional WDM optical crossbar-like switches
form the basic building blocks in a large, multidimen-

sional WDM optical hypermesh. Representative WDM
optical switches which can be used as the basic building
blocks have been described in [12, 22, 26, 27]. These
switches typically are small in size and require fast multi-
ple access protocols to resolve contention.

Let each node i in the hyperedge (0 = i< d — 1) have a
laser tunable over the d wavelengths {\g, ..., Ay_;} and a
nontunable receiver tuned to wavelength A; Such a node
design is shown in Fig. 3b. Such nodes are intercon-.
nected with fiber, as shown in Fig. 4c. The optical trans-
missions from all nodes are merged in the large central-
ized star coupler, which broadcasts a fraction of the
power back to each node. Node / can transmit to node J
by tuning its laser to wavelength \; and initiating the
transmission. In absence of an optical ‘“‘collision’” over
wavelength \;, the destination node j will receive the
data. All d nodes on the net can perform data transfers
simultaneously, over separate wavelengths. When multi-
ple senders transmit on the same wavelength simulta-
neously optical collisions will occur, thereby necessitat-
ing the use of a “‘multiple-access protocol” to control
access to each wavelength. Efficient WDM multiple ac-
cess protocols, in terms of minimizing the overhead for
contention resolution and maximizing the traffic carried
by the optical crossbar, are described in [12, 22, 26, 27].

In Fig. 4c, the optical coupler is located in the center of
the linear array of d nodes, and 24 fibers are required to
link the nodes with the coupler. The ‘‘interconnection
complexity’” can be reduced significantly by exploiting
WDM, as shown in Fig. 4d. In Fig. 4d, there are two
fibers, carrying ‘‘upstream’” and ‘‘down-stream’’ traffic,
respectively; the transmission from a node enters both
fibers. Each linear fiber collects the optical transmission
as it passes by each node, requiring a two-to-one optical
coupler at each node. Each fiber also delivers a small
fraction of its optical power to each node that it passes,
requiring a one-to-two power splitter. Node i can trans-
mit to node j by tuning its laser to wavelength A; and
initiating the transmission. In absence of an optical **col-
lision’’ over wavelength A;, the destination node j will .
receive the data, as before. Again, all d nodes on the
hyperedge can perform permutations simultaneously,
over separate wavelengths.

The configuration in Fig. 4d has a number of attractive
features. First, it eliminates the large centralized star-
coupler required in Fig. 4c (which tend to be very expen-
sive) and replaces it with many smaller components (one-
to-two and two-to-one couplers, which tend to be
cheaper). Second, it minimizes the propagation delay; all
fibers are ‘‘straight lines”” with no internal fiber loops.
Hence, the propagation delay between any pair of nodes
is proportional to their horizontal distance only and it is
minimal. This configuration is particularly useful when
executing deterministic algorithms such as sorting [13] or
the FFT [14]. Our analysis in Section 6 indicates that
propagation delays can become nonnegligible in hyper-
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meshes under certain circumstances and the configura-
tion in Fig. 4d minimizes these delays.

Given the close proximity of all the optical components
(a few meters in a typical multi-processor), optical power
attenuation will not pose a problem. A single laser diode
can provide the power necessary for.the configurations in
Fig. 4. A laser diode transmitter typically provides a few
milliwatts of optical power, whereas each receiver is typ-
ically sensitive to a fraction of a microwatt of power.
Assuming each fiber tap in Fig. 3d reduces the power
flow by 5% (this figure can be improved by using a better
tap-design) and the total attenuation is no greater than
1000, then the linear array could contain roughly 128
nodes.

3.3. Asymptotic Properties of Hypermeshes

The crossbar, crosspoint and transmission line costs of
various networks are shown in Table I. All distributed
crossbar switches interconnecting ¢ nodes in a hyperedge
are assumed implemented as shown in Fig. 3a: There are
d nodes, with 2d directed edges and a total of d? cross-
points. The crosspoints can be real in electrical imple-
mentations or ‘‘virtual™ (i.e., nonexistent) in optical im-
plementations.

Hypercubes and Generalized Hypercubes. The costs
of a binary hypercube are well known. In a d” generalized
hypercube [1], each routing node has degree n - (d — 1) +

1, since it has a directed edge to (d — 1) other nodes in.

each of n dimensions, plus one link to the associated
processor, and the remaining figures are easily verified.
See [1] for details.

Hypermeshes. A d" hypermesh (with size N = d7)
has d"~! = N/d hyperedges in each dimension. There are
n dimensions, and hence nN/d hyperedges in total. The
total crosspoint cost depends on the vertex construction.
In one possible vertex implementation, access to each
hyperedge is via transmit and receive buffers, and the
switching of data from one incoming hyperedge to an-
other outgoing hyperedge is accomplished by the proces-
sor within the vertex; no crossbar switch is needed within
the vertex. Alternatively, each vertex in a d” hypermesh
could use a small n X n crossbar to allow data incoming

TABLE I
Exact Costs

Network type Directed links

Crosspoints

222 N.Hypercube N-(log; N+ 1) N - (loga N + 1)
d"-Hypercube N-(nd—1)+1) Nnd - 1) + 1)
d"Hypermesh N - 2n Nn(n + d)
d*-Mesh N-2n+ 1) N-(n+ 12

TABLE II
Graph-Theoretic Properties

Network type Neighbors Diameter
2vs2 N-Hypercube log: N log, N
d"-Hypercube nd - 1) n
d*-Hypermesh n(d ~ 1) n
d"-Mesh 2n nd/2

Note. A hypermesh implementation where each PE node has a small
n X n crossbar is assumed. In practice, the degree of the graph-based

networks is increased by | to allow the PE to access each router node.

on one hyperedge to be switched in hardware and sent

out over another hyperedge simultaneously and without

processor intervention. This additional crossbar does not
add to the capability of hypermeshes significantly, when

executing many standard algorithms such as sorting.

With this added crossbar within each vertex, the asymp-

totic crosspoint cost of the entire hypermesh is

N - (n+ 1)+ (nN/d) - d* = O(Nn - (n + d)).
Without the added crossbar, the asymptotic crosspoinf

cost is slightly lower; when n < d, the difference in cross-
point count is insignificant:

(Nnld) - d*> = O(Nnd).
Graph-Theoretic Definitions. The distance between

any pair of nodes in a graph is defined as the number of
edges which a shortest path between the two traverses

[4]. The diameter of a graph is defined as the maximum

distance between any pair of nodes [4]. The distance be-
tween a pair of nodes in a hypergraph can be similarly
defined as the fewest number of hyperedges which a
shortest path between the two traverses [3]. The diame-
ter of a hypergraph can be defined as the maximum dis-
tance between any pair of nodes [3]. Table I illustrates
the number of neighbors and diameter in hypercubes,
meshes and hypermeshes with equivalent size, based on
these conventional graph-theoretic definitions. The hy-
permesh diameter is significantly smaller than many
others and comparable to that of the generalized hyper-
cubes. It should be noted that these graph-theoretic defi-
nitions do not model the real physical distance over the
edges or hyperedges. To determine the real delay in
transferring a packet between the furthest nodes one
should multiply the graph-theoretic distances by the
*“‘packet cycle time”’ for each network (defined in Section
2). This approach is used in Section 6.

4. COMBINATORIAL PROPERTIES OF HYPERMESHES

In this section, the combinatorial properties of the for-
mal model of hypermeshes which are relevant to parallel
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computing are examined. These properties include per-
mutation capability, rearrangeability, partitionability,
and embedding capability. Since this class of network is
relatively new a formal characterization of its capabilities
is required.

4.1. Permutation Capability

Let Qg4 , denote a d* X d" omega network, with d" input
or output terminals. This network requires n stages of
d % d crossbar switches, with d"~! crossbar switches per
stage and with a *‘radix-d shuffle’” wiring permutation
before each stage. To avoid the proliferation of symbols,
also let (), , denote the permutations realizable by the
same network; the actual meaning, either the network or
its permutation capability, will be clear from the context.
The radix-d shuffle of N elements, denoted p,, is defined
as follows [1]:

py = (d Cx A+ {-d—l\,x]) mod N.

The radix-2 shuffle of N elements is equivalent to the
binary perfect shuffle, which corresponds to a circular
left rotation of the index bits,

palXp—1Xn—2 *** X1X0] = Xp-2Xp-3 *** XoXp-1,
where x; denotes a bit. Define the i-th binary “‘butterfly””
permutation as -

BilXn—1Xp—2 == X; =+ X1X0] = Xp—yXp—z * Xit 1 XoXi—1 =70 X1 X,
where each x; represents a bit. Using Parker’s notation
[10], let E¥ denote the class of butterfly permutations

satisfying

if Expmy o xy o
then E[x,-y - % -

xO] — Elxp-; - x_y " Xo]

)C()] — Elxp-y - Xy = XO]-
Thus E” consists of the set of permutations achievable by
data exchanges over dimension y in a binary hypercube.

Let A and B represent two classes of permutations, and
let 7 € A and m; € B. Then let A - B denote the class of
permutations where m € A - B— 7 (i) = m(m(i)). In the
following we will summarize two known properties using
this notation, and prove some relevant properties.

Qyjogn = E*F - RO
0... -1

PROPERTY 1.

PROPERTY 2. Qilen = E

Properties 1 and 2 indicate that the binary .omega and
omega-inverse networks can simulate hypercube dimen-
sions in decreasing or increasing orders, and were noted
by Stone, Lawrie, and Pease in the 1970s. Its is known
that binary omega networks can act as concentrators,

merging networks, ‘‘compact broadcast’’ networks, etc.
Parker used algebraic manipulation of permutations to
formally prove Properties 1 and 2 for bmary omega net-
works.

However, neither Stone, Lawrie, Pease, nor Parker
quantified the permutation capability of higher-radix

- omega networks. For completeness, the following two

properties prove that the higher-radix omega networks
have a superset of the permutation capability of the bi-
nary omega networks, and that they too can realize many
useful permutations, can act as concentrators, merging
networks, compact copy networks, etc.

ProPERTY 3. Qu,CE""' - E® Vd =2/, 1 ==
n' =logy N,d"=N

PROPERTY 4. Q7, CEV - Er-\ Vd =2/ 1=j=

= log; N, d" = N.

Proofs.v Label the N input (output) terminals in stage

sfrom 0 --- N — 1 from top to bottom. Label the crossbar
switches in stage s from 0 to N/d — 1 from top to bottom.
Let 7, denote the permutation of the N indices of the N
input elements which appear at the input terminals to
stage s for 1 = s = n.

Given an identify permutation at the input of the net-
work, and assuming that all prior stages perform the iden-
tity permutation, then =, is given by s repeated applica-
tions of the d-way shuffle, i.e.,

T Xn=15 +ve» Xo)

= P Xn-15 --.

= X(n-1-s)mod ns X(n—=2-simodns ---

» Xo)

» X0-s)mod n s
wherexmodn = xifx=0andxmodn=x+rnifx<0.
The indices of the input data appearing at the d input
terminals incident to a crossbar switch with label z,-z,-)
-+ z; in stage s are therefore given by the inverse of the
above permutation, i.e.,
W;I(Zn'l 5 weey Ly l) = pt.‘l—x(zn—[ s veen X1y i);
i.e., the permutation appearing at the first stage of
switches is given by

PJ“(Zn—h veey X1 [) = i: Zn=1s --o3 205
and the permutation appearing at stage s = 1 is given by

p;l(zn—l s wevy L5 l) = Zy=1y oo L i, Lp=1s =ovy L5
Each crossbar in the each stage can permute its d inputs
arbitrarily, and all & inputs incident to each crossbar dif-
fer in only one radix d digit. Thus the first stage performs
a superset of the following permutations:

‘ En'-—l

- En-2 .. pri-logad)
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Subsequent stages are handled similarly. It follows that
all n stages perform the following permutations:
$ Qd.n C Er-t . En-2 ... EQ.

Using the permutation identity (A - B)™' = B~'- A" ! then
it follows that

:;?Q(zl" C EY. El ... pn-t E‘

The advantages of these expressions over Parker’s {10]
are (1) they apply for higher-radix Omega networks, and
(2) they express the permutation capability in terms of
conflict-free exchanges over hypercube dimensions, us-
ing the E' notation. A binary Omega network is shown in
Fig. 6a. Figure 6b illustrates an embedding of the sy
network into the Q4 network, illustrating graphically the
ability of the latter to realize a superset of E? - E? -
El . E()_

Define a ‘‘variable-radix”” omega network as one
where the crossbar degree may vary across different’ di-
mensions. An N X N variable-radix omega network is
specified by a series of radices 7,-, r,-1, ..., ro such that
N = ry_ X rpez X -+ X ry. In a multistage implementation
of a variable-radix omega network, every radix r; corre-
sponds to a stage of radix r; crossbar switches preceded
by a radix-r; shuffle wiring pattern (see [2]).

PROPERTY 5. Provided that log)(r;) € {1,2, ..} V0 <
[ = n — 1, then the permutations realizable by the vari-
able-radix omega network is a superset of those realiz-
able by the binary omega network.

Proof. The proof follows from that of property two by
generalization and is not reproduced here.

PROPERTY 6. A d"-hypermesh (where d = 2J for some
J = 1) can simulate Qg , (and QJ,’,,), with all routes tra-
versing only minimum distance paths. (The same applies
to a variable-radix hypermesh where the radices are
powers of 2.)

Proof. Follows from the proof of properties 3 and 4.

Define a dual-hypermesh as a hypermesh where each

hyperedge can support two simultaneous transmissions |

from each member vertex and two simultaneous recep-
tions into each member vertex.

PROPERTY 7. The dual d" hypermesh is rearrangeably
nonblocking. Equivalently, any permutation can be real-
ized within 2 - n — 1 dimension traversals.

Proof. Follows from property 6, by simulation of the
2n — I stage Clos network. B

The paths taken through the dual-hypermesh (or dual-
hypercube) can be found by routing the same permuta-
tion through the Q, ,Q7 ), network, which can be done
with the usual looping algorithm [8]. There is an obvious
one-to-one correspondence between paths in the multi-

'
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FIG. 6. (2) A 2% X 2' Omega network, along with its ability to
simulate hypercube dimensions in decreasing order. (b} A higher radix
4 x 42 omega network, along with its ability to embed and simulate the
radiX-2 omega network.

stage network and paths in the hypermesh (or hyper-
cube).

PROPERTY 8. The d" hypermesh is recursively parti-
tionable into independent subnetworks with arbitrary
quantized sizes, in size increments of d"'.

Proof. (See [12]) For example, a regular 4096 node
hypermesh can be partitioned many ways regardless of
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- its radix and dimensionality. A nonrecursive partitioning
includes {1024, 1024, 1024, 1024} or {1024, 3072}. Recur-
sive partitionings include for example {2048, 1024, 512,
256, ... }. Also, the fact that hypermeshes can have vari-
able radices allows one to partition hypermeshes into
smaller hypermeshes whose sizes are not necessarily
powers of 2, which can be useful when embedding guest
graphs. B

The previous properties indicate that all algorithms and
properties of omega networks apply equally to hyper-
meshes. In fact, hypermeshes can be thought of as
Omega networks in which packets only traverse the nec-
essary dimensions, rather than all dimensions.

4.2. Graph Embeddings

By definition an embedding of a guest graph G,(V,, E)
into a host graph G»(V,, E-) is a one-to-one mapping:

cw—v, uecyv, vE Vs
e(uy, uz) € Ey — e(o (), o(u)) € Es.

A “‘dilation-k embedding’’ of G,(V|, E}) into Go(Vs, E)
requires a 1-to-1 assignment of V, onto V; and a one-to-
many mapping of E; onto E,, such that nearest neighbors
in G, are no further than k edge traversals apart in G,
(i.e., a single edge in G| may map to no more than k edges
in G). The load of an embedding is defined as the maxi-
mum number of guest graph nodes mapped onto a host
graph node. The congestion of an embedding is defined
as the maximum number of guest graph edges mapped
onto a host graph edge. (For example, see [29] for defini-
tions.)

Since hypergraphs have no edges between only two
vertices, it is not possible to define the ‘“‘embedding’’ of a
graph onto a hypergraph H(V, Z) in this precise manner.
Therefore, define a dilation-k embedding of a graph
G.(V,, E)) onto a hypergraph H,(V,, Z,) as a one-to-one
mapping of V, onto V, and a one-to-many mapping of E,
onto Z,, such that nearest neighbors in G, are no further
than k hyperedge traversals apart in H (i.e., a single edge
in £; may map to no more than k hyperedges in Z,).
Define the load of a hypergraph embedding as before, and
define the congestion of a hypergraph embedding as the
maximum number of guest graph edges of the form (u, v)
(for fixed v) which map onto a single hyperedge contain-
ing v, maximized over all v and all hyperedges. The justifi-
cation for this definition is as follows: If there are C such
guest graph edges and if all C guest graph edges were to
perform a data transfer to v simuitaneously, the same
transfer in the hypergraph would cause a congestion
problem and the hyperedge would be forced to perform
the transfers to v sequentially.

THEOREM |. Any M-node graph (the “‘guest” graph)
which can be embedded into an N-node hypercube with
dilation k, congestion C and load L can be embedded

into a d"-hypermesh with dilation <k, with a congestion
of (C - logy N/logy N) and a load L.

Proof. Suppose the mapping is preserved and con-
sider some arbitrary node with label x in both the hyper-
cube and the hypermesh. Since the hypercube congestion
is at most C, then the maximum number of guest graph
edges incident to this node is <C - log, N. The number of
hyperedges incident to node x is # = log; N. The result
follows. m®

THEOREM 2. Any hypercube algorithm in which all
nodes perform (or do not perform) a data transfer over
the same dimension simultaneously will operate without
conflict on a hypermesh. '

Proof. From properties 1,2, 3, and 4. =

The significance of Theorem 2 is that any potential
increase in hyperedge congestion obtained when a hyper-
cube algorithm is mapped onto a hypermesh will not
result in any blocking in practice, provided that the hy-
percube dimensions are used sequentially. A majority of
hypercube algorithms have precisely this property (i.e.,
see [29], where many such algorithms are described).

EXAMPLE 4. Any M, X M, X -+ X M, = M node
array can be embedded into an N-node hypercube with
load 1, dilation 1, and congestion 1 [29], where

k
logs N = 2 [loga(M)1.

i=1

It follows from Theorem 1 that the same array can be
embedded into an N-node d” hypermesh with load 1, dila-
tion 1, and a congestion of at most (log, Nllogy N).

ExAMPLE 5. Any M; X M, X - X M, = M node
array, where M; = 2f/) and where f(j) € 1,2, ..., V1 =
J = k, can be embedded into an N-node hypercube with
dilation 1, congestion 1, and load 1 [29], where

N
log; N = ;f(i).

\

It follows from Theorem 1 that the same array can be
embedded into an d"-node hypermesh, where d* = N,
with load 1, dilation 1 and a congestion of at most (log, N/
log, N).

ExaMpPLE 6. A 2N — 1 node complete binary tree can
be embedded into an N- node hypercube with load log, N
and dilation 1 [29], such that edges in every level of the
tree are mapped onto one dimension of the hypercube.
Theorem 2 states that any algorithm which traverses the
tree one level at a time will execute conflict-free on a
hypermesh.
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The previous examples indicate that many of the
known results obtained for graph embeddings onto a hy-
percube can be used directly for hypermesh. However, it
is likely that new embeddings designed specifically for
the hypermesh will out perform those designed for the
hypercube.

5. STOCHASTIC PERFORMANCE

An exact analysis for the expected queueing time of
meshes, hypercubes and hypermeshes is presented. The
analysis will illustrate the effects of architectural changes

on the queueing time, regardless of the implementation -

technology, based on an analytic model and modeling
assumptions proposed by Kleinrock [30].

An analysis for a generic M-channel N-node communi-
cation network was derived in [30]. The i-th channel is
associated with an M/M/1 queueing system with Poisson
arrivals at a rate A\; and with independent exponential
service time of mean 1/(u - ¢;) (seconds). 1/u is the aver-
age message size and ¢; is the capacity of the ith channel.
With these assumptions, the network is ‘‘product-form,”’
and Jackson’s theorem on product-form networks can be
used to yield the expected delay {30]. The following as-
sumptions are made (for a justification see [30]): (a) each
node is equally likely to send a message to every other
node in a fixed period of time; (b) the routing algorithm
traverses dimensions in a static order; (¢) the load is
evenly distributed, i.e., \; = A;, Vi # J; (d) the capacities
have been optimally assigned; and (e) the cost per capac-
ity per channel is unity. The analysis in this section con-
siders only the “‘queueing time,” i.e., the expected time
spent waiting in the M/M/1 queues.

Under these assumptions, an exact expression for the
expected queueing time in an M-channel N-node network
is given by [30]

T=1€<§ \/§)2/MC(1 — k),

where

- k is expected number of M/M/1 queues encountered
by a packet, under randomly distributed traffic in the
topology;

TED.SZYMANSKI

e n=32E N = M

° X\ is; the utilization factor

o C = Efi; C; = aggregate bandwidth (or ‘‘capacity’’)
of the topology

This exact closed-from expression can be used to evalu-
ate the effects of architectural changes, regardless of the
implementation technology (electrical or optical). By
symmetry, in all graph-based networks considered the
expected queueing time can be simplified to yield

T - k-M
. nC —k-y)
where M is the number of transmission lines in the net-
work (see Table III). By inserting the expression for M
and factoring out the common term N/(u - C) the exact

queueing times for the graph-based networks are easily
obtained.

For d" meshes, the expected queueing time is given by

T=n-(n+ 1) - d/2
(1~ (nd/4) - )’
where d is the radix, n is the dimensionality, and k =

n(d/4). For a binary hypercube, the expected queueing
time is given by

po it D2
(1 = (/2) - y)

where d = 2, n = log, N, and k = n/2. For generalized
higher radix d" hypercubes, the expected queueing time
is given by

_ (nd - 1)+ 1) -nld—- 1)d
T (1= (a(d - D/d) )
- n¥d — D?*d

._ (1 = (n(d — )Id) - y)’

T

where k = n(d — 1)/d. (See [1] for a slightly different
derivation for generalized hypercubes made under simi-
lar assumptions.) The exact analysis of a hypermesh de-
pends on the precise implementation details. To capture

TABLE III
Inter-PE Bandwidth and Transmission Delay

Network type No. directed links Link BW (B8) Transmission delay (P/B)
d*Mesh N-2n+1) C/(N - 2(n + 1)) P-N-2n+ 1)iC
d*-Hypercube N (nid-1)+1 CHN - {nd = 1) + 1)) CP-N-(d- 1)+ 1IC
d"-Hypermesh N -2n C/(N - 2n) P-N-2nlC

Note. All networks have equivalent aggregate bandwidth = C bit/s; packet size = P bits.
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FIG. 7. Exact expected queueing time in meshes, hypercubes, and hypermeshes: (2) normalized delay vs utilization for N = 256 nodes; (b)

normalized delay vs utilization for N = 4096 nodes.

the essential characteristics of the architecture and to
avoid implementation details, let the d" hypermesh simu-
late a d" omega network, so that packets traverse all
dimensions in decreasing order. Assume the buffering is
within the hyperedge, and within a vertex data arriving
on dimension / is immediately sent out on dimension [ —
1. Hence, the expected queueing time in the hypermesh

1s given by

2n?

r= (1 — ny)’

where k = n.
The expected queueing time of the these network ar-

chitectures are shown in Fig. 7, under the constraint of
equivalent aggregate bandwidth. For each network, the
queueing time increases rapidly with increasing utiliza-
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tion and saturates at a particular load given by y = 1/k.
These curves illustrate the maximum traffic handling ca-
pability of each architecture (the point of saturation); ac-
cording to Fig. 7, the traffic capability of the hypermesh is
considerably higher than that of the meshes and hyper-
cubes; and the queueing time of hypermeshes is consider-
ably lower.

We point out that Kleinrock’s model only yields the
expected queueing time and it is primarily useful for iden-
tifying the maximum traffic handling capability of each
architecture. The appeal of Kleinrock’s model is that the
network size N, the aggregate capacity C and the average
message size all factor out, leaving an exact analytic
model which depends only on the topological characteris-
tics of the network architecture [30]. In the next section
we analyse the performance of a specific algorithm, con-
sidering node latencies and propagation delays.

6. TEMPORAL COMPLEXITY OF SORTING ON
MESHES, HYPERMESHES, AND HYPERCUBES

Consider a specific parallel algorithm, parallel sorting
[19, 33], on these three network architectures, under the
constraint of equivalent aggregate bandwidth. In this sec-
tion, we allow arbitrary node latencies, arbitrary propa-
gation delays over fiber, and durations of the data trans-
fer step and computation steps.

The equivalent aggregate bandwidth constraint reflects
many realistic engineering constraints in network design.
The limited ‘‘pin-out™ constraint of existing ICs often
becomes a dominant constraint of system performance.
Existing *‘pin-grid-array’” (PGA) ICs have a limited num-
ber of IO pins, and since each pin has a limited clock rate,
the aggregate bandwidth of any one IC is limited. We
point out that the equivalent pin-out constraint consid-
ered in [34] is identical to the equivalent aggregate band-
width constraint. )

As a constraint, there exist N fiber-optic chip sets simi-
lar to those described in [28]; the goal is to design an
optimal communications network for parallel processors
using these chip sets. The crossbars in [28] have degree
16 and are cascadable to have degree 32 or 64, and hence
thousands of such small crossbars will be required to
implement a large network. We will consider three differ-
ent architectures, meshes, hypercubes, and hyper-

meshes, all using the same number of chip-sets. Each
transceiver and crossbar chip has a bandwidth of 16 Gbit/
s, and each crossbar 10 port has a bandwidth of 1 Gbit/s,
representing roughly the *‘state-of-the-art’” in IC and fi-
ber-optic laser diode technology [26-28].

Let each PE in the N-node mesh or N-node hypercube
utilize one chip-set (crossbar and transceivers) to imple-
ment a hardware router chip, which handles the routing
and switching functions. The bandwidth of an inter-PE
link in meshes and hypercubes is given by C/L, where C
is the aggregate bandwidth of the network and where L is
the number of transmission lines in each network. The
bandwidth of an inter-PE connection across a hyperedge
in a hypermesh is also given by C/L, where L is now the
number of transmission lines in the hypermesh. In each
network (mesh, hypercube, hypermesh), the aggregate
bandwidth is held constant at C = 16 - N Gbit/s, since
each implementation uses the same number of chip-sets.
See Table I1I for the transmission delays in various net-
works.

A data-flow graph for Batcher’s bitonic sorting algo-
rithm is illustrated in Fig. 8a, using a standard notation
for sorting networks. Assuming that data-flow graph ver-

. tex i is mapped onto hypercube vertex i, then all the data

transfers correspond to permutations of the form Ef for
0 =i <log N (see Fig. 8b). The flow-graph describes the
required data movements only, and it can implemented
with either message-passing or shared-memory multipro-
cessors.

We will adapt the convention of Thompson and Kung
[19]: Let T denote the time it takes to send a packet of
data from one PE to a nearest neighbor, and let T denote
the time taken to perform a computation (in this case, a
floating-point compare and possibly exchange). The num-
ber of data-transfer and computation steps required by
the hypercube or hypermesh is given by (log, N)(1 + log,
N)/2. The number of data-transfer and computation steps
required by Thompson and Kung’s shuffled bitonic sort
algorithm on 2D meshes and on higher dimensional
meshes are shown in Table IV.

The time to perform parallel sorting in each network is
equal to the number of steps required multiplied by the
time required to implement each step. The time required
to perform each data transfer step is the “*packet cycle

time’’ Ty defined in Section 2, which includes the trans-

TABLE IV
Complexities of Various Sorting Algorithms

Network type

No. data transfer steps

No. computation steps

2D-Mesh (d = VN)
d"-Mesh (d = ¥/N)
d*-Hypercube
d"-Hypermesh

14(d — 1) — 8 logx(d)
Br*+nld — 1) = 2n-logs N
(logx N)(loga N + 1)/2
(logs N)(loga N + 1)/2

2 logi(d) + logy(!)

(1/2) - logd(N) + log; N
(log: NXloga N + 1)/2
(log: N)loga N + D2

Note. The binary hypercube is also a generalized hypercube with radix 2.
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FIG. 8. (a) Data-flow.graph for a 16-element bitonic sort algorithm. (b) Permutations corresponding to data transfers over hypercube dimen-
sions.

mission delay, the propagation delay over the longest where the first term in Tr(mesn is the transmission delay in
transmission line and the inherent node latency. T varies a mesh from Table II1. The time to perform sorting in a
with each network due to the equivalent aggregate band- d”-hypercube is

width constraint. The time to perform a computation step

is a parameter T¢, which is constant across all networks. Tsorthypercube = (1022 N - (loga N + 1)/2) * Trpypercube)
The time to perform sorting in a d"-mesh is + (loga N - (loga N + 1)/2) - Tc,
Tson,mesh =(@B-n+nd-1)-2n" log; N) ) where

* Trmesny + ((1/2) - log3(N) + log, N) - T,
’ ,TR(hypercube) =[P-N- (n(d — 1)+ 1/C
where + TP(hypercubc) + Tn(hypc:rcube)],

Trimesty = [P - N - 2(n + 1)/C + Tpmeshy + Tngmesh] and the time to perform sorting in a d"-hypermesh is
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existing technology. For the 2D and 3D meshes the propagation delay is 0: for the hypercubes and hypermeshes, the propagation delay is 20 ns.

= (1Og3 N - (lng N + 1)/2) . TR(hypercube)
+ (logz N - (logz; N + 1)/2) - T¢

Tsort,hypermesh

TR(hypermesh) = [P “N-2n/C + TP(hypermesh) + Tn(hyperrnesh)]-

A lower bound for the sort time in these networks is
shown in Fig. 9a; to determine the lower bound, the node
latencies, propagation delays, and computation time are

all set to zero. Figure 9a illustrates the total time spent
just in transmitting data in each network. It is important
to note that these lower bounds are based on the trans-
mission delays, and are valid given typical state-of-the-
art fiber-optic technology, such as the chip-set described
in [28], which was funded by Darpa’s Optical Computing
Program, or the technology described in [26, 27]. Accord-
ing to these lower bounds, the hypercube is significantly
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faster than the 2D mesh, and the hypermesh is signifi-
cantly faster than the hypercube. The 1D lower bound
also applies to the one-dimensional pipelined.bus with the
same aggregate bandwidth, and the 2D lower bound also
applies to a 2D pipelined bus with the same aggregate
bandwidth (see the Appendix).

Figure 9b illustrates the sorting time with a realistic set
of parameters for hypermeshes and hypercubes: For the
2D and 3D meshes, the propagation delays are set to be 0,
so that the performance of the 2D and 3D meshes is again
a lower bound on their sort time given the other parame-
ters. For the hypercube and hypermesh a propagation
delay of 20 ns is used in every data transfer step, suffi-
cient to allow an optical transmission over 4 m of fiber (or
12 ft.). This choice will underestimate the performance of
the hypermesh implementation in Fig. 4d, since many of
its transfers are over very short distances. In all networks
the node latency is 10 ns and the computation time is 40
ns. It is important to note that even with the inclusion of
realistic node latencies, computation times and propaga-
tion delays, the architectural comparisons in Fig. 9b are
similar to those in Fig. 9a; the hypercube is significantly
faster than the 2D mesh, and the hypermesh is signifi-
cantly faster than the hypercube. The net conclusion
from Fig. 9 is that the transmission delays dominate the
performance of fiber-optic networks given realistic fiber-
optic technology, such as that described in [26-28].

Figure 10a illustrates the sort time as a function of node
latency, with all other parameters fixed. As the node la-
tency increases, the performance of the 2D and 3D
meshes degrades faster than the others, due to their large
diameters. Figure 10b illustrates the sort time of hyper-
meshes and hypercubes as a function of the propagation
delay per data transfer step, with all other parameters
fixed. The propagation delay for 2D and 3D meshes is
fixed at 0, so the sort times for the 2D and 3D meshes are
lower bounds. As the propagation delay of the hyper-
meshes and hypercubes increases, their sort time in-
creases slowly. Even with a 100 ns propagation delay per
data transfer step, the hypermesh or hypercube are still
faster then the meshes. Note that a propagation delay of
100 ns corresponds to optical transmissions over 66 ft. of
fiber. The net conclusion from Fig. 10 is that the particu-
lar choices of propagation delays, node latencies, and

computation times do not significantly affect the overall -

sort time, which is dominated by the transmission delays
given the state-of-the-art optical technology such as that
described in [26-28]. The improvements of the hyper-
mesh over the hypercube and meshes is due to the funda-
mental differences in the network architecture. Further-
more, the improvements increase as the network size
increases (Fig. 10 is for a moderate size of log; N = 12).

One of the fundamental properties of any architecture
is its bisection bandwidth. The improved performance of
sorting is based on the higher bisection bandwidth in hy-
permeshes. Figure 11 illustrates the bandwidth of these
networks crossing the bisector, given permutations of the

form E>. (See [14] for a discussion of the bisection band-
width in hypermeshes.)

From these figures, we conclude that under the con-
straint of equivalent aggregate bandwidth and the con-
straints of existing state-of-the-art fiber-optic technology,
the hypermesh is considerably faster than both the binary
hypercube and the conventional mesh, especially as the
network size increases. The results of this section are
consistent with those in the previous section, which re-

lied on an exact general network performance model by
Kleinrock.

7. CONCLUSIONS

The maximum size of optical multichannel switches
will be limited to relatively small sizes in the foreseeable
future, due to constraints on wavelength tunability [26,
27] or ultra-high speed electronic technology [28]. Hence,
to interconnect multiple microprocessors into a mas-
sively parallel machine, new optical network architec-
tures which utilize multiple smaller optical multichannel
switches will be required. A graph-theoretic model for a
class of interconnection networks called ‘*hypermeshes’’
was proposed, and the architectural attributes of the
model were characterized. Hypermeshes are based on
the concept of orthogonal ‘‘hypergraphs,”” with N nodes
arranged an n-dimensional space, where all nodes aligned
along a dimension are members of a hypergraph hy-
peredge, and where hyperedges can perform O(d) data
transfers over their members in one step.

Hyperedges are the basic building blocks of large hy-
permeshes, and they can be implemented efficiently with
existing optical technology. Two attractive optical imple-
mentations were proposed. The first relies on a chip-set
funded by Darpa’s Optical Computing Program [28]. The
second relies on newer optical technology, namely fast
tunable optical components and WDM. to implement
switching in the optical domain. Furthermore, the use of
WDM reduces the hypermesh interconnection complex-
ity considerably to rival that of a conventional mesh.

The hypercube is known to be one of the more power-
ful models of parallel computations. It is shown that the
hypermesh has comparable computational power to the
hypercube, while simultaneously having a lower asymp-
totic cost. Hypermeshes have relatively large bisection
bandwidths, comparable to those of hypercubes and
much larger than conventional meshes. Large bisection
bandwidths minimize the time required to perform a
number of important algorithms, including sorting. It is
shown that.in a stochastic environment, the performance
of hypermeshes significantly exceeds that of meshes and
hypercubes, and that when executing a specific parallel
algorithm (parallel sorting), the performance of hyper-
meshes significantly exceeds that of meshes and hyper-
cubes.

While architectural comparisons of meshes and hyper-
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cubes in the VLSI domain have been previously per- of three different architectures, meshes, hypercubes, and
formed, the impact of fiber-optics on architectures such the proposed hypermeshes, all in the fiber-optic domain,
as meshes and hypercubes, given realistic parameters, was performed. Realistic parameters representing exist-
has not previous been examined. A thorough comparison ing fiber-optic capabilities (taken from [26-28]) were used
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in the comparisons. The comparisons indicate that with
existing fiber-optic capabilities, the hypermesh is the pre-
. ferred network architecture. These comparisons were
further validated with an exact general analytic model for
arbitrary networks proposed by Kleinrock [30].

APPENDIX A: DELAYS IN A PIPELINED OPTICAL BUS

A pipelined optical bus was described in [23]. In order
to compare the higher dimensional hypermesh with the
higher dimensional pipelined bus array, an accurate ex-
pression for the delays in a pipelined bus is derived. It is
shown that an optical pipelined bus is essentially an opti-
cal implementation of a linear array which can deliver
one permutation of packets in time T = d - (P/B), and that
a single optical hyper-edge is essentially an optical cross-
bar-like switch which can deliver one permutation of data
in time T = (P/B) + T,.

An inherent capability of the optical pipelined bus is
that an entire P-bit optical packet can reside **in flight’’ in
the fiber between two nodes. To ensure this capability, an
amount of fiber capable of dynamically buffering an en-
tire P-bit packet must be inserted in between every pair of
adjacent nodes (see [23; p. 280]). The propagation delay
on the fiber between two adjacent nodes is now greater or
equal to the transmission delay T, = P/B, since otherwise
packets will collide in the fiber. Hence, T, = T, = (P/B).
In this manner, all nodes can insert packets onto the
optical bus simuitaneously, and all packets can occupy
non-overlapping sections of fiber as they travel down the
fiber.

However, it now requires at least 2 - T, time for node {

Bisection bandwidth (x 10'?) vs log, N.

to transmit a P-bit packet over an optical channel of
bandwidth B to node (i + 1) or (/ — 1). The first 7, term is
transmission-delay. The last bit of the packet must tra-
verse the entire fiber-loop between the two adjacent
nodes before being received, and the propagation delay is
also 7, = (P/B). Hence, the time to transfer a packet
between adjacent nodes is now Tg = 2 - (P/B). This unit

~ is called a **petit cycle’’ in [23].

From an architectural perspective, a ‘*pipelined bus”’
has identical attributes to a linear array of 4 nodes, with a
packet buffer in the form of a fiber loop associated with
each node. In fact, [23] claims that a pipelined bus can be
built electronically by associating a P-bit shift-register
buffer with every node, where the shift registers are con-
nected in a linear array.

When executing algorithms using permutations of the
form E‘ the performance of the 1D linear array can be
lower bounded by choosing Tz = (P/B) and T,=T7T,=0.
(i.e., the propagation delay and node latency are zero).
This lower bound also applies to the pipelined bus, which
is fundamentally a linear array. In fact, the pipelined bus
must be slower than the 1D linear array with parameters
Tgr = (P/B)and T, = T, = 0, since these parameters are
lower bounds for all the respective delays. When execut-
ing algorithms using permutations of the form E' the per-
formance of the 1D or 2D array processor with pipelined
buses is actually slower than the 1D or 2D meshes with
parameters Tz = (P/B) and T, = Ty = 0 by a factor of
two, since the time taken to transfer a packet between
adjacent nodes is Tz = 2 - (P/B).

ExampLE. The pipelined bus requires a fiber loop ca-
pable of buffering a complete packet in between every
pair of nodes. Assume 128-bit packets (P = 128), a state-
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of-the-art laser bandwidth of 1 Gbit/s (B = 1 x 10%; see
[26-28]), and a linear array with 64 nodes. Roughly 25.6
meters of fiber is required to buffer one packet optically,
and hence a fiber loop of length 25.6 meters is inserted in
between every pair of adjacent nodes in the array. The
time taken to transmit a packet between two adjacent
nodes is now 2 - (P/B) = 256 nanoseconds (the laser is
transmitting data for 128 nanoseconds, and the propaga-
tion delay over fiber between adjacent nodes is 128 nano-
seconds). A pipelined bus with 64 nodes would require
roughly 1,612 meters of fiber and would have a end-to-
end propagation delay of about 8,064 nanoseconds,
equivalent to 63 - (P/B). The “‘bus cycle’* duration (see
[23]) is then 64 - (P/B) = 8,192 nanoseconds, and the
system can deliver one permutation of data in every bus
cycle. To compute the bisection bandwidth, we observe
that the packets in a pipelined optical bus cross the bisec-
tor sequentially, which results in a low bisection band-
width equivalent to that of a 2D mesh.

With this choice of parameters, an optical crossbar (or
a hyper-edge) can perform a permutation of data in time

T =~ (P/B) + T,; assuming a 20 nanosecond propagation

delay, T = 128 + 20 = 148 nanoseconds.

The fact that packets cross the bisector sequentially
will always be a fundamental limitation of the pipelined
bus; linear arrays and pipelined bussés have low bisec-
tion bandwidths. When the transmission delay (P/B)
dominates the propagation delay T,, which is the case for
existing optical technology, the shortcomings of the pipe-
lined optical bus implementations described in [23] can be
avoided by using the optical crossbar implementations
originally proposed by this author in [12] or those pre-
sented in [26, 27]. Just as a one dimensional optical cross-
bar outperforms a one dimensional pipelined bus, a
higher dimensional hypermesh will outperform a higher
dimensional pipelined bus, as illustrated in this paper.
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