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ABSTRACT Low-dose computed tomography (LDCT) is increasingly adopted in medical imaging to
minimize radiation exposure. However, the diagnostic accuracy is primarily affected by different noise
sources, e.g., quantum, electronic, and reconstruction. Moreover, conventional denoising methods struggle
with the non-uniform noise distributions in LDCT images and often require complex projection data, which
limits their effectiveness and generalizability. Herein, we propose an AI-based denoising approach using
an Attention Residual U-Net (ARU-Net) architecture integrated into the CycleGAN framework named
Attention Residual U-Net CycleGAN (ARUC-GAN). The proposed framework outperforms state-of-the-
art denoising models, such as RED-CNN, EDCNN, and CTformer, according to experimental evaluation on
the Mayo Clinic abdominal CT dataset. The model exhibits a peak signal-to-noise ratio (PSNR) of 34.82 dB,
a structural similarity index (SSIM) of 0.85, and an RMSE of 0.018. Furthermore, the model successfully
maintains edge structures with an Edge Keeping Index (EKI) of 0.835. The visual examination validates
ARUC-GAN’s superior texture and detail preservation. The results indicate that the suggested method has
great promise as a smart health tool for improving diagnosis accuracy in LDCT scans.

INDEX TERMS Smart Healthcare, Artificial Intelligence, GAN, Image Processing, Medical Imaging.

I. INTRODUCTION

The healthcare sector is undergoing a digital transformation
propelled by advancements in artificial intelligence (AI) and
the Internet of Medical Things (IoMT) [1]–[3]. These tech-
nologies have paved the way for smart health applications that
enhance patient care through advanced diagnostics, wearable
devices, and intelligent systems [4], [5]. A key area of im-
pact is medical imaging, where these technologies are now
enhancing foundational modalities such as computed tomog-
raphy (CT) [6]. As a cornerstone of modern diagnostics, CT
imaging provides high-resolution, cross-sectional views of
internal anatomy. However, the widespread use of CT imag-
ing introduces risks associated with X-ray radiation exposure.
Common clinical CT procedures deliver significant radiation
doses from lung screenings (1.5 mSv) to coronary angiogra-
phy with contrast enhancement (24 mSv). These exposures

exceed natural annual background levels (∼ 3 mSv) [7], as
shown in Fig. 1. Prolonged or repeated exposure has been
linked to cumulative DNA damage and potential carcinogenic
effects [8]. This has underscored the need for safer imaging
protocols such as low-dose CT (LDCT).

Besides expediting scanning procedures, LDCT reduces
the ionizing radiation exposure by fine-tuning tube voltage,
tube current, and pitch settings. However, LDCT images often
suffer from significant degradation in quality due to noise
originating from quantum, electronic, and reconstruction pro-
cesses [9]. Quantum noise, caused by statistical fluctuations
in X-ray photon detection, produces a grainy image texture,
while electronic and reconstruction noise introduces addi-
tional artifacts [10]. These issues can obscure critical anatom-
ical details, directly impacting diagnostic accuracy. For ex-
ample, quantum noise can blur small lung nodules, affect-
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FIGURE 1. Radiation absorption levels (mSv) for standard and contrast-enhanced CT scans, with equivalent environmental radiation exposure times,
across different human body regions.

ing early cancer detection [11], while electronic noise may
mask fine bone fractures, complicating diagnosis [12]. Non-
uniform noise can also hinder the identification of ischemic
areas in brain scans, crucial for stroke diagnosis, and reduce
contrast in abdominal imaging, making tumor detection dif-
ficult [13]. Additionally, reconstruction artifacts in vascular
imaging may conceal small or occluded vessels, limiting the
effectiveness of angiographic assessments [14]. Thus, image
denoising is applied as an essential preprocessing step to
enhance the quality of denoised LDCT images. Denoising
makes the next image processing tasks, like segmentation
and feature extraction, more accurate by getting rid of noise
while keeping fine anatomical structures. This contributes to
more reliable clinical interpretations and improved diagnostic
outcomes in smart healthcare applications.

Conventional denoisingmethods, such as sinogram domain
filtering and iterative reconstruction techniques, have been
developed to address these challenges. However, these ap-
proaches rely heavily on access to original projection data
and are computationally intensive. Furthermore, they cannot
generalize effectively across diverse noise patterns due to
the non-uniform noise distribution in LDCT images [15].
Given the limitations of conventional denoising techniques,
AI-based methods have emerged as a promising alternative
for enhancing LDCT image quality. These methods leverage
high performance to process LDCT images and effectively
reduce noise without requiring the original projection data.
As illustrated in Fig. 2, AI-based denoising operates on the
image domain, transforming cross-sectional LDCT images
into high-quality, denoised scans. This approach addresses the
challenges associated with acquiring projection data. It adapts
to the complex, non-uniform noise distributions characteris-

tic of LDCT images, offering improved generalizability and
performance over traditional techniques.
This article introduces a novel denoising framework, the

Attention Residual U-Net CycleGAN (ARUC-GAN), which
introduces a dual-generator and dual-discriminator architec-
ture to enhance LDCT image quality. The dual generators fa-
cilitate bidirectional image translation between noisy LDCT
and clean full-dose CT (FDCT) domains, ensuring that cycle
consistency is maintained for structural accuracy. Simultane-
ously, the dual discriminators rigorously assess the realism of
generated images, providing adversarial feedback that sharp-
ens fine details and improves image fidelity. By integrating
attention and residual mechanisms within the CycleGAN
framework, ARUC-GAN outperforms existing models. Ex-
perimental results reveal that the proposed model achieves
superior performance across key metrics such as peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM),
and root mean square error (RMSE). Furthermore, visual
evaluations highlight its capability to preserve crucial textures
and intricate details.
The rest of the paper is organized as follows: Section II

reviews state-of-the-art LDCT denoising methods, and both
supervised and unsupervisedmachine learning techniques are
covered. Section III details the methodology, dataset, and
the ARUNet-Cycle-GAN architecture. Section IV presents
and analyzes the proposed architectures using various metrics
for evaluation. Section V discusses conclusions and future
directions.

II. RELATED WORK
Iterative reconstruction has significantly reduced radiation
dose in CT imaging while mitigating noise to some extent.
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FIGURE 2. Schematic representation of low-dose CT scan acquisition and reconstruction process. The diagram illustrates the steps from X-ray source
emission, projection domain processing, and the formation of CT slice sinograms to the generation of cross-sectional LDCT images. AI-based denoising
methods are applied to deionized CT scans to enhance image quality.

However, AI-driven denoising, particularly deep learning
(DL), offers a transformative solution [16]. Convolutional
neural networks (CNNs) excel at learning complex patterns
directly from data, making them well-suited for LDCT de-
noising. These networks, trained in a supervised manner
with LDCT inputs and NDCT targets, have been enhanced
through various techniques. Some studies utilize standard
CNNs [17], while others apply preprocessing methods like
wavelet-domain transformations [18] or Sobel filters for edge
detection [19]. Post-processing strategies, such as cost func-
tion refinement via Sobel detection [20], further improve
results. Residual connections help mitigate gradient-related
issues [21], and alternative architectures, including DenseNet
with residual [22] or skip connections [19], have demon-
strated efficacy.

Advanced methodologies include cascaded CNNs, where
multi-stage networks progressively refine outputs [23]–[25],
and multi-parallel processing, which merges outputs from
parallel networks for enhanced denoising [26]. Dilated con-
volutions improve the perceptual field without increas-
ing parameters [27], often integrated with residual learn-
ing [28]. Hybrid approaches combine these techniques, such
as parallel dilated networks for multi-scale feature extrac-
tion [29] or residual-dilated architectures with multiple dila-
tion rates [30]. To exploit spatial relationships, 3D ResNet-
based models process adjacent CT slices [31], [32]. Beyond
CNNs, Panigrahi et al. [33] introduced CTuNLM, leverag-
ing curvelet transforms, NLM filtering, and scale-dependent
thresholding to preserve fine details. Their "Deep Curvelet-
Net" integrates multiscale spatial features with attention

mechanisms for enhanced denoising. Additionally, they pro-
posed phase-preserved curvelet thresholding (PPCT) [34],
which employs adaptiveWiener filtering in coarser scales and
bilateral filtering at finer scales for better edge localization
and artifact suppression. Mathematical analysis confirms its
superior noise immunity over magnitude-based threshold-
ing. Other studies include state-space models (SSMs) with
encoder-decoder structures such as DenoMamba and I2I-
Mamba. This enhances the capture of both short- and long-
range spatial and channel dependencies [35], [36].

Most CNN and encoder-decoder models use Mean Square
Error (MSE) as a loss function, which often leads to blurred
images due to ignored texture details. Generative Adversarial
Networks (GANs) address this by incorporating adversar-
ial loss, minimizing JS or KL divergence to enhance edge
preservation and fine details [37]. However, GANs struggle
with effective noise suppression, prompting researchers to
explore multi-loss approaches. For instance, [38] combined
MSE with generator loss for sharper images, while [39] inte-
grated adversarial, L1, and structural losses to counter over-
smoothing. Similarly, [40] improved GAN performance by
incorporating least squares, structural similarity, and L1 loss.
Training instability, including mode collapse, is a common
GAN challenge. Wasserstein GAN (WGAN), using Wasser-
stein distance as a loss function, was first applied to LDCT
denoising by [41] with perceptual loss. WGAN has since
been widely adopted; [42] introduced a model with four loss
functions—Wasserstein distance, perceptual loss, sharpness
loss, and structural similarity loss. Additionally, replacing
cross-entropy loss with least square loss mitigates gradient
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penalties, while pre-trained models like VGG and ResNet
enhance GAN performance with perceptual loss.

Hybrid architectures further refine GAN-based denoising.
In [43], a dual U-Net generator separates general image
generation from high-frequency component mapping. Sim-
ilarly, [44] proposed a dual-generator framework for noise
and texture distribution learning. A novel U-Net-based gener-
ator with multiple discriminators along deconvolution layers
was introduced in [45], forming a joint discriminator. Con-
versely, [46] employed a dual-network U-Net discriminator,
where one network captures input-target differences and the
other focuses on gradient map variations between LDCT
and NDCT. Another layer of improvement is introduced
by employing Cycle-GAN, which does not require paired
training datasets while also enforcing the learned mapping
with higher accuracy through its cycle consistency loss. [47]
utilized Cycle-GAN with cycle-consistency loss alongside
identity loss to generate images without artifacts more ef-
fectively. Furthermore, [48] proposed a similar Cycle-GAN
approach, incorporating prior image information and merg-
ing the losses of both models with the traditional denoising
algorithm BM3D, thereby enhancing denoising performance.

To overcome the shortcomings of existing studies, the pro-
posed ARUC-GAN integrates attention and residual mech-
anisms into a CycleGAN framework. This hybrid approach
leverages the strengths of attention for feature prioritization,
residual connections for efficient training, and CycleGAN for
unpaired domain translation. Unlike conventional and earlier
AI-based methods, ARUC-GAN achieves superior denoising
performance without relying on projection data, offering a
scalable and generalizable solution for smart health applica-
tions.

III. METHODOLOGY
The proposed approach for denoising LDCT images com-
bines the strengths of attention mechanisms, residual learn-
ing, and GANs to enhance image quality while preserving
fine details. The methodology’s core is the development of
the ARU-Net architecture to serve as the generator within a
CycleGAN framework. The ARU-Net leverages the encoder-
decoder structure of U-Net, attention, and residual mecha-
nisms to capture and retain critical features effectively. In-
tegrating ARU-Net into the CycleGAN framework enables
robust noise reduction and image reconstruction. The target
of the proposed framework is post-reconstruction restoration
for LDCT scans. To achieve this, the model is trained on
the Mayo Clinic DICOM dataset. This section details the
architecture, training process, and evaluation metrics used to
validate the performance of the proposed models.

A. DATASET SPECIFICATION
The dataset employed is derived from LDCT Grand Chal-
lenge and the publicly available library hosted by The Cancer
Imaging Archive (TCIA) [49]. It encompasses data from
299 anonymized patient CT exams, including scans of the
head, chest, and abdomen. These cases are evenly split be-

tween Siemens SOMATOM Definition Flash and GE Light-
speed VCT CT scanners, each contributing approximately
50% of the dataset. The dataset includes three key types
of data: DICOM-CT-PD projection data, reconstructed CT
image data, and associated clinical reports. The DICOM-CT-
PD format, an open and vendor-neutral standard, encodes
critical projection and acquisition geometry data. For eval-
uation, test datasets included a range of patient sizes and
conditions. Participants were provided either projection data
or 1-3 mm thick reconstructed images with a choice between
medium (B30) and sharp (D45) reconstruction kernels. The
Hounsfield Unit (HU) range of the dataset, spanning from -
1024 HU to 1742 HU.While the display setting for soft tissue
visualization, employs a window width (WW) of 440 HU
and a window level (WL) of 55 HU, enhancing contrast for
tissues such as the liver and surrounding organs. The second
configuration, tailored for lung and air-filled regions, uses a
broader WW of 1500 HU and a WL of -600 HU.
For the noise generation, the low-dose images were gener-

ated by inserting Poisson noise into the projection data [49],
replicating quantum noise effects associated with reduced
radiation exposure [50]. This simulation accounts for critical
factors such as tube current modulation, bow-tie filtering, and
electronic noise to accurately reflect real-world LDCT condi-
tions [51]. The noisy projection data was then reconstructed
using Filtered Back Projection (FBP). The number of detected
photons at each point in the projection data follows a Poisson
distribution, represented by eq. 1 [52].

P(k;λ) =
λke−λ

k!
, k = 0, 1, 2, . . . (1)

where k is the number of detected photons, λ is the mean
photon count, and P(k;λ) is the probability of detecting k
photons. This relationship highlights that noise increases as
photon counts decrease, which is why LDCT scans suffer
from higher noise levels [53]. FBP, while efficient, is sen-
sitive to noise and can introduce artifacts, particularly when
input projection data has low signal-to-noise ratios (SNR).
Artifacts such as streaking and edge distortions are inherent
to FBP but are significantly amplified when applied to noisy
projection data [54]. However, due to the higher photon count
and SNR, full-dose images experience minimal noise and
artifacts, whereas low-dose images exhibit more pronounced
artifacts and noise due to the degraded quality of projection
data.
The problem formulation in this study involves addressing

both quantum noise and FBP-induced artifacts to enhance
LDCT image quality. A subset of the dataset is employed with
a focus on abdominal imaging. The training set comprised
3,839 fully reconstructed axial plane images obtained from
20 different patients. For model evaluation, a separate test set
of 421 axial slices from abdominal CT scans is used.

B. MODEL ARCHITECTURE
The proposed solution uses a CycleGAN model, a variant of
GAN. GANs are generative networks consisting of a gener-
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FIGURE 3. CycleGAN architecture for low-dose CT image denoising. The model consists of two generators (GFD→QD and GQD→FD) and two discriminators
(DX and DY ). The generators aim to translate images from low-dose CT (QDCT [X]) to full-dose CT (FDCT [Y]) and vice versa. Discriminators evaluate the
realism of the generated images. The forward cycle (QDCT → FDCT → QDCT) and backward cycle (FDCT → QDCT → FDCT) consistency losses ensure that
the transformations between the domains preserve image content. Adversarial loss encourages the generators to produce images that are
indistinguishable from real FDCT and QDCT images. Identity loss is applied to retain the characteristics of the original images when transformed into the
same domain.

ator and a discriminator. The former’s objective is producing
realistic data, while the latter’s objective is to distinguish be-
tween real and generated data [55]. Both networks are trained
simultaneously, ensuring that the generator maximizes the
probability of the discriminator making a mistake while the
discriminator minimizes its classification error as presented
in the objective function (Eq.2) [56]. Unlike GAN, Cycle-
GAN employs multiple generators and discriminators to learn
mappings between two domains, enabling image-to-image
translation without requiring paired data [57].

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1− D(G(z)))] (2)

where pdata(x) is the distribution of the real data, pz(z) is
the distribution of the noise input to the generator (often a
simple distribution is used, e.g., uniform or Gaussian), G(z)
is the generator’s output, a function that maps the noise z to
the data space and D(x) is the discriminator’s output, giving
the probability that x is real.

Although it has been primarily used as an unsupervised
method, it has also significantly improved in supervised
learning. In our context, the primary goal is to translate an
LDCT image (domain X) to an FDCT image (domain Y). As
shown in Fig. 3, dual generators enable the model to translate
noisy images to clean images by the first generator, denoted
as GFD→QD, while the second generator GQD→FD translates
clean images back to noisy images, ensuring cycle consis-
tency. Similarly, the first discriminator, DX , distinguishes

between real FDCT images and generated images, while the
second discriminator, DY , distinguishes between real LDCT
images and generated LDCT images by the other cycle. This
iterative process enforces cycle consistency, ensuring that
an image converted from noisy to clean and back to noisy
remains similar to the original [58].

1) The Generator

The generator, G, takes a random noise vector, z, as input and
outputs a data point, G(z), that should ideally resemble the
real data [59]. The proposed generator architecture is a CNN-
based UNet. UNet has been widely used in denoising images
due to its encoding-decoding capabilities [60]. As shown in
Fig. 4(a), it consists of three blocks of encoder and decoder
with 512 convolutions bottleneck. Each block in the encoder
downsamples the image by 64, 128, 256 convolutions, and the
same with convolutions transpose for the decoder. Another
improvement layer is added by merging the attention mech-
anism and residual connections to the U-Net. Specifically, a
cross-attention module is embedded in each block within the
model. The attention mechanism allows a model to focus on
important parts within the input. It involves calculating query
(Q), key (K ) and value (V ) of input images.

In each attention block in the model, components Q, K ,
and V tensors are calculated by different 2D convolution
layers followed by batch normalization layer. After obtaining
the three tensors, element-wise multiplication is calculated as
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FIGURE 4. Generators and discriminators architecture of the proposed Attention Residual U-Net CycleGAN (ARUC-GAN) for low-dose CT denoising. (a):
The generator network adopts a U-Net structure with 4 downsampling and 4 upsampling layers, incorporating residual connections and the attention
mechanism. (b): The attention mechanism computes the query (Q), key (K), and value (V) representations of the input features. The attention scores are
calculated using the dot-product between Q and K, normalized by the softmax operation. The attended features are then combined with the original input
via residual connections. (c): The PatchGAN discriminator evaluates image patches (30x30) to distinguish denoised images.

presented in Eqn. 3 [61].

Attention(Q,K ,V ) = softmax
(
QK T

√
dk

)
V (3)

where dk is the dimension of the key vectors. These features
are then passed through a convolution layer with batch nor-
malization, and dropout is added to a residual structure to
obtain the final feature of this block. A residual structure uses
skip connections, which allow the model to bypass one or
more layers instead of using the usual forward path. This en-
ables it to be added directly to the output of a subsequent layer,
allowing the model to learn more useful features with less
complexity [62]. Both forward and backward cycle generators
have the same architecture that utilizes mean squared error
(MSE) as a loss function. Moreover, it employs LeakyReLU
as an activation function, allowing for a non-zero gradient

when the input is negative to avoid the dying ReLU prob-
lem [63]. The CycleGAN framework uses the Attention U-
Net for its generators. It incorporates attention mechanisms to
enhance feature refinement within the generator networks. To
evaluate the contribution of CycleGAN to the overall denois-
ing performance, an ablation study is conducted by compar-
ing the standalone ARU-Net with the complete ARUC-GAN
model.

2) The Discriminator

The discriminator network in the proposed architecture,
shown in Fig. 4(b), is designed to distinguish between real
and generated LDCT images. As an adversary, it evaluates
input image patches of size 30 × 30 to identify denoised
images using the PatchGAN architecture. It sends feedback
to the generator to improve its output and maximize its
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TABLE 1. The tuned hyperparameters of the ARUC-GAN proposed
model.

Parameter Value

Input Size 512 × 512

Loss Function Hybrid Function
(Generator, cycle, and identity losses)

Optimizer Adam
Initial Learning Rate 2× 10−3

Batch Size 8
Epochs 100

discrimination capabilities. The architecture employed is a
CNN network of four layers with 64, 128, 256, and 512
convolutions. It uses LeakyRelu and batch normalization with
a classification output layer returning either fake or real. The
loss function employed in both discriminators is MSE.

C. THE HYPER-PARAMETERS
The parameter that affects the most in any network is the
choice of the loss function. Due to the dependency of mul-
tiple aspects in CycleGAN, a hybrid loss function is often
employed, combining multiple components [64]. The first
component is the generator loss, which encourages the gen-
erators, GFD→QD and GQD→FD, to produce images that are
indistinguishable from real clean images Y and X , respec-
tively. Equation 8 shows the adversarial loss of the sum of
both generators.

Ladv = MSEG(GFD→QD,DY ,X ,Y )

+MSEG(GQD→FD,DX ,Y ,X) (8)

where X represents an image from the FD domain (e.g., the
original domain before translation), and Y represents an im-
age from the QD domain (e.g., the target domain after trans-
lation). GFD→QD is the generator that translates images from
domain FD (source) to domain QD (target), and GQD→FD is
the generator that translates images from domain QD back to
domain FD. MSEG represents the generator loss function.

Another important component is the cycle-consistency loss
that ensures the image remains unchanged when translated
from domain, X , to domain, Y , and then back to domain X ,
presented in Eq. 9.

Lcycle = MAE(GFD→QD(X),GQD→FD(Y )) (9)

where MAEcycle represents the cycle loss function.
Identity loss is an important component as well. It measures

the difference between the input and output images generated
by the network as presented in Eq. 10. This ensures the
generator produces an output that is close to the input.

Lid = λidentity (λX ·MAE(GQD→FD(X),X)

+λY ·MAE(GFD→QD(Y ),Y )) (10)

where λX and λY are weighting factors for the identity loss in
their respective domains, while λidentity is a global weighting
factor for the identity loss across both domains.
where λA and λB are hyper-parameters controlling the

weight of the identity loss for each generator with a value
equal to 10. λidentity is a hyper-parameter scaling the overall
importance of identity loss with value equals 0.5.
As presented in Table 1, Adam optimizer is employed with

an initial learning rate of 2e−3 linearly decaying, batch size
of 8, and total epochs of 100.
The hardware configuration includes NVIDIA RTX 3060

GPU, an Intel i7-11800H CPU, and 16 GB of RAM. The
models are implemented in Python 3.11 using PyTorch, which
served as the primary deep learning framework with addi-
tional supporting libraries.

D. MODEL EVALUATION
The proposed U-Net and Cycle GAN models have been
evaluated and compared with multiple architectures from
the literature. Quantitative evaluation metrics used for this
include PSNR, RMSE, SSIM, EKI [34], as listed in Table 2.
Each metric quantifies the difference between real FDCT

and the generated denoised image differently. Moreover,
other aspects are considered, including visual evaluation and
complexity. We also compare all models’ parameter numbers
and training and inference times.

IV. RESULTS & DISCUSSION
A. LEARNING DYNAMICS
Over 100 epochs, the training performance of the ARUC-
GAN model is shown in Figure 5. Adversarial, cycle con-
sistency, and identity losses illustrate this interaction. The
cycle consistency loss is shown in Fig. 5(a) to ensure that
the CT scans retain their original structure when an image is
translated from one domain to the other and then back. Both
generators, GFD→QD and GQD→FD, exhibit a significant drop
in cycle consistency loss during the initial epochs. They com-
pletely stabilized after approximately 25 epochs. This indi-
cates that the model effectively learns the mappings between
the two domains while maintaining the structural integrity of
the images. The identity loss for both GFD→QD and GQD→FD

is provided in Fig. 5(b). It showed a rapid decrease in the
early stages of training and remains low after approximately
25 epochs. Such behavior indicates that both generators are
preserving the key characteristics of images. In Fig. 5(c,d),
the adversarial losses of both generators and discriminators
are presented. Both generators exhibit fluctuations in their
adversarial losses throughout training, which is a characteris-
tic behavior in adversarial models. Over the training process,
both generators demonstrate steady improvement, reflected
by their ability to generate more realistic images as training
progresses. on the same basis, both discriminators exhibit
typical fluctuations as they strive to distinguish between de-
noised and real images. Both discriminators learn to better
assess the realism of the generated images.
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TABLE 2. Evaluation metrics employed for evaluating denoising models.

Metric Definition Equation Parameters

PSNR Measures the peak error between
the original and denoised images.

10 · log10
(

L2

MSE

)
(4) L is the maximum possible pixel

value of the image.

SSIM

Indicates the similarity between two
images by considering changes in
structural information, luminance,
and contrast.

(2µIµK + C1)(2σIK + C2)

(µ2
I + µ2

K + C1)(σ2
I + σ2

K + C2)
(5)

µI and µK are the average values
of images I and K respectively. σ2

I
and σ2

K are the variances of I and K
respectively. σIK is the covariance
of I andK .C1 andC2 are constants.

RMSE
A measure of the differences be-
tween predicted values by a model
and the actual values.

√√√√ 1

MN

M−1∑
i=0

N−1∑
j=0

(I(i, j)− K(i, j))2 (6)
I is the original image, K is the
denoised image, and M and N are
the dimensions of the images.

EKI
Measures the preservation of edge
features between the ground truth
and predicted images.

1−
∑(

Egt(i, j)− Epred (i, j)
)2∑

Egt(i, j)2 + ϵ
(7)

Egt and Epred are the edge intensity
values from the Sobel filter applied
to the ground truth and predicted
images, respectively. ϵ is a small
constant to avoid division by zero.

FIGURE 5. Learning dynamics of the ARUC-GAN model over the training process. (a) Cycle consistency loss. (b) Identity loss. (c) Adversarial loss of the
generators. (d) Adversarial loss of the discriminators.

B. DENOISING PERFORMANCE ANALYSIS

Multiple architectures from the literature are employed for
evaluation and comparison along with our proposed ARU-
Net and ARUC-GAN models. In the training process, Fig. 6
presents the loss curves of all models after converting the
values to PSNR for unified values. It displays the perfor-
mance of the training process, each experiencing a different
behavior. ARU-Net and RED-CNN have nearly the same
performance with the same starting point and the same rate
of increase due to their shared encoder-decoder structure. In
contrast, EDCNN has the same pattern with lower values.
CTformer begins with low PSNR to be increased at a higher
rate and stabilizes after almost 40 epochs. CycleGAN, on
the other hand, shows significant fluctuations starting from
a low PSNR. Nevertheless, it achieves the highest PSNR
after nearly 30 epochs. These fluctuations are characteristic
of GANs as the generator and discriminator engage in a
competitive process. This adversarial training contributes to
the observed instability and eventual improvement in PSNR.
Although high PSNR indicates high-quality denoising, it can
smooth out fine details and sharpness while reducing noise.
Accordingly, SSIM was used as another evaluation metric,

which provides a more nuanced view of image quality, in-
cluding sharpness, structural patterns, and texture.

The results presented in Table 3 highlight the superior-
ity of the proposed ARUC-GAN model. With an SSIM of
0.849 ± 0.064, it achieves the closest match to full-dose CT
images, outperforming other models in perceptual quality.
Even its generator as a standalone model, ARU-Net, performs
well with an SSIM of 0.837±0.056, showing that the base ar-
chitecture is effective before adversarial refinement. In com-
parison, RED-CNN, EDCNN, and CTformer exhibit lower
SSIM values, with EDCNN (0.758 ± 0.103) and CTformer
(0.749±0.175) showing a wider spread, suggesting their per-
formance varies across different test samples. The RMSE val-
ues further reinforce the advantage ofARUC-GAN, achieving
the lowest error of 0.018 ± 0.007. This indicates that it not
only reconstructs images with minimal distortions but also
does so consistently. ARU-Net follows with an RMSE of
0.023 ± 0.009, while RED-CNN, EDCNN, and CTformer
show higher errors. The wider standard deviation in some of
these models suggests they may struggle to maintain stable
reconstruction quality across different cases. PSNR results
provide further insight into these differences. ARUC-GAN
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TABLE 3. Quantitative evaluation metrics on the proposed model compared to models in the literature.

Model LDCT RED-CNN [65] EDCNN [19] CTformer [66] This Work

ARU-Net ARUC-GAN

PSNR (dB) 26.956 ± 3.794 33.488 ± 2.164 32.022 ± 2.081 32.23 ± 1.718 32.450 ± 2.492 34.819 ± 2.187
SSIM 0.698 ± 0.080 0.832 ± 0.095 0.758 ± 0.103 0.749 ± 0.175 0.837 ± 0.056 0.849 ± 0.064
RMSE 0.048 ± 0.016 0.022 ± 0.006 0.026 ± 0.007 0.025 ± 0.005 0.023 ± 0.009 0.018 ± 0.007
Difference PSNR (dB) - 6.532 ± 4.370 5.066 ± 4.327 5.277 ± 4.165 5.494 ± 4.538 7.863 ± 4.377

FIGURE 6. Peak Signal-to-Noise Ratio (PSNR) curves over the training
epochs for different denoising models.

achieves the highest PSNR of 34.819± 2.187 dB, indicating
superior noise reduction while preserving critical details. Its
generator alone reaches 32.450 ± 2.492 dB, outperform-
ing many traditional approaches. RED-CNN, EDCNN, and
CTformer achieve lower PSNR values, with differences of
6.532± 4.370, 5.066± 4.327, and 5.277± 4.165 dB, respec-
tively. Notably, CTformer exhibits the lowest standard devi-
ation in PSNR (±1.718), meaning its performance is more
stable across test samples, even if its overall accuracy is lower.
This stability suggests that transformer-based architectures
may be less sensitive to variations in input data, though they
do not achieve the highest fidelity.

The proposed CycleGAN outperforms other models in all
aspects, indicating the generation of the sharpest and most
structurally accurate images with minimal noise and blurring
compared to literature models. Furthermore, the CycleGAN
generator with attention to the U-Net structure has the highest
SSIM compared to literature models. Nevertheless, RED-
CNN performed better in terms of PSNR. This demonstrates
that RED-CNN has less noisy prediction with more loss of
fine details than our U-Net. At the same time, EDCNN shows
the highest error among the tested models, indicating more
significant smoothing and loss of details. Finally, all literature
models improve LDCT images, but they are still lagging be-
hind the proposed model. Additionally, EKI was calculated to
assess the preservation of edge structures in denoised images.

The results show that ARUC-GAN achieves a mean EKI
value of 0.835, indicating superior edge preservation, while
the ARU-Net achieves a mean EKI of 0.823.

C. VISUAL ANALYSIS OF DENOISING RESULTS

The quantitative results show that ARUC-GAN is good at
denoising low-dose CT images, but a qualitative visual as-
sessment is still needed to see how well fine details, texture,
and structural integrity are kept. Visual evaluation presented
in Fig. 7 is conducted, showing the difference in multiple
patches in a denoised sample from each model. The original
test input and target are NDCT and LDCT, while the other
snippets are predictions from the presented models. RED-
CNN shows consistently strong performance in structural
preservation, often achieving the second-highest SSIM scores
across most cases, indicating that it effectively maintains key
structural patterns and edges. However, despite its strong
SSIM performance, RED-CNN tends to have lower PSNR
values, as seen in the third case. This occurs because RED-
CNN, while preserving structure, applies aggressive noise
reduction that causes smoothing of fine details and texture,
which impacts pixel-level fidelity measured by PSNR. This
trade-off between high SSIM and relatively low PSNR re-
flects its focus on global structural consistency at the expense
of localized pixel accuracy. CTformer shows better contrast
and edge clarity, benefiting from transformer-based attention
mechanisms that can better capture long-range dependencies.
Despite this, it struggles with subtle details, particularly under
complex noise patterns, where local features are lost due to
less precise feature extraction. As a result, it achieves mod-
erate SSIM and PSNR performance, sometimes close to but
not exceeding the top models. EDCNN performs reasonably
well in balancing noise suppression and edge preservation. It
is slightly better at maintaining sharp edges compared to most
other models. However, EDCNN’s attempts to enhance edges
still lead to smoothing artifacts in other regions, resulting
in moderate SSIM and PSNR scores. ARU-Net is gener-
ally comparable to the other models and performs well in
noise reduction and detail preservation. However, it does not
consistently outperform them and sometimes underperforms,
as in case 2, where RED-CNN and CTformer surpass it.
One of ARU-Net’s limitations is its tendency to oversmooth
finer textures, leading to a slight loss of detail in some re-
gions. While ARU-Net excels in scenarios where balancing
structure and texture is less complex, it struggles to handle
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FIGURE 7. Visual comparison of denoised CT scans using ARUC-GAN and state-of-the-art models.

more intricate noise patterns. Finally, ARUC-GAN shows the
most consistent performance among all models. It achieves
the highest PSNR and SSIM in most cases, successfully
balancing global structural preservation and localized detail
accuracy. This superior performance stems from its ability to
handle complex, non-uniform noise without over-smoothing,
making it particularly suitable for denoising tasks that require

both texture fidelity and structural integrity.

D. DEPLOYMENT AND COMPUTATIONAL FEASIBILITY

Initial assessments with commodity hardware configuration
using an Intel i7-11800H CPU@2.30GHz show that general-
purpose consumer devices are sufficient for the inference of
the ARUC-GAN model. The inference time was quantified
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TABLE 4. Comparison of computational demands in terms of model
parameters, training time, and inference time (model latency).

Models No. of Parameters Training Time (s) Inference Time

RED-CNN [65] 1.8× 106 10,200 2.00 ± 1.10 µs
EDCNN [19] 8.1× 104 4,800 3.50 ± 0.632 µs
CTformer [66] 1.7× 106 7,400 12.8 ± 0.492 s
ARU-Net 1.6× 107 3,371 2.60 ± 0.802 µs

ARUC-GAN G: 2× 1.6× 107 21,000 3.00 ± 0.632 µs
D: 2× 6.6× 105

by measuring the duration of a single forward pass through
the model under standardized conditions. To ensure statistical
reliability, multiple inference runs were conducted, and the
mean and standard deviation of the inference time per sample
were reported. Table 4 presents a comparative analysis of
model architecture complexity, measured by the number of
parameters, training time, and inference speed. With 32 M
parameters in the generators and 1.32 M parameters in the
discriminators, the ARUC-GANmanages to reach an average
inference time of 3.00 µs. ARU-Net is a more lightweight so-
lution thatmaintains acceptable accuracy. In addition, ARUC-
GAN outperforms CTformer, which has a much longer in-
ference time of 12.8 s, and is on par with models like RED-
CNN (2.00 µs) and EDCNN (3.50 µs). For the CTformer, this
difference is likely caused by the computationally intensive
self-attention algorithms and high-dimensional matrix multi-
plications that are part of the transformer-based design.

While real-time processing is not essential for CT imag-
ing, certain applications, such as 4D CT in interventional
procedures, need near-real-time imaging to monitor respi-
ratory motion or aid biopsies [67], [68]. Hence, rapid and
effective inference is essential for optimizing clinical opera-
tions. Accelerated denoising minimizes image reconstruction
durations for more responsive diagnostic decisions. Hence,
AI-driven denoising models have to balance accuracy and
computational efficiency for clinical applicability. In this
regard, ARUC-GAN is a viable candidate for smart health
application deployment since it features powerful denoising
capabilities without adding excessive computational over-
head. In situations demanding high throughput or low latency
requirements, further optimizations such as model quantiza-
tion, pruning, and knowledge distillation can be explored to
enhance inference efficiencywithout compromisingmodel fi-
delity, including reconstruction accuracy and denoising [69].
Moreover, hardware accelerators like FPGAs and ASICs may
enhance model execution for resource-constrained medical
imaging equipment [70]–[72]. However, for the majority
of applications, ARUC-GAN attains a balance between in-
ference speed and denoising efficiency on consumer-grade
general-purpose. This allows straightforward incorporation
into existing healthcare workflows.

V. CONCLUSIONS AND FUTURE DIRECTIONS
This study presented the ARUC-GAN architecture to en-
hance LDCT imaging without requiring projection data. The
integration of attention mechanisms and residual learning

within the CycleGAN framework has demonstrated superior
performance in tackling the complex noise patterns inherent
in LDCT imaging. Quantitative and qualitative evaluations
demonstrated the proposed model’s robustness, with notable
improvements in structural integrity and image fidelity. These
enhancements contribute to making LDCT a more viable
alternative for routine clinical diagnostics with reduced radia-
tion exposure for safer and more time-efficient imaging. Fur-
thermore, the computational efficiency of ARUC-GAN facili-
tates its straightforward integration into medical imaging pro-
cesses without requiring excessive resource demands. Given
its effectiveness in noise suppression and feature preservation,
this architecture can be extended to other denoising tasks in
medical imaging and beyond. Future work will focus on en-
larging the dataset with greater variability, including different
noise levels and imaging modalities, to further improve the
model’s generalizability and performance.
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