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Abstract
Spike sorting is the process of parsing electrophysiological
signals from neurons to identify if, when, and which partic-
ular neurons fire. Spike sorting is a particularly difficult task
in computational neuroscience due to the growing scale of
recording technologies and complexity in traditional spike
sorting algorithms. Previous spike sorters can be divided
into software-based and hardware-based solutions. Software
solutions are highly accurate but operate on recordings after-
the-fact, and often require utilization of high-power GPUs
to process in a timely fashion, and they cannot be used in
portable applications. Hardware solutions suffer in terms of
accuracy due to the simplification of mechanisms for imple-
mentation’s sake and process only up to 128 inputs. This
work answers the question: “How much computation power
and memory storage is needed to sort spikes from 1000s of
channels to keep up with advances in probe technology?”
We analyze the computational and memory requirements
for modern software spike sorters to identify their potential
bottlenecks - namely in the template memory storage. We
architect Marple, a highly optimized hardware pipeline for
spike sorting which incorporates a novel mechanism to re-
duce the template memory storage from 8 - 11x. Marple is
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scalable, uses a flexible vector-based back-end to perform
neuron identification, and a fixed-function front-end to filter
the incoming streams into areas of interest. The implemen-
tation is projected to use just 79mW in 7nm, when spike
sorting 10K channels at peak activity. We further demon-
strate, for the first time, a machine learning replacement for
the template matching stage.
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1 Introduction
The human brain comprises billions of neurons that com-
municate through electrophysiological signals called spikes,
which serve as the fundamental units of brain communi-
cation. To better understand complex brain behaviors and
structures, neuroscientists employ spike sorting, a process
that attributes spikes to their respective firing neurons. This
single-neuron activity reveals higher-order brain functional-
ity [3, 19, 20, 62]. Real-time interaction via neuronal commu-
nication enables life-changing advances, e.g. motor control
for paralysis patients [22, 42], epilepsy detection and miti-
gation [14, 44, 85], treatment of Parkinson’s disease [29, 33],
and cognitive control [77]. These early successes are rid-
ing on a sustained wave of exponential growth [79] in elec-
trode count and continues unabated, with implantable neural
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probes having several thousands of electrodes being com-
mercially available [78] and prototypes with even more elec-
trodes underway [67]. Apart from the existing applications,
larger scale ones remain unrealized due to the many impedi-
ments to perform spike sorting at a high-scale (see Section 2).
There are three foundational technologies that need to scale
to more than tens of thousands of neurons for such applica-
tions to begin to materialize: 1) implantable voltage sensors,
2) an analog-to-digital front-end voltage converter, and 3) a
digital processing back-end (the focus of this work). Today,
implantable probes and analog-to-digital conversion have
already reached such scales [52, 67, 78] and continue to out-
pace the digital back-end. Therefore, realizing the potential
of such brain-machine applications hinges upon the digital
back-end 1) to observe and act upon activity across orders
of magnitude more neurons, and 2) to do so in real-time
using wearable, energy-efficient systems that operate au-
tonomously for long periods of time [40, 75].
Near-brain implants, including neural prosthetics and

brain-machine interfaces (BMIs), should incorporate a well-
defined power budget due to two compelling reasons sup-
ported by scientific research and clinical considerations. Firstly,
safety is a crucial concern for many near-brain implants. Ex-
cessive power consumption can lead to heat generation, po-
tentially damaging sensitive brain tissue. Therefore, a power
budget helps ensure that the implant operates within safe
temperature limits, safeguarding the well-being of the pa-
tient [66]. Battery life is another paramount concern. These
devices often rely on batteries for power, and optimizing
power usage is essential to prolong battery life. Longer bat-
tery life reduces the frequency of recharging batteries, en-
hancing the patient’s quality of life and reducing associated
risks [34]. The power budget of near-brain implants can
vary significantly depending on the specific device, its in-
tended application, and technological advancements. How-
ever, recent scientific findings and clinical considerations
strongly suggest that a power budget of 2W should be con-
sidered [32, 47, 75]. Existing commodity processing systems
today, e.g., CPUs and GPUs, are far from capable of meet-
ing the stringent combination of processing capability and
power efficiency needed to keep up with these advances
(See Section 3.2). To fill this gap, a few custom-built systems
have been developed only at low-scales [30, 92]. Presently,
development of potential applications with even a few hun-
dreds of neurons requires tethering to a server and offline
analysis [25] which severely limits their utility.

Fully-implantable devices illustrate the inherent challenges
in device design due to their stringent constraints. In addition
to the portability of a near-brain implant, fully-implantable
devices are restricted to smaller form factors, have durabil-
ity and longevity considerations [61], and must adhere to
stricter power budgets due to the 1°C thermal safety thresh-
old of the International Organization for Standardization to
prevent brain damage and cell death [24]. The power budget

is limited to 47-81 mW ([73]), but this can reduce further
depending on the device’s spatial footprint. Current tech-
nology scales to only hundreds of channels within a 50 mW
power budget ([32, 51]). Even for simple components, scaling
to ten thousand channels and beyond will require great in-
novation. Current neural amplifiers consume 0.5-10 𝜇W per
channel [17]. For ten thousand channels, amplifiers alone
consume 5-100 mW, surpassing the entire power budget.

Therefore, the goals of our work at large are 1) to investi-
gate the needs of such applications as the input neuron count
scales up in the thousands, and 2) to architect an appropriate
system to best serve them. A key challenge with this endeav-
our is that the domain specific applications are not mature
and well defined. Regardless, meaningful progress can still be
made. The prevailing consensus is that an essential process-
ing step for many such applications is spike sorting. Its indis-
pensability hasmotivated decades of continuing research and
development, e.g., [6, 7, 35, 36, 53, 59, 63], the establishment
of comprehensive software implementations [10, 54, 94], and
of benchmarking resources and methodologies [41]. To com-
plement and build upon these prior works, the first goal of
this work is - for the first time - to quantify what it takes to
perform state-of-the-art spike sorting in real-time for thou-
sands of probe channels and in a wearable form factor. Our
second goal is to architect a hardware pipeline to enable
spike sorting at the scale of tens of thousands of neurons.

We begin by analyzing state-of-the-art software spike sort-
ing pipelines which use template matching, the most effective
and mature to-date method [10, 41]. Template matching uses
a set of prerecorded spike waveforms, comparing against
inputs to identify the source neuron. Our first contribution
is the modeling and analysis of its computation and memory
needs as a function of input channel count. The analysis
shows that software-based implementation cannot scale up
to thousands of neurons with memory and computation
needs far exceeding of even high-end processing cores. In-
dicatively, keeping pace with the input stream from 10K
channels requires > 100B instructions/second out of which
75B is solely to identify windows of interest where spikes
may be occurring. This is challenging even for high-end
CPUs and GPUs, let alone for a wearable, energy efficient
system. Memory demands are also problematic for scaling
as they reach 16M elements for template storage alone.

This analysis motivates our second contribution,Marple, a
custom hardware architecture for high-channel count spike
sorting – we evaluate a system of up to 10K channels or 30K
neurons in wearable applications. Marple has twomajor com-
ponents: The first is a series of fixed-logic processing stages
which aims to denoise input waveforms and to identify areas
of interest. These are spatiotemporal windows into channel
streams which may contain a spike. Each window is cen-
tered around a local peak in the input signals and contains
samples around the peak from all relevant neighboring chan-
nels. The second component performs the template matching
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Table 1. Terminology

Term Meaning
Probe An invasive implantable device used to record electrophysiologi-

cal signals from the brain (Figure 3). Also known as neural probe.
Channel A recording site of a probe. Also referred to as an electrode.
Density With respect to probes, density refers to the number of channels

on a single probe. A higher density means a higher channel count.
Pitch Distance between two adjacent channels.
Sample A voltage reading from a channel at a given time.
Spike The sequence of samples signalling a neuron’s activation, typi-

cally 1-2ms in duration.
Morphology The shape of a spike which has particular characteristics (Fig-

ure 2).
Cluster A group or set of N-dimensional points, often in the context of

sorting or classification. An example is a collection of spikes
belonging to a particular neuron that are part of the same cluster.

Template A proxy of a neuron’s spike, identified by clustering. Typically,
this is the centroid of a cluster.

step, where the window is compared against prerecorded
templates in order to identify the source neuron. Our design
uses a flexible vector processing unit to perform the tem-
plate matching. The key innovation is a lightweight template
compression method that makes it practical to store the tem-
plates. Marple’s two component architecture is flexible and
broadly useful: The front-end, “window of interest” unit can
be used with other back-end spike identification methods.
To illustrate this flexibility, we present a novel, machine-
learning back-end which uses a neural network to identify
the source neuron, given an input window of interest. Our
vector-based back-end can directly execute the model. How-
ever, further optimization is needed for this method to meet
real-time constraints. We highlight the following findings:
1) Our analytical model (derived from SOTA spike sorters
[10, 54, 94]) finds that for high scales (30k neurons), spike
templates take up to 90% of the overall storage requirements.
2) Our template compression method reduces template stor-
age by 8 - 11x while retaining +99% relative accuracy to a
high-performance spike sorter [10]. 3) Our design and im-
plementation of a high-performance online spike sorter in
hardware, providing power and area estimates for large-scale
workloads. Our design can sustain peak processing for 30K
neurons, consuming only 78.08mW (post-layout measure-
ments scaled from 65nm to 7nm).

2 Background and Motivation
In a complete BMI system, neural signals must be collected,
correctly attributed, interpreted, and then acted upon to
induce a desirable effect. A BMI system is composed of a
sensory input, analog data acquisition, and a digital comput-
ing stack composed of a spike sorter and an activity decoder.
The pipeline is depicted in Figure 1. Table 1 lists relevant
terminology used in spike sorting and throughout this paper.
The inputs to spike sorters are electrophysiological signals
from neural probes. Neural probes are invasive implants that
record, amplify and digitize voltages produced by neurons
into streams. Modern probes have channel layouts which

can vary from linear shanks, 2D grids, to 3D matrices (see
Figure 3). As the probes increase in density, the pitch can
decreases to the micron range. Due to the proximity, spikes
are often recorded on multiple nearby channels and provide
spatial information. The key aspects of probe design that in-
fluence the computations downstream are the sampling rate,
bitrate, number of channels, and layout. Sampling rates are
commonly around 30 kHz and bitrates around 10-16 bits per
sample [27, 49, 58, 78, 86]. The number of channels currently
ranges upwards of tens of thousands [58, 67, 78, 95] and over
time has shown exponential growth [79], necessitating im-
provements to software and hardware designs. The digital
compute stack consists of 1) a spike sorter which aims to
match each detected spike to the corresponding neuron that
generated it and 2) an activity decoder that deciphers the
brain activity when reading groups of spikes.

2.1 On the Necessity of Large-Scale Spike Sorters
Apart from the existing applications of spike sorting, in-
cluding epilepsy detection and mitigation [14, 44, 85], treat-
ment of Parkinson’s disease [29, 33], and cognitive con-
trol [77], larger scale applications remain unrealized due
to the many stringent requirements to perform spike sort-
ing at a high scale. Traditional spike sorters are not capable
of keeping pace with the exponential growth in incoming
data [79], requiring massively more computation and mem-
ory [6, 7, 35, 63]. Spike sorters have also seen drastic in-
creases in algorithmic complexity [88], with further area and
power constraints vital to advancements of untethered appli-
cations [40, 75]. The promise of such applications has been
fueling a sustained wave of exponential growth [79] in probe
technology that continues unabated; probes containing thou-
sands of electrodes (channels) commercially available [78]
and prototypes with even more electrodes underway [67].
At the same time, advances in the analog front-end have
also kept pace, e.g., [52, 67, 78]. However, commodity sys-
tems existing today cannot meet the constraints for latency
and portability for keeping up with these advances (section
3.2). To fill this gap a few custom-built systems have been
developed [30, 92]. Presently, development of potential ap-
plications with even a few hundreds of neurons requires
tethering to a server and offline analysis [25].
In the past decade, there has been an influx of new spike

sorters [10, 26, 38, 39, 53, 54, 60, 68, 71, 87], but current
solutions have shortcomings in one of four ways: 1) They
do not operate in real-time [38, 68]. 2) They are not accu-
rate enough [9]. 3) They are not portable [10, 26, 53, 54, 94]
as many are software solutions. 4) For hardware solutions,
they do not operate at the scale of modern probe technolo-
gies [71, 87, 93], requiring more efficient implementations
for online spike sorting, especially if implantable BMIs are
to be portable and responsive. The aforementioned spike
sorters deal with tens and hundreds of neurons, with some
accurate enough to scale up to thousands. However, there
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Figure 1. A brain-machine interface pipeline.

Figure 2. The common stages of a neuronal action potential:
the resting state (a), depolarization (b), repolarization (c) then
reaching a refractory period (d) before returning to (a).

are some key limitations. Most software spike sorters pro-
cess offline after a recording has been stored, which by its
nature limits the responsiveness and portability of the soft-
ware, as it runs on modern desktop and server class systems.
Kilosort [53, 54, 78] is a modern spike sorter that can run
online after calibration but must use a desktop-class GPU to
achieve real-time performance, and thus is not portable.
For BMIs to operate on thousands of neurons, the spike

sorter must satisfy the following requirements: i) perform
on-the-fly processing at real-time latency, ii) low area and
power energy costs for portability, and iii) scaling to process-
ing thousands of neurons very accurately. The processing
must be done on-the-fly to be responsive, with a tight real-
time latency budget (e.g., < 50ms for closed-loop manipu-
lation [12]). The area cost as well has to be considered, as
desktop-class systems are not portable. Energy and power
consumption must also be considered with untethered ap-
plications constrained to < 2W [47, 75] for portability and
potential implantation. Spike sorters must also scale to keep
pace with exponential growth of the analog front end [7, 63].

2.2 On the Applicability of Spike Sorting
While the neuroscience community has made great strides
in improving spike sorting on multiple fronts, there are a
few proponents that challenge its necessity [70, 82, 83, 89].
Ventura et al. [89] demonstrate an alternative method to de-
code spikes without traditional spike sorters. However, their
method was only tested up to forty electrodes and suffered
from implementation issues, taking 10-20 seconds to process
each electrode. An analysis by Todorova et al. [82] demon-
strates the advantage of using spike sorting in a spike decod-
ing process. They specifically isolate and vary the processing

Figure 3. Common neural probe topologies. (A) quad-shank
Michigan probe [90] (B) NeuroSeeker probe [18] (C) Neu-
ropixel probe [58] (D) Utah array [42] (E) 3D NeuroNexus
matrix [50]

prior to spike decoding, finding that discarding unattributed
threshold crossings degrades the downstream decoding, and
ultimately concluding that “spike-sorting is useful”.

The utility of spike sorting is often questioned for applica-
tions which make use of population-level dynamics [11, 37,
55, 74, 83]. For example, motor control has been analyzed
using population dynamics with [81] and without [11] spike
sorting. However, the availability of non-invasive technolo-
gies should not preclude the use of spike sorting, and in fact
can be used in tandem to great effect [91]. For example, in a
study of memory retrieval and delayed learning relating to
adverse effects from novel foods, the authors first broadly
locate areas of interest with whole-brain light sheet imaging,
then use spike sorting to identify the neurons responsible
for memory retrieval (for novel flavors) and delayed learning
(if the food lead to discomfort) [97]. They construct three
hypotheses by targeting novel flavor-coding neurons (NFC)
and calcitonin gene-related peptide neurons (CGRP, malaise
detecting): 1) Individual NFCs stay active, overlapping with
the eventual activity from CGRPs. 2) CGRPs specifically re-
activate the NFCs. 3) CGRPs activate a new, separate group
of neurons (indicative of malaise), which then becomes as-
sociated with the NFCs in future memory retrievals. The
unit-level precision of spike sorting enabled the researchers
to confirm the second of the three hypotheses.
For applications employing single-unit activity (e.g. neu-

ral stimulation, and the understanding of visual coding, be-
haviours, and neuronal circuitry [4]), spike sorting has no
clear substitute. In a study of ocular dominance, spike sort-
ing was necessary to understand the impact of left-right
preference weightings of individual neurons in the visual
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cortex [45]. Spike sorting is vital for thorough character-
ization of neuronal circuitry. E.g. in understanding thirst
motivation [1] where an analysis of 23,881 neurons across 34
regions of the brain, recorded over 87 sessions was necessary,
an undertaking where a scalable online spike sorter would
drastically reduce the manual effort required to conduct such
studies. The complexities of neuronal memory elements also
require spike sorting. E.g. as performed in the primary motor
cortex [76], spike sorting was employed to uncover the indi-
vidual L5a neurons used to retain information. While these
question remains, we should note that the findings against
the use of spike sorting are few and far between, implying
the continued utility of spike sorting in modern times.

3 Spike Sorting in Traditional Architectures
The goal of spike sorting is to discernwhen andwhich neuron
“fires” given the raw output from the analog front-end. More
formally, spike sorting is a source separation process [35, 36,
63] which aims to attribute the recorded spikes to individual
neurons, while separating background activity from local
field potentials and noise (e.g. recording artifacts). This is
challenging for several reasons: 1) While morphologically
spikes look similar across neurons, their actual shapes vary
in time, with the probe’s placement, and by the neuron itself.
2) A channel can sense the superimposition of activity from
many “nearby” neurons, as well as background activities in
the brain. 3) Due to the lack of large in-vivo datasets, there is
often no ground truth to appropriately determine accuracy.
These factors jointly obfuscate the process, as it is difficult
to discern whether similar spikes across nearby channels
are from a single neuron or multiple. The challenges are
addressed by: 1) An active research effort to improve spike
sorting algorithms (and with it, a growing complexity) [88].
2) Decades of neural experiments, culminating in the modern
understanding of the foundational biophysics in the brain.
This directly informs 3) the generation of synthetic datasets
from the corpus of live cell models to provide ground truth
data for objective and equal benchmarking [5, 8, 21, 41].

3.1 Stages of online spike sorting
Figure 4 shows a typical state-of-the-art online spike sort-
ing pipeline [10, 54, 94], with the flow of data and compute.
Spike sorting can be performed offline after the full recording
is available. however, we target online processing utilizing
spike templates that have been derived through prior offline
runs as this is desirable for quick feedback [12] and porta-
bility [75]. Calibrating the templates offline is used to tune
to each subject and each application. Our online pipeline
is modeled after SpykingCircus [94] and Kilosort [54], with
templates generated offline via MountainSort4 [10].
Bandpass filtering: The incoming signals contain unwanted
local field potentials at the lower frequencies (<100-300 Hz)
and high frequency noise (>3-6 kHz) which the first stage

Figure 4. The stages of an online spike sorter. White boxes
are functional stages. Blue boxes are the input & output data.

filters out. We assume the use of the 3rd order Butterworth
filter due to its widespread usage [10, 32, 49, 54, 64, 71, 78, 94].
Bandpass filtering occurs for every channel independently,
scaling linearly with channel count.
Whitening: After temporal noise is filtered, whitening re-
moves spatially correlated noise from neurons that affect a
large area, but are too far to be distinguished [10, 54, 94]. Ev-
ery channel has a whitening matrix derived from the covari-
ance matrix of regions of silence. We opt for local whitening
where only nearby channels contribute to the covariance
matrix, capping its total size to 𝐶 ×𝐶𝑡𝑟 where 𝐶𝑡𝑟 ≪ 𝐶 , and
𝐶 the total channel count (global whitening is unnecessary
due to negligible spatial noise from distant channels).
Detection: The denoised activity is checked for spikes
(i.e. if a neuron has fired). The defacto approach uses an
unsupervised threshold 𝑇ℎ𝑟 = 4𝜎 [48, 56, 59, 68], where
𝜎 =𝑚𝑒𝑑{ |𝑥 |

0.6745 } and 𝑥 is a long (e.g. 30 second) input stream
for a channel. 𝑇ℎ𝑟 is an estimate based on the median of the
filtered signal which acts as a proxy for the standard devi-
ation of noise. Signals crossing the threshold are classified
as spikes. Simpler methods, such as the nonlinear energy
operator (NEO) detection method, achieve similar accuracy
for small datasets [30, 93]. More complex detection methods,
such as deep neural networks [69] are promising but incur
significant compute and memory costs.
Alignment: Downstream classification requires a window
of samples centered at the trigger that is aligned at the peak
amplitude [48, 59, 87]. The spike’s duration vary [84], but
2ms holds as a consensus [26, 59, 72] (60 samples at a 30 kHz
sampling rate). Spikes are often detected in a neighborhood
of nearby channels with the maximum amplitude assigned
as the central channel [10, 54, 94]. A neighborhood provides
spatiotemporal information (e.g., the relative amplitude and
delay in sensing the trigger), improving classification accu-
racy. We use neighborhoods of the 9 closest channels, and a
maximum time difference of 10 samples between channels
to account for intra-neighborhood delays [10].
Template matching: The final stage performs a vector dot-
product of the input spike (9 channels by 60 samples) against
pre-calibrated templates (same size as the spike) to produce
a correlation score. The maximum correlation exceeding
a threshold is detected as the source unit. The number of
templates to compare against varies per channel. For our
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datasets, the maximum is 13 templates per channel, with an
average of 3 and standard deviation of 2.3.
Offline Template Generation: The templates needed by
the final stage of the online spike sorter are generated offline
when calibrating the probe(s). Clustering divides the spikes
into groups, where each group encloses spikes of a neuron.
This is an unsupervised process where the number of neu-
rons is not known beforehand. Generally, templates are the
centroids of each cluster and approximate a neuron’s spike.
Templates are attributed to a single central channel where
they have the strongest signal, while capturing the spike over
the neighborhood of channels. This can change over time
due to drift [6], although calibration of templates can resolve
this. We use MountainSort4 to generate templates [10].

3.2 System-Level Needs of Large-Scale Spike Sorting
This work studies the scalability of the SS pipeline to higher
neuron counts and examines the compute and storage costs
associated with varying firing rates and neuron counts. Ta-
ble 3 analytically models the memory footprint and compu-
tation costs of online SS. Figure 5 reports how these costs
scale as a function of channel count 𝐶 and firing rate 𝐹 (in
spikes/sec/neuron). Both parameters have nearly linear ef-
fects on costs. 𝐹 has a minor effect compared to the dominant
𝐶 . The computation and memory costs for 𝐶=100 are mini-
mal, suggesting that even a software implementation with
minor hardware assists may be sufficient and preferable for
flexibility. For our experiments, we consider a high channel
count scenario𝐶=10K neurons which fire at 5Hz per neuron,
leading to a total computation cost of 25 GOPs. We also in-
vestigate the impact of a higher firing rate of 20Hz, which
increases the computation costs to 41 GOPs.
CPU: To address the computational requirements, we imple-
mented an optimized spike sorting pipeline in C, compiled for
an i9-9900K CPU using gcc with -O3 optimization and AVX
extensions. For a slow firing rate of 5Hz and an average of 3
templates per channel, the program needs to execute 107B
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
, which scales up to 145B 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
for a 20Hz

firing rate. The CPU’s power consumption of 95W alone
makes it impractical for standard workloads [23]. On the
other hand, lower power processors are not able to handle
the required instruction count for the pipeline.
GPU: Modern GPUs are likely to meet the processing re-
quirements but their power consumption is prohibitive. We
follow the approach of Arafa et al. [2] and analyze the case
of 41 GOPs of compute. Our findings indicate that an av-
erage of 57.4W is required to maintain the desired firing
rate, which exceeds our power constraints. Even the most
recently announced low power GPUs such as NVIDIA’s Jet-
son Orin Nano, which consumes between 7 and 10 watts
of power under typical workloads [13], still far exceed the
application’s power constraints.
We propose a solution with significantly reduced power

consumption which is less than 0.1W when scaled to the

Table 2. Instruction Counts for Spike Sorting on a CPU.

Unit Stage Insts./Second (B)
Front-End Filtering 25

Whitening 70
Spike Detection 0.08

Back-End Template Matching (F=5) 12.8
Template Matching (F=20) 50.8
Total (F=5) 107.88
Total (F=20) 145.88

recent technology nodes, as shown in Table 7. This highlights
the potential for more power-efficient hardware solutions
for SS pipelines with high neuron counts. In addition to
the aforementioned challenges, we must also address the
costs associated with memory requirements, particularly
for template storage. With 𝐶=10K and 𝐹=20, 16.2 million
single-precision floating-point values (FP32) are needed for
template storage, making up 90.4% of the total memory costs.
While 65MB is feasible for SRAM or DRAM, it is not ideal for
untethered applications due to the high energy costs with
the random access of templates during matching.

Figure 5. The compute (top) and memory (bottom) costs for
the online spike sorting pipeline. Scaling with the number
of channels 𝐶 and firing rate 𝐹 .

4 Marple: Compression of Templates
We investigate template compression to extend the range of
channel counts that can be practically processed in unteth-
ered applications. Templates are structured in three dimen-
sions: scale, time and space. The scale is proportional to the
number of neurons within the probe’s detectable range, and
grows linearly with channel count. Time is the number of
samples in a template, proportional to a probe’s sampling
rate and spike width. Space is the neighborhood size.
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Table 3. (Left) Analytical Model of Computation and Memory Element Counts. (Right) Definitions.

Stages Compute [Operation Type] Memory
BPF 𝐶 × 𝑆𝑅 × 11 [MAC] 10 + 8 ×𝐶
Whitening
(local) 32 ×𝐶 × 𝑆𝑅 [MAC] 34 ×𝐶

Detection 𝐶 × 𝑆𝑅 [Comparison] 𝐶

Alignment 𝑁𝑏 × 𝑆𝑅 × 𝐹 [Comparison] 2 × 𝐹 × 𝑆 × 𝑁𝑏 × 𝑆𝑅
Template
Matching

𝑇 × 𝐹×
𝑁𝑏 × 𝑆 × (𝑇 + 1) [MAC & SUB]
+(𝑇 + 2) [Comparison]

𝑁𝑏 ×𝐶 × {(𝑆 + 1) ×𝑇 }
+2 ×𝑇

Parameter Definition
𝐶 Number of channels
𝑆 Spike width (# samples)
𝑆𝑅 Sampling rate

𝑁𝑏
Neighborhood size

(# channels)

𝐹
Activity factor

(# spikes/sec/neuron)
𝑇 Templates per channel

Datasets: In the past, manual datasets have been the pri-
mary source for assessing the performance of spike sorters.
These datasets are often collected from juxtacellular record-
ings, where a probe is placed both internally for exact spiking
information, and externally for validation data to mimic set-
tings that are not privy to the internal data (as in practical
applications). However, this is a very costly process in time
and effort, requiring an expert to deftly insert an electrode
into individual cells — an impractical approach for more than
handfuls of data points. For decades, the neuroscience com-
munity has turned to synthetic generation of cell recordings
for evaluation as a proxy with ground truth data [8], with
continual innovation in the frameworks used [5].
We employ two separate datasets to evaluate scalabil-

ity. SpikeForest’s (SF) datasets [41] provides manual, syn-
thetic and hybrid recordings, ranging from single-neuron
and single-channel recordings up to 708 neurons and 64
channels. We use recordings with a minimum of 10 neurons
and 4 channels from 7 study sets composed of 29 studies
or 87 recordings; many solutions exist for 1 and 4 channel
counts —typically these considered data from a single study—
which are not the focus of this work [16, 38, 60, 87]. To test
for high scales, we generate recordings with a Neuropixel
probe (NP) [58] using the standard MEArec flow [5]. This NP
dataset contains twenty 30-second recordings with 384 chan-
nels and 1500 neurons each. We combine the NP datasets in
three configurations: 1500, 10,500 and 30,000 neurons or 1, 7
and 20 NP probes, respectively.
Templates: The templates are the inputs to compression and
are matrices of 60 × 9 (samples x channels around a center)
FP32 values. We will refer to the 60 samples per channel as
a waveform, as in there are 9 waveforms to a template.
Metrics: We define accuracy as the ratio of matching la-
bels produced before (ground truth) and after compression
(predictions). To quantify the memory costs and savings, we
introduce the metric bits-per-value (BPV) which is agnostic
to the size of the dataset, and amortizes the memory cost.

BPV =
Templates bits +Metadata overhead bits

Number of template values

The baseline assumes FP32 valueswith nometadata overhead
(BPV = 32). The following methods aim to maximize com-
pression (minimize BPV) while accounting for overheads.
Reducing Template Footprint: Given the goals of portabil-
ity and real-time performance, a lightweight low-energy de-
compression method is essential (compression is performed
offline). We take advantage of 3 forms of similarity in neural
signals: 1) similarities in relative dynamic ranges, 2) spatially
across templates, 3) temporally within a template, along with
other helpful optimizations to reduce the BPV.
Differences from Centroid Waveforms: To take advan-
tage of 1), we use quantization to express values as fixed-
point indices to a codebook. We further reduce the value
ranges by taking advantage of 2), employing K-means clus-
tering to find whole centroid waveforms (60 values in time
from one channel). Waveforms of a cluster are represented
as per sample differences from their centroid. It is those dif-
ferences that we quantize into a codebook, as they have a
significantly reduced dynamic range.We investigated several
quantization methods, each separating values into outliers
and non-outliers [96]. Outliers exceed a threshold magni-
tude and are stored in FP32, whereas non-outliers are binned
and replaced with a short index. This index points to the
representative value stored in a codebook. The two best
methods are 1) Linear Quantization Enhanced (LQE) which
evenly divides the value range into bins, using the mean
of the values in each bin, and 2) Hierarchical Agglomerative
Clustering (HAC) [28, 43] which evenly distributes values so
bins contain a similar number of values, giving more fidelity
for high-density ranges. Figure 6b reports relative accuracy
vs. the resulting BPV.
Segmented Delta Encoding: We take advantage of the
temporal similarities within the spikes by encoding consec-
utive indices as deltas (Δ), where the first value is a base.
Rather than using a fixed number of bits for all indices (e.g.,
5b for a 32 entry codebook), we use only as many bits as
necessary (recorded in a metadata field) removing any prefix
of 0 bits. Delta encoding suffers when the spike transitions
from/to the resting periods as the waveform exhibits abrupt
changes in magnitude as per Figure 2. We propose Segmented
Delta Encoding (SDE) which splits waveforms into multiple
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Figure 6. (Left): Waveforms in a K-means clusters (the templates, the centroid, and their differences to the centroid). Note the
reduction in the range of values for differences. (Right): An evaluation sweeping configurations of codebook sizes and outlier
thresholds for K-means clustering and indirect quantization against their accuracies on the SpikeForest datasets.

even segments, each encoded with its own base index. This
is inspired by Base Delta Immediate (BDI) encoding [57],
with two key differences. First, the bases themselves add no
overhead as they are the first value of each segment (only
the metadata to track the new length of Δ adds overhead e.g.
3b per segment to track lengths from [0, 7]). Second, our
delta encoding is fundamentally different, as it is calculated
as consecutive differences rather than as a difference from a
fixed base. This accounts for +30% greater compression on
average than BDI. Under our multiple workloads, we find
that 6 and 10 segments performed the best for LQE and HAC.
Mantissa and Exponent Field Trimming: We trim the
exponents and mantissas to reduce overheads from overpro-
visioning by the FP32 format. Exponents can be losslessly
trimmed to 2 and 4 bits for the outlier and centroid values,
respectively, down from 8 bits while their mantissas can be
lossily trimmed to 4 and 7 bits in order to retain an average
accuracy above 99% (a negligible loss of 0.01%). Outliers are
therefore reduced to 7 bits (1 sign, 2 exponent, 4 mantissa)
and centroids to 12 bits (1 sign, 4 exponent, 7 mantissa).
Duplicate segment storage: Representing the original
waveforms as shorter sequences of Δ often results in du-
plicates amongst these sequences. With a larger number of
segments, the shorter sequences are more likely to be dupli-
cates (only 11% at 10-segments are unique in the NP dataset,
compared to 65% in the SF dataset). We encode duplicates
in a lookup table, and add a 1-bit duplicate flag, reusing the
length and Δ fields in the templates as pointers to the lookup
table. We sweep the pointer sizes and bit-lengths to find the
optimal setting (9b pointers for 2b Δ).
Memory Footprint Reduction: Table 4 summarizes the
reductions in BPV for each of the stages. Figure 7 reports the
effect of template compression on overall memory footprint.
Our compression methods reduce overall memory footprint
to 1.4MB, a 5.7x reduction over the baseline.

Figure 7. The memory cost of an online spike sorter for
10K channels and 20Hz firing rate from our analytical model.
(Left) the absolute difference, (Right) the normalized memory
costs. Template compression reduces memory from 18MB to
1.4MB, an overall reduction of 5.7x.

Table 4. BPV compression maintaining +99% accuracy. LQE
outperforms HAC when all methods are applied, reducing
the FP32 values to 2.83 BPV.

Compression Method (Bits per value)

Dataset
Template
Centroids
& Quantize

SDE Datatype
Trimming

Duplicate
Dictionary

SF-HAC 7.05 5.73 5.00 4.99
SF-LQE 7.28 4.78 3.94 3.93
NP-HAC 5.32 3.61 3.42 2.92
NP-LQE 5.64 3.33 3.06 2.83

5 Marple: Architectural Design
The design of Marple, the online spike sorter is shown in
Figure 8. Data flows between stages either directly or via
scratchpad memories. We optimize Marple’s organization
by utilizing the input sample flow from the analog front
end. Figure 11 illustrates the digitization process: data is
converted into 𝑄-bit (up to 16-bit) format using ADCs and
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then serialized across 𝐶 channels. Consequently, the spike
sorting pipeline processes a single 16-bit sample per cycle.
For a standard sampling rate of 𝑓𝑠 = 30 𝑘𝐻𝑧 and a desired
channel count of 𝐶 = 10𝐾 , achieving real-time feedback
necessitates an operational frequency of 𝑓𝑜𝑝 = 300𝑀𝐻𝑧.

5.1 The Marple Spike Sorter
The first stage performs digital filtering over the samples
of a single channel. The filtered samples go through the
Neighborhood Buffer which enables the secondWhitening
to seamlessly operate on samples from a neighborhood of
channels. The remaining stages identify where (channel) and
when spikes occur and present a window of 60 samples per
channel over a neighborhood of 3×3 channels to the template
matching stage so that it can identify the source neuron.
Filtering: We implement a 3rd order Butterworth IIR band-
pass filter with a cascaded biquads implementation. For each
FP32 output, the filter performs 12 multiplications plus 11 ad-
ditions over what is effectively a 6 sample window. Given the
relatively low sampling rate (30 kHz) time-domain multiplex-
ing multiple channels to a filter reduces costs. A single set
of multipliers and adders is sufficient as we time-multiplex
them over the channels via a 10K scratchpad (one row per
channel). Each row contains 6 FP32 values enabling a 6-stage
pipelined filter implementation. Each cycle, we read one row
and write another. The scratchpad is banked and since we
process channels round-robin, each bank is single ported.
Every cycle, this stage produces a single FP32 sample.
Neighborhood Buffer: Whitening operates over the sam-
ples of a group of channels. As previously seen, the channels
of a probe are typically arranged in a uniform grid, which
we denote as 𝑃𝑊 × 𝑃𝐻 . From a central channel, its neighbors
are channels within a distance of 𝑁𝑟 (neighborhood radius).
Figure 9 shows an example of a 7 × 6 channel probe and a
neighborhood centered at channel 19 with a radius of 𝑁𝑟 = 2.
Whitening samples from channel 19 needs samples from the
whole neighborhood in the same time frame. If the incoming
data is organized line-by-line in memory, multiple read ports
would be required as reading a whole neighborhood requires
buffering until all channels are read. Instead, our neighbor-
hood buffer (NB) minimizes buffering, uses single-ported
memories, and performs one write and read access per cycle
while maintaining throughput. As Figure 9 shows, the NB
comprises the Transpose Buffer and the neighborhood FIFO.
wAddr and rAddr denote the writing and reading addresses
of the transposed buffer, respectively. byteEn selects a col-
umn in linewAddr of the transposed buffer for writing, while
all other columns stay unchanged. The incoming data (one
value per cycle) is written into the transpose buffer column-
wise. The samples from a row of channels in the probe are
organized as a column. The width of the transpose buffer is
2𝑁𝑟 + 1 the same as the width of a neighborhood, while its
depth equals to the width of the probe matrix, 𝑃𝑊 . Since our
target neural probe has 𝐶 = 10𝐾 channels, 𝑃𝑊 may reach

100 for a square-shaped probe. Once the last element of the
neighborhood is written to the transpose buffer, the whole
neighborhood is in the latest 2𝑁𝑟 + 1 lines. These lines are
read sequentially just ahead enough and pushed into the
neighborhood staging FIFO. For example, in Figure 9 the
row containing 4–36 is read out from the transpose buffer
when 37 is written into it, whereas the line containing 5–37
is read out when writing 38. At that point, the neighborhood
staging FIFO contains the neighborhood for 19 which can
be whitened. The transpose buffer is implemented as several
single-ported SRAM banks. Each cycle, we write a single
filtered value to one bank and read a line from another.
Whitening: A channel 𝑖’s whitened value is the dot-product
of all its neighbors and a precomputed whitening matrix,
whitened (𝑖) = neighbors(𝑖)·whiteningMatrix (𝑖). Thewhiten-
ing stage receives en masse the channel-wise serialized, fil-
tered data from the neighborhood FIFO via dedicated con-
nections, reads the corresponding whitening matrix, and per-
forms a dot-product. The per channel whitening matrices are
stored in a𝐶 row SRAM, where row 𝑖 contains the (2𝑁𝑟 + 1)2
whitening coefficients for the neighborhood around channel
𝑖 . Each neighborhood contains 9 values and the whitening
matrices table contains 10𝐾 × 9 FP32 coefficients. Whitening
produces one FP32 value per cycle.
Stages Prior to Template Matching: Before performing
template matching we need to: 1) detect that a channel has
a spike, 2) determine the central channel - spikes may be
picked up by several neighboring electrodes - and 3) send
the samples from the neighborhood for template matching.
Specifically, once we determine that a spike occurred in chan-
nel 𝑐 and a time 𝑡 , template matching will need the samples
from 9 channels (the central channel and the 8 neighbors
surrounding it — e.g., channels 19 and 10-12, 18, 20, and
26-28 respectively in Figure 9). From each of those channels
we need 60 samples around 𝑡 (20 before and 39 after). This
is implemented as follows: 1) A spike manifests as a peak
which we first detect locally within a channel. As per Fig-
ure 2, peaks occur when a sample is larger than ±10 samples
in time. This detection is done for all channels in “Sam-
ple Buffering” and “Peak Detection” stages. This stage also
buffers the full window that template matching needs once
the central channel is identified. 2) A detected peak is a true
peak if none of its neighbors has a higher peak within 10
time steps, which we check for in two stages: 1) First, the
"Spike Aging" stage ensures the peak “matures” (stays in the
buffer for 10 samples before checking with its neighbors).
B) Second, the“Neighborhood Peak” checks if the spike is
the highest amongst its neighbors within the ±10 samples.
Sample Buffering and Local Peak Detection: A spike
is pivoted by the centered peak detected by a sample that
exceeds a per channel threshold and is greater than ±10
neighboring samples in time (see Figure 2). Once the peak
is detected, we pass along the 60 samples around it (the full
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Figure 8. The spike sorting pipeline.
Figure 9. Neighborhood Transpose
Buffer.

Figure 10. Spike Sorting Stages.
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Figure 11. The schedule of the incoming data. Samples from
each channel are digitized and serialized. The outputs of the
filtering and the whitening stages follow the same schedule.

spike window). We implement this functionality by buffer-
ing the last 60 samples per channel in the Sample Buffer
(SB) shown in Figure 10(a). The SB contains 𝐶 rows, one
per channel. The whitened values are written in the first

column of the SB one at a time. In steady state, a full row
(60 samples) is read out each cycle, shifted right to include
the new incoming whitened sample, and written back to the
buffer (a cycle later to allow single ported memories). The
Peak Detector determines whether a peak has occurred in
the 21 most recent samples by comparing the 11th sample
(center) with the 10 before and after it and with a per channel
threshold. If a peak is detected, the channel number (Chan-
nelID), peak indicator (isPeak), and the peak value (peakVal)
proceed to the spike aging counter (SAC) stage which aids
with neighborhood peak detection. The SAC ensures that
during the next 10 timesteps the magnitude of this local peak
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is compared against any other locally detected peaks in the
neighboring channels. If this peak happens to be on the cen-
tral channel, then an entry is pushed in the Matching stages
FIFO. At that point, the peak will be in position 20 (as the
row has shifted by 10 positions). Template matching occurs
30 timesteps later when the peak will be appropriately cen-
tered for peak detection, reading the corresponding samples
directly from the SB.
Spike Peak Aging, Maturity, and Expiry: Once a spike is
detected, it is necessary to check that none of its neighbors
also have spikes within a 10 sample timeframe. To perform
this check, the age of each spike is stored and maintained
in the Spikes Memory as shown in Figure 10(c). Each row in
the Spikes Memory includes three fields, the relative age of
the spike (in samples, 0–10), a single bit indicating a peak,
and the peak value. There is one row per channel. If an input
peak is detected (isPeak is asserted), the age field will be
zeroed, the peak indicator will be set high, and the peak
value (peakVal) in the input will be stored into the memory
line corresponding to the same channel. In the subsequent
samples of the same channel, the age will be increased until
it reaches maturity, namely, 10 sampling cycles. When a peak
entry matures, its three fields (maturity indicator isMature,
isPeak, and peakVal) are written into the transpose buffer of
the neighborhood peak detection stage.
Neighborhood Peak Detection: The purpose of this stage
is to check for each spiking channel that no neighboring
channel also has spike with a larger magnitude within a 10
samples timeframe. Figure 10(d) shows that this stage is com-
posed of two elements, a transpose buffer accepting entries
from the aging unit, and a neighborhood check that performs
the neighborhood check. Since the neighborhood is 3 × 3
the transpose buffer is organized as 𝑃𝑤 rows (3 entries each).
Each entry contains a peak value, and peak and maturity
indicators. Using a similar access strategy to the NB, the 3×3
entries are read into the output FIFO where the check occurs
for the entry in the center. If the test succeeds, the spike
indicator isSpike is asserted, and an entry is placed in the
Dispatch queue and tagged with a 40bit counter for identifi-
cation. Once the full sample window (spikeWin) has entered
the SB (delaying 10 more timesteps to center the window
at the peak), the Matching stage will copy the samples and
perform template matching.
Matching: This stage accepts a window of 60 samples per
channel from a 3 × 3 neighborhood of channels (spikeWin).
The samples are copied from the SB using the ChannelID
from the dispatch queue. The dispatch queue contains 𝛼𝐶
entries, where 0 < 𝛼 ≪ 1 as spikes occur relatively infre-
quently. For our datasets setting 𝛼 = 0.04 results in no stalls.
This stage performs template matching - a dot product of
the 3 × 3 × 60 samples from the Samples Buffer with one or
more templates. The center channel index is used to fetch the
templates. The matching neuron corresponds to the highest
magnitude dot product. We implement this unit as a vector

datapath comprising several multiply accumulate units. A
16-wide datapath ensures that the matching stage can pro-
cess incoming spikes at the exceedingly rare peak rate of
20Hz per neuron and 13 templates per channel.
Template Decompression: The templates are stored as a
fixed and variable portion, decompressing on demand using
the ChannelID. Recall that every template contains 60 sam-
ples per channel (hitherto referred to as a waveform) across
9 channels. The fixed storage consists of a 4b centroid tag,
and six 9b metadata chunks (5b bases + 1b DF + 3b lengths) -
for a total of 58b per waveform. A row of fixed memory is
then stored as nine 58b segments (by 30,000 columns, the
number of templates) accessed with 15b indices. The number
of templates for that channel can be inferred as the difference
between the current and next index, which is commonly 3
but can be as much as 13. The variable storage consists of the
variable length Δ. To store these, we use a 9× 9 grid of mem-
ory blocks (Δ×neighbors). Δ are packed in 9 virtual columns
in segment order allowing efficient expansion into 5b [15].
Having 9 × 9 memory blocks enables parallel access to each
of the 9 values of a segment, and each of the 9 waveforms.
Since the 9 values of a segment have the same bitwidth, we
can load all segments of a template in 6 cycles.
To fully decompress a single waveform, the 4b centroid

tag extracts a centroid waveform, i.e. sixty 12b values from
the 16-row centroid table. In parallel, the segments can be
loaded as above. The base is forwarded to a Δ decoder. For
DF= 0, the length corresponds to the size of each of nine
Δ ([0,5b]). For DF= 1, the Δ are treated as a 9b pointer to a
512-entry table with nine 2b Δ which are the segment. Each
Δ is consecutively added to the base to reproduce the index
to the 32-entry quantization codebook. The codebook value
is finally added to the corresponding centroid value to repro-
duce the original template value. Parallel access is used for
the Δ decoder and codebook for acceleration. Outliers act as
an override for the decompressed value from the codebook,
as outliers must still be added to the centroid. A maximum of
1.1% of all values (178k) were classified as outliers. We pes-
simistically provision for up to 200k outliers. When loading
templates, we locate the number of waveforms that contain
outliers. This is inferred by reading two consecutive entries
of an outlier pointer memory for the starting count and the
subsequent count of waveforms with outliers for the cur-
rent template, and indexes into the offsets needed to locate
the position and outlier value. Since only 10% of waveforms
have outliers, the index only needs 27k entries of 4b for the
segment and 19b for the offset into the larger 200k memories.
The outlier position is 6b (for its position in the template),
and the value itself is 7b.

5.2 Architectural Evaluation
To evaluate Marple, a configuration with 10K channels was
implemented using a commercial 65nm process. This con-
figuration is capable of supporting low latency BMIs, which
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Table 5. Design Parameters and Memory Blocks

Parameter Value Description
𝑄 12 bits (typical) ADC resolution
𝐶 10,000 (target) Number of channels
𝑁 30,000 (target) Number of neurons
𝑓𝑠 30KHz (typical) Sampling rate
𝑓𝑜𝑝 = 𝑁 𝑓𝑠 300MHz (typical) Operating frequency
𝑃𝑊 100 (square probe) Neural probe width (channels)
𝑃𝐻 100 (square probe) Neural probe height (channels)
𝑁𝑟 1 (typical) Neighborhood radius
𝑁𝑏 9 (typical) Neighborhood size
𝛼 0.04 (modeled) Dispatch queue size factor
𝐷𝑊 32 Data width

Stage/Unit Size
Parametric Target MBits

Filtering
Filter Scratchpad 𝐶 × 6𝐷𝑊 10000 × 192 1.831
Whitening
Transpose Buffer 𝑃𝑊 × (2𝑁𝑟 + 1)𝐷𝑊 100 × 96 0.009
Whitening Matrix 𝐶 × (2𝑁𝑟 + 1)2𝐷𝑊 10000 × 288 2.747
Sample Buffering and Peak Detection
Samples Buffer 𝐶 × 61𝐷𝑊 10000 × 1952 18.61
Thresholds Memory 𝐶 × 𝐷𝑊 10000 × 32 0.305
Spike Aging
Spikes Memory 𝐶 × (5 +𝐷𝑊 ) 10000 × 37 0.353
Neighborhood Merge
Transpose Buffer 𝑃𝑊 × (2𝑁𝑟 + 1) (𝐷𝑊 + 2) 100 × 102 0.001
Dispatch Queue
FIFO Memory 𝛼𝐶 × (log2𝐶 + 40) 400 × 54 0.0206
Template Matching + Decompression
Fixed Count 𝐶 × log2 𝑁 10000 × 15 0.143
Variable Offset 𝐶 × log2 𝑁 10000 × 22 0.210
Fixed Memory 𝑁 × 𝑁𝑏 × (4 + 9 × 6) 30000 × 522 14.93
Variable Memory 𝑁 × 𝑁𝑏 × 5 × 4 × 9 30000 × 1620 46.35
Centroids Memory log2𝐶 × 𝑆 × 𝑁𝑏 × 12 16 × 720 × 9 0.099
Duplicates Memory - 512 × 18 × 9 0.079
Quantization Codebook - 32 × 32 × 54 0.053
Outlier Pointer Memory - 30000 × 15 0.429
Outlier Count - 30000 × 15 0.429
Outlier Index - 27000 × 23 0.592
Outlier Positions - 200000 × 6 1.14
Outlier Values - 200000 × 7 1.34
Total - - 89.37

require a sampling rate of 30 kHz. The target operation fre-
quency is set to 300 MHz for achieve optimal performance.
We implement the units in Verilog and synthesize with the
Synopsys Design Compiler. Layout uses Cadence Encounter
and Synopsys’ commercial Building Block IP library. We esti-
mate power via Encounter. We use nominal operating condi-
tions to model power and latency. We model SRAM buffers
using CACTI [46]. Table 6 summarizes the post-layout logic
and memory costs for each of the modules to quantify the
area and power consumption. Both area and power are dom-
inated by the memories in Sample Buffering + Peak Detection
and Template Matching + Decompression, accounting for 18%
& 77% of total area and 44% & 33% of power, respectively.
However, much of the power costs are due to standby leak-
age (598mW, 45%). We estimate Marple’s power use and area
with more recent technologies using the methodology of
Stillmaker and Baas [80]. Table 7 shows total power and area
estimates with technology nodes varying up to 7𝑛𝑚. Scaling
Marple to 7𝑛𝑚 would reduce the area and power to 4.25𝑚𝑚2

and 78.94𝑚𝑊 , respectively. Due to the specificity and con-
straints of a portable online spike sorter, Marple requires
fine-grained customization for accurate implementation.
Neural network-based spike sorting: We explore an al-
ternative to template matching by using a Convolutional
Neural Network (CNN). The CNN accepts the same input as
template matching, and the ChannelID, outputting a vector
for the firing neurons (R𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ). Table 8 details the model’s
architecture (where applicable the stride is 2), 3 configura-
tions evaluated, and the compute and memory costs during
inference. Hyperparameters for model size and training were
empirically derived. Training times range from 2-12 hours on
a NVIDIA GeForce RTX 3090 GPU. Performance is measured
on the NP datasets as the 5-fold cross validation accuracy. All
models outperform template matching: Template matching’s
accuracy for these extremely large datasets is 67% whereas
the small, middle, and large CNNs achieve accuracies of
85.6%, 89.9% and 91.9%, respectively. However, practical de-
ployment of CNNs are difficult - memory demands of even
the small models exceed template matching for 30K neurons.
Worse, Figure 12 shows the minimum computation band-
width that is needed for the small model for different firing
rates and neuron counts. The 1K neuron configuration with
the small model could be practical for simple applications
as it requires 1.48GOPs and about 1.6MB of storage. How-
ever, with 30K neurons (10K channels) the demands exceed
1.48TOPs even with the lower 𝐹 = 5.

Figure 12. “Small” CNN: Computation demand scaling with
the number of neurons 𝑁 and firing rate 𝐹 .

Many recent works use neural networks for spike sort-
ing [16, 38, 39, 60, 68, 69], however, none evaluate perfor-
mance on the scale at which we do (the largest is 128 chan-
nels [39], two orders of magnitude less).While more accurate,
CNNs are only appropriate for very small configurations or
offline applications. Our analysis serves as motivation for
further work to refine the CNN-based approach.

6 Related Work
Prior work can be divided into software and hardware solu-
tions. Software solutions are the state-of-the-art: they provide
high accuracy, performing well for large channel counts, and
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Table 6. Post place-and-route area & power estimates for Marple (@ 65nm)

Stage
Area
(Logic)

Area
(Memory)

Area
(Total)

Power
(Logic)

Power
(Memory)

Power
(Total)

𝑚𝑚2 𝑚𝑚2 𝑚𝑚2 mW mW mW
Filtering 0.122 1.532 1.654 35.22 46.36 81.58
Whitening (Pipelined) 0.225 2.926 3.151 62.72 69.04 131.76
Sample Buffering + Peak Detection 0.034 19.436 19.471 7.48 576.25 583.73
Spike Aging + Neighborhood Peak 0.005 0.366 0.371 0.63 5.51 6.14
Dispatch Queue 0.028 0.04 0.068 12.86 0.23 13.09
Template Matching + Decompression 0.447 83.869 84.316 171.00 437.21 608.21
Total 0.861 108.169 109.03 289.9 1134.6 1424.51

Table 7. Scaling technology nodes

Tech. Power Total Area
Node (𝑚𝑊 ) (𝑚𝑚2)
65nm 1424.51 109.03
45nm 881.28 71.96
32nm 443.93 33.8
20nm 256.02 15.26
16nm 172.38 14.17
14nm 133.39 13.08
10nm 107.1 7.41
7nm 78.94 4.25

Table 8. CNNs configuration, architecture, compute & mem-
ory costs, and accuracy.

Model Configurations
Parameter Small Medium Large
𝑛/𝑖/𝑗/𝑘 16 / 513 / 256 / 128 32 / 1025 / 512 / 256 64 / 2049 / 1024 / 512

Model Architecture
Layer Type Dimensions

1 1D Conv 𝑛 × 58
2 Max Pool 𝑛 × 29
3 Squeeze Exc. 𝑛 × 29
4 1D Conv 2 × 𝑛 × 29
5 Max Pool 2 × 𝑛 × 14
6 Adapt. Avg. Pool 1 × 𝑖 + 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝐷
7 Fully Conn. 1 × 𝑗

8 Fully Conn. 1 × 𝑘

9 Fully Conn. 1 × 𝑁

Compute and Memory Costs to Accuracy
Model Neurons FLOPs Elements (FP32) Accuracy

1K 0.74M 0.37M 93.5%
Small 10K 3.04M 1.54M 88.0%

30K 8.03M 4.08M 85.6%
1K 2.13M 1.07M 94.1%

Medium 10K 6.74M 3.39M 91.6%
30K 16.72M 8.43M 89.9%
1K 6.88M 3.47M 94.5%

Large 10K 16.10M 8.10M 92.3%
30K 36.06M 18.12M 91.9%

are widely used in post-hoc analysis [10, 26, 54, 94]. How-
ever, they are running primarily on desktop GPUs or server
class hardware, incurring large energy costs and reduced
portability. Additionally, most of them cannot operate in
real-time for large channel counts. Existing hardware solu-
tions [71, 87, 93] sacrifice accuracy and scalability for the
sake of implementation and form factors. The closest hard-
ware design to Marple is from Valencia and Alimohammad
(VA) [87]. Compared to Marple, their spike sorter uses the
NEO spike detector [31, 93], and performs template match-
ing with OSort [65] only on single-channels. The VA de-
sign favours hardware simplicity forgoing more accurate
methods such as whitening and employing spatial neigh-
borhoods [10, 53, 54]. However, given more than a decade
since OSort’s conception, this sacrifices scalability and ac-
curacy. For high-density probes, this is problematic since:
1) neurons are often detected on multiple probes (one neuron
is picked up by many probes), 2) having several probes in
close proximity allows us to discern among multiple neu-
ron groups that are nearby (many neurons are picked up
by several probes in a way that allows us to discern which

one it was). Therefore, the VA design is inappropriate for
such setups because: 1) it will detect each spike multiple
times, once per neighboring channel. 2) It will be unable to
discern among multiple neurons that are detected from the
same electrode. VA is implemented in 45nm and requires
half the power but 30x more area than Marple when scaled
up to 10K channels, as they focus on single-channel anal-
ysis. Schäffer et al. [71] incorporate multiple channels to
mitigate this problem, but still utilize NEO and OSort as
the baseline algorithms, and incur similar shortcomings to
VA. Their implementation scales poorly with channels, as
it performs global comparisons with every other channel in
the system for template matching, rather than locally. Other
hardware solutions [93] perform a subset of stages such as
spike detection but not spike sorting, thus targeting different
types of applications [30]. Overall, prior hardware solutions
handle only input from few channels, limiting real-world
applications where coarse-grain neural decoding is sufficient
and, therefore, allows for use of only very simplistic spike
sorting methods [7]. Instead, Marple i) effectively handles a
large number of channel inputs, ii) affords using advanced
spike sorting methods, and iii) covers a wide variety of real-
worlds applications, thus significantly assisting to increase
the development of impactful BMIs.

7 Conclusion
Scalability is a pressing problem with modern neural record-
ing devices, requiring novel software and hardware solutions
to keep pace [7, 35, 63]. We analyzed the computational and
memory bottlenecks for untethered, real-time spike sorting
and concluded that commodity platforms are not suitable for
wearable applications. We developed: 1) a novel, lightweight
purpose-built template compression method, and 2) an ac-
celerator for performing the computations in real-time. We
further explored using CNNs to improve spike sorting ac-
curacy on large-scale recordings. Since Marple is modularly
designed, its constituents can be independently optimized
for specific constraints. Other systems may find it useful
to integrate parts of the design for low-power, end-to-end
solutions [30], and solutions for alternate recording types
such as EEG [92].
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