
Boosting FMAX of Processor Pipelines
using Intentional Memory Clock Skew

Alexander Brant 1, Ameer Abdelhadi 2, Aaron Severance 3 , Guy G.F. Lemieux 4

Dept. of ECE, University of British Columbia
Vancouver, Canada

1 alexb@ece.ubc.ca 2 ameer@ece.ubc.ca 3 aaronsev@ece.ubc.ca 4 lemieux@ece.ubc.ca

Abstract—FPGAs are increasingly being used to implement
many new applications, including pipelined processor designs.
Designers often employ memories to communicate and pass data
between these pipeline stages. However, one-cycle communication
between sender and receiver is often required. To implement
this read-immediately-after-write functionality, bypass registers
are needed by most FPGA memory blocks. Read and write
latencies to these memories and the bypass can limit clock
frequencies, or require extra resources to further pipeline the
bypass. Instead of further pipelining the bypass, this paper
applies clock skew scheduling to memory write and read ports
of a simple bypass circuit. We show that the clock skew provides
an improved FMAX without requiring the area overhead of
the pipelined bypass. Many configurations of pipelined memory
systems are implemented, and their speed and area compared to
our design. Memory clock skew scheduling yields the best FMAX

of all techniques which preserve functionality, an improvement
of 61% over the baseline clock speed, and consuming 50% fewer
resources than the next best performing technique.

Index Terms—design and applications; timing optimization;
memory architectures;

I. INTRODUCTION

As FPGA capacities and speeds increase, they are being
used for many new applications and architectures. These
applications include high performance processing, which often
employ custom pipelined circuits and accelerators, or general
purpose processor pipelines [1][2]. Memories are often used to
communicate and pass data between pipeline stages, to allow
for more flexible computation. These memories may be located
far away from computation resources such as DSPs on the
FPGA, and the read and write latency to these memories can
limit the resulting speed of processor circuits. These latencies
can be reduced by pipelining the read and write ports, e.g.
first writing data to higher speed registers that are written
to memory in the next cycle. This approach will result in
a communication latency between pipeline stages of a few
clock cycles, which is undesirable and impractical for many
architectures. By implementing bypass registers to hold and
forward data written within the last one or two cycles, we can
remove this limitation at the cost of resources and speed.

In this paper, we pipeline a memory using clock skewing to
effectively eliminate the read and write latency of the memo-
ries, while preserving functionality, and using fewer resources
than conventional bypass designs. To allow communication

between pipeline stages without an extra cycle of latency,
written data is written to a bypass register, and if the read
address is the same as the write address from the previous
cycle, the bypass register is selected instead of the memory
output. By clocking the memory write ports slightly after the
main clock, we can borrow time from the downstream logic
stage to finish the data write (Fig. 1). In addition, in some
situations, the read port can be clocked slightly before the
main clock, reducing the time to read data.

Extra resources on FPGAs such as multiple clock generators
and global clock networks sometimes go unused by designers.
Our design leverages these resources to improve the speed of
pipelined circuits, and reduce usage of more general purpose
resources such as logic and registers.

Our memory design is applicable to many similar systems
which use memories for communication, for example pipelines
using FIFOs between compute elements, or two or more
programmable CPUs which communicate through mailbox
memories. While traditional skew scheduling technique intro-
duces complex CAD techniques to solve a general optimiza-
tion problem, our design isolates a specific frequent use-case
that benefits from clock skew scheduling. The design can be
integrated seamlessly by end users, and could be precompiled
into an IP library that depends on properties of the device, not
the end-user circuit.

WR_data

WR_addr

WR_clk R
A

M

RD_data

RD_addr

RD_clk

X
Ø-Δ2

WR_data

WR_addr

WR_clk R
A

M

RD_data

RD_addr

RD_clkØ+Δ1

Ø-Δ2

Ø+Δ1

Ø Δ1

Δ2

Clock Period T

Read to Write Clock Delay T+Δ1+Δ2

Fig. 1. Example of clock skew scheduling used to extend clock to clock
delay for critical path

By combining memory bypassing and memory clock skew-
ing, we can improve FMAX and reduce area usage over
conventional pipeline bypassing, while maintaining function-



ality. We implemented other comparable memory designs, and
compared them to our technique. Designs were evaluated using
static timing analysis on an Altera Cyclone device. Overall,
our pipeline memory design:
• Improves FMAX by 56% over the baseline design, and

14% over the best conventional design.
• Achieves the highest speed of any alternate design.
• Consumes 50% fewer resources than the next-best per-

forming design.

II. BACKGROUND

Clock skew scheduling, or clock skew optimization [3] is
a time-borrowing technique used to increase the clock speed
of circuits by allowing critical paths longer cycle times to
propagate. By moving the clock transition from the source
register of the critical path earlier than the transition of the
sink, the critical path delay can be greater than the clock
period without creating timing violations. The logic preceding
and following the affected registers however will need to have
sufficient slack to accommodate the skew, so if it is also on
the critical path the technique will not be effective. Therefore
the technique will be most effective in feed-forward pipelines.
Fig. 1 shows how two oppositely skewed clocks can increase
timing slack if used to register the source and sinks of a path.

Useful clock skew can be applied to any design without user
input, using natural skew inherent in any clock network. Some
tools will automatically use clock skew to improve FMAX ,
e.g. skew scheduling is applied to FPGA CAD tools in [4]
and [5], while a clock skew optimized FPGA architecture
is explored in [6]. Clock skew scheduling is also used in
pipelined designs and techniques such as ReCycle [7], where
slower stages in a long pipeline receive slack from faster ones,
bringing performance nearer to the average case delay of the
pipeline, rather than the worst case.

Pipeline bypassing, or forwarding [8], is a common tech-
nique in pipelined design where data is passed forward in a
pipeline skipping over one or more register stages. When extra
pipeline stages are introduced to increase circuit performance,
forwarding can reduce the number of cycles of latency needed
for an operation to complete, and increase overall performance.

III. SKEWLESS DESIGNS

A. Baseline Design

Our starter circuit in Fig. 1 is a simple feed-forward
multistage pipeline of 8×8 bit multipliers, reading and writing
16 bits of data from simple dual-port block RAMs. The RAM
write port is synchronous, latching the data, address, and write-
enable on the write clock. The RAM read port captures the
address synchronously on the read clock, and the read data
comes out after the memory array is accessed. The memory
write and read addresses come from separate registers not
shown in the diagram. This design allows each pipeline stage
single-cycle access to data in the memory. Since the block
RAM and multiplier exist in separate parts of the FPGA, the
FMAX can suffer from routing latency to and from memory, as
well as the read and write delays to memory itself. According

to Quartus static timing analysis, this starter design operates
at 126MHz in the Altera Cyclone IV FPGA of our Terasic
DE2-115 board.

In many FPGA memories, including those in Cyclone IV,
data cannot be read on the same clock edge it is written.
Instead, one additional cycle of latency must be introduced
before the same address can be read between pipeline stages.
This latency is undesirable for a processor design. To allow for
data to propagate quickly between stages, the bypass circuitry
shown in Fig. 2 is required. When ∆wr = ∆rd = 0, we
call this the baseline design. The previously written data
and address are saved in registers. An address comparator is
employed to compare the last cycle’s write and current cycle’s
read address. In the case of a match, a multiplexer feeding the
Read Data line will switch to the register containing the last
written data instead of the block RAM output.

B. Memory with Fully Pipelined Bypass

The circuit in Fig. 3 improves the FMAX performance of
the baseline bypass circuit with additional pipelining. Both
data and addresses for the previous two writes are stored in
registers, and the read is initiated a cycle early. The addresses
are compared, and the proper values from the memory or
registers is selected. This increases the total resources used
for each pipeline stage and memory, and introduces additional
delay in the bypassing multiplexer.

One drawback of this fully pipelined bypass is the additional
LUT and FF resources required to implement two stages
of bypassing. These resources could potentially be placed
anywhere in the FPGA, increasing the uncertainty about wire
propagation delays. The increased number of resources also
increases the probability that the tools may produce a bad
placement solution, potentially resulting in slower operation.

IV. STATIC CLOCK SKEW SCHEDULING

In this section we present our design for a memory pipeline
using clock skew scheduling. Our bypass design, shown in
Fig. 2, employs a circuit similar to the original baseline design,
except that some intentional clock skew ∆wr and ∆rd is
being applied to the write and read ports of the memory,
respectively. Note the write-data register is also clocked late
by ∆wr, just like the memory write port. However, the write-
address register is clocked normally or, if possible, clocked
early by ∆rd.

The bypass operates just like before. For correct read-
during-write behaviour, the write address and write data are
captured in registers. If the read address matches the write
address from the previous cycle, the write-data register is
selected by the bypass mux instead of the memory output.

The presence of a bypass register allows us to borrow time
by shifting both the read and write clocks without affecting
functionality. The write port clock lags the main clock by ∆wr,
borrowing time to allow the processing circuitry to finish and
the data to be written. The read port leads the main clock by
∆rd, allowing the memory to be read in advance of when it
will be needed.



WR_data

WR_addr

WR_clk R
A
M

RD_data

RD_addr

RD_clk

=

FF
bypass

wrAddr

FF

Ø-Δ2Ø+Δ1

rdAddr

FF

wrAddr

wrData

rdAddr

rdData

0

1

Fig. 2. Baseline memory circuit with single-stage bypass, also used for static
clock skew scheduling when ∆wr ≥ 0, ∆rd ≥ 0

Extra resources are available on FPGAs for multiple clock
generators (eg, PLLs) and networks that often go unused. This
design leverages these otherwise unused resources to improve
the speed of pipelined circuits, and reduce usage of more
general purpose resources such as logic and registers. While
this new design also relies upon good placement of the bypass
components, there are fewer resources to place than the two-
stage bypass circuit in Fig. 3.

Time borrowing from the write operation of a preceding
pipeline stage will only affect the next stage if the last-written
data is needed immediately. In that case, since the value is
always read from the bypass register, the time borrowed from
the read and write ports will not cause latency to propagate
into the next stage. Due to this condition, both the write and
read ports of the memory can be skew scheduled to extend
the time for the computation path.

The values of ∆wr and ∆rd are mostly dependent on timing
properties of the block RAMs. These can be precharacterized
and precalculated, allowing the design of a clock-skewed
memory with bypass to be an IP block. However, it is also
possible to compute these timing properties at compile-time
to automatically determine the skews.

WR_data

WR_addr

WR_clk R
A
M

RD_data

RD_addr

RD_clk

=

FF
bypass

rdAddr

rdData

wrAddr

FF = rdAddr

FF

w
rD
at
a

w
rA
d
d
r

1Φ

00

01

Fig. 3. Memory circuit with fully pipelined bypass

WR_data

WR_addr

WR_clk R
A
M

RD_data

RD_addr

RD_clk

FF
bypass

X

Ø+Δff

Ø+ΔrdØ+Δwr

Fig. 4. Timing paths of memory

V. TIMING ANALYSIS

The amount of clock skew applied to each memory port is
derived from analyis of the timing paths through the circuit.
There are four timing paths to consider between each memory
stage

(1) T ≥ ∆ff + tclk→out(ff) + td(ff→mux) + td(mux) +
td(mul) + td(mul→ff) + tsu(ff) - ∆ff

(2) T ≥ ∆ff + tclk→out(ff) + td(ff→mux) + td(mux) +
td(mul) + td(mul→ramwr) + tsu(ramwr) - ∆wr

(3) T ≥ ∆rd + tclk→out(ramrd) + td(ramrd→mux) +
td(mux) + td(mul) + td(mul→ff) + tsu(ff)-∆ff

(4) T ≥ ∆rd + tclk→out(ramrd) + td(ramrd→mux) +
td(mux) + td(mul) + td(mul→ramwr) + tsu(ramwr) - ∆wr

Timing path (1) is the limiting path, which can’t be im-
proved by time borrowing since it from a flip-flop to a flip-flop
with the same clock.

Timing path (2) can be improved by time borrowing (∆wr)
and should have the same delay as path (1), hence:

(5) ∆wr = td(mul→ramwr) + tsu(ramwr) - td(mul→ff) -
tsu(ff) + ∆ff

Timing path (3) can be improved by time borrowing (∆rd)
and should have the same delay as path (1), hence:

(6) ∆rd = tclk→out(ff) + td(ff→mux) - tclk→out(ramrd) -
td(ramrd→mux) + ∆ff

The delay of path (4) is achieved by applying (5) and (6)
into path (4) as follows.

(7) T ≥ ∆ff + tclk→out(ff) + td(ff→mux) + td(mux) +
td(mul) + td(mul→ff) + tsu(ff) - ∆ff hence, similar path delay
as path (1).

VI. EXPERIMENTAL RESULTS

To evaluate the suggested time-borrowing method and to
compare to the traditional bypass method, both methods have
been implemented in Verilog and tested using Altera/Terasic
DE2-115 board with a Cyclone IV E device (C7 speed grade).
While static timing analysis (STA) is derived directly from
Quartus II, a testing circuit is required as a proof-of-concept
and to experimentally measure the performance limit of a real
chip. Fig. 5 describes a performance testing circuit with a dual-
clocked RAM for tracing the DUT (design-under-test) results.
The dual-clocked RAM is written by a DUT testing wrapper



Design Method FMAX (MHz) (QuartusII STA) FMAX (MHz) (Tested) #LUTs #FFs
Baseline design(Fig. 2), ∆wr = ∆rd = 0 113 153 21 17

Fully Pipelined Bypass (Fig. 3) 179 208 37 34
Time-borrow (Fig. 2), 183 238 21 17

Optimal ∆wr ,∆rd (∆wr = 2.0ns, ∆rd = 0ns) (∆wr = 2.0ns, ∆rd = 0ns)

TABLE I
FMAX AND RESOURCE USAGE OF PIPELINE DESIGNS

R
an

d
o

m

Counter R
an

d
o

m
 

Counter

error

High Freq. Low Freq.

wrAddr

wrData

rdAddr

rdData

Reset Generator

!=

re
se

t

re
se

t

d
o

n
e

?

d
o

n
e

?

D
U

T

D
U

T

Tr
ac

in
g 

R
A

M

Fig. 5. Testing Circuit

at high frequency and read by a reference DUT wrapper at
low frequency. Error is detected if reference wrapper output
is different from the read memory data. In order to guarantee
high performance, clock enables were avoided. When a full
testing trace is finished, the system resets and starts a new
testing loop. The DUT wrapper includes a random address
generator and a one-pass LFSR counter to index the generated
data. The RAM in the DUT is initialized with random values.
The addresses are generated with a two-level LFSR counter.
The two-level LFSR counter is an LFSR counter seeded with a
different LFSR counter to guaranty highly random addresses.
However, the test circuit is supposed to check read-after-write
cases where the read and write addresses are the same. This
happens rarely with totally random addresses, so we force
the same address when a few specific LFSR bits show a
specific bit pattern. To achieve maximum performance, the
testing circuit and the DUT wrapper have been fully pipelined;
however, pipeline stages are not shown in Fig. 5. Clock delay
is implemented using two different methods as a proof-of-
concept. In the first method lcells are used to delay the clocks
while in the second the PLL shifted clocks are used. While the
lcells suffer from design and PVT variations, the PLL clocks
are more stable.

Table I lists the area and the performance of the suggested
time-borrowing method and the traditional bypass approach
for 16-bit data width and 8-bit address width. The suggested
method uses 50% less registers and 43% less LUTs since the
bypass method contains more address comparisons and wider
muxes. While Quartus II STA shows only 3% performance im-
provement, the test circuit demonstrates a higher performance
improvement of 14.4%. This high performance improvement
is due to further tuning and delaying of the design clocks.

VII. CONCLUSION

This paper presented a way to use clock skewing to effec-
tively eliminate the read and write latency of the block RAMs
in a pipeline. We have increased FMAX and reduced area
usage over conventional pipelined bypassing, while maintain-
ing the same functionality. Although Quartus II conservatively
estimates a maximum speed of 113MHz for a typical baseline
bypassed memory, but we measured correct operation of a real
chip at 238MHz using memory clock skewing.

Our memory design is applied to pipelined processors that
communicate through memories, but is applicable to many
similar systems. While traditional clock skew scheduling tech-
niques introduce complex CAD techniques to solve a general
optimization problem, our design isolates a specific frequent
use-case that benefits and is easy to solve. The design can be
integrated seamlessly by end users, and could be precompiled
into an IP library that depends only on properties of the device,
not the end-user circuit.

Although omitted for brevity, we also implemented other
compatible memory designs by retiming, i.e. moving flip-flops
forwards and backward. Using static timing analysis, we found
that the clock skew technique presented here achieved the
highest clock frequency over the other designs.

The main drawback to this approach is the creation of short-
path or min-path problems. That is, because of the delayed
write clock, it is possible to violate the hold condition if short
paths exists through the combinational pipeline. Using ∆wr >
0 further increases the likelihood of these short paths becoming
a problem. To work around this, all short paths need to be
delay padded until they reach a total delay of ∆wr + ∆rd.

REFERENCES

[1] J. Diaz, E. Ros, F. Pelayo, E. Ortigosa, and S. Mota, “FPGA-based real-
time optical-flow system,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 16, no. 2, pp. 274–279, Feb. 2006.

[2] A. Hodjat and I. Verbauwhed, “A 21.54 Gbits/s fully pipelined AES pro-
cessor on FPGA,” in Field-Programmable Custom Computing Machines,
April 2004, pp. 308–309.

[3] J. P. Fishburn, “Clock skew optimization,” IEEE Transactions on Com-
puters, vol. 39, no. 7, pp. 945–951, July 1990.

[4] X. Dong and G. Lemieux, “PGR period and glitch reduction via clock
skew scheduling, delay padding, and GlitchLess,” in International Con-
ference on Field-Programmable Technology, December 2009, pp. 88–95.

[5] D. Singh and S. D. Brown, “Constrained clock shifting for field pro-
grammable gate arrays,” in ACM/SIGDA International Symposium on
FPGAs, 2002, pp. 121–126.

[6] C. Yeh and M. Marek-Sadowska, “Skew-programmable clock design for
fpga and skew-aware placement,” in ACM/SIGDA International Sympo-
sium on FPGAs, 2005, pp. 33–40.

[7] A. Tiwari, S. R. Sarangi, and J. Torrellas, “ReCycle: Pipeline adaptation
to tolerate process variation,” in International Symposium on Computer
Architecture, April 2007.

[8] J. P. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach. Morgan-Kauffman, 1990.


